
Early exercise decision in American options

with dividend, stochastic volatility and jumps

- ONLINE MATERIAL -

Appendice A provides the proof of Propositions 1 of the main paper. In Appendix B,

we characterize the space translation invariance property of the transition matrices and

we describe how we take advantage of this property in the implementation of the algo-

rithm. Appendix C compares the recursive projections method with the finite difference

methodology, and other more recent numerical technique which can accommodate dis-

crete dividends. These methods are the binomial tree and its improved version provided

by Vellekoop and Nieuwenhuis (2006), and the simulation least square approach method

of Longstaff and Schwartz (2001). We also discuss the new duality approach method of

Haugh and Kogan (2004), Rogers (2002), and Andersen and Broadie (2004). Appendix

D gives a detailed description of the data and the of calibration procedure, as well as the

results of the calibration with a breakdown per stock.

Appendix A. Proofs

We prove Proposition 1 in three steps. Before stating the proof, we start by providing

some definitions that we will use extensively. We compute the value V (y, w, t) of the

contract on a grid {(yj, wq)}j=1,...,N ;q=1...,W . The constant steps in the two dimensions of

the grid are ∆y and ∆w. The convergence will be obtained with ∆y,∆w → 0, that is, we

keep the maximum and minimum values of the grids fixed, and we make the steps become

infinitesimally small. As ∆y,∆w → 0, N,W → ∞. Define y
j

= yj − ∆y
2

, yj = yj + ∆y
2
,

wq = wq − ∆w
2

, wq = wq + ∆w
2
. Let {ej(y)}q∈Z be the orthonormal set1 defined as

1The norm used here is the usual L2([ymin, ymax]) and L2([vmin, vmax]) where ymin, ymax, vmin, vmax

are the minimum and maximum values taken by the stock and variance.
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ej(y) = 1√
∆y

Iy
j
,yj , where Iy

j
,yj is the indicator function of the interval [y

j
, yj). Likewise,

let {εq(w)}q∈N 2 be the normalized indicator functions centered on the grid {wq}q∈N, and

of support of measure ∆w. We then define the following quantities:

V ⊥(y, w, T ) =
∑
j,q

∫
dθ1

∫
dθ2V (θ1, θ2, T )ej(θ1)εq(θ2)ej(ϑ)εq(w)

def
=
∑
jq

V ⊥jq ej(y)εq(w),

(1)

G⊥2 (yi, wp, t; y, w, T ) =
∑
j,q

∫
dθ1

∫
dθ2G2(yi, ξp, t; θ1, θ2, T )ej(θ1)εq(θ2)ej(y)εq(w) (2)

def
=
∑
j,q

G⊥2,ipjqej(y)εq(w).

Equations (1) and (2) define the coefficients {V ⊥jq }j∈Z,q∈N and {G⊥2,ipjq}j∈Z,q∈N of the or-

thogonal projections V ⊥(y, w, T ) and G⊥2 (yi, wp, t; y, w, T ). Due to the orthogonality of

the orthonormal sets {ej(y)}j∈Z and {εq(y)}q∈N, we obtain the following:

v⊥ip(t)
def
=

∫
dy

∫
dwG⊥2 (yi, wp, t; y, w, T )V ⊥(y, w, T ) =

∑
jq

G⊥2,ipjqV
⊥
jq . (3)

Moreover, we denote the following approximation by v?ip(t) :

v?ip(t) =
√

∆y∆w
∑
jq

Γ2(yi, wp, t; yj, wq, T )V (yj, wq, T ). (4)

Equation (4) gives approximation of the continuation value at t when the input at time

T is a true value. Most of the times, in practical applications, V (y, w, T ) = H(y, T ). In

the last case, v?ip(t) is the approximation of the price at t of a European contract.

In the following, we repeatedly use the second order Taylor expansion of bivariate

functions. Let χ(ξ1, ξ2) be twice differentiable in the two variables ξ1 and ξ2. Then, for
2Typically, in implementations yj = log(Sj), so that j takes values in Z. The variance values wq

being positive, q ∈ N. This convention has not impact on the proof.
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ξ̂1 ∈ [y
j
, yj) and ξ̂2 ∈ [wq, wq):

χ(ξ1, ξ2) = χ(yj, wq) + ∂ξ1χ(yj, wq)(ξ1 − yj) + ∂ξ2χ(yj, wq)(ξ2 − wq)

+ ∂2
ξ1ξ2

χ(ξ̂1, ξ̂2)(ξ1 − yj)(ξ2 − wq) +
1

2
∂2
ξ21
χ(ξ̂1, ξ̂2)(ξ1 − yj)2 +

1

2
∂2
ξ22
χ(ξ̂1, ξ̂2)(ξ2 − wq)2.

We then have the useful expansion:

∫ yj

y
j

dξ1

∫ wq

wq

dξ2 χ(ξ1, ξ2)

= χ(yj, wq)∆y∆w +
1

2

∫ yj

y
j

dξ1

∫ wq

wq

dξ2

[
∂2
ξ21
χ(ξ̂1, ξ̂2)(ξ1 − yj)2 + ∂2

ξ22
χ(ξ̂1, ξ̂2)(ξ2 − wq)2

]
= χ(yj, wq)∆y∆w +O

(
∆3
)
, as ∆→ 0, (5)

because, since yj and wq are the centre points of the integration interval, the integrals of

the other terms of the expansion vanish.

The proof of Proposition 1 is organized in the following four steps: 1) Lemma 1 tells

us that what matters for the convergence properties in Equations (14) and (15) of the

main paper is the rate of convergence of the approximated continuation value to the true

continuation value. 2) In Lemma 2, we show that the computed continuation value v?ip(t)

verifies v?ip(t) = v⊥ip(t) + O(∆2). 3) In Lemma 3, we prove that v⊥ip(t) = V (yi, wp, t) +

O(∆2), which entails that v?ip(t) = V (yi, wp, t) + O(∆2), which proves Proposition 1 in

the European option case, i.e. Equation (14) by setting t = tL−1. 4) In Lemma 4, we

conclude by proving the recursive formula of Equation (15) of the main paper. The

summations on the indices j and q are understood to be from −∞ to +∞ and from 1 to

+∞, respectively.

LEMMA 1. Let A1, A2 and a2 be real numbers such that A1 and A2 are true quantities

and a2 is an approximation of A2. Then, we have the following inequality:

|max{A1, a2} −max{A1, A2}| ≤ |a2 − A2|. (6)
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Inequality (6) shows that the rate of convergence of max{A1, a2} to max{A1, A2} is given

by the rate of convergence of a2 to A2.

Proof of Lemma 1:

Proof. We must analyze four possibilities.

1. if A1 > a2 and A1 > A2, then |max{A1, a2} −max{A1, A2}| = 0.

2. if A1 ≤ a2 and A1 ≤ A2, then |max{A1, a2} −max{A1, A2}| = |a2 − A2|.

3. if A1 > a2 and A1 ≤ A2, then we have |max{A1, a2}−max{A1, A2}| = |A1−A2| ≤

|a2 − A2|, because A1 lies between a2 and A2.

4. if A1 ≤ a2 and A1 > A2, then we have |max{A1, a2}−max{A1, A2}| = |a2−A1| ≤

|a2 − A2|, because A1 lies between a2 and A2.

Gathering points 1-4 yields inequality (6).

LEMMA 2. The approximation error between v⊥ip(t) and v?iq(t) defined in (3) and (4)

satisfies:

v?ip(t) = v⊥ip(t) +O(∆2), as ∆→ 0.

Proof of Lemma 2. We must bound the difference:

∑
jq

∣∣∣√∆y∆w Γ2(yi, wp, t; yj, wq, T )V (yj, wq, T )−G⊥2,ipjqV ⊥jq
∣∣∣.

By Fourier isometry, we have:

∫∫
dθ1dθ2G2(yi, wp, t; θ1, θ2, T )ej(θ1)εq(θ2) =

1

4π2

∫∫
dλdκĜ2(yi, wp, t;λ, κ, T )êj(−λ)ε̂q(−κ),

where êj(λ) and ε̂q(κ) are the Fourier transforms of ej(y) and εq(w), respectively. Then,
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we deduce:

∑
jq

∣∣∣√∆y∆w Γ2(yi, wp, t; yj, wq, T )V (yj, wq, T )−G⊥2,ipjqV ⊥jq
∣∣∣

=
1

4π2

∑
jq

∣∣∣√∆y∆w
( ∞∑
r,z=−∞

Ĝ2(xi, wp, t;λr, κz, T )êj(−λr)ε̂q(−κz)∆λ∆κ
)
V (yj, wq, T )

(7)

−
(∫∫

dλdκĜ2(yi, wp, t;λ, κ, T )êj(−λ)ε̂q(−κ)
)(∫∫

dθ1dθ2V (θ1, θ2, T )ej(θ1)εq(θ2)
)∣∣∣,

(λr)r∈Z and (κz)z∈Z being equispaced grids of step ∆λ,∆κ, of values taken by the trans-

form variables λ and κ. The functions Ĝ2(yi, wp, t;λ, κ, T ), êj(−κ) and ε̂j(−λ) are twice

continuously differentiable. Moreover, let ∆ =
√

∆κ2 + ∆λ2. Using the property (5)

with χ(λ, κ) = Ĝ2(yi, wp, t;λ, κ, T )êj(−λ)ε̂q(−κ) we have that:

∫∫
dλdκ Ĝ2(yi, wp, t;λ, κ, T )êj(−λ)ε̂q(−κ) +O(∆

3
), (8)

=
∞∑

r,z=−∞

Ĝ2(xi, ξp, t;λr, κz, T )êj(−λr)ε̂q(−κz)∆λ∆κ as ∆→ 0.

Exploiting the continuity property of V (y, w, T ), we obtain:

∣∣∣∣√∆y∆w

∫∫
dθ1dθ2V (θ1, θ2, T )ej(θ1)εq(θ2)− ∆y∆w V (yj, wq, T )

∣∣∣∣ (9)

≤
∫ yj

y
j

dθ2

∫ wq

wq

dθ1

∣∣∣V (θ1, θ2, T )− V (yj, wq, T )
∣∣∣ ≤ ∆y∆wC∆ = O(∆2), as ∆→ 0.

It then suffices to substitute Equation (9) and (8) into (7), and to choose ∆ = O(∆),

to prove the statement of Lemma 2.

LEMMA 3. The following equality holds:

v⊥ip(t) = V (yi, wp, t) +O(∆2), as ∆→ 0.
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Proof of Lemma 3. We study the following difference:

V (yi, wp, t)− v⊥ip(t) =

∫∫
dydwG2(yi, wp, t; y, w, T )V (y, w, T )−

∑
jq

G⊥2,ipjqV
⊥
jq (10)

=
∑
jq

∫ yj

y
j

dy

∫ wq

wq

dwG2(yi, wp, t; y, w, T )V (y, w, T )

−
∑
jq

1

∆y∆w

∫ yj

y
j

dθ1

∫ wq

wq

dθ2G2(yi, wp, t; θ1, θ2, T )

∫ yj

y
j

dϑ1

∫ wq

wq

dϑ2V (ϑ1, ϑ2, T ).

We show that both terms in the right-hand side of (10) are equal to∑
j,q G2(yi, wp, t; yj, wq, T )V (yj, wq, T )∆y∆w + O(∆2). We start by the generic term of

the first summation. By applying (5) and (9):

∣∣∣∫ yj

y
j

dy

∫ wq

wq

dwG2(yi, wp, t; y, w, T )V (y, w, T )−G2(yi, wp, t; yj, wq, T )V (yj, wq, T )
∣∣∣ ≤∫ yj

y
j

dy

∫ wq

wq

dwG2(yi, wp, t; y, w, T )
∣∣V (y, w, T )− V (yj, wq, T )

∣∣
+ V (yj, wq, T )

∫ yj

y
j

dy

∫ wq

wq

dw
∣∣G2(yi, wp, t; y, w, T )−G2(yi, wp, t; yj, wq, T )

∣∣
≤ sup

y∈[y
j
,yj)

w∈[wq ,wq)

G2(yi, wp, t; y, w, T )O
(
∆2
)

+ sup
y∈[y

j
,yj)

w∈[wq ,wq)

ξ∈{y,w}

∂2
ξ2G2(yi, wp, t; y, w, T )O

(
∆3
)
.

We can easily check that the generic term of the second summation in Equation (10)

equals:

1

∆y∆w

[
G2(yi, wp, t; yj, wq, T )∆y∆w +O(∆3)

][
V (yj, wq, T )∆y∆w +O(∆2)

]
= G2(yi, wp, t; yj, wq, T )V (yj, wq, T )∆y∆w +G2(yi, wp, t; yj, wq, T )O(∆2).

Then:

|V (yi, wp, t)− v⊥ip(t)| ≤
∑
j,q

sup
y∈[y

j
,yj)

w∈[wq ,wq)

G2(yi, wp, t; y, w, T )O
(
∆2
)
.

Because G2(yi, wp, t; y, w, T ) is a density, the above summation is finite, and it proves

Lemma 3. Combining the results of Lemma 2 and Lemma 3, we have shown that the
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continuation value v?ip(t) = V (yi, wp, t) +O(∆2), that is, we have proven the convergence

of the algorithm in the European case.

LEMMA 4. Let vip(tl) be defined as in Equation (15) of the main paper, with l =

1, . . . , L − 2. Then vip(tl) converges to the true price V (yi, wp, tl) at a rate of the order

O(∆2).

Proof. We start by showing the convergence of vip(tL−2) to V (yi, wp, tL−2). Because of

Lemma 1, we only need to prove the convergence of the approximated continuation value

at t = tL−2 to the true continuation value at t = tL−2. We consider a contract evaluated

at two dates {tL−2, tL−1} prior to maturity, tL = T , namely tL−2 < tL−1 < T . Then:

∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)vjq(tL−1)
√

∆y∆w

=
∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)
[
V (yj, wq, tL−1)− V (yj, wq, tL−1) + vjq(tL−1)

]√
∆y∆w

=
∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)V (yj, wq, tL−1)
√

∆y∆w

+
∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)
[
vjq(tL−1)− V (yj, wq, tL−1)

]√
∆y∆w.

The quantities {V (yj, wq, tL−1)}j∈Z,q∈N are exact values; thus it follows from Lemma 2

and Lemma 3 that:

∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)V (yj, wq, tL−1)
√

∆y∆w = V (yi, wq, tL−2) +O
(
∆2
)
.

Again, from Lemmas 1 and

3, it follows that vjq(tL−1) = max{v?jq(tL−1), H(yj, wq, tL−1)} = V (yj, tL−1) + O
(
∆2
)
.

Then:

∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)
[
vjq(tL−1)− V (yj, wq, tL−1)

]√
∆y∆w

≤ sup
j
|vjq(tL−1)− V (yj, wq, tL−1)|e−r(tL−1−tL−2)

(
1 +O

(
∆3
))

= O
(
∆2
)
.
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In the last inequality, we take advantage of the fact that

∑
jq

Γ(yi, wp, tL−2; yj, wq, tL−1)
√

∆y∆w = e−r(tL−2−tL−1)
(
1 +O

(
∆3
))
,

because G(x, ξ, tL−2; y, w, tL−1) is the deterministic discount factor times a density.

Indeed, the approximation operators built on indicator functions are shape pre-

serving, (see Dechevsky and Penev (1997) and Cosma et al. (2007)), and the

property of integration to one of a density is preserved. The O
(
∆3
)

term is

the speed at which the sum
∑

jq Γ(yi, wp, tL−2; yj, wq, tL−1)
√

∆y∆w converges to∫
dydw

∑
jq

∫
dθ1θ2G(yi, wp, tL−2; θ1, θ2, TL−1)ej(θ1)εq(θ2)ej(y)εq(w), and can be checked

using the same series expansions techniques as in the proof of Lemma 2. It read-

ily follows that vi(tL−2) = V (yi, tL−2) + O
(
(∆y)2

)
. The extension to prior dates

tl = tL−3, tl = tL−4, . . . , immediately follows by recursively applying the same arguments

used above.

The proof of Proposition 1 can be performed in a more general framework, and for

basis sets other than indicator functions. The key requirement is that only a finite

number of basis functions contribute to the the approximation of a function at a given

point (yi, wp). Examples are orthonormal wavelets, non-orthogonal and bi-orthogonal

wavelet bases, and B-splines. The use of these function bases may be useful when we

need a basis that better adapts to the specific geometry of more complicated pricing

problems.
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Appendix B. Space Translation Invariance Property of

Transition Matrices

Let the N ×W matrix of computed prices at time t = tl be denoted by v2(tl), that

is v2,jq(tl) = vjq(tl). Let Γ2(yi, wp, tl; tl+1) be the N × W matrix of the approximated

transition probabilities from the initial point (yi, wp) to the end points of the entire grid

{(yj, wq)}j=1,...,N ;q=1...,W , as provided in Appendix B of the main paper. We then have

that Γ2,jq(yi, wp, tl; tl+1) = Γ2(yi, wp, tl; yj, wq, tl+1)
√

∆y∆w, and we can express Equation

(15) of the main paper as:

vip(tl) = max
{
H(yi, tl),

N∑
j=1

W∑
q=1

Γ2(yi, wp, tl; yj, wq, tl+1)vjq(tl+1)
√

∆y∆w
}

= max
{
H(yi, tl),Γ2(yi, wp, tl; tl+1) : v2(tl+1)

}
, (11)

where the symbol “:” denotes the Frobenius, or entry-wise, product. Figure 1 graphically

presents the Recursive Projections in the bivariate case.

The transition matrix Γ2(yi, wp, tl; tl+1), as implicitly defined in Equation (11), is a

function of the conditioning values (yi, wp). The following remark greatly simplifies and

speeds up the computation of the transition matrices. The evolution of the asset prices

logarithm in the stochastic volatility model has the property that increments are inde-

pendent of the price level. Let M2(log(x), ξ, tl; log(y), w, tl+1) = G2(x, ξ, tl; y, w, tl+1)y be

the bivariate state price density as a function of log(y) and let M̂2(log(x), ξ, tl;λ, κ, tl+1)

be its Fourier transform. Let furthermore Ψ2((log(y))i, wp, tl; tl+1) be a matrix whose

entries Ψ2,jq((log(y))i, wp, tl; tl+1) = Ψ2((log(y))i, wp, tl; qj, wq, tl+1)
√

∆y∆w are the ap-

proximations of M2((log(y))i, wp, tl; (log(y))j, wq, tl+1) obtained by applying a FFT on

M̂2((log(y))i, wp;λ, κ, tl+1).
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Then Equation (11) becomes:

vip(tl) = max
{
H(e(log(y))i , tl), Ψ2((log(y))i, wp, tl; tl+1) : v2(tl+1)

}
,

where vip(tl) is now the approximation to the value V (e(log(y))i , wp, tl). We have that

Ψ2,jq((log(y))i+ζ , wp, tl; tl+1) = Ψ2,j−ζ q((log(y))i, wp, tl; tl+1) for ζ ∈ Z, provided that 0 <

i + ζ < N . We refer to this property as to the space translation invariance property of

transition matrices. In implementations, we compute Ψ2((log(y))i, wp, tl; tl+1) only once

for at-the-money values of ((log(y))i, wp), and reconstruct the other transition matrices

exploiting the space translation invariance property. Again, this feature exemplifies the

computational advantage of direct sampling based on equally-spaced grids.

If we have to take into account discrete dividends, as in Section 3.2 of the main paper,

at each dividend date th, we must compute the continuation value of the option at the grid

{(log(elog(y)i−d), wp)}i=1,...,N ;p=1,...,W . If the original grid {(log(y)i, wp)}i=1,...,N ;p=1,...,W has

a regular step in the log(y)i direction, then this is no more true for the grid {(log(elog(y)i−

d), wp)}i=1,...,N ;p=1,...,W . We can still take advantage of the space translation invariance of

the transition matrices because the state price densityM2(log(x), σ2
t , th; log(y), w, th+1) is

a function of log(x) and log(y) only through the difference log(y)− log(x). Let us perform

the following change of variable:

V (x− d, σ2
t , th) =

∫∫
d log(y)dwM2(log(x− d), σ2

t , th; log(y), w, th+1)V (elog(y), w, th+1)

=

∫∫
d log(y)dwM2

(
log(x), σ2

t , th; log(y) + log
( x

x− d
)
, w, th+1

)
V (elog(y), w, th+1)

=

∫∫
d log(y)dwM2

(
log(x), σ2

t , th; log(y), w, th+1

)
V (e(log(y)+log(1−d/x)), w, th+1).

For pricing by recursive projection, this procedure translates into the relationship:

vip(th) = max
{
H(elog(y)i , th),Ψ2(log(y)i, wp, th; th+1) : ṽ2;d(th+1)

}
, where ṽ2;d(th+1) are

approximations of the value function V (e(log(y)j+log(1−d/elog(y)i )), wq, th+1) obtained by a
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second-order interpolation of the elements of v2(th+1). We can still compute the

Ψ2(log(y)i, wp, th; th+1) matrices on the regular grid {(log(y)i, wp)}i=1,...,N ;p=1,...,W , and

we can still use the space translation invariance property to speed up computations.

Appendix C. Comparison with Other Methods

In this section we compare the speed and performance of our recursive projection

method with i) finite difference methodologies ii) binomial trees iii) Monte-Carlo simula-

tion techniques.

C.1. Comparison with finite difference methodologies

We conduct two simulation studies under the assumption that the underlying process

follows a stochastic volatility Heston model. In the first, the American call has a time to

maturity of one year, and 3 dividends worth d = 2 are distributed at th = 0.25, 0.5, 0.75.

In the second, the time to maturity remains one year, but a single large dividend d = 10

is paid out after six months. The process parameter values are the following: r = 0.05,

σLT = 0.2, β = 2 and ω = 0.2. Moreover we choose the parameter ρ to be equal to zero.

We compute the price for an at-the-money option (S0 = K = 100). The benchmark

method in this analysis is a finite-difference (hereafter FD) numerical solution of the

partial derivatives equation (PDE ) that describes the evolution of the price process Vt

of the American call. We implement an alternating direction implicit (ADI ) variant of

the finite-difference scheme. For a recent discussion of schemes similar to FD, see, for

instance, in’t Hout and Foulon (2010). This implementation is equivalent to a Crank-

Nicolson scheme, which in standard problems converges at a rate O
(
(∆t)2

)
, where ∆t is

the temporal discretization interval. In both the FD scheme and the recursive projections,

the evolution of the option price Vt is studied on a rectangular grid in the space (X, σ2),

11



withX ∈ [log(K)−10σLT
√
T , log(K)+10σLT

√
T ] and σ2 ∈ [0, 0.3]. In the FD scheme, the

parameter ms gives the number of equally spaced grid points in the X direction, and mv

gives the number of equally spaced grid points in the σ2 direction, so that the grid points

are {(Xi, σ
2
p)}i=1,...,ms;p=1,...,mv . The parameter LT gives the number of time steps used.

In the recursive projections, under a sampling scheme we define ∆y = 2−Ja, where a is a

positive constant that gives the step of the {yj}j=1,...,N grid when J = 0. Describing the

convergence of the recursive projections in terms of the parameter J emphasizes how the

approximation error decreases each time the number of grid points is doubled. Similarly,

∆w = 2−Jwaw, where aw is the step with Jw = 0 of the {w}p=1,..,W grid in which the σ2
t

variable takes values.

Assuming the contemporaneous correlation ρ = 0 simplifies the implementation of the

FD scheme, in the sense that neglecting the correlation between Xt and σ2
t makes the FD

scheme easier to code and faster. On the other hand, the speed and complexity of the

recursive projection method are unaffected by the value chosen for the parameter ρ. The

correlation is addressed in the Green function G2(x, σ2
t , t; y, w, T ) and consequently in the

coefficients of the matrix Ĝ2. Because the speed of the method depends on the number

of entries in the Ĝ2 matrix, and not on the values taken by the entries, it is clear that

the choice of ρ does not affect the convergence rate of the recursive projections. This

feature is the first advantage of the recursive projection over finite-difference schemes.

This simulation study will then give a lower bound to the difference in speed between

the recursive projections and the FD scheme. To price an American option on dividend-

paying stocks, we should implement the FD scheme-equivalent of the recombining tree.

Doing so is practically unfeasible because it would mean computing at each ex-dividend

date a new option price at each point of the grid. Instead, at each ex-dividend date

th and at each grid point (Xi, σ
2
p), we opt for comparing the intrinsic value H(Xi, th)

with the continuation value V (X̃d
i , σ

2
p, th), where X̃d

i is the value of the X grid closest to

12



log(eXi − d). This choice amounts to perturbating the FD scheme at each ex-dividend

rate, which could translate into a convergence slower than the theoretical O
(
(∆t)2

)
.

This feature is a second advantage of the recursive projection over the finite-difference

schemes, because the recursive projections can easily adapt to discrete dividends without

their affecting the convergence properties of the algorithm. The recursive projections

achieve convergence quickly in the σ2 direction. The method does not seem to improve

by setting a resolution level greater than Jw = 4; thus, we keep this value fixed throughout

our simulations. The FD scheme is also not very sensitive to the number of points used

in the σ2 direction. We find no improvement beyond mv = 31.

Figure 2 shows the results for the 3-dividend case. The true value used to compute

the pricing errors is 7.397, obtained with the resolution level J = 13. The graph on the

right displays the pricing error of the FD scheme as a function of the time discretization

parameter LT . Each line is relative to a different value of the spatial discretization

parameter ms. The time labels are all relative to the ms = 3200 curve. The FD scheme

with LT = 2048 and ms = 6400 delivers a value within 1bp; thus, we assume that the

methods have converged when the absolute value of the relative error is within 1bp of

7.397. The graph on the left plots the relative pricing error of the recursive projections

against the resolution level J . The regression line on the left graph shows that the

estimated slope is almost exactly the slope of −2 predicted by the theoretical convergence

results of Proposition 1. The FD is at least one order of magnitude slower. Compare, for

instance, the computation time needed to deliver a 4bp error (2s against 65s), or a 1bp

error (8s against 130s). Figure 3 compares the convergence speed of the two methods

in the 1-dividend case. The true value of 7.302 is obtained by the recursive projection

method with J = 13. The FD scheme requires 48 seconds to reach a 5bp relative error,

with parameters ms = 400 and LT = 2048. The bottom curve, relative to ms = 200,

shows that the method does not converge for smaller values of the space discretization
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parameter. The small 5bp bias of the FD is due to the large value of the dividend d

and the perturbation of the scheme at each dividend date. The rate as a function of

the resolution level J at which the recursive projections attain the 1bp error band is

approximately -2, as theoretically predicted.

[Figure 2 and 3 about here]

The reason for the difference in speed between the recursive projections and the FD

scheme lies in the fundamentally different way finite differences and quadrature methods

deal with time stepping. Both methods achieve time stepping through matrix multipli-

cations. But while the number of time steps in the FD is of the order of 29 or higher,

the recursive projections only need 3 or 4 time steps, one per divided payment, plus

the expiry date. The size of the parameters LT , ms and mv determines the efficiency of

the implementation of the FD scheme. If we compare the magnitude of the parameters

LT , ms and mv that we need to obtain convergence with the values of the equivalent

parameters in in’t Hout and Foulon (2010), we find that our implementation is close to

the most recent ones in the literature. While specific implementations could marginally

improve on ours, we think that we give a fair representation of the potential of the two

techniques. We remind that the computational time per time step is underestimated in

our simulation, since the assumption of ρ = 0 reduces the number of intermediate steps

in the ADI implementation of the FD scheme. Finally, if we include jumps in the process

of the underlying stock, as we do in our empirical application, the numerical complexity

of the recursive projections remains exactly the same as in the stochastic volatility case.

Introducing jumps in the underlying process while keeping the finite differences viable

from a computational point of view asks for technical devices (see for instance d’Halluin

et al. (2005)) which are model specific and not yet implemented in conjunction with

stochastic volatility.

Another notable difference between the FD and the recursive projection method is
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that the latter demands far fewer changes to adapt to different pricing problems. The

matrix G(t;T ) depends only on the dynamics of the underlying asset and not on the

payoff. We can compute it once for all and use it to price different options with different

payoffs, because the payoff functional form only impacts the vector H(T ). Such a design

is particularly suited for object-oriented programming, which is often used in quant desks.

In finite-difference schemes, we cannot price options with different payoffs through the

use of the same transition matrices, as boundary conditions affect the way the matrices

are computed.

C.2. Comparison with binomial tree methodologies

As a first numerical example in the Black-Scholes framework, we compare the con-

vergence speed of a binomial tree and of the recursive projections method in pricing an

American call option on a dividend-paying stock. Two popular modeling choices for the

dividend payment are a known cash amount d or a known dividend yield rd. The latter

is computationally friendly because it leads to a recombining tree. The known dividend

amount assumption does not lead to a recombining tree, and a new tree is originated at

each node following an ex-dividend date, increasing the numerical complexity of the prob-

lem. The work of Vellekoop and Nieuwenhuis (2006) provides a recent enhancement of the

classical binomial tree method which incorporates discrete dividend payments through an

approximation of the continuation value of the option at the ex-dividend dates. This new

algorithm has been proven to be substantially faster than the standard non-recombining

binomial tree, and is therefore a reliable benchmark for this simulation exercise.

[Figures 4 and 5 about here]

Figure 4 compares the convergence speed of the enhanced binomial tree and that of the

recursive projections method in pricing an American call option on a discrete dividend-

paying stock. The option has a maturity of T = 3 years and a dividend d = 2 is paid
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out at the end of each year. Other parameters, namely the interest rate, volatility and

strike price, are set equal to r = 0.05, σ = 0.2, and K = 100, respectively. We compute 3

prices: at-the-money, in-the-money and out-of-the-money, corresponding to S0 = 80, 100,

and 120, respectively. The true values of 7.180, 18.526, and 34.033 are obtained with

10000 time steps in the binomial tree. The graphs show that, across the three different

values of S0, the recursive projections enjoy an increase of speed of approximately a

factor 10 for a comparable level of precision. The speed advantage is even larger if we

consider that a new tree is needed for each value of S0. Instead, the recursive projections

method delivers the entire value function v(0) at once in a straightforward manner.

This feature is particularly useful in computing Greeks through numerical differentiation.

As an additional benchmark, Figure 5 displays the convergence speed of the recursive

projections jointly with the one of a standard non-recombining tree. Even though the

non-recombining tree is known to be an inefficient method, it is still used as a common

reference point in the literature, and we show this graph for comparison purposes. We

can see that the gain of speed of the recursive projection is of the order of 104. As an

aside, for S0 = 100, if we approximate the known constant dividend d = 2 with a known

continuous dividend yield3 rd = 0.013, then a binomial tree with 10000 steps delivers a

value of 18.213 instead of 18.526, with a relative error of approximately 169bp. This error

is far above observed bid-ask spreads. This simple example points to the importance of

using models that can explicitly address discrete dividends in empirical analysis, instead

of using approximations based on continuous dividend yields.

Recursive projections provide an accurate approximation even for payoffs with strong

discontinuities, such as a digital payoff H(Stl , tl) = IStl>K
in a Bermudan digital call

option. In this numerical example, we use the standard binomial tree as a benchmark,
3The yield is obtained by considering the dividends paid at t = 1 and t = 2 only, because the dividend

paid at t = 3 has no impact on the price of the option. Considering a dividend yield of 2% would provide

an option value of 16.857, which is a much larger error.
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since the method of Vellekoop and Nieuwenhuis (2006) provides no advantage in the

absence of dividends. Figure 6 (see the caption of the table for the values of the parameters

of the example) shows that the binomial tree has problems capturing the discontinuity

in the payoff function. Consequently, an extremely slow convergence of the tree method

for at-the-money Bermudan digital call options is yielded. The recursive projections

are also at least an order of magnitude faster in pricing the out-of-the-money options.

The apparent non-monotonic convergence of the binomial tree for S0 = 120 is because

both methods achieve a quick convergence for in-the-money options, and the graph only

displays small oscillations on the order of half a basis point around the true value.

[Figure 6 about here]

C.3. Comparison with Monte-Carlo simulation methods

Another group of numerical methods that can be applied to the same pricing problems

are the Monte-Carlo simulation methods. They can handle both discrete dividends and

multidimensional settings. The least-squares approach of Longstaff and Schwartz (LS)

provides a simulation based algorithm to price American options, via a lower bound for the

true price. This lower bound is then coupled with an upper bound in the implementation

of Andersen and Broadie (2004) of the duality approach of Haugh and Kogan (2004)

and Rogers (2002). In their numerical results, Andersen and Broadie (2004) show that

the gap between the lower bound and the upper bound can be very tight, making the

algorithm appealing. In Figure 7, we compare the speed and accuracy of the LS algorithm

with our method in the same three examples as before. Our algorithm is faster than the

LS method by at least four orders of magnitude. Intuitively, the main advantage of our

algorithm is that it needs to evaluate the option only when it can be optimal to exercise

it. In the case of a call option, this happens just before the payment of the dividends.

In this specific example, when there are only two dividend payments, our algorithm
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computes the final price with only two recursions. On the contrary, every simulation

based method needs to simulate the entire trajectories, increasing the computation time.

The duality approach implementation of Andersen and Broadie (2004) builds on the LS

algorithm and necessitates additional simulations at each potential exercise date to build

the upper bound for the price, thus further increasing the numerical complexity and the

computation time. Given the results obtained for the LS algorithm, we can confidently

conclude that our algorithm is also faster than the duality approach in pricing a call

option written on a stock which distributes regular discrete dividends.

Appendix D. Data and Calibration Procedure

We conduct our analysis over the period January 1996 - December 2012. We use all

short term call option series with maturity less than six months written on the dividend-

paying stocks belonging to the Dow Jones Industrial Average Index (DJIA) at the end of

2012. According to other studies (Barraclough and Whaley (2012); Pool et al. (2008)),

we proxy for the timing of the expected dividends paid during an option life time with

the actual distribution time of dividends, and we proxy for future dividends amounts by

using the last known dividend amount. We exclude from our sample the data relative

to periods in which the underlying stock experiences an unusual corporate event that

may alter the option valuation, such as special dividend distribution, new equity issue,

or spin off. To ensure the exclusion of the effects of such corporate events and their

anticipation by investors from our sample, we do not consider the data starting from nine

months before the special corporate event up to nine months after. After applying these

exclusionary criteria, we obtain a dataset of 1701 days before ex-dividend to analyze.

For each stock and at each day before an ex-dividend date, we separately calibrate the

parameters of the models of Black-Scholes, Merton, and Bates on a calibration sample

by minimizing the implied volatility mean squared error (IVMSE) as IVMSE(χ) =
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∑n

i=1(σi−σi(χ))2, where χ is the set of parameters to estimate, σi = BS−1(Ci, Ti, Ki, S, r)

is the market implied volatility and σi(χ) = BS−1(Ci(χ), Ti, Ki, S, r) is the model implied

volatility, where Ci(χ) is the model price of the American option i. The choice of this loss

function follows the argumentation of Christoffersen and Jacobs (2004). The calibration

made on implied volatilities is more stable out of sample, in particular for the stochastic

volatility model. We infer the model specific parameters of the underlying process by

calibration on a set of reliable and liquid option data. More specifically, the calibration

sample consists of contracts traded in the four months preceding the calibration day,

that have no dividend payment in their remaining life. These contracts can be treated

as European. In this way we can take advantage of the semi-closed pricing formula for

European options. We then apply some exclusionary criteria: we do not consider options

that should be optimally exercised, because their price is equal to the exercise proceeds

for mostly all values of the parameters and the minimization problem is ill posed. We thus

consider the option quotations that strictly satisfy the following inequality: C > S−K; we

do not consider option data with a price less than 3/8 of a dollar, in order to avoid effects

due to price discreteness; we do not consider options with volume equal to zero as the non-

traded quoted prices are not reliable prices; finally, we do not consider options which are

deep in-the-money or deep out-of-the-money, as they can destabilize the minimization

problem. Following Bollen and Whaley (2004), a call option is classified deep in-the-

money if its delta is larger than 0.875. Symmetrically, a call option is classified deep out-

of-the-money if its delta is less than 0.125. After applying these criteria, the calibration

sample at each day before the ex-dividend date consists of 110 call options on average.

The models of Black-Scholes and Merton are one-dimensional and do not present any

particular numerical issue; so we simply calibrate all their parameters on the calibration

sample described above. The Bates model, on the contrary, is two-dimensional. There-

fore, in addition to the calibration of its parameters, it needs the calculation of the daily
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instantaneous spot volatility σ0, which is a non-observable variable. It is also a more

sophisticated model with its seven parameters. In order to efficiently calibrate it, we use

a procedure where we take into consideration the specific role of the parameters on the

implied volatility surface. To the best of our knowledge, we are the first academic work

in which the Bates model is calibrated on single stocks. Hence we borrow some intuition

for our new calibration procedure from the practitioners studies of Hagan et al. (2002),

and West (2005). According to these studies, each parameter of the volatility dynamics

has a specific impact on the term structure of the implied volatility smile. The volatility

of volatility ω rules the convexity of the smile while the correlation parameters ρ rules

the slope of the smile. In the two works cited above, the authors consider a pure diffusive

process for the volatility, ignoring the mean reversion part. They show that for short term

options this reduced model provides a very good fit to the data. Indeed, for the short

term options the value of ∆t is very small compared to the possible values of ∆W and

the dynamics of the stochastic volatility process is driven mainly by the Brownian motion

part. The role of the mean reverting part of the stochastic volatility process of Heston

is to reproduce that implied volatilities of long maturity options are less volatile than

those of short maturity options and are usually closer to the long run average volatility.

The mean reverting part avoids that the volatility increases indefinitely with maturity.

In principle, for our application on short term options, only the diffusion component of

the stochastic volatility is sufficient to give a good fit. However, as we want to employ

the full dynamics of the Bates model, we calibrate the mean reversion and the long term

volatility parameters as well on long term options.

To this end, we calibrate the parameters in two steps: first, we calibrate the jump pa-

rameters together with the volatility of volatility and the correlation on the short term

options calibration sample described above. In this optimization, we do not consider the

mean reversion part of the stochastic volatility. Then, as a second step, we calibrate
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the mean reversion and the long term volatility on a sample of two long term options,

while keeping the other parameters fixed to those obtained in the previous step. For the

calibration, we use the two long term options with the highest trading volume among the

long term options with maturity between ten months and two years which were recorded

in the four months before the calibration. In this long term calibration, we use as objec-

tive function the minimisation of the price percentage mean squared error instead of the

implied volatility mean squared error. As the long term options have dividends during

their life and their American price differs from the European one, we cannot recover the

implied volatility in the usual way. If we had calibrated the long term volatility and the

mean reversion on the short term options directly, we would have obtained an unreason-

able high value for the mean reversion and an unreasonable low value for the long term

volatility. This spurious effect is due to the very high convexity of the short term smile

combined with the drift part of the stochastic volatility dynamics having little or null

impact on the prices of short term options, as explained before.

For the calculation of the non-observable daily instantaneous spot volatility σ0(t),

we follow the result of Medvedev and Scaillet (2010). We use the time series of the

one month (or close to) European at-the-money implied volatility as proxy for the spot

volatility. For the days considered in the calibration sample we have European options by

construction. In addition to these days, we need as well to compute the value of σ0 on all

days before the ex-dividend dates in order to price options and determine which options

should be exercised. On the day before the ex-dividend date, however, all options have

a dividend during their life, as the first dividend is paid the day after. In principle there

are no European options available. In order to make it possible to calculate σ0 on the

day before the ex-dividend date, we consider as European the options which should not

be exercised and which have only the dividend paid the following day left during their

remaining life. These options are not European only because they have an early exercise
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possibility until the dividend is paid. However, as the dividend is paid the following day

and these contracts are outside the early exercise region, the early exercise premium is

nearly zero and the price of the American option almost coincides with the price of an

European option. In the same spirit, Bakshi et al. (2003) extract the European implied

volatility from the American options prices, and they show that the difference between

the European implied volatility and the American implied volatility is negligible and

within the bid-ask spread. By employing the same approximation, we calculate σ0 at

each day before the ex-dividend date as the average of the European implied volatility

of the at-the-money options that should not be exercised with maturity one month (or

close to).

The results of the calibration with a breakdown per stock are presented in Table 1.

We note that the calibrated values of the parameters are homogeneous among stocks, and

take sensible values in line with other studies made on index options (see Bakshi et al.

(1997)).
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Underlying BS MRT BTS
σBS γ σM σψ µψ γ σψ µψ ω σLT β ρ σ0

All stocks 0.29 1.33 0.22 0.16 -0.12 0.50 0.18 -0.12 0.75 0.32 1.52 -0.35 0.28
SP500* 0.18 NA NA NA NA 0.61 0.14 -0.09 0.4 0.2 3.93 -0.52 0.2
MMM 0.25 1.10 0.20 0.11 -0.13 0.40 0.16 -0.12 0.68 0.29 1.38 -0.44 0.36
AA 0.38 1.68 0.30 0.22 -0.14 0.50 0.28 -0.18 0.88 0.36 1.61 -0.33 0.34

AXP 0.34 2.19 0.25 0.14 -0.11 0.58 0.14 -0.06 0.78 0.37 1.34 -0.54 0.33
T 0.27 1.05 0.21 0.15 -0.09 0.37 0.16 -0.11 0.69 0.33 1.48 -0.26 0.29

BAC 0.32 1.58 0.24 0.18 -0.16 1.20 0.18 -0.14 0.98 0.36 1.60 -0.45 0.34
BA 0.31 1.54 0.24 0.15 -0.13 0.40 0.18 -0.12 0.80 0.33 1.56 -0.37 0.24
CAT 0.32 1.51 0.26 0.13 -0.10 0.54 0.15 -0.06 0.78 0.35 1.46 -0.37 0.30
CHV 0.24 1.00 0.20 0.12 -0.09 0.26 0.15 -0.10 0.55 0.27 1.55 -0.26 0.23
CSCO 0.32 1.36 0.25 0.17 -0.12 1.53 0.08 -0.10 1.08 0.32 1.88 -0.36 0.29
KO 0.24 1.03 0.19 0.13 -0.12 0.41 0.15 -0.11 0.66 0.27 1.49 -0.34 0.23

XOM 0.24 0.92 0.19 0.15 -0.12 0.79 0.17 -0.12 0.69 0.24 1.57 -0.38 0.27
GE 0.27 1.06 0.21 0.17 -0.14 0.41 0.18 -0.17 0.83 0.36 1.43 -0.30 0.34

HWP 0.37 1.81 0.28 0.20 -0.13 0.64 0.24 -0.20 0.98 0.45 1.76 -0.33 0.31
HD 0.32 1.45 0.24 0.21 -0.15 0.43 0.28 -0.19 0.77 0.38 1.77 -0.39 0.34

INTC 0.38 1.82 0.29 0.20 -0.14 0.38 0.30 -0.28 0.75 0.36 1.64 -0.32 0.26
IBM 0.28 1.81 0.21 0.13 -0.14 0.51 0.22 -0.15 0.71 0.29 1.84 -0.38 0.21
JNJ 0.22 0.87 0.17 0.13 -0.10 0.32 0.16 -0.10 0.67 0.25 1.49 -0.29 0.24
JPM 0.33 1.19 0.28 0.15 -0.10 0.27 0.18 -0.06 0.64 0.33 1.61 -0.34 0.26
MCD 0.25 1.08 0.20 0.13 -0.11 0.32 0.12 -0.12 0.65 0.26 1.31 -0.37 0.25
MRK 0.27 1.22 0.22 0.15 -0.11 0.40 0.14 -0.12 0.80 0.36 1.58 -0.32 0.24
MSFT 0.25 1.34 0.19 0.17 -0.09 0.35 0.24 -0.13 0.77 0.28 1.56 -0.22 0.34
PFE 0.28 1.45 0.21 0.17 -0.10 0.44 0.20 -0.13 0.80 0.28 1.25 -0.20 0.27
PG 0.21 1.00 0.17 0.14 -0.11 0.74 0.11 -0.07 0.57 0.25 1.29 -0.39 0.22
TRV 0.29 1.41 0.21 0.17 -0.08 0.49 0.16 -0.05 0.82 0.32 1.71 -0.23 0.27
UNH 0.33 1.30 0.27 0.18 -0.16 0.99 0.24 -0.17 0.93 0.32 1.55 -0.48 0.28
UTX 0.27 1.17 0.22 0.13 -0.11 0.38 0.16 -0.11 0.66 0.30 1.47 -0.38 0.26
VZ 0.28 1.24 0.21 0.18 -0.11 0.60 0.17 -0.09 0.74 0.33 1.41 -0.24 0.33

WMT 0.26 1.14 0.21 0.15 -0.09 0.40 0.19 -0.09 0.71 0.29 1.44 -0.31 0.26
DIS 0.29 1.23 0.22 0.16 -0.09 0.50 0.23 -0.05 0.74 0.31 1.44 -0.37 0.26
DD 0.28 1.25 0.22 0.15 -0.12 0.37 0.18 -0.13 0.67 0.28 1.51 -0.40 0.27

Table 1: Average values of the parameters of the models of Black-Scholes (BS), Merton
(MRT) and Bates (BTS), calibrated at each day before the ex-dividend date on the
options written on the dividend-paying stocks belonging to the Dow Jones Industrial
Average Index (DJIA). In total we computed 1701 calibrations and the average values
shown in the table are computed on the results of those calibrations.
The in-sample sum of squared error is on average equal to 0.26 for the Black-Scholes
model, 0.20 for the Merton model, and 0.16 for the Bates model.

*The source of the calibrated parameters of the SP500 dynamics is the work of
Bakshi, Cao and Chen (1997).
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