Early exercise decision in American options

with dividend, stochastic volatility and jumps

- ONLINE MATERIAL -

Appendice A provides the proof of Propositions 1 of the main paper. In Appendix B,
we characterize the space translation invariance property of the transition matrices and
we describe how we take advantage of this property in the implementation of the algo-
rithm. Appendix C compares the recursive projections method with the finite difference
methodology, and other more recent numerical technique which can accommodate dis-
crete dividends. These methods are the binomial tree and its improved version provided
by Vellekoop and Nieuwenhuis (2006), and the simulation least square approach method
of Longstaff and Schwartz (2001). We also discuss the new duality approach method of
Haugh and Kogan (2004), Rogers (2002), and Andersen and Broadie (2004). Appendix
D gives a detailed description of the data and the of calibration procedure, as well as the

results of the calibration with a breakdown per stock.

Appendix A. Proofs

We prove Proposition 1 in three steps. Before stating the proof, we start by providing
some definitions that we will use extensively. We compute the value V(y,w,t) of the
contract on a grid {(y;,wy)}j=1,.. Nig=1...w. The constant steps in the two dimensions of
the grid are Ay and Aw. The convergence will be obtained with Ay, Aw — 0, that is, we

keep the maximum and minimum values of the grids fixed, and we make the steps become

Ay  —

infinitesimally small. As Ay, Aw — 0, N,W — co. Define Y, =Yi— % Y=Yt =

20

w, = w, — % , Wy = wy + %. Let {e;(y)}sez be the orthonormal set! defined as

1 . - 2 2
The norm used here is the usual L*([¢min, Ymaz]) and L? ([Vmin, Vmaz]) Where Ymin, Ymaz, Vmin, Vmaz

are the minimum and maximum values taken by the stock and variance.



e;(y) = ﬁﬂy.@v where I, 7 is the indicator function of the interval [yj,yj). Likewise,
Y Y J
let {e,(w)},en ? be the normalized indicator functions centered on the grid {w,},en, and

of support of measure Aw. We then define the following quantities:

Vi(y,w, T) = Z /d&l /d92V(91, By, T)e;(61)eq(02)e; (e, (w) & Z Viee;(y)e(w
(1)

Gy (yi, wy, t;y, w, T) :Z/dQl/dQQGg(yi,gp,t;6’1,62,T)ej(Hl)sq(é’g)ej(y)gq(w) (2)

def
Z GQ zp]q ( )

Equations (1) and (2) define the coefficients {V; }jezgen and {Gy;0}jez,gen of the or-
thogonal projections V*(y, w,T) and Gy (y;, wp,t;y,w,T). Due to the orthogonality of
the orthonormal sets {e;(y)};ez and {e,(y)}4en, we obtain the following:
def
vzp / /de (yi, wp, ty, w, TV (y, w, T) ZGQ iniaV (3)
ja

Moreover, we denote the following approximation by v} () :

t) = /AyAw > Toys, wp, t; Yz, wy, T)V (y;, w0y, T). (4)
Jg

Equation (4) gives approximation of the continuation value at ¢ when the input at time
T is a true value. Most of the times, in practical applications, V(y,w,T) = H(y,T). In
the last case, vzp(t) is the approximation of the price at ¢t of a European contract.

In the following, we repeatedly use the second order Taylor expansion of bivariate

functions. Let x(&;,&;) be twice differentiable in the two variables & and &;. Then, for

2Typically, in implementations y; = log(S;), so that j takes values in Z. The variance values w,

being positive, ¢ € N. This convention has not impact on the proof.



él € [gjayj) and 52 € [wqawq):

X(€1,62) = X (Y, wq) + O X (Y5 we) (§1 — Yj) + O x (Y, wy) (§2 — wy)

B e (E,E)(E — )€ — w) + 5086 E)(6 — 1) + 30Ex(, E) 6 — )
We then have the useful expansion:
/d&/ dex x(61.62)
(v dudu 5 [ [ de [ - ) + (6. (e~
= X(y5, wg) AyAw + O(A?), as A — 0, (5)

because, since y; and w, are the centre points of the integration interval, the integrals of
the other terms of the expansion vanish.

The proof of Proposition 1 is organized in the following four steps: 1) Lemma 1 tells
us that what matters for the convergence properties in Equations (14) and (15) of the
main paper is the rate of convergence of the approximated continuation value to the true
continuation value. 2) In Lemma 2, we show that the computed continuation value v} ()
verifies v (t) = v (t) + O(A®). 3) In Lemma 3, we prove that vy () = V(y;, wp,t) +
O(A?), which entails that v, (t) = V(y;, wp, t) + O(A?), which proves Proposition 1 in
the European option case, i.e. Equation (14) by setting t = ¢, 1. 4) In Lemma 4, we
conclude by proving the recursive formula of Equation (15) of the main paper. The
summations on the indices j and ¢ are understood to be from —oo to +o0 and from 1 to

~+00, respectively.

LEMMA 1. Let Ay, Ay and as be real numbers such that A; and A, are true quantities

and as is an approximation of A,. Then, we have the following inequality:

|HlaX{A1, CLQ} — HlaX{Al, AQ}’ S |CL2 — A2| (6)



Inequality (6) shows that the rate of convergence of max{A;, as} to max{A;, Ay} is given
by the rate of convergence of ay to As.

Proof of Lemma 1:
Proof. We must analyze four possibilities.

1. if A} > ag and Ay > A,, then |max{A;,as} — max{A4;, As}| = 0.
2. if A} < ag and A) < A, then | max{A;, as} — max{A;, Ay }| = |aa — As|.

3. if A} > ap and A; < A,, then we have | max{A;, as} —max{A;, As}| = |A; — As| <

lag — As|, because A; lies between ay and As.

4. if Ay < ag and Ay > A,, then we have | max{A;, as} — max{A;, As}| = |ag — A;| <

laa — Ay, because A; lies between ay and As.
Gathering points 1-4 yields inequality (6). O

LEMMA 2. The approximation error between v;;(t) and v}, (t) defined in (3) and (4)

satisfies:

Proof of Lemma 2. We must bound the difference:

Z ‘ V AyAU) FQ(yiv Wp, t: Yj, Wy, T)V(ij Wgq, ) GQszqu;é
Jq

By Fourier isometry, we have:

//d@ldGQGg(yz,wp,t 91,02, )63(91 Efq ‘92 //d/\dliGg yz,wp,t )\ K T) ( )\) ( ),

where €;()\) and €,(k) are the Fourier transforms of e;(y) and e,(w), respectively. Then,



we deduce:

Z ’ V AyAU) FQ(yiawpu ta Y;, Wq, T)V(yj7wq7 ) Gé_lp]q 7q

= Z ‘VAyAw(Z Go(i, Wy, t; Ay iz, T)Ej (=N )éq(—ﬁz)AAA/f)V(yj,wq,T)

re=—0oQ

(7)

//d)\d/ﬁGQ yl,wp,t )\ K, T)GJ //d@ldgg 91,92, )ej(91)€q(92))

(Ar)rez and (k.).ez being equispaced grids of step A\, Ak, of values taken by the trans-
form variables A and . The functions Gy (ys, wy, t; A, &, T), &;(—r) and £;(—\) are twice
continuously differentiable. Moreover, let A = /AxZ+ AX2. Using the property (5)

with x(\, k) = Go(yi, wp, t; A, &, T)é;(—N)é,(—rk) we have that:

//d)\dn G (i, Wy, t; A, 5, T)E;(—N)ég(— k) + O(Zg), (8)

D Goli &t A K2, T)E (=N )Eg(—h2) ANAK as A — 0.

T,2=—00

Exploiting the continuity property of V(y,w,T), we obtain:

’ vV AyAU) //d@ldGQV(Ql, 02, T)ej(ﬁl)eq(Qg) - AyAw V(yj, Wy, T) (9)

7 W,
< / db, / o, |V (
Y, w,

It then suffices to substitute Equation (9) and (8) into (7), and to choose A = O(A),

01,05, T) — V(yj,wy, T)| < AyAw CA = O(A?), as A — 0.

to prove the statement of Lemma 2.

LEMMA 3. The following equality holds:

Ul(t) = V(ylv wp)t) + O(é2)a as é — 0.



Proof of Lemma 3. We study the following difference:

V(yipwpa - //dydeQ ?/zﬂ%at Yy, w, T y7w T ZG2 ipjq ]q (10)

—Z/ dy/ dw Go(yi, wp, t;y, w, TV (y,w,T)

Ui e Yj Wq
B %: AyAw /y i /w dQQGQ(%’wwt%@h@mT)/y dﬁl/w 49,V (91,02, T).

Y; *q

We show that both terms in the right-hand side of (10) are equal to

> ig G2(is wy, Ly, we, TV (v, we, T) AyAw + O(A?). We start by the generic term of

the first summation. By applying (5) and (9):

‘/ dy/ dw G2 yszpvt Yy, w, T)V(yawaT) - GQ(yiawpat;yjame)v(yjawan)’ S
/ dy/ dw GQ(yivwpvt;y7w7T)|v<y7w7T> - V(yj7wq7T>‘
Y; Wy

Y Wq
+ V(yj7wq’ T)/ dy/ dw ‘GQ(y’u wp7t; y7w7T) - GQ(y’iawpa ta Yj, Wy, T)‘

Y; Wy

< sup GQ(yiawIHt;y?waT)O(éQ) + sup 822G2(yi7wp7t;y>w7T)O(é3)-
yely ;) yely;»;)
wEw, W) we[wq W)

¢e{y,w}

We can easily check that the generic term of the second summation in Equation (10)

equals:

1
AyAw [Gg(yi, Wy, 5 Y5, Wy, T) AyAw + O(é3)] [V(yj, wy, T)AyAw + O(AQ)}

- Gz(%& wpa ta yja qu T)V(y]7 wqa )AyA’LU + G?(yh wpat yj7 wqa )O(A2)
Then:

|V(yi7wp7t) _Uzt(t” S Z sup GQ(yiawpat;y7w7T)O(é2)-
jq YEW;Y)
we[ﬂq’ﬁq)

Because G(y;, wy, t;y, w,T) is a density, the above summation is finite, and it proves

Lemma 3. Combining the results of Lemma 2 and Lemma 3, we have shown that the



continuation value vy (t) = V (y;, wp, t) + O(A?), that is, we have proven the convergence

of the algorithm in the European case.

LEMMA 4. Let v;,(t;) be defined as in Equation (15) of the main paper, with [ =
1,...,L — 2. Then v;,(t;) converges to the true price V(y;, w,,t;) at a rate of the order

O(AY).

Proof. We start by showing the convergence of v;,(t;—2) to V(y;, wp,tr—2). Because of
Lemma 1, we only need to prove the convergence of the approximated continuation value
at t = t;_o to the true continuation value at ¢t = t;,_5. We consider a contract evaluated

at two dates {t;_o,t,_1} prior to maturity, t;, = T, namely t; o < t;_1 <T. Then:

Z (Y, wp, tr—2; Yj, W, tr—1)viq(tr—1)/ AyAw

Jq

= Z T(yi, Wy, tr—2; Yj, e, tr—1) [V (v, we, tr—1) — V (ys, wg, tr—1) + vjg(tr—1) ] v/ AyAw

Jq

= Z U(yi, wp, to—2; ¥, We, t—1)V (Y, we, t—1)/ AyAw

Jq

+ Z I(1yi, Wy, tn—23 Y5, We, tr—1) [qu(tL—l) — V(y;,w,, tL—l)] VAyAw.

jq
The quantities {V (y;, w,,t1—1)}jezqen are exact values; thus it follows from Lemma 2

and Lemma 3 that:

Zr(yiawpatL—Q; Yj, We, tr—1)V (Y5, we, tr—1)v/ AyAw = V(y;, wy, tr—2) + O(A?).

jq
Again, from Lemmas 1 and
3, it follows that vje(tr—1) = max{v},(tr—1), H(y;, wg, tr—1)} = V(y;.tr-1) + O(A?).

Then:

Z L(yi, wp, t—2; Yj, Wq, tr—1) [qu(tL—1) — V(y;, wg, tL—l)} VAyAw

Jjq

< sup [vjg(tz-1) — V(y;, wq,tL,1)|e’T(tL*1*tL*2)(1 +0(A%)) =0(A%).
J



In the last inequality, we take advantage of the fact that

Z L(yi, wp, tr—o; yj, Wy, tr—1) v/ AyAw = e "(tL—2=tr 1) (1 + O(ég)),

Jq
because G(x,& tr_2;y,w,t;_1) is the deterministic discount factor times a density.
Indeed, the approximation operators built on indicator functions are shape pre-
serving, (see Dechevsky and Penev (1997) and Cosma et al. (2007)), and the
property of integration to one of a density is preserved. The O(A?’) term is
the speed at which the sum quF(yi,wp,tL_g;yj,wq,tL_l)\/m converges to
[ dydw qufd9192G(yi,wp,tL,Q;91,92,TL,l)ej(Gl)sq(Gg)ej(y)sq(w), and can be checked
using the same series expansions techniques as in the proof of Lemma 2. It read-
ily follows that v;(tz—2) = V(yi,tr—2) + O((Ay)?). The extension to prior dates
ty =tr_3,t, =1tr_4,..., immediately follows by recursively applying the same arguments
used above.

O

The proof of Proposition 1 can be performed in a more general framework, and for
basis sets other than indicator functions. The key requirement is that only a finite
number of basis functions contribute to the the approximation of a function at a given
point (y;,w,). Examples are orthonormal wavelets, non-orthogonal and bi-orthogonal
wavelet bases, and B-splines. The use of these function bases may be useful when we
need a basis that better adapts to the specific geometry of more complicated pricing

problems.



Appendix B. Space Translation Invariance Property of

Transition Matrices

Let the N x W matrix of computed prices at time ¢ = t; be denoted by vy(t;), that
is vy j4(t) = vje(t1). Let Ta(ys, wp, ti;t41) be the N x W matrix of the approximated
transition probabilities from the initial point (y;,w,) to the end points of the entire grid
{(yj, wq) }j=1,..N:q=1...w, as provided in Appendix B of the main paper. We then have
that Ty 4 (yi, wy, t; t111) = Layi, wy, 115 Y5, Wy, tr11) vV AyAw, and we can express Equation

(15) of the main paper as:

N W
Vip(t1) = maX{H(yz‘, t), Z Z Lo (i, Wp, 1 Y5, W, tige1 ) Vi (tig1) v/ AyAw }
j=1 q=1
= max{H (yi, &), To(ys, wp, ti; ti1) 2 va(tipa) }, (11)

where the symbol “:” denotes the Frobenius, or entry-wise, product. Figure 1 graphically
presents the Recursive Projections in the bivariate case.

The transition matrix I'y(y;, wy, ti;t+1), as implicitly defined in Equation (11), is a
function of the conditioning values (y;, w,). The following remark greatly simplifies and
speeds up the computation of the transition matrices. The evolution of the asset prices
logarithm in the stochastic volatility model has the property that increments are inde-
pendent of the price level. Let Ms(log(x), &, t;log(y), w, ti11) = Ga(x, &, t;y, w, tip1)y be
the bivariate state price density as a function of log(y) and let M (log(z), &, t; A, &, ti1)
be its Fourier transform. Let furthermore Wo((log(y)):, wy,ti;ti+1) be a matrix whose
entries Wy j4((log(y))i, wp, ti;tiv1) = Wa((log(y))i, wp, ti; g5, Wy, tir1)vVAyAw are the ap-
proximations of Ms((log(y))i, wp, ti; (log(y)),, wy, tiy1) obtained by applying a FFT on

~

Ms((log(y))s, Wp; A, K, tiv1).



Then Equation (11) becomes:

Vip(t)) = maX{H(e(log(y))",tl), Wy ((log(y)) i, Wy, tr; tis1) = va(tig1) },

where v;,(t;) is now the approximation to the value V(e(°e®)i 4, #). We have that
Wy 0 ((log(y))ite, wp, ti; tig1) = Yo i—cq((log(y))s, wp, ti; tisr) for ¢ € Z, provided that 0 <
1+ ¢ < N. We refer to this property as to the space translation invariance property of
transition matrices. In implementations, we compute Wo((log(y)):, wp, ti;t;4+1) only once
for at-the-money values of ((log(y)):, w,), and reconstruct the other transition matrices
exploiting the space translation invariance property. Again, this feature exemplifies the
computational advantage of direct sampling based on equally-spaced grids.

If we have to take into account discrete dividends, as in Section 3.2 of the main paper,
at each dividend date ¢, we must compute the continuation value of the option at the grid
{(log(e'eW)i —d), wp) izt Nip=1,...w- 1f the original grid {(log(y):, w,) }i=1,.. Nip=1,..w has
a regular step in the log(y); direction, then this is no more true for the grid {(log(e'*s®): —
d),wp) }iz1, Np=1,..w- We can still take advantage of the space translation invariance of
the transition matrices because the state price density My(log(x), 02, tp;log(y), w, thy1) is
a function of log(z) and log(y) only through the difference log(y) —log(x). Let us perform

the following change of variable:

V(z —d, Jf,th) = //dlog(y)deg(log(x —d), af,th; log(y), w,th+1)V(eIOg(y),w7th+1)
x
= / / dlog(y)dwMs (log(l‘), a7, t;log(y) + log(m) , W, th+1) V(€5 ™ w, ty44)

= //dlog(y)dez <10g(3:),0t2,th;log(y),w,th+1>V(e(log(y)HOg(l_d/x)),w,th+1).

For pricing by recursive projection, this procedure translates into the relationship:

vip(ty) = max{H(elog(y)i,th),\IIQ(log(y)i,wp,th;thH) - ﬁg;d(th+1)}, where Ug.4(tp41) are

approximations of the value function V(e(lOg(y)j+10g(1—d/610g(y)i))7wq,th +1) obtained by a

10



second-order interpolation of the elements of wvy(ts41). We can still compute the
Wy (log(y)i, wp, th; the1) matrices on the regular grid {(log(y):, wp)}iz1,. Nip=1,..w, and

we can still use the space translation invariance property to speed up computations.

Appendix C. Comparison with Other Methods

In this section we compare the speed and performance of our recursive projection
method with i) finite difference methodologies ii) binomial trees iii) Monte-Carlo simula-

tion techniques.

C.1.  Comparison with finite difference methodologies

We conduct two simulation studies under the assumption that the underlying process
follows a stochastic volatility Heston model. In the first, the American call has a time to
maturity of one year, and 3 dividends worth d = 2 are distributed at ¢, = 0.25,0.5,0.75.
In the second, the time to maturity remains one year, but a single large dividend d = 10
is paid out after six months. The process parameter values are the following: r = 0.05,
orr = 0.2, =2 and w = 0.2. Moreover we choose the parameter p to be equal to zero.
We compute the price for an at-the-money option (S; = K = 100). The benchmark
method in this analysis is a finite-difference (hereafter FD) numerical solution of the
partial derivatives equation (PDE) that describes the evolution of the price process V;
of the American call. We implement an alternating direction implicit (ADI) variant of
the finite-difference scheme. For a recent discussion of schemes similar to F'D, see, for
instance, in’t Hout and Foulon (2010). This implementation is equivalent to a Crank-
Nicolson scheme, which in standard problems converges at a rate O((At)z), where At is
the temporal discretization interval. In both the F'D scheme and the recursive projections,

the evolution of the option price V; is studied on a rectangular grid in the space (X, 0?),

11



with X € [log(K)—100.7VT,log(K)+100.7v/T] and 02 € [0,0.3]). Inthe FD scheme, the
parameter m, gives the number of equally spaced grid points in the X direction, and m,,
gives the number of equally spaced grid points in the ¢ direction, so that the grid points
are {(X;, 02)},-:17“,7ms;p:17__7mv. The parameter Ly gives the number of time steps used.
In the recursive projections, under a sampling scheme we define Ay = 277/a, where a is a
positive constant that gives the step of the {y;};=1, .~ grid when J = 0. Describing the
convergence of the recursive projections in terms of the parameter J emphasizes how the
approximation error decreases each time the number of grid points is doubled. Similarly,
Aw = 27'wq,,, where a, is the step with J, = 0 of the {w},—1__w grid in which the o}
variable takes values.

Assuming the contemporaneous correlation p = 0 simplifies the implementation of the
FD scheme, in the sense that neglecting the correlation between X; and ¢ makes the FD
scheme easier to code and faster. On the other hand, the speed and complexity of the
recursive projection method are unaffected by the value chosen for the parameter p. The
correlation is addressed in the Green function Go(z, 02, t;y, w,T) and consequently in the
coefficients of the matrix G,. Because the speed of the method depends on the number
of entries in the G, matrix, and not on the values taken by the entries, it is clear that
the choice of p does not affect the convergence rate of the recursive projections. This
feature is the first advantage of the recursive projection over finite-difference schemes.
This simulation study will then give a lower bound to the difference in speed between
the recursive projections and the FD scheme. To price an American option on dividend-
paying stocks, we should implement the FD scheme-equivalent of the recombining tree.
Doing so is practically unfeasible because it would mean computing at each ex-dividend
date a new option price at each point of the grid. Instead, at each ex-dividend date
t;, and at each grid point (Xi,af,), we opt for comparing the intrinsic value H(X;, 1)

with the continuation value V (X2, 02, ty), where X is the value of the X grid closest to

12



log(eXi — d). This choice amounts to perturbating the FD scheme at each ex-dividend
rate, which could translate into a convergence slower than the theoretical O((At)?).
This feature is a second advantage of the recursive projection over the finite-difference
schemes, because the recursive projections can easily adapt to discrete dividends without
their affecting the convergence properties of the algorithm. The recursive projections
achieve convergence quickly in the o2 direction. The method does not seem to improve
by setting a resolution level greater than J,, = 4; thus, we keep this value fixed throughout
our simulations. The FD scheme is also not very sensitive to the number of points used
in the o direction. We find no improvement beyond m, = 31.

Figure 2 shows the results for the 3-dividend case. The true value used to compute
the pricing errors is 7.397, obtained with the resolution level J = 13. The graph on the
right displays the pricing error of the F'D scheme as a function of the time discretization
parameter Lp. Each line is relative to a different value of the spatial discretization
parameter mg. The time labels are all relative to the my, = 3200 curve. The F'D scheme
with Ly = 2048 and m, = 6400 delivers a value within 1bp; thus, we assume that the
methods have converged when the absolute value of the relative error is within 1bp of
7.397. The graph on the left plots the relative pricing error of the recursive projections
against the resolution level J. The regression line on the left graph shows that the
estimated slope is almost exactly the slope of —2 predicted by the theoretical convergence
results of Proposition 1. The FD is at least one order of magnitude slower. Compare, for
instance, the computation time needed to deliver a 4bp error (2s against 65s), or a 1bp
error (8s against 130s). Figure 3 compares the convergence speed of the two methods
in the 1-dividend case. The true value of 7.302 is obtained by the recursive projection
method with J = 13. The FD scheme requires 48 seconds to reach a bbp relative error,
with parameters m, = 400 and Ly = 2048. The bottom curve, relative to m, = 200,

shows that the method does not converge for smaller values of the space discretization
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parameter. The small 5bp bias of the FD is due to the large value of the dividend d
and the perturbation of the scheme at each dividend date. The rate as a function of
the resolution level J at which the recursive projections attain the 1bp error band is

approximately -2, as theoretically predicted.

[Figure 2 and 3 about here]

The reason for the difference in speed between the recursive projections and the FD
scheme lies in the fundamentally different way finite differences and quadrature methods
deal with time stepping. Both methods achieve time stepping through matrix multipli-
cations. But while the number of time steps in the FD is of the order of 2° or higher,
the recursive projections only need 3 or 4 time steps, one per divided payment, plus
the expiry date. The size of the parameters Ly, m, and m, determines the efficiency of
the implementation of the F'D scheme. If we compare the magnitude of the parameters
L7, ms and m, that we need to obtain convergence with the values of the equivalent
parameters in in’t Hout and Foulon (2010), we find that our implementation is close to
the most recent ones in the literature. While specific implementations could marginally
improve on ours, we think that we give a fair representation of the potential of the two
techniques. We remind that the computational time per time step is underestimated in
our simulation, since the assumption of p = 0 reduces the number of intermediate steps
in the ADI implementation of the FD scheme. Finally, if we include jumps in the process
of the underlying stock, as we do in our empirical application, the numerical complexity
of the recursive projections remains exactly the same as in the stochastic volatility case.
Introducing jumps in the underlying process while keeping the finite differences viable
from a computational point of view asks for technical devices (see for instance d’Halluin
et al. (2005)) which are model specific and not yet implemented in conjunction with
stochastic volatility.

Another notable difference between the F'D and the recursive projection method is

14



that the latter demands far fewer changes to adapt to different pricing problems. The
matrix G(t;7) depends only on the dynamics of the underlying asset and not on the
payoff. We can compute it once for all and use it to price different options with different
payoffs, because the payoff functional form only impacts the vector H(T"). Such a design
is particularly suited for object-oriented programming, which is often used in quant desks.
In finite-difference schemes, we cannot price options with different payoffs through the
use of the same transition matrices, as boundary conditions affect the way the matrices

are computed.

C.2.  Comparison with binomial tree methodologies

As a first numerical example in the Black-Scholes framework, we compare the con-
vergence speed of a binomial tree and of the recursive projections method in pricing an
American call option on a dividend-paying stock. Two popular modeling choices for the
dividend payment are a known cash amount d or a known dividend yield r4. The latter
is computationally friendly because it leads to a recombining tree. The known dividend
amount assumption does not lead to a recombining tree, and a new tree is originated at
each node following an ex-dividend date, increasing the numerical complexity of the prob-
lem. The work of Vellekoop and Nieuwenhuis (2006) provides a recent enhancement of the
classical binomial tree method which incorporates discrete dividend payments through an
approximation of the continuation value of the option at the ex-dividend dates. This new
algorithm has been proven to be substantially faster than the standard non-recombining

binomial tree, and is therefore a reliable benchmark for this simulation exercise.
[Figures 4 and 5 about here]

Figure 4 compares the convergence speed of the enhanced binomial tree and that of the
recursive projections method in pricing an American call option on a discrete dividend-

paying stock. The option has a maturity of 7" = 3 years and a dividend d = 2 is paid

15



out at the end of each year. Other parameters, namely the interest rate, volatility and
strike price, are set equal to r = 0.05, 0 = 0.2, and K = 100, respectively. We compute 3
prices: at-the-money, in-the-money and out-of-the-money, corresponding to Sy = 80, 100,
and 120, respectively. The true values of 7.180, 18.526, and 34.033 are obtained with
10000 time steps in the binomial tree. The graphs show that, across the three different
values of Sy, the recursive projections enjoy an increase of speed of approximately a
factor 10 for a comparable level of precision. The speed advantage is even larger if we
consider that a new tree is needed for each value of Sy. Instead, the recursive projections
method delivers the entire value function v(0) at once in a straightforward manner.
This feature is particularly useful in computing Greeks through numerical differentiation.
As an additional benchmark, Figure 5 displays the convergence speed of the recursive
projections jointly with the one of a standard non-recombining tree. Even though the
non-recombining tree is known to be an inefficient method, it is still used as a common
reference point in the literature, and we show this graph for comparison purposes. We
can see that the gain of speed of the recursive projection is of the order of 10*. As an
aside, for Sp = 100, if we approximate the known constant dividend d = 2 with a known
continuous dividend yield® r4 = 0.013, then a binomial tree with 10000 steps delivers a
value of 18.213 instead of 18.526, with a relative error of approximately 169bp. This error
is far above observed bid-ask spreads. This simple example points to the importance of
using models that can explicitly address discrete dividends in empirical analysis, instead
of using approximations based on continuous dividend yields.

Recursive projections provide an accurate approximation even for payoffs with strong
discontinuities, such as a digital payoff H(Sy,t) = Is, , in a Bermudan digital call

option. In this numerical example, we use the standard binomial tree as a benchmark,

3The yield is obtained by considering the dividends paid at ¢t = 1 and ¢ = 2 only, because the dividend
paid at ¢ = 3 has no impact on the price of the option. Considering a dividend yield of 2% would provide

an option value of 16.857, which is a much larger error.
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since the method of Vellekoop and Nieuwenhuis (2006) provides no advantage in the
absence of dividends. Figure 6 (see the caption of the table for the values of the parameters
of the example) shows that the binomial tree has problems capturing the discontinuity
in the payoff function. Consequently, an extremely slow convergence of the tree method
for at-the-money Bermudan digital call options is yielded. The recursive projections
are also at least an order of magnitude faster in pricing the out-of-the-money options.
The apparent non-monotonic convergence of the binomial tree for Sy = 120 is because
both methods achieve a quick convergence for in-the-money options, and the graph only

displays small oscillations on the order of half a basis point around the true value.

[Figure 6 about here]

C.3.  Comparison with Monte-Carlo simulation methods

Another group of numerical methods that can be applied to the same pricing problems
are the Monte-Carlo simulation methods. They can handle both discrete dividends and
multidimensional settings. The least-squares approach of Longstaff and Schwartz (LS)
provides a simulation based algorithm to price American options, via a lower bound for the
true price. This lower bound is then coupled with an upper bound in the implementation
of Andersen and Broadie (2004) of the duality approach of Haugh and Kogan (2004)
and Rogers (2002). In their numerical results, Andersen and Broadie (2004) show that
the gap between the lower bound and the upper bound can be very tight, making the
algorithm appealing. In Figure 7, we compare the speed and accuracy of the LS algorithm
with our method in the same three examples as before. Our algorithm is faster than the
LS method by at least four orders of magnitude. Intuitively, the main advantage of our
algorithm is that it needs to evaluate the option only when it can be optimal to exercise
it. In the case of a call option, this happens just before the payment of the dividends.

In this specific example, when there are only two dividend payments, our algorithm
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computes the final price with only two recursions. On the contrary, every simulation
based method needs to simulate the entire trajectories, increasing the computation time.
The duality approach implementation of Andersen and Broadie (2004) builds on the LS
algorithm and necessitates additional simulations at each potential exercise date to build
the upper bound for the price, thus further increasing the numerical complexity and the
computation time. Given the results obtained for the LS algorithm, we can confidently
conclude that our algorithm is also faster than the duality approach in pricing a call

option written on a stock which distributes regular discrete dividends.

Appendix D. Data and Calibration Procedure

We conduct our analysis over the period January 1996 - December 2012. We use all
short term call option series with maturity less than six months written on the dividend-
paying stocks belonging to the Dow Jones Industrial Average Index (DJIA) at the end of
2012. According to other studies (Barraclough and Whaley (2012); Pool et al. (2008)),
we proxy for the timing of the expected dividends paid during an option life time with
the actual distribution time of dividends, and we proxy for future dividends amounts by
using the last known dividend amount. We exclude from our sample the data relative
to periods in which the underlying stock experiences an unusual corporate event that
may alter the option valuation, such as special dividend distribution, new equity issue,
or spin off. To ensure the exclusion of the effects of such corporate events and their
anticipation by investors from our sample, we do not consider the data starting from nine
months before the special corporate event up to nine months after. After applying these
exclusionary criteria, we obtain a dataset of 1701 days before ex-dividend to analyze.

For each stock and at each day before an ex-dividend date, we separately calibrate the
parameters of the models of Black-Scholes, Merton, and Bates on a calibration sample

by minimizing the implied volatility mean squared error (IVMSE) as IVMSE(x) =
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n

> i—i(0i—0i(x))?, where x is the set of parameters to estimate, o; = BS™(C;, T;, K;, S, r)
is the market implied volatility and o;(x) = BS™Y(Ci(x), T}, K;, S, r) is the model implied
volatility, where C;(x) is the model price of the American option . The choice of this loss
function follows the argumentation of Christoffersen and Jacobs (2004). The calibration
made on implied volatilities is more stable out of sample, in particular for the stochastic
volatility model. We infer the model specific parameters of the underlying process by
calibration on a set of reliable and liquid option data. More specifically, the calibration
sample consists of contracts traded in the four months preceding the calibration day,
that have no dividend payment in their remaining life. These contracts can be treated
as European. In this way we can take advantage of the semi-closed pricing formula for
European options. We then apply some exclusionary criteria: we do not consider options
that should be optimally exercised, because their price is equal to the exercise proceeds
for mostly all values of the parameters and the minimization problem is ill posed. We thus
consider the option quotations that strictly satisfy the following inequality: C' > S—K; we
do not consider option data with a price less than 3/8 of a dollar, in order to avoid effects
due to price discreteness; we do not consider options with volume equal to zero as the non-
traded quoted prices are not reliable prices; finally, we do not consider options which are
deep in-the-money or deep out-of-the-money, as they can destabilize the minimization
problem. Following Bollen and Whaley (2004), a call option is classified deep in-the-
money if its delta is larger than 0.875. Symmetrically, a call option is classified deep out-
of-the-money if its delta is less than 0.125. After applying these criteria, the calibration
sample at each day before the ex-dividend date consists of 110 call options on average.
The models of Black-Scholes and Merton are one-dimensional and do not present any
particular numerical issue; so we simply calibrate all their parameters on the calibration
sample described above. The Bates model, on the contrary, is two-dimensional. There-

fore, in addition to the calibration of its parameters, it needs the calculation of the daily
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instantaneous spot volatility oy, which is a non-observable variable. It is also a more
sophisticated model with its seven parameters. In order to efficiently calibrate it, we use
a procedure where we take into consideration the specific role of the parameters on the
implied volatility surface. To the best of our knowledge, we are the first academic work
in which the Bates model is calibrated on single stocks. Hence we borrow some intuition
for our new calibration procedure from the practitioners studies of Hagan et al. (2002),
and West (2005). According to these studies, each parameter of the volatility dynamics
has a specific impact on the term structure of the implied volatility smile. The volatility
of volatility w rules the convexity of the smile while the correlation parameters p rules
the slope of the smile. In the two works cited above, the authors consider a pure diffusive
process for the volatility, ignoring the mean reversion part. They show that for short term
options this reduced model provides a very good fit to the data. Indeed, for the short
term options the value of At is very small compared to the possible values of AW and
the dynamics of the stochastic volatility process is driven mainly by the Brownian motion
part. The role of the mean reverting part of the stochastic volatility process of Heston
is to reproduce that implied volatilities of long maturity options are less volatile than
those of short maturity options and are usually closer to the long run average volatility.
The mean reverting part avoids that the volatility increases indefinitely with maturity.
In principle, for our application on short term options, only the diffusion component of
the stochastic volatility is sufficient to give a good fit. However, as we want to employ
the full dynamics of the Bates model, we calibrate the mean reversion and the long term
volatility parameters as well on long term options.

To this end, we calibrate the parameters in two steps: first, we calibrate the jump pa-
rameters together with the volatility of volatility and the correlation on the short term
options calibration sample described above. In this optimization, we do not consider the

mean reversion part of the stochastic volatility. Then, as a second step, we calibrate
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the mean reversion and the long term volatility on a sample of two long term options,
while keeping the other parameters fixed to those obtained in the previous step. For the
calibration, we use the two long term options with the highest trading volume among the
long term options with maturity between ten months and two years which were recorded
in the four months before the calibration. In this long term calibration, we use as objec-
tive function the minimisation of the price percentage mean squared error instead of the
implied volatility mean squared error. As the long term options have dividends during
their life and their American price differs from the European one, we cannot recover the
implied volatility in the usual way. If we had calibrated the long term volatility and the
mean reversion on the short term options directly, we would have obtained an unreason-
able high value for the mean reversion and an unreasonable low value for the long term
volatility. This spurious effect is due to the very high convexity of the short term smile
combined with the drift part of the stochastic volatility dynamics having little or null
impact on the prices of short term options, as explained before.

For the calculation of the non-observable daily instantaneous spot volatility oo(t),
we follow the result of Medvedev and Scaillet (2010). We use the time series of the
one month (or close to) European at-the-money implied volatility as proxy for the spot
volatility. For the days considered in the calibration sample we have European options by
construction. In addition to these days, we need as well to compute the value of o on all
days before the ex-dividend dates in order to price options and determine which options
should be exercised. On the day before the ex-dividend date, however, all options have
a dividend during their life, as the first dividend is paid the day after. In principle there
are no European options available. In order to make it possible to calculate g on the
day before the ex-dividend date, we consider as European the options which should not
be exercised and which have only the dividend paid the following day left during their

remaining life. These options are not European only because they have an early exercise
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possibility until the dividend is paid. However, as the dividend is paid the following day
and these contracts are outside the early exercise region, the early exercise premium is
nearly zero and the price of the American option almost coincides with the price of an
European option. In the same spirit, Bakshi et al. (2003) extract the European implied
volatility from the American options prices, and they show that the difference between
the European implied volatility and the American implied volatility is negligible and
within the bid-ask spread. By employing the same approximation, we calculate oy at
each day before the ex-dividend date as the average of the European implied volatility
of the at-the-money options that should not be exercised with maturity one month (or
close to).

The results of the calibration with a breakdown per stock are presented in Table 1.
We note that the calibrated values of the parameters are homogeneous among stocks, and
take sensible values in line with other studies made on index options (see Bakshi et al.

(1997)).
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Underlying | BS MRT BTS

0BS Y oM Oy oy vy Oy Hapy w oLT B P 0o
All stocks | 0.29 || 1.33 0.22 0.16 -0.12 || 0.50 0.18 -0.12 0.75 0.32 1.52 -0.35 0.28
SP500* 018 | NA NA NA NA 0.61 0.14 -0.09 04 0.2 393 -0.52 0.2
MMM 0.25 || 1.10 0.20 0.11 -0.13 | 0.40 0.16 -0.12 0.68 0.29 138 -0.44 0.36
AA 0.38 || 1.68 0.30 0.22 -0.14 | 0.50 0.28 -0.18 0.88 0.36 1.61 -0.33 0.34
AXP 0.34 || 2.19 0.25 0.14 -0.11 | 0.58 0.14 -0.06 0.78 037 134 -0.54 0.33
T 0.27 || 1.05 0.21 0.15 -0.09 || 0.37 0.16 -0.11 0.69 0.33 148 -0.26 0.29
BAC 0.32 || 1.58 0.24 0.18 -0.16 || 1.20 0.18 -0.14 098 0.36 1.60 -0.45 0.34
BA 0.31 || 1.54 0.24 0.15 -0.13 | 0.40 0.18 -0.12 0.80 0.33 156 -0.37 0.24
CAT 0.32 || 1.51 0.26 0.13 -0.10 || 0.54 0.15 -0.06 0.78 0.35 146 -0.37 0.30
CHV 0.24 || 1.00 0.20 0.12 -0.09 || 0.26 0.15 -0.10 0.55 0.27 155 -0.26 0.23
CSCO 0.32 || 1.36  0.25 0.17 -0.12 || 1.53 0.08 -0.10 1.08 0.32 188 -0.36 0.29
KO 0.24 || 1.03 0.19 0.13 -0.12 | 0.41 0.15 -0.11 0.66 0.27 149 -0.34 0.23
XOM 0.24 || 092 0.19 0.15 -0.12 4 0.79 0.17 -0.12 0.69 0.24 157 -0.38 0.27
GE 0.27 || 1.06 0.21 0.17 -0.14 | 0.41 0.18 -0.17 0.83 036 143 -0.30 0.34
HWP 0.37 || 1.81 0.28 0.20 -0.13 || 0.64 0.24 -0.20 098 045 1.76 -0.33 0.31
HD 032 || 1.45 0.24 0.21 -0.151 0.43 0.28 -0.19 0.77 038 177 -0.39 0.34
INTC 0.38 || 1.82 0.29 0.20 -0.14 | 0.38 0.30 -0.28 0.75 0.36 1.64 -0.32 0.26
IBM 0.28 || 1.81 0.21 0.13 -0.14 | 0.51 0.22 -0.15 0.71 0.29 184 -0.38 0.21
JNJ 0.22 || 0.87 0.17 0.13 -0.101 0.32 0.16 -0.10 0.67 0.25 149 -0.29 0.24
JPM 0.33 || 1.19 0.28 0.15 -0.10 || 0.27 0.18 -0.06 0.64 033 1.61 -0.34 0.26
MCD 0.25 || 1.08 0.20 0.13 -0.11 1 0.32 0.12 -0.12 0.65 0.26 131 -0.37 0.25
MRK 0.27 || 1.22 0.22 0.15 -0.11 | 0.40 0.14 -0.12 0.80 0.36 158 -0.32 0.24
MSFT 0.25 || 1.34 0.19 0.17 -0.09 || 0.35 0.24 -0.13 0.77 0.28 1.56 -0.22 0.34
PFE 0.28 || 1.45 0.21 0.17 -0.10 | 0.44 0.20 -0.13 0.80 0.28 1.25 -0.20 0.27
PG 0.21 || 1.00 0.17 0.14 -0.11 | 0.74 0.11 -0.07r 0.57 0.25 129 -0.39 0.22
TRV 0.29 || 1.41 0.21 0.17 -0.08 || 0.49 0.16 -0.05 0.82 0.32 171 -0.23 0.27
UNH 0.33 || 1.30 0.27 0.18 -0.16 || 0.99 0.24 -0.17 093 0.32 155 -0.48 0.28
UTX 0.27 || 1.17 0.22 0.13 -0.11 || 0.38 0.16 -0.11 0.66 0.30 1.47 -0.38 0.26
VZ 0.28 || 1.24 0.21 0.18 -0.11 | 0.60 0.17 -0.09 0.74 033 141 -0.24 0.33
WMT 0.26 || 1.14 0.21 0.15 -0.09 || 0.40 0.19 -0.09 0.71 029 144 -0.31 0.26
DIS 0.29 || 1.23 0.22 0.16 -0.09 || 0.50 0.23 -0.05 0.74 031 144 -0.37 0.26
DD 0.28 || 1.25 0.22 0.15 -0.12 | 0.37 0.18 -0.13 0.67 0.28 1.51 -0.40 0.27

Table 1: Average values of the parameters of the models of Black-Scholes (BS), Merton
(MRT) and Bates (BTS), calibrated at each day before the ex-dividend date on the
options written on the dividend-paying stocks belonging to the Dow Jones Industrial
Average Index (DJIA). In total we computed 1701 calibrations and the average values
shown in the table are computed on the results of those calibrations.
The in-sample sum of squared error is on average equal to 0.26 for the Black-Scholes
model, 0.20 for the Merton model, and 0.16 for the Bates model.

*The source of the calibrated parameters of the SP500 dynamics is the work of

Bakshi, Cao and Chen (1997).
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