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Abstract

Purpose of this paper: we study the asset allocation problem for
a pension fund which maximizes the expected present value of its wealth
augmented by the prospective mathematical reserve at the death time of
a representative member.
Design/methodology/approach: we apply the stochastic optimiza-
tion technique in continuous time. In order to present an explicit solution
we consider the case of both deterministic interest rate and market price
of risk.
Findings: we demonstrate that the optimal portfolio is always less risky
than the Merton’s (1969-1971) one. In particular, the asset allocation is
less and less risky until the pension date while, after retirement of the
fund’s representative member, it becomes riskier and riskier.
Practical implications: the paper shows the best way for managing a
pension fund portfolio during both the accumulation and the decumula-
tion phases.
Originality/value: the paper fills a gap in the optimal portfolio lit-
erature about the joint analysis of both the actuarial and the financial
framework. In particular, we show that the actuarial part strongly affects
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1 Introduction
Up to now, most countries that have undertaken a reform of their pension

system have primarily focused on the accumulation phase and paid less attention
to the decumulation phase. This is also true in the academic literature (see
for instance, Deelstra et al., 2000, Boulier et al., 2001, and Battocchio and
Menoncin, 2004). There are only few works dealing with the decumulation
phase (see for instance, Charupat and Milevsky, 2002, and Battocchio et al.,
2003).
Even if old age pensions will not arise for many years, both accumulation

and decumulation phases need to be well organized and efficient to guarantee
full success of a new pension system. Indeed, the failure or not of a new pension
system depends on its ability to use whatever capital has been amassed at
the end of the active life of covered workers to supply them with a reasonably
sufficient regular income.
In this work, we present a closed-form solution for optimal asset allocation

during the accumulation and decumulation phases under mortality risk. The
main difficulty in designing a dedicated framework for pension funds is the
presence of non-tradeable endowment processes. Some closed-form solutions
without any non-tradeable income sources have already been derived in the
literature. After the seminal papers of Merton (1969, 1971), we mainly refer
to the works of Kim and Omberg (1996), Chacko and Viceira (1999), Deelstra
et al. (2000), Boulier et al. (2001), and Wachter (2002). In these papers the
market structure is as follows: (i) there exists only one stochastic state variable
(the riskless interest rate or the risk premium) following the Vasiček (1977)
model or the Cox et al. (1985) model, (ii) there exists only one risky asset, (iii)
a discount bond may exist. Some works consider a complete financial market
(Deelstra et al., 2000, Boulier et al., 2001, and Wachter, 2002) while others deal
with an incomplete market (Kim and Omberg, 1996, and Chacko and Viceira,
1999). Our setting, instead, is very general and it does not take into account any
particular functional form for both the drift and diffusion terms of the stochastic
processes involved in the framework (we mainly refer to Menoncin, 2002).
In order to be able to present a closed form solution for the optimal asset

allocation, we assume that the risk sources of both contributions and pensions
can be spanned in the financial market (as in Bodie et al., 1992). Cuoco (1997)
and El Karoui and Jeanblanc-Picqué (1998) offer an existence result for the
optimal portfolio for a constrained investor who is endowed with a stochastic
labor income flow.
We further assume that the pension fund is able to borrow against its

prospective mathematical reserve. Thus, its objective is to maximize the in-
tertemporal utility of its real wealth, augmented by the expected value of all
the future contributions and diminished by the expected value of all the future
pensions (let us call this modified wealth as “disposable wealth”). Furthermore,
the objective function takes the form of a HARA (Hyperbolic Absolute Risk
Aversion index) utility function which coincides with the power of fund dispos-
able wealth. This assumption allows us to reach a closed-form solution that will
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be used in numerical simulations to provide useful guidelines for optimal asset
allocation in a pension fund context.
Note that the case of a pension fund is different from the standard case of an

investor having labor income. Indeed, the revenues (contributions) and expenses
(pensions) of the fund must be linked by a condition (“feasibility condition”)
guaranteeing that it is profitable to contract for both the subscriber and the
pension fund. To further enrich our framework, we introduce a deterministic
profit sharing rule. This means that a proportion of the fund nominal surplus
(i.e. the difference between the managed wealth and the contributions) is redis-
tributed to the members, who thus share profits induced by the exposure to the
risky assets.
Moreover, the link between contributions and pensions can be established

inside one of the two following frameworks: the so-called defined-benefit pension
plan (hereafter DB) or the so-called defined-contribution pension plan (hereafter
DC). In a DB plan benefits are fixed in advance by the sponsor and contributions
are initially set and subsequently adjusted in order to maintain the fund in bal-
ance. In a DC plan contributions are fixed and benefits depend on the returns on
the fund portfolio. In particular, DC plans allow contributors to know, at each
time, the value of their retirement accounts. Historically, fund managers have
mainly proposed DB plans, which are definitely preferred by workers. Indeed,
the financial risks associated with DB plans are supported by the plan sponsor
rather than by individual members of the plan. Nowadays, most of the pro-
posed pension plans are based on DC schemes involving a considerable transfer
of risks to workers. Accordingly, DC pension funds provide contributors with
a service of savings management, even if they do not guarantee any minimum
performance. As we have already highlighted, only contributions are fixed in
advance, while the final state of the retirement account depends fundamentally
on the administrative and financial skills of the fund manager. Therefore, an
efficient financial management is essential to gain contributor trust.
The continuous time model studied in this paper is able to describe both

DB and DC pension plans since we take into account two different stochastic
variables for contributions and pensions. Note that we do not require one of
them to be necessarily deterministic. In order to reduce the model to a pure
DB plan it is sufficient to equate the diffusion term of pensions to zero, while in
a pure DC plan it is the diffusion term of contributions which must be equated
to zero. We demonstrate, in a simplified framework, that the optimal portfolio
for a pension providing a DC plan is almost always less risky than those of a
pension providing its members with a DB plan.
Rudolf and Ziemba (2003) study a framework which is very similar to ours.

Nevertheless, the points that distinguish our work are the following ones: (i) we
study the effect of the mortality risk by explicitly taking into account a mortality
law, (ii) we disentangle the impact of the accumulation and decumulation phases
on the asset allocation.
Along the paper we consider agents trading continuously in a frictionless,

arbitrage-free and complete market.
The paper is structured as follows. In Section 2 we first outline the general
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economic background and give the stochastic differential equations describing
the dynamics of asset prices, state variables, contributions, and pensions. Then,
we determine the evolution of the fund real wealth, and present the objective
function to be maximized. In Section 3 the optimal portfolio allocation is com-
puted. There we also present our main result: a closed-form solution of the
problem if the financial market is complete and the market price of risk and
the riskless interest rate are both independent of the state variables. Section 4
provides a numerical illustration based on a simple market structure. Section 5
concludes.

2 The model
In this paper we study how the manager of a pension fund can invest the fund

wealth in order to optimize a given objective function. In order to identify the
model, we show how we represent both the financial market and the objective
function of the pension fund.
As for all the other investment funds, a pension fund must cope with a

set of non-financial risks given by the contributions and withdrawals from the
fund wealth. This risk is typically identified with the so-called background risk,
which cannot be spanned (replicated) on the financial market. In a dynamic
optimization framework, both contributions and withdrawals are state variables.
In fact, the pension fund manager cannot control them.
A major difference between investment funds and pension funds is that these

last ones must explicitly cope with the mortality risk. The introduction of such
a risk in the analysis complicates a lot the computations.

2.1 The financial market

On the financial market there are m assets whose values (S) follow the
stochastic differential equation

dS
m×1

= µ (S,X, t)
m×1

dt+Σ (S,X, t)0
m×d

dW
d×1

, S (t0) = S0, (1)

where W is a d−dimensional Wiener process, and the prime denotes transposi-
tion. The drift and diffusion terms µ and Σ are supposed to satisfy the usual
Lipschitz conditions guaranteeing that Equation (1) has a unique strong solu-
tion (see Karatzas and Shreve, 1991). Furthermore, µ and Σ are Ft-measurable,
where Ft is the σ−algebra through which the Wiener processes are measured
on the complete probability space (Θ,F ,P). All processes below are supposed
to satisfy the same properties as those stated for Equation (1). Values of all
variables are known at the initial date t0 and are equal to the non-stochastic
variable S0.
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The variable vector X contains all the state variables affecting the asset
prices. It is assumed to satisfy the stochastic differential equation

dX
s×1

= µX (X, t)
s×1

dt+ΣX (X, t)
0

s×d
dW
d×1

, X (t0) = X0. (2)

Finally, there exists a riskless asset whose value G follows

dG = Gr (X, t) dt, G (t0) = 1.

The financial market is assumed to be complete (∃!Σ−1 ⇒ m = d). Thus,
there exits only one market price of risk given by

ξ = Σ0−1 (µ− rS) , (3)

through which we can define the martingale equivalent measure

dQ
dP

= exp

Ã
−
Z H

t0

ξ0dWt − 1
2

Z H

t0

kξk2 dt
!
. (4)

Furthermore, according to Girsanov Theorem, the stochastic process

dWQ = ξdt+ dW, (5)

is a Wiener process with respect to Q.

2.2 The contributions and pensions

During the life of a pension fund we can easily distinguish two phases:

1. the so-called "accumulation" phase (hereafter APh) during which the con-
tributions are paid by the members of the fund during their work life.

2. the so-called "decumulation" phase during (hereafter DPh) which the fund
pays the pensions to its members who retire.

Let T be the retirement date of a representative fund member, then the con-
tributions (Lc) and pensions (Lp) can be represented through the same process
as follows:

dL = It<T dLc − (1− It<T ) dLp,
where IE is the indicator function whose value is 1 if the event E occurs and 0
otherwise.

Remark 1 Observe that we indicate with L the cumulated contribution and
pension processes. Thus, the contribution instantaneously paid (or the pension
instantaneously received) between time t and time t+ dt is given by dL (t).
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The management of a pension fund can be set in one of the following cases.

1. Defined contributions (hereafter DC): the contributions are set in advance
while the pensions that will be paid after retirement will be set in order to
keep the fund in balance. In this framework, the variable Lc is determin-
istic while the variable Lp is stochastic and depends on the performances
of the pension fund (there could be a minimum guaranteed pension).

2. Defined benefits (hereafter DB): the pensions are set in advance while the
contributions are adjusted during the accumulation phase. In this case
the variable Lp is deterministic while Lc is stochastic and can depend on
the performances of assets on the financial market.

In order to take into account both cases of DC and DB, we model both dLc
and dLp as stochastic process

dLc = µc (Lc,X, t) dt+Σc (Lc,X, t)0
1×d

dW
d×1

, (6)

dLp = µp (Lp,X, t) dt+Σp (Lp,X, t)
0

1×d
dW
d×1

, (7)

where µc is the (positive) contribution rate while µp is the (positive) pension
rate. In a DC scheme, we must put µc independent of X and Σc = 0, while in
a DB scheme we must put µp independent of X and Σp = 0.
Here, dW is the same process as those driving the asset price risks. This

hypothesis, together with those of a complete market, implies that the contri-
butions and pensions can be spanned in the financial market. Accordingly, the
contributions and pensions can be evaluated as any other asset. This means
that, at each time t, the balance between contributions and pensions (let us call
it ∆) can be written as

∆ (t) = EQ,τt

·Z τ

t

G (t)

G (s)
dL (s)

¸
, (8)

where τ is the stochastic death time of a representative subscriber and the
expectation is taken with respect to the martingale equivalent measure Q and
to the death time τ . We underline that τ is assumed to be independent of all
the other stochastic variables. Thus, by using the indicator function, the value
of ∆ can be written as

∆ (t) = EQ,τt

·Z ∞
t

Is<τ
G (t)

G (s)
dL (s)

¸
= EQt

·Z ∞
t

Eτt [Is<τ ]
G (t)

G (s)
dL (s)

¸
,

and, since the expected value of an indicator function coincides with a proba-
bility, we have

∆ (t) = EQt
·Z ∞

t

P (τ > s|x) G (t)
G (s)

dL (s)

¸
,
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where we have indicated with x the current age of the fund member. Let us
call spx the conditional probability that an individual aged of x survives for s
period.1 Then, the function ∆ becomes

∆ (t) = EQt
·Z ∞

t

(spx)
G (t)

G (s)
dL (s)

¸
. (9)

We underline that the variable ∆ has an important role in the actuarial
economics. In fact, it coincides with the prospective mathematical reserve. In
the case of insurance companies this reserve is given by the present value of
all the premia that will be received, diminished by the present value of all the
indemnities.
Now, after some algebraic manipulation and substituting in (6) and (7) the

stochastic process dWQ defined in (5), we have

∆ (t) = EQt

"Z T

t

(spx)
G (t)

G (s)
dLc +

Z ∞
T

(spx)
G (t)

G (s)
dLp

#

= EQt

"Z T

t

(spx)
G (t)

G (s)
(µc − Σ0cξ) ds

#

−EQt
·Z ∞

T

(spx)
G (t)

G (s)

¡
µp − Σ0pξ

¢
ds

¸
The present value of all pensions must equate the present value of all contri-

butions if we want the pension scheme to be suitable for both the pension fund
and the member. Thus, in order to guarantee a balance in t0 when the pension
fund is subscribed, the value of ∆ (t0) must be zero.

Definition 2 A pair of positive contribution and pension rates (µ∗c , µ∗p) is said
to be feasible if it satisfies the conditionZ T

t0

(spx)EQt0

·
G (t0)

G (s)
(µ∗c − Σ0cξ)

¸
ds =

Z ∞
T

(spx)EQt0

·
G (t0)

G (s)

¡
µ∗p − Σ0pξ

¢¸
ds.

(10)

A similar feasibility condition is imposed in Josa-Fombellida and Rincón-
Zapatero (2001) where the authors examine the problem of a firm which must
pay both wages (before its workers retire) and pensions (after they retire). Ac-
cordingly, the feasibility condition implies the equality between the total ex-
pected value of wages and pensions paid with the total expected value of worker
productivity (according to the usual economic rule equating the optimal wage
with the marginal product of labour).

1Formally spx = exp − x+s
x λ (t) dt , where λ (t) is the instantaneous hazard rate. As

Merton (1990, Section 18.2) underlines, λ (t) takes the usual interpretation of the force mea-
suring the probability that the person will die between t and t+ dt.
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Of course, there are an infinite number of combinations of positive µc and
µp which satisfy (10). This means that a pension fund can supply its members
with a lot of possible pension schemes. Let us show two particular cases:

1. in a DC framework (Σc = 0) when the contribution rate is kept constant,
the pension fund can pay a pension rate such that

µ∗c =

R∞
T
(spx)EQt0

h
G (s)−1

¡
µ∗p − Σ0pξ

¢i
dsR T

t0
(spx)EQt

h
G (s)−1

i
ds

,

and µ∗c > 0;

2. in a DB framework (Σp = 0) when the pension rate is kept constant, the
pension fund can ask for a contribution rate such that

µ∗p =

R T
t0
(spx)EQt0

h
G (s)−1 (µ∗c − Σ0cξ)

i
dsR∞

T
(spx)EQt0

h
G (s)

−1i
ds

,

and µ∗p > 0.

It is important to stress that Equation (10), as already confirmed by the
previous two cases, states that higher contribution rates (must) correspond to
higher pension rates. In fact, since we are in a fully funded pension system,
the pensioners just take the cumulated amount of what they have put in the
pension fund during their work-life. Accordingly, it is obvious that there must
be a positive relationship between contributions and pensions.
In particular, when contributions and pensions are both constant, the re-

lationship (10) implies that contributions must be an affine transformation of
pensions. Furthermore, when we are in a DB-DC scheme (i.e. Σc = Σp = 0),
the feasible pension rate is just proportional to the feasible contribution rate. As
we will show in the next subsections, in this last case any positive contribution
is available to the member since the feasible ratio is always positive.
Since it will be very useful in what follows, we want now to determine the

sign of the prospective mathematical reserve. The feasible contributions and
pensions are set in such a way that the prospective reserve is zero when the
member enters the fund (i.e. ∆ (t0) = 0). Just after receiving the first contribu-
tion, the prospective reserve becomes negative since it still contains the present
value of all the future pensions that will have to be paid, but it contains one
contribution less. So, until the retirement date (T ) while time goes on and the
contributions start being received by the fund, the prospective reserve contains
less and less positive values (contributions) and it decreases accordingly. After
the retirement date, the prospective reserve just contains negative values. In
fact, there are no more contributions and it coincides with the present value of
all the future pensions that the fund will pay to the members. Nevertheless,
while these pensions are being paid, the present value of all the other (future)
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pensions becomes lower and lower. In fact, the death probability becomes higher
and higher. This means that, after T , the prospective reserve starts increasing
and it tends toward zero. In the next subsection, after presenting a particular
form for the conditional survival probability spx, we will show a graph repre-
senting this behaviour of the prospective reserve.

2.3 The mortality law

One of the most used distribution function for the survival event is the
so-called Gompertz-Makeham distribution. The probability to be alive after t
periods for an individual aged of x is given by2

tpx = exp
³
−φt+ e

x−m
b

³
1− e

t
b

´´
, (11)

where φ is a positive constant measuring accidental deaths linked to non-age
factors, while m and b are modal and scaling parameters of the distribution,
respectively. When either b or m tend to infinity we have the exponential
distribution of the form

tpx = e−φt,

whose force of mortality (φ) is constant and does not depend on the agent’s age
(in fact φ measures the non-age factors).
As it will be useful in what follows, we now define the "mortality force" (λ)

as the opposite of the elasticity of tpx with respect to time. In differential form,
the mortality force must solve the following differential equation

d (tpx) = −λ (t) (tpx) dt, (0px) = 1. (12)

In order to understand better the role of the two parametersm and b we have
plotted in Figures (1) and (2) the values of Function (11) for different values of
m and b, respectively.
For the sake of simplicity, we have plotted the so-called "pure Gompertz"

case by taking φ = 0. The central values of parameters m (88.18 for male
and 92.63 for female) and b (10.5 for male and 8.78 for females) have been
estimated in Milevsky (2001) where the author prices all annuities using the
Individual Annuity Mortality (IAM) 2000 table, dynamically adjusted using
scale G, published by the Society of Actuaries. The different behaviour of
Function (11) for males (solid line) and females (dashed line) are represented in
Figure 3.
We can observe that the survival probability till 50 years for males and 60

years for females is very high and close to 1. Then there is a sudden decrease
and we reach a probability of surviving till 100 years that is almost zero for
males but still positive for females.
Since it will be very useful in what follows, we now present in this framework

how to compute the present value of a life annuity.

2 It can be immediately checked that 0px = 1, ∞px = 0 for any age x.
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Figure 1: Behaviour of the Gompertz function with respect to different values
of m [80 the solid line, 88 the dashed line, and 95 the pointed line]
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Figure 2: Behaviour of the Gompertz function with respect to different values
of b [8 the solid line, 10 the dashed line, and 15 the pointed line]
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Figure 3: Survival probability for an individual aged of 20 (the pure Gompertz
case)
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Proposition 3 Given the survival probability for t periods in Equation (11),
when the riskless interest rate is constant, the value of a life annuity can be
written asZ ∞

t0

(tpx) e
−r(t−t0)dt = be(φ+r)(x−m)+rt0+e

x−m
b Γ

³
− (φ+ r) b, e

t0+x−m
b

´
,

where

Γ (y1, y2) =

Z ∞
y2

e−tty1−1dt,

is the so-called incomplete gamma function.

Proof. Let us make the following variable substitution:

z = e
t+x−m

b ⇔ t = −x+m+ b ln z,

dz =
1

b
zdt⇔ dt = b

1

z
dz,

and so the integral can be written asZ ∞
t0

(tpx) e
−r(t−t0)dt = be(r+φ)(x−m)+rt0+e

x−m
b

Z ∞
e
t0+x−m

b

z−(r+φ)b−1e−zdz.

In the case mentioned by Proposition 3 the feasible ratio for constant con-
tribution and pension rates can be simply represented as a ratio between two
Gamma functions.
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Corollary 4 Given the survival probability for t periods as in Equation (11),
when the riskless interest rate is constant, the constant contribution and pension
rates satisfying Equation (10) for a DC-DB scheme must satisfy

µ∗p
µ∗c
=
Γ
³
− (φ+ r) b, e

t0+x−m
b

´
Γ
³
− (φ+ r) b, e

T+x−m
b

´ − 1. (13)

Proof. Since we have put µ∗p, µ∗c , and r constant, then Equation (10) simplifies
to

µ∗c

Z T

t0

(spx) e
−r(s−t0)ds = µ∗p

Z ∞
T

(spx) e
−r(s−t0)ds.

Furthermore, it is true thatZ T

t0

(spx) e
−r(s−t0)ds =

Z ∞
t0

(spx) e
−r(s−t0)ds−

Z ∞
T

(spx) e
−r(s−t0)ds,

and so
µ∗p
µ∗c
=

R∞
t0
(spx) e

−r(s−t0)dsR∞
T
(spx) e−r(s−t0)ds

− 1.

Now, all the integrals are in the form presented in Proposition 3 and, after
substituting the value of (spx) given by Equation (11) we obtain what presented
in the corollary.

In Figure 4 we show the behaviour of the constant ratio (13) with respect
to both t0 (the time when the worker subscribes the fund) and T (the time
when the worker retires). The interest rate is set to 0.02 while the parameters
of Equation (11) are set to (m, b, φ) = (88.18, 10.5, 0).
We immediately see that (for a given value of the agent’s age x) the value

of µ∗p/µ∗c is increasing in T and decreasing in t0. When the retirement age
increases, the fund can afford to pay higher pensions since the contributions are
paid during a longer period of time. On the contrary, when t0 increases and the
worker enters the fund at a higher age, the fund requires higher contributions
in order to have the same level of pensions.
Thanks to the specification of the mortality law we can also represent the

behaviour of the prospective reserve (8). In order to show the effect of a change
in the mortality law on the prospective mathematical reserve let us suppose
here that we are in a DC-DB scheme with constant contributions and pensions
(i.e. Σc = Σp = 0). In this case the expected value operator in (8) must be
computed only with respect to the stochastic death time and the prospective
reserve has the closed form representation shown in the following corollary.
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Figure 4: Feasible (constant) ratio µ∗p/µ
∗
c for constant interest rate
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Corollary 5 Given the survival probability for t periods as in Equation (11),
when the riskless interest rate, the contribution and the pension rates are all
constant, then the prospective mathematical reserve for a DC-DB scheme can
be written as

∆ (t) = µ∗cbe
(φ+r)(x−m)+rt+ex−mb Γ

³
− (φ+ r) b, e

t+x−m
b

´
(14)

×
1− Γ

³
− (φ+ r) b, e

t0+x−m
b

´
Γ
³
− (φ+ r) b, e

min(t,T)+x−m
b

´
 .

Proof. We take into account two different cases:

1. t < T and so some contributions till T must be paid and still all the
pensions must be paid; the value of ∆ (t) is, in this case:

∆ (t) = µ∗c

Z T

t

(spx) e
−r(s−t)ds− µ∗pe

−r(T−t)
Z ∞
T

(spx) e
−r(s−T )ds,

and, by using the results stated in Proposition 3, we have

∆ (t) = µ∗cbe
(φ+r)(x−m)+rt+ex−mb Γ

³
− (φ+ r) b, e

t+x−m
b

´
×
1− Γ

³
− (φ+ r) b, e

t0+x−m
b

´
Γ
³
− (φ+ r) b, e

t+x−m
b

´
 ,

2. t ≥ T and so all contributions have already been paid and only some
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Figure 5: Behaviour of the prospective mathematical reserve ∆ (t) with respect
to time
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pensions still remain to be paid; the value of ∆ (t) is, in this case:

∆ (t) = −µ∗p
Z ∞
t

(spx) e
−r(s−t)ds

= −µ∗pbe(φ+r)(x−m)+rt+e
x−m
b Γ

³
− (φ+ r) b, e

t+x−m
b

´
= µ∗cbe

(φ+r)(x−m)+rt+ex−mb Γ
³
− (φ+ r) b, e

t+x−m
b

´
×
1− Γ

³
− (φ+ r) b, e

t0+x−m
b

´
Γ
³
− (φ+ r) b, e

T+x−m
b

´
 .

The comparison between these two cases immediately give the result in
the corollary.

With the same parameter values we have already used for the previous nu-
merical simulations, we can represent the value of the prospective reserve (14)
as in Figure 5 where x = 25 and T = 40.
As we already argued, the value of the prospective mathematical reserve

always remains negative and, after retirement, while t increases it approaches
zero.
The changes in the interest rate affect the prospective reserve as shown in

Figure 6. As it is quite intuitive, the behaviour of the reserve value remains
the same and the lowest point of the graph increases while the interest rate
decreases. In fact, when r increases, the discount factor takes lower values and
the present value in T of all the future pensions becomes lower (in absolute
value).
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Figure 6: Behaviour of the prospective reserve ∆ (r, t) with respect to the inter-
est rate
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2.4 The fund wealth

Given the market structure we have already presented in the previous sub-
sections, we can define with w (t) ∈ Rm×1 and wG (t) ∈ R the vector containing
the amount of risky assets held in the fund portfolio and the scalar representing
the amount of riskless asset held, respectively. Thus, the amount of wealth the
fund manages at each time is given by

R (t) = w (t)
0
S (t) + wG (t)G (t) , (15)

whose differential is

dR = w0dS + wGdG| {z }
dR1

+ dw0 (S + dS) + dwG ·G| {z }
dR2

,

where we suppose to know the initial wealth R (t0) = R0.
We can see that the change in the fund wealth can be divided into two dif-

ferent sources of change: dR1 which is the change in R due to the change in
the asset prices, and dR2 which is the change in R due to the change in the
portfolio composition. When there are neither consumption nor non-financial
revenues, then the self-financing condition on the portfolio asks for dR2 to equate
zero. In our case the change in the portfolio composition must be financed by
the contributions during the accumulation phase and must finance the pension
payments during the decumulation phase. Furthermore, in our framework, the
total amount of contributions and pensions in t are received and paid respec-
tively only if the member is still alive after t periods. This means that the
total non-financial flows in (and out) the portfolio must be weighted by the
conditional survival probability. Finally, the change in wealth given by dR2
must equate the change in the non-financial flows (weighted by the conditional
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survival probability):

dw0 (S + dS) + dwG ·G = (tpx) dL (t) .
After defining

µL ≡ It<Tµ∗c − (1− It<T )µ∗p, (16)

ΣL ≡ It<TΣc − (1− It<T )Σp, (17)

the differential of L can be written as

dL = µLdt+Σ
0
LdW,

and so the wealth differential, after substituting for the static budget constraint
(15) can be written in the following way

dR = (Rr + w0 (µ− Sr) + (tpx)µL) dt (18)

+(w0Σ0 + (tpx)Σ0L) dW,

where we have eliminated all the trivial functional dependences for the sake of
simplicity.
It is evident from Equation (18) that the drift of the fund wealth is increased

by the contribution rate (µc) and decreased by the pension rate (µp). In the
same way, the diffusion term of fund wealth is increased by the contribution
diffusion (Σc) and decreased by the pension diffusion (Σp).

2.5 Minimizing the instantaneous variance

The dynamic equation (18) for the fund wealth is computed in a time t
given the value of the fund wealth in t0. This means that the portfolio which
minimizes the fund instantaneous variance (w∗σ) is given by3

w∗σ = argminw
¡
w (t)

0
Σ (t)

0
+ (tpx)ΣL (t)

0¢
(Σ (t)w (t) + (tpx)ΣL (t)) ,

which gives
w∗σ (t) = − (tpx)

¡
Σ (t)0Σ (t)

¢−1
Σ (t)0ΣL (t) . (19)

This allows us to conclude that the asset allocation that minimizes the vari-
ance of fund wealth is given by the opposite of the ratio between the exogenous
volatility and the asset price volatility. This portfolio must of course be weighted
by the probability that an agent is still alive after t periods.
The prescription of such an optimal strategy is very easy to interpret: it is

necessary to buy the assets whose volatility is negatively correlated with those
of the exogenous risks while it is optimal to sell the assets which are positively
correlated with the exogenous risks.
We will show in what follows that the optimal portfolio (19) is a component

of the optimal portfolio maximizing the expected utility of fund wealth.

3The minimization problem is well defined since the variance-covariance matrix Σ0Σ is
positive definite by construction.
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2.6 The objective function

The pension fund is supposed to maximize the expected utility of its wealth
at the death time of its subscriber. Thus, the problem can be formulated as

max
w
Eτt0

h
e−ρ(τ−t0)U (R, z, τ )

i
,

where ρ is a subjective discount factor, τ is the stochastic death time of the
subscriber, U (R, τ) is the fund utility function, and z is a vector containing all
the stochastic variables presented in the previous subsections (i.e. asset values,
state variables, contributions, and pensions). The expected value is taken with
respect to the joint distribution of τ and all the other risks driving the asset
values. Of course the fund wealth R behaves as in (18).
Now, since τ is supposed to be independent of all the other risk sources,

that we can decompose the expected value in the following way (as in Richard,
1975):

Eτt0
h
e−ρ(τ−t0)U (R, z, τ )

i
= Et0

·Z ∞
t0

π ( t|x) e−ρ(t−t0)U (R, z, t) dt
¸
,

where we have indicated with π ( t|x) the conditional density function of the
death time. From the actuarial literature we recall that this density function
can be easily derived from the conditional survival probability:

π ( t|x) = −d (tpx)
dt

,

and, by using the ODE (12) we have

π ( t|x) = λ (t) (tpx) ,

so the objective function can be written as

Et0
·Z ∞

t0

λ (t) (tpx) e
−ρ(t−t0)U (R, z, t) dt

¸
,

which means that the original problem is equivalent to the maximization of the
intertemporal fund utility, discounted by a mixed actuarial-financial discount
factor.
In this work we allow the utility function to depend on time and stochastic

variables different from wealth. This means that our utility function is not time
separable. In this case, we can take into account the so-called "habit formation"
approach where the time passing can change the form of the utility function.
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3 The optimization problem
As shown in the previous subsections, the fund problem can be alternatively

formulated as an intertemporal optimization problem as follows:

maxw Et0
hR∞

t0
λ (t) (tpx) e

−ρ(t−t0)U (R, z, t) dt
i·

dz
dR

¸
=

·
µz

Rr + w0 (µ− Sr) + (tpx)µL

¸
dt

+

·
Ω0

w0Σ0 + (tpx)Σ0L

¸
dW,

R (t0) = R0, z (t0) = z0, ∀t0 < t < H,

(20)

where

z
(s+m+1)×1

≡ £
X 0 S0 L0

¤0
,

µz
(s+m+1)×1

≡ £
µ0X µ0 µ0L

¤0
,

Ω
d×(s+m+1)

≡ £
ΣX Σ ΣL

¤
.

The so-called cost functional which measures the performance of the controls
(as in Yong and Zhou, 1998) is written, in this case, as

Ψ (t, w,R, z) = Et
·Z ∞

t

λ (s) (spx) e
−ρ(s−t)U (R (s) , z (s) , s) ds

¸
,

and the Hamiltonian of this problem is thus

H = λ (t) (tpx)U (R, z, t) + JR (Rr + w0 (µ− Sr) + (tpx)µL)

+
1

2
JRR (w

0Σ0 + (tpx)Σ0L) (Σw + (tpx)ΣL) + µ0zJz +
1

2
tr (Ω0ΩJzz) ,

where all the variables are evaluated in t, and the value function J (t, R, z) =
maxwΨ (t, w,R, z) must solve the differential equation

0 = Jt + λpU + JR (Rr + w0 (µ− Sr) + pµL)

+
1

2
JRR (w

0Σ0 + pΣ0L) (Σw + pΣL) + µ0zJz +
1

2
tr (Ω0ΩJzz) .

The first order conditions4 for w on the Hamiltonian give us the optimal
portfolio in the implicit form

w∗ = −pΣ−1ΣL| {z }
w∗
(1)

− JR
JRR

(Σ0Σ)−1 (µ− Sr)| {z }
w∗
(2)

− 1

JRR
Σ−1ΩJzR| {z }
w∗
(3)

. (21)

In Equation (21) we can distinguish three components of the optimal port-
folio.

4We recall that the second order condition is verified if J is concave in R (and this condition
is guaranteed by the concavity of U).
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1. A preference free component (w∗(1)) coinciding with the portfolio which
minimizes the fund wealth volatility (as shown in the previous section).
With respect to the usual case where the non-financial flows are uncertain
in their amount but certain in their happening, here the first portfolio
component is multiplied by the survival probability.

2. A speculative component (w∗(2)) proportional to both the Sharpe ratio and
the Arrow-Pratt risk aversion index (computed on the value function).

3. An hedging component (w∗(3)) whose present is due to the presence of sto-
chastic state variables. In fact, when the state variables are not stochastic
(i.e. Ω = 0) then this component vanishes. w∗(3) is proportional to the
ratio between the state variables volatility and the asset price volatility.
Furthermore, its weight on the optimal portfolio depends on how much
the changes in the state variables affect the value function.

3.1 A separable value function

Given the implicit optimal portfolio in (21) the value function J must solve
the following partial differential equation (called Hamilton-Jacobi-Bellman equa-
tion, hereafter HJB):5

0 = Jt + λpU + µ0zJz −
1

2

J2R
JRR

ξ0ξ − JR
JRR

ξ0ΩJzR

+JR (Rr + pµL − pΣ0Lξ) +
1

2
tr (Ω0ΩJzz)− 1

2

1

JRR
J 0zRΩ

0ΩJzR,

where ξ is as in (3), and with the boundary (trasversality) condition

lim
t→∞J (R, z, t) = 0.

One of the most challenging task in the stochastic dynamic control approach
is to solve the HJB equation. As it can be seen in the optimal portfolio litera-
ture, the form of the value function strongly depends on the form of the utility
function. In this work, we want to proceed in a kind of backward way for re-
covering the form of a suitable utility function allowing us to have a separable
value function of the following form

J (R, z, t) = V (z, t)U (R, z, t) , (22)

where V (z, t) is a function that must be determined. After substituting this
function form into the HJB equation and dividing by U we can write the HJB

5For the sake of simplicity we have eliminated all the functional dependences. For a more
detailed explanation of the HJB equation the reader is referred to Øksendal (2000).
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in the following way

0 = Vt +

µ
µ0z −

U2R
URRU

ξ0Ω− UR
URRU

U 0zRΩ
0Ω+

1

U
U 0zΩ

0Ω
¶
Vz (23)

+
1

2
tr (Ω0ΩVzz) + λp+ V A (z,R, t)− 1

2

U2R
URRU

1

V
V 0
zΩ

0ΩVz,

where

A (z,R, t) ≡ Ut
U
+
1

U
µ0zUz −

1

2

U2R
URRU

ξ0ξ − UR
URRU

ξ0ΩUzR

+
UR
U
(Rr + pµL − pΣ0Lξ)−

1

2

1

URRU
U 0zRΩ

0ΩUzR

+
1

2

1

U
tr (Ω0ΩUzz) .

Now, since we want the function V to be independent of R, then the coef-
ficient of Vz, the function A (z,R, t), and the the ratio U2

R

URRU
must not depend

on R. Let us start from the last ratio. It is easy to demonstrate (by solving a
second order ordinary differential equation) that it does not depend on R if and
only if U (R, z, t) belongs to the HARA (Hyperbolic Absolute Risk Aversion)
family. Algebraically, U must have the following form

U (R, z, t) =
1

1− β
(R+ F (z, t))1−β , (24)

where β must be a positive constant6 and F may depend on t and z. The
economic literature generally proposes utility functions where F depends on z
and can capture the so-called "habit formation". In this way we can take into
account a much richer set of preferences than those we have with the simpler
assumption of time separability for the utility function.
After substituting this functional form into Equation (26) we obtain the

partial differential equation

0 = Vt +

µ
µ0z +

1− β

β
ξ0Ω
¶
Vz +

1

2
tr (Ω0ΩVzz) +

1

2

1− β

β

1

V
V 0
zΩ

0ΩVz + λp

+V

µ
1

2

1− β

β
ξ0ξ + (1− β) r

¶
+V

1− β

R+ F

µ
Ft +

¡
µ0z − ξ0Ω

¢
Fz − Fr + pµL − pΣ0Lξ +

1

2
tr (Ω0ΩFzz)

¶
.

For a reason that we will widely discuss in the following subsection, we now
set the trasversality condition

lim
t→∞F (t, z) = 0,

6 In this way the utility function is increasing and concave in R as we want it to be.
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and so we can use the Feynman-Kač theorem for writing the following solution

F (t, z) = EQt
·Z ∞

t

(spx) (µL − Σ0Lξ) e−
s
t
r(θ)dθds

¸
, (25)

where the probability measure Q has already been defined in (4). In the next
subsection, we are going to present the utility function that allows us to simplify
the HJB equation.

3.2 A suitable utility function

In the previous subsection we have derived a suitable form for the utility
function which allows us to simplify the HJB equation for solving the dynamic
optimization problem. In particular, the function F (z, t) in (25) coincides with
the prospective mathematical reserve. In fact, under the martingale equivalent
measure, the behaviour of contributions and pensions is given by

dL = (µL − Σ0Lξ) dt+Σ0LdWQ,

and so the function (25) can be exactly written as in (8). This means that the
utility function can be written as follows

U (R, z, t) =
1

1− β
(R+∆ (z, t))1−β ,

which belongs to the HARA family and which guarantees that the investor’s
wealth never goes below the level of the opposite of the prospective mathematical
reserve (R (t) > −∆ (z, t) ,∀t > t0). Let us comment more this point which is
quite important. When the pensions start being paid (t > T ) then −∆ is
simply given by the expected present value of a life annuity whose installments
are the pension rates. This means that during the decumulation phase the fund
manages its wealth in such a way that it never falls below the present value of
all the future pensions. Instead, before the retirement date (t < T ), the fund
wealth can go beyond the present value of all the pensions by an amount given
by the received contributions.
It is worth noting that the present value of all fund liabilities is always

negative (i.e. ∆ (t, z) < 0,∀t > t0). So, since the form of the utility function
guarantees that R (t) > −∆ (t) ,∀t > t0, then we can conclude that R (t) always
remains positive and we can neglect the positivity constraint on the fund wealth.
We stress that we are in a fully funded framework where the demographic

risk does not enter the fund optimization problem. If we had been in a "pay as
you go" framework, than the hypothesis of having replicable contributions and
pensions would have been much stronger, since it is quite difficult to suppose
that the demographic risk can be perfectly hedged on the financial market.
Now, we want to trace a comparison between the utility function we have

found in the previous subsection and the approach called "habit formation".
In fact, also in those case the utility function is not separable in wealth in
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such a way that there exists a minimum amount of "subsistence" consumption
coinciding with a weighted mean of past consumptions. In our case, instead,
the time non-separability comes from taking into account the future and not the
past. We guarantee that the fund wealth never goes below the expected present
value of all the pensions net of the expected value of all the contributions.
Finally, we note that the sum R + ∆ can be interpreted as a surplus. In

fact, at each instant in time, it is given by the fund wealth, diminished by the
imbalance between all the future pension liabilities. Just as an example, let us
take into account the decumulation phase. During this period, the prospective
mathematical reserve is always negative and just given by the present value
of all the future pensions that will have to be paid. Thus, the fund wealth R
is reduced by the amount of all the future fund engagements. I interpret this
reduced wealth as a surplus. The same principle applies for the accumulation
phase since the value of the prospective mathematical reserve remains negative
for any t > t0.

3.3 An explicit solution

Now, only the last step remains but, unfortunately, it is the most difficult
one. We still have to solve the PDE for the function V (z, t) in the following
form,

0 = Vt +

µ
µ0z +

1− β

β
ξ0Ω
¶
Vz +

1

2
tr (Ω0ΩVzz) (26)

+V

µ
(1− β) r +

1

2

1− β

β
ξ0ξ
¶
+ λp+

1

2

1− β

β

1

V
V 0
zΩ

0ΩVz,

which has been obtained by substituting the suitable utility function into (??).
Now, the boundary (trasversality) condition is

lim
t→∞V (z, t) = 0.

In order to eliminate the non linearity in Vz, we can do the following trans-
formation (as suggested in Zariphopoulou, 2001)

V (z, t) = Φ (z, t)
β
,

and the PDE (26) becomes

0 = Φt +

µ
µ0z +

1− β

β
ξ0Ω
¶
Φz +

1

2
tr (Ω0ΩΦzz) (27)

+Φ

µ
1− β

β
r +

1

2

1− β

β2
ξ0ξ
¶
+
1

β
λpΦ1−β,

with the boundary condition

lim
t→∞Φ (z, t) = 0.
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Accordingly, the optimal portfolio can be written as in the following propo-
sition.

Proposition 6 The optimal portfolio solving Problem (20) for a pension fund
maximizing its surplus R+∆ is given by

w∗ = −pΣ−1ΣL| {z }
w∗L

−Σ−1Ω∆z| {z }
w∗∆

+
R+∆

β
(Σ0Σ)−1 (µ− Sr)| {z }

w∗M

+
R+∆

Φ
Σ−1ΩΦz| {z }
w∗Φ

, (28)

where the function Φ (z, t) satisfies (27).

The result stated in Proposition 6 allows us to argue that, with respect to the
fund financial surplus, the optimal asset allocation implies a five fund theorem.
In particular:

1. w∗L is a preference free portfolio which minimizes the fund wealth volatility
(as already shown);

2. w∗∆ is a preference free portfolio which hedges the fund wealth from the
risk given by the modification in the prospective mathematical reserve due
to the changes in the state variable values;

3. w∗M is the classical Merton’s component (computed with respect to the
fund financial surplus);

4. w∗Φ is the portfolio component that depends on the mortality risk inside
the term f (t).

The solution of PDE (27) cannot rely on the Feynman-Kač theorem since
the term containing the function Φ (z, t) are not affine in Φ (z, t). Nevertheless,
there exists a case where an exact solution can be found. When the term

1− β

β
r +

1

2

1− β

β2
ξ0ξ,

does not depend on the state variables z, then also Φ (z, t) is independent of z
and so we have a Bernoulli’s differential equation

0 = Φt +Φ

µ
1− β

β
r +

1

2

1− β

β2
ξ0ξ
¶
+
1

β
λpΦ1−β ,

which has only one solution satisfying the boundary condition for t tending
to infinity. Since, in this case, the value of Φ does not depend on the state
variables z, then the optimal portfolio component w∗Φ vanishes and we can state
what follows.
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Corollary 7 If 1−β
β r + 1

2
1−β
β2

ξ0ξ is independent of the state variables z, then
the optimal portfolio for a pension fund solving Problem (20) is given by

w∗ = −pΣ−1ΣL| {z }
w∗L

− Σ−1Ω∆z| {z }
w∗∆

+
R+∆

β
(Σ0Σ)−1 (µ− Sr)| {z }

w∗M

. (29)

4 A simple framework
In this section we use the explicit solution found in Corollary 7 in order to

present a numerical simulation of the optimal portfolio. In order to fulfill the
hypothesis of Corollary 7 we take a constant riskless interest rate and geometric
Brownian motions for asset prices. Furthermore, we take into account only one
risky asset.7 Thus the market structure is as follows:

dS = Sµdt+ SσdW, S (t0) = S0, (30)

dG = rGdt, G (t0) = 1, (31)

where µ, σ, and r are positive constant (such that µ > r). In this case the
market price of risk is constant and given by

ξ =
µ− r

σ
.

Furthermore, let us suppose that contributions and pensions follow the
processes:

dLc = µcdt+ σcdW,

dLp = µpdt+ σpdW,

where µc, and µp are two positive constants. In order to avoid the problem of
the so-called back-ground risk, we have supposed L to depend on the same risk
sources than the asset prices.
This simple framework allows us to account for the two following cases:

1. a Defined Contribution system: in this case we must put σc = 0 since the
behaviour of contributions is totally deterministic;

2. a Defined Benefit system: in this case we must put σp = 0 since the
behaviour of pensions is totally deterministic.

We haven’t specified the signs of the diffusion terms σc and σp since they
include the sign of the correlation between asset returns and contributions and
pensions, respectively.

7This only asset can be interpreted as the market price index.
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We recall that the contributions are generally linked with the members’
salary. In particular, when they coincide with a given percentage of the salary,
the contribution volatility is given by the wage volatility. Thus, if we assume
that positive shocks on firms profits positively affect wages, then σc must be
positive. In fact, a positive dW must imply a positive dLc.
For what concerns pensions, we recall that the characteristic of a pension

fund that differentiates it with respect to a life insurance, is its link with the
financial market. In particular, when we consider a DC scheme, pensions pos-
itively vary with respect to the financial market. When the financial returns
increase, the fund pay higher pensions and vice versa. Thus, it seems that the
positive sign for σp is the more appropriate.
Nevertheless, in what follows, we will always comment even the cases when

either σp or σc (or both) are negative.
Finally, the unified process of pensions and contributions is

dL =
¡
It<Tµc − (1− It<T )µp

¢
dt+ (It<Tσc − (1− It<T )σp) dW. (32)

4.1 The feasible contributions and pensions

For the mortality risk we take into account the Gompertz-Makeham as in
(11). Thus, the feasibility condition (10) is

(µ∗c − σcξ)

Z T

t0

(spx) e
−r(s−t0)ds =

¡
µ∗p − σpξ

¢ Z ∞
T

(spx) e
−r(s−t0)ds,

and from Corollary 4 we can immediately obtain

µ∗p = µ∗cΠ+ ξ (σp − σcΠ) , (33)

where

Π ≡
Γ
³
− (φ+ r) b, e

t0+x−m
b

´
Γ
³
− (φ+ r) b, e

T+x−m
b

´ − 1 > 0
⇒ Π > 1,

and both µ∗c and µ∗p must be positive.
Now it is easy to compare the DC and the DB cases in the following was:

1. in the DC case (i.e. σc = 0) the feasibility condition (33) becomes

µ∗p = µ∗cΠ+ ξσp,

and we can conclude that pensions are higher (lower) when the pension
risks are positively (negatively) correlated with asset prices (i.e. σp > 0,
σp < 0 respectively);
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2. in the DB case (i.e. σp = 0) the feasibility condition (33) becomes

µ∗p = µ∗cΠ− ξσcΠ,

and we can conclude that pensions are higher (lower) when the contri-
bution risks are negatively (positively) correlated with asset prices (i.e.
σc < 0, σc > 0 respectively).

Furthermore, when we compare the pensions between the DC and the DB
scheme, we can easily conclude what follows.

Proposition 8 Given the risky asset, the riskless asset, the contributions and
the pensions as in (30), (31), and (32) respectively, the feasible pensions paid
in a DC scheme are higher (lower) than those paid in a DB scheme if and only
if

σp > (<)− σcΠ.

Proof. Let µ∗p,DC = µ∗p
¯̄
σc=0

and µ∗p,DB = µ∗p
¯̄
σp=0

, then the inequality

µ∗p,DC > (<)µ∗p,DB implies what stated in the proposition. Furthermore, what
stated in the proposition can be, with suitable modifications, reduced to the
inequality µ∗p,DC > (<)µ∗p,DB.

An immediate corollary follows.

Corollary 9 Given the risky asset, the riskless asset, the contributions and
the pensions as in (30), (31), and (32) respectively, when feasible pensions and
contributions are both positively (negatively) correlated with the asset prices,
then the pensions are higher in a DC (DB) pension scheme.

We want to stress an important point since the results stated in Proposition
8 and Corollary 9 could bring the reader towards a misinterpretation. We must
recall that pensions and contributions have been chosen so that the feasibility
condition (10) holds. Thus, we cannot conclude that a higher pension rate
is always preferred to a lower pension rate. In fact, because of construction
of feasible pairs, a risk indifferent member must be indifferent between DC
and DB. In fact, the higher pension rate in the DC case when pensions are
correlated with asset prices comes from the higher risk that this framework
bears. Actually, since pensions move together asset prices, then they cannot
be used for any hedging strategy but, instead they represent another risk that
must be hedged. So, in this case, their risk is added to those of the asset prices.
In the same way, when we are in a DB framework if the contributions (which

are negative cash flows) are negatively correlated with asset prices, then the total
portfolio risk increases and the pension rate must be higher.
Finally, the results of Proposition 8 and Corollary 9 are strictly in line with

the well known principle according to which the higher the risk the higher the
return.
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4.2 The prospective reserve

In order to explicitly compute the optimal portfolio in this simplified frame-
work we have to determine the functional form of the prospective mathematical
reserve as in (9). Thus, we have8

∆ (L, t) =

Z ∞
t

(spx) (µL − Σ0Lξ) e−r(s−t)ds,

whose differential is

d∆ = (− (tpx) (µL − Σ0Lξ) + r∆) dt,

∆ (t0) = 0.

Given the values of µL and ΣL already defined in (16) and (17) we can
follow the same steps as in Corollary 59 in order to find the following value of
the prospective reserve

∆ (t) = (µ∗c − σcξ) be
(φ+r)(x−m)+rt+ex−mb Γ

³
− (φ+ r) b, e

t+x−m
b

´
×
1− Γ

³
− (φ+ r) b, e

t0+x−m
b

´
Γ
³
− (φ+ r) b, e

min(t,T )+x−m
b

´
 .

We recall that in our simplified framework the reserve ∆ does not depend
on any state variable (which means that ∆z = 0). Accordingly, under the
martingale equivalent measure, the differential of the wealth augmented by the
reserve behaves as

d (R+∆) = r (R+∆) dt+
R+∆

β
ξ0dWQ,

or, alternatively

d (R+∆) = (R+∆)

µ
r +

1

β
ξ0ξ
¶
dt+

R+∆

β
ξ0dW.

So, the surplus follows a geometric Brownian motion whose solution is

R (t) = −∆ (t) +R (t0) e
r+ 1

β ξ
2− 1

2
1
β2

ξ2 (t−t0)+ 1
β ξ(W (t)−W (t0)),

where we have the confirmation of our previous result R (t) > −∆ (t).

8We do not need the expected value operator in this case since the value of ∆ does not
contain any stochastic variable.

9 It is sufficient to replace µ∗c with (µ∗c − σcξ) and µ∗p with µ∗p − σpξ .
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Table 1: Mean returns and volatilities of some stock markets (Rudolf and
Ziemba, 2004)

Country Mean Return (%) Volatility (%)
USA 13.47 14.47
UK 9.97 17.96
Japan 3.42 25.99
EMU 10.48 15.80
Canada 5.52 18.07
Switzerland 11.56 18.17

4.3 The optimal portfolio

The optimal portfolio found in Corollary 7 can be simplified further since,
in our framework, the mathematical reserve ∆ does not depend on the state
variables (i.e. ∆z = 0). Thus, the optimal portfolio can be divided into two
parts:

1. the "classical" Merton’s component given by

w∗M (t)S (t) =
R (t)

β

µ− r

σ2
,

whose form does not change between the accumulation and the decumu-
lation phases (even if its value of course does);

2. a further component due to the need of keeping the fund wealth higher
than the future engagements:

w∗∆ (t)S (t) = − (tpx)
It<Tσc − (1− It<T )σp

σ
+
∆ (t)

β

µ− r

σ2
.

4.4 A numerical simulation

In order to present a numerical simulation we must choose the values for the
parameters of our model. Our Table 1 reproduces Table 1 of Rudolf and Ziemba
(2004).
In accordance with Rudolf and Ziemba (2004) we put r = 0.02, µ = 0.09,

and σ =
√
0.2. The parameters for the survival probability are put (φ,m, b) =

(0, 88.18, 10.5) as already argued in the the previous sections. Now, we have
to chose a volatility for contributions and pensions. Rudolf and Ziemba (2004)
recall that the average growth rate of wages and salaries in the U.S. between
January 1987 and July 2000 was 5.7% with annualized volatility of 4%. Further-
more, we assume the volatility of pension to equate the volatility of contributions
(salaries). Thus, we assume σp = σc = 0.2. Now, we have to chose the "time"
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Figure 7: Behaviour of the optimal portfolio component w∗∆ (t)S (t) [DC=solid
line, DB=dashed line]
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parameter. We suppose that a member enters the fund when he is x = 25 and
retires when he is 65 (i.e. T = 40). Finally, the risk aversion of the fund is
supposed to be given by β = 3.
In this case the feasibility condition can be written as

µ∗p = µ∗c4.146 4− 0.09849 8, (34)

provided that µ∗c
µ∗c > 0.023755.

This means that we just have to decide either µ∗p or µ∗c . In particular, we
want to compare the two following cases:

1. the subscriber decides for a DC pension scheme, and so we put µ∗c = 1
with σc = 0 (and σp = 0.2);

2. the subscriber decides for a DB pension scheme, and so we put µ∗p = 1 (in
this case the value of µ∗c can be easily obtained from (34)) with σp = 0
(and σc = 0.2).

These two cases are compared in Figure 7 where the solid line represent the
value of the optimal portfolio component w∗∆ (t)S (t) in the case of a defined
contribution (DC) pension scheme, while the dashed line represents the case of
a defined benefit (DB) scheme.
We can immediately see that in both cases the optimal portfolio is less

risky than the Merton’s one (i.e. w∗∆ (t)S (t) < 0). In particular, before the
retirement date, the portfolio becomes less and less risky while, during the
decumulation phase, the portfolio starts becoming more and more risky. This
behaviour has a suitable economic interpretation. In fact, when pensions start
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being paid, the remaining duties for the pension fund becomes lower and lower
(since the death probability increases with time). This means that the optimal
portfolio can become riskier and riskier. Instead, before the retirement date,
the fund engagements are still low because of the future contributions that will
be received. Thus, while the expected present value of all the contributions
reduces, the optimal portfolio must become less and less risky.
The main difference between the DC and the DB scheme is that in the

DB case the optimal portfolio is almost always riskier. In fact, in order to
provide the member with the promised benefits, the fund must undertake a
riskier investment strategy.
In our framework there is no bankruptcy risk. Nevertheless, when this is the

case, it could be important, for a worker, to chose a pension fund which does
not undertake too risky strategies. In this case, the workers should chose for a
DC pension scheme.

5 Conclusion
In this paper we have analyzed the asset allocation problem for a pension

fund providing its members either with a defined contribution or with a defined
benefit pension scheme. Our framework takes into account a general setting
for asset prices but we assume that both contributions and pensions can be
perfectly spanned on the complete financial market. Nevertheless, in spite of
these simplifying assumptions, we are able to reach only an implicit solution for
the optimal fund portfolio.
Instead, under the simplified hypothesis that both the riskless interest rate

and the market price of risk are deterministic functions, we are able to find a
closed form solution for the fund optimal portfolio. We show that this optimal
portfolio is always less risky that the Merton’s one.
Eventually, we present a numerical simulation for a very special case (with

no stochastic processes but geometric Brownian motions) and we demonstrate
that, in such a framework, the optimal portfolio for a pension fund providing
its members with a defined contribution pension scheme is almost always less
risky than the optimal portfolio for the defined benefit case.
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