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1 Introduction

Since its introduction by Cattell (1966), we use the scree plot in multivariate statistical analysis as a visual
aid for determining an appropriate number of latent factors or principal components. It is a downward line
plot of the eigenvalue against the factor number, ordering the eigenvalues from largest to smallest. We
look for an elbow in the scree plot to determine graphically the appropriate number of unobservable (latent)
factors. The number of selected factors is taken to be the point at which the remaining eigenvalues are
relatively small. The aim of this paper is to provide with a valid cut-off point for such a selection rule where
we compute the eigenvalues from the sample covariance matrix of residuals of linear models estimated on a
large unbalanced panel. Selecting zero unobservable common factors (interactive effects) in the error terms
means weakly cross-sectionally correlated errors. This gives an approximate factor structure (Chamberlain
and Rothschild (1983)) in Arbitrage Pricing Theory (Ross (1976)) if the linear model relies on observable
factors.

For models with unobservable (latent) factors only, Connor and Korajczyk (1993) are the first to develop
a test for the number of factors for large balanced panels of individual stock returns in time-invariant models
under covariance stationarity and homoskedasticity. Unobservable factors are estimated by the method of
asymptotic principal components developed by Connor and Korajczyk (1986) (see also Stock and Watson
(2002)). For heteroskedastic settings, the recent literature on large balanced panels with static factors has
extended the toolkit available to researchers. A first strand of that literature focuses on consistent estimation
procedures for the number of factors. Bai and Ng (2002) introduce a penalized least-squares strategy to
estimate the number of factors, at least one. Ando and Bai (2015) extend that approach when explanatory
variables are present in the linear specification (see Bai (2009) for homogeneous regression coefficients).
Onatski (2010) looks at the behavior of the adjacent eigenvalues to determine the number of factors when
the cross-sectional dimension (n) and the time-series dimension (7") are comparable. Ahn and Horenstein
(2013) opt for the same strategy and cover the possibility of zero factors through specifying a mock eigen-
value whose functional form vanishes too. Caner and Han (2014) propose an estimator with a group bridge
penalization to determine the number of unobservable factors. A second strand of that literature develops
inference procedures for hypotheses on the number of latent factors. Onatski (2009) deploys a characteri-

zation of the largest eigenvalues of a Wishart-distributed covariance matrix with large dimensions in terms



of the Tracy-Widom Law. To get a Wishart distribution, Onatski (2009) assumes either Gaussian errors or
T much larger than n. Kapetanios (2010) uses subsampling to estimate the limit distribution of the adjacent
eigenvalues.

Our paper expands the first strand of the literature by developing a consistent estimation procedure for
the number of latent factors in the error terms in a model with observable factors when the cross-section
dimension can be much larger than the time series dimension. Concluding for zero omitted factors means
weakly cross-sectionally correlated errors. We require n = O(T/Y), 7> 0,and T = O(n?),7 € (0,1],
which is equivalent to CinY < T < Con” for some positive constants C, Cs, so that 7 < 7. The case
7 < limplies T'/n = o(1), namely n is much larger than T', and the case v = 7 = 1 implies that n and 7" are
comparable. In our empirical application, we have monthly and quarterly returns for about ten thousand US
stocks from January 1968 to December 2011, and this explains why we also investigate the setting T'/n =
o(1). The asymptotic distribution of the eigenvalues is degenerate under the usual standardisation of the
T x T covariance matrix by n~! when the ratio T'/n goes to zero as T, n — oc. In such a setting, we cannot
exploit well-defined limiting characterizations (Marchenko-Pastur distribution, Tracy-Widom distribution)
obtained when 7' /n converges to a strictly positive constant. Without such distributional characterizations,
we do not see hope for testing procedures as developed by Onatski (2009). However, a key theoretical result
of our paper is that we can still have an asymptotically valid selection procedure for the number of latent
factors even in the presence of a degenerate distribution of the eigenvalues of the sample covariance matrix
of the errors. We show that this extends to sample covariance matrices of residuals of an estimated linear
model with observable factors in unbalanced panels. An extension to residuals instead of true errors is not
trivial since we need to cope with a projection matrix in the estimated errors, and there are little results
about the analysis of the spectrum of matrix products (as opposed to the many results for matrix sums).
The unbalanced nature makes things worse since we also have to take care of the matrix of observability
indicators in the product. This further explains why we shy away from putting an additional structure
on the errors (Onatski (2010), Ahn and Horenstein (2013)) or estimated errors in unbalanced panels in
our assumptions. Most of our assumptions are weaker, and the arguments developed in the proofs of the
theorems supporting our extension are new to the literature as further commented below.

In this paper, we build a simple diagnostic criterion for approximate factor structure in large cross-



sectional datasets. The criterion checks whether the error terms in a given model with observable factors
are weakly cross-sectionally correlated or share at least one common factor. It only requires computing the
largest eigenvalue of the empirical cross-sectional covariance matrix of the residuals of a large unbalanced
panel and subtracting a penalization term vanishing to zero for large n and T'. The steps of the diagnostic are
easy: 1) compute the largest eigenvalue, 2) subtract a penalty, 3) conclude to validity of the proposed approx-
imate factor structure if the difference is negative, or conclude to at least one omitted factor if the difference
is positive. Our main theoretical contribution shows that step 3) yields asymptotically the correct model
selection. The mechanics of the selection are easy to grasp. If we have an approximate factor structure, we
expect a vanishing largest eigenvalue because of a lack of a common signal in the error terms. So, if we take
a penalizing term with a slower rate towards zero, a negative criterion points to weak cross-sectional correla-
tion. On the contrary, the largest eigenvalue remains bounded from below away from zero if we face omitted
factors. We have at least one non vanishing eigenvalue because of a common signal due to omitted factors.
The positive largest eigenvalue dominates the vanishing penalizing term, and this explains why we conclude
against weak cross sectional correlation when the criterion is positive. We also propose a general version of
the diagnostic criterion that determines the number of omitted common factors. As shown below, we can
rewrite the criterion in terms of differences in penalized criteria in the least-squares approach of Bai and Ng
(2002) applied on residuals of an unbalanced panel. We derive all properties for unbalanced panels in the
setting of Connor and Korajczyk (1987) to avoid the survivorship bias inherent to studies restricted to bal-
anced subsets of available stock return databases (Brown et al. (1995)). The panel data model is sufficiently
general to accommodate both time-invariant and time-varying factor structures. Allowing for time-varying
factor loadings presents challenges for finance theory and econometric modelling, but Gagliardini et al.
(2016), henceforth GOS, explain how to solve these issues and give empirical evidence of time-varying risk
premia. We recast the factor models as generic random coefficient panel models and develop the theory for
large cross-section and time-series dimensions with n = O(T"/2), v >0,and T = O(n), 75 € (0,1].
Omitted latent factors are also called interactive fixed effects in the panel literature (Pesaran (2006), Bai
(2009), Moon and Weidner (2015)). King et al. (1994) use them to capture the correlation between the
unanticipated innovations in observable descriptors of economic performance (e.g. industrial production,

inflation, etc.) and stock returns. Gobillon and Magnac (2016) use them to get treatment effect estimates in



regional policy evaluation and characterize the generic bias induced by the popular difference-in-differences
procedure. To diagnose the absence of an omitted interactive effects is clearly important when applying the
difference-in-differences procedure.

For our empirical contribution, we consider the Center for Research in Security Prices (CRSP) database
and take the Compustat database to match firm characteristics. The merged dataset comprises about ten
thousands stocks with returns from January 1968 to December 2011. We look at a variety of empirical
factors and we build factor models popular in the empirical literature to explain monthly and quarterly
equity returns. They differ by the choice of the observable factors. We analyze monthly returns using recent
financial specifications such as the five factors of Fama and French (2015), the profitability and investment
factors of Hou et al. (2015), the quality minus junk and bet against beta factors of Asness et al. (2019)
and Frazzini and Pedersen (2014), as well as other specifications described below. We analyze quarterly
returns using macroeconomic specifications including consumption growth (CCAPM), market returns and
consumption growth (Epstein and Zin (1989)), the three factors in Yogo (2006), the three factors in Li et al.
(2006), and the five factors of Chen et al. (1986). We study time-invariant and time-varying versions of the
financial factor models (Shanken (1990), Cochrane (1996), Ferson and Schadt (1996), Ferson and Harvey
(1999)). For the latter, we use both macrovariables and firm characteristics as instruments (Avramov and
Chordia (2006)). For monthly returns, our diagnostic criterion is met by time-invariant specifications with
at least four financial factors, and a scaled three-factor FF time-varying specification. For quarterly returns,
we cannot select macroeconomic models without the market factor.

The outline of the paper is as follows. In Section 2, we consider a general framework of conditional
linear factor model for asset returns. In Section 3, we present our diagnostic criterion for approximate
factor structure in random coefficient panel models. In Section 4, we provide the diagnostic criterion to
determine the number of omitted factors. Section 5 explains how to implement the criterion in practice and
how to design a simple graphical diagnostic tool related to the well-known scree plot in principal component
analysis. Section 6 contains the empirical results. In Appendix 1, we gather the theoretical assumptions.
In Appendix 2 in the online supplementary materials, we gather the proofs of the propositions of the core
text. We use high-level assumptions on cross-sectional and serial dependence of error terms, and show

in Appendix 3 that we meet them under a block cross-sectional dependence structure in a serially i.i.d.



framework. In Appendices 4 and 5, we gather proofs of the technical lemmas and further technical details.
We place the link of our approach to the expectation-maximization (EM) algorithm proposed by Stock and
Watson (2002) for unbalanced panels in supplementary materials available on our author websites. There,
we also include some Monte-Carlo simulation results under a design similar to our empirical application to
show the practical relevance of our selection procedure in finite samples, and compare them with several
alternative methods to select the number of factors, namely Bai and Ng (2002), Onatski (2010), and Ahn and
Horenstein (2013). The criteria studied in the Monte Carlo experiments work equally well in balanced and
unbalanced settings, and we could not find clear superiority of one over the other. The additional empirical

results, discussed but not reported in the paper, are available on request.

2 Conditional factor model of asset returns

In this section, we consider a conditional linear factor model with time-varying coefficients under an ap-
proximate factor structure (Chamberlain and Rothschild (1983)) with a continuum of assets as in GOS. Let
Fi, witht = 1,2, ..., be the information available to investors. Without loss of generality, the continuum of
assets is represented by the interval [0, 1]. The excess returns R; () of asset v € [0, 1] at dates t = 1,2, ...

satisfy the conditional linear factor model:

Ri(7) = ar(y) + be() fo + e(v), €))

where vector f; gathers the values of K observable factors at date ¢. The intercept a+(-y) and factor sensitivi-
ties by (y) are F;_1-measurable. The error terms &; () have mean zero and are uncorrelated with the factors
conditionally on information ;. The conditioning information F; 1 contains Z;_; and Z;—1 (), for all
v € [0, 1], where the vector of lagged instruments Z; 1 € RP is common to all stocks, the vector of lagged
instruments Z;_; () € RY is specific to stock v, and Z; = {Z;, Z;_1,...}. To ensure that cross-sectional
limits exist and are invariant to reordering of the assets, we introduce a sampling scheme as in GOS. We
formalize it so that observable assets are random draws from an underlying population (Andrews (2005)).
In particular, we rely on a sample of n assets by randomly drawing i.i.d. indices ; from the population ac-

cording to a probability distribution G on [0, 1]. By random sampling, we get a generic random coefficient



panel model (e.g. Hsiao (2003), Chapter 6):
Riy =i Bi +€ig, 2

where R; ; = Ry(;) and the regressors z; ; of dimension d includes cross-products of f, Z;, and Z; ;1 =
Z1—1(:). The vector of coefficients f3; is a function of asset specific parameters when defining the dynamics
of a;y = a¢(7;) and by = be(7;) as linear functions of lagged instruments and ruling out asymptotic

arbitrage opportunities as detailed in GOS. In matrix notation, for any asset ¢, we have
R; = X;f8; + &, ®)

where R; and ¢; are T' x 1 vectors. Regression (2) contains both explanatory variables that are common
across assets (scaled factors) and asset-specific regressors. It includes models with time-invariant coeffi-
cients as a particular case. In such a case, the regressor reduces to z; = (1, f/)’ and is common across
assets, and the regression coefficient vector is 3; = (a;, b;)’ of dimensiond = K + 1.

In available datasets, we do not observe asset returns for all firms at all dates. Thus, we account for
the unbalanced nature of the panel through a collection of indicator variables I; ; = I;(;), for any asset ¢
at time ¢t. We define [; ; = 1 if the return of asset ¢ is observable at date ¢, and O otherwise (Connor and
Korajczyk (1987)).

In (2), we treat [3; as a random draw as in GOS. Such a formalisation is key to reconcile finance theory
and econometric modelling. It is not for the econometric theory developed below if we treat the linear model
(2) as given and not derived from finance theory. The theorems listed in the next sections remain valid for
Bi, 1 = 1,...,n viewed as a fixed parameter with only minor changes in the statement of the assumptions
and proof arguments. This route would not be compatible with subsequent risk premia inferential analysis
based on the two-pass regression methodology of GOS.

In order to build the diagnostic criterion for the set of observable factors, we consider the following rival

models:
M :  the linear regression model (2), where the errors (¢; ;) are weakly cross-sectionally dependent,

and

Ms :  the linear regression model (2), where the errors (&; ) satisfy a factor structure.



Under model M 1, the observable factors fully capture the systematic risk, and the error terms do not feature
pervasive forms of cross-sectional dependence (see Assumption A.3 in Appendix 1). This zero-factor case
in the error terms should hold when we choose factors and instruments in a time-varying setting to build the
variables z; ;, so that their explanatory power achieves weak cross-sectional correlation. Under model Mo,

the following error factor structure holds
eit = Oihe + uig, “)

where the m x 1 vector h; includes unobservable (i.e., latent or hidden) factors, and the u; ; are weakly
cross-sectionally correlated. The latent factors may include scaled factors to cover latent time-varying factor
loadings with common instruments. Such scaled factors may come from mispecification of the functional
form of the time-varying betas. Since the factors h; are unobservable by definition, we cannot tell from
the output of the diagnostic criterion whether they are pure or scaled factors. We cannot allow for latent
time-varying factor loadings with stock-specific instruments because of identification issues in disentangling
time-varying loadings and latent factors. This lack of identification means that we cannot estimate a generic
time-varying unobservable structure from the spectral properties of a covariance matrix. A recent proposal
in the direction of a functional specification for a time-varying 6; ; is the Instrumented Principal Components
Analysis of Kelly et al. (2017, 2019). They work with linear loading specifications, with balanced panels,
and without observable factors. In (4), the 6;’s and h;’s are also called interactive fixed effects in the panel
literature. The m x 1 vector 6; corresponds to the factor loadings, and the number m of common factors is

assumed unknown. In vector notation, we have:
c = HO, +us 5)
where H is the T' X m matrix of unobservable factor values, and u; is a’T’ X 1 vector.
Assumption 1 Under model Ms: (i) Matrix %Z hih} converges in probability to a positive definite
t
matrix Xp, as T — oo. (ii) p1 (711 ZGﬂ;) > C, w.p.a. 1 asn — oo, for a constant C > 0, where p; (.)
denotes the largest eigenvalue of a syimmetric matrix.

Assumption 1 (i) is a standard condition in linear latent factor models (see Assumption A in Bai and Ng

(2002)) and we can normalize matrix ¥, to be the identity matrix I, for identification. Assumption 1 (ii)



requires that at least one factor in the error terms is strong. It is satisfied if the second-order matrix of the

1
loadings — Z 0;0. converges in probability to a positive definite matrix (see Assumption B in Bai and Ng
n <

(2002)).
We work with the condition:

E[wz,thg] = 07 VZ7 (6)

that is, orthogonality between latent factors and observable regressors for all stocks. This condition allows us
to follow a two-step approach: we first regress stock returns on observable regressors to compute residuals,
and then search for latent common factors in the panel of residuals (see next section). We can interpret
condition (6) via an analogy with the partitioned regression: Y = X3 + X282 + €. The Frisch-Waugh-
Lovell Theorem (Frisch and Frederick (1933), Lovell (1963)) states that the ordinary least squares (OLS)
estimate of (s is identical to the OLS estimate of /33 in the regression Mx,Y = Mx, X232 + 1, where
Mx, = I, — X1 (X{X 1)_1 X{. Condition (6) is tantamount to the orthogonality condition X| Xy = 0
ensuring that we can estimate 33 from regressing the residuals Mx, Y on X5 only, instead of the residuals
Mx, X2 coming from the regression of X2 on X;. When condition (6) is not satisfied, joint estimation
of regression coefficients, latent factor betas and factor values is required (see e.g. Bai (2009), Moon and
Weidner (2015) in a model with homogeneous regression coefficients 5; = [ for all ¢, and Ando and
Bai (2015) for heterogeneous (; in balanced panels). If the regressors are common across stocks, i.e.,
Z; ¢+ = T, we can obtain condition (6) by transformation of the latent factors. It simply corresponds to an
identification restriction on the latent factors, and is then not an assumption when we allow for different 3;’s.
If the regressors are stock-specific, ensuring orthogonality between the latent factors h; and the observable
regressors x; ; for all 4 is more than an identification restriction. It requires an additional assumption where
we decompose common and stock-specific components in the regressors vector by writing z; ; = (z}, jé,t)/ ,

where 2, := (vech[Zy 1 Z{ 4|, [{ @ Z;_ 1) and Ziy == (Z;_, ® Z};, 1, f{® Z}; 1)

Assumption 2 The best linear prediction of the unobservable factor EL(h¢|{xi, ¢ = 1,2,...}) is inde-

pendent of {Z;, i =1,2,...}.

Assumption 2 amounts to contemporaneous Granger non-causality from the stock-specific regressors to

the latent factors, conditionally on the common regressors. Assumption 2 is verified e.g. if the latent



factors are independent of the lagged stock-specific instruments, conditional on the observable factors and
the lagged common instruments (see Appendix 5 of the online supplementary materials for a derivation).
We keep Assumption 2 as a maintained assumption on the factor structure under M. Under Assumption
2, EL(h¢/{xiy, i = 1,2,...}) =: Wx, is a linear function of x;. Therefore, by transformation of the latent
factor hy — hy — Wz, we can assume that EL(h¢|{x;s, i = 1,2,...}) = 0, without loss of generality.
This condition implies (6). We use Assumption 2 and Assumption A.6 to control expectations of time-series

cross-products of z; ¢h} (see the discussion of the regularity conditions and Lemma 3 below).

3 Diagnostic criterion

In this section, we provide the diagnostic criterion that checks whether the error terms are weakly cross-
sectionally correlated or share at least one common factor. To compute the criterion, we estimate the
generic panel model (2) by OLS applied asset by asset, and we get estimators Bz = A;TL Z It 1 Ri g,
i
| o , T , :
fori = 1,...,n, where Q,; = i Zfi,ﬂi,tl”z’,t- We get the residuals &€;; = R;; — x“@i, where £;;
is observable only if [;; = 1. In avtéilable panels, the random sample size 7; for asset ¢ can be small,

and the inversion of matrix Qm can be numerically unstable. To avoid unreliable estimates of (5;, we

apply a trimming approach as in GOS. We define li‘ =1 {C’N (Qm) <xi17,TiT < X2,T}’ where

CN (QA“> = \/,ul (Q“) /1td (Q“> is the condition number of the d x d matrix Qm, 1 (Q“> is
its smallest eigenvalue and 7; 7 = T'/T;. The two sequences x1,7 > 0 and x2 7 > 0 diverge asymptotically
(Assumption A.10). The first trimming condition {C'N (Qm) < x1,7} keeps in the cross-section only
assets for which the time-series regression is not too badly conditioned. A too large value of CN (Q“>
indicates multicollinearity problems and ill-conditioning (Belsley et al. (2004), Greene (2008)). The second
trimming condition {7; 7 < x27} keeps in the cross-section only assets for which the time series is not too
short. We also use both trimming conditions in the proofs of the asymptotic results. The theoretical results
below remain unaffected if we use WLS with value weighting (as sometimes used in empirical applications).

We consider the following diagnostic criterion:
1 N
§=m | =) e ) —gnT), (7)
i

10



where the vector &; of dimension T' gathers the values &;; = I;:£;+, the penalty g(n,T) is such that
g(n,T) — 0 and Cf 1g(n,T) — oo, when n,T — oo, for C2 = min{n,T}. Bai and Ng (2002)
consider several simple potential candidates for the penalty g(n,T"). We discuss them in Section 5. In

vector &;, the unavailable residuals are replaced by zeros. We use the following assumption on n and 7.

Assumption 3 The cross-sectional dimension n and time series dimension T are such that n = O(Tl/ 7,

v >0,and T = O(n"), 7 € (0,1].

The following model selection rule explains our choice of the diagnostic criterion (7) for approximate

factor structure in large unbalanced cross-sectional datasets.

Proposition 1 Model selection rule: We select My if £ < 0, and we select My if € > 0. Under Assump-
tions 1-3 and Assumptions A.1-A.10, the model selection rule is consistent since (a) Pr (£ <0 | M) — 1,

and (b) Pr (£ > 0| Ma) — 1, when n, T — oc.

Proposition 1 characterizes a model selection rule which treats both models symmetrically and selects
asymptotically the correct model with probability approaching 1. The model selection rule is valid also
from a Bayesian perspective. Indeed, parts (a) and (b) imply by Bayes Theorem that Pr (M;|{ < 0) =
Pr (& < 0|My) Pr (M) [Pr (£ < 0[My) Pr(Mi) + Pr (€ < 0[Ms) Pr(My)] ™" = 1,asn,T — oo.
Similarly, we have Pr (M3| > 0) — 1. The diagnostic criterion in Proposition 1 is not a testing procedure
since we do not use a critical region based on an asymptotic distribution and a chosen significance level. The
zero threshold corresponds to an implicit critical value yielding a test size asymptotically equal to zero since
Pr(¢ < 0|M;y) — 1. The selection procedure is conservative in diagnosing zero factor by construction.
We do not allow type I error under M asymptotically, and really want to ensure that there is no omitted
factor as required in the APT setting. This also means that we will not suffer from false discoveries related
to a multiple testing problem (see e.g. Barras et al. (2010), Harvey et al. (2016)) in our empirical application
where we consider a large variety of factor models on monthly and quarterly data. However, a possibility
to achieve p-values is to use a randomisation procedure as in Trapani (2018) (see Bandi and Corradi (2014)
and Corradi and Swanson (2006) for recent applications in econometrics). This type of procedure controls
for an error of the first type, conditional on the information provided by the sample and under a randomness

induced by auxiliary experiments.
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The proof of Proposition 1 shows that the largest eigenvalue in (7) vanishes at a faster rate (Lemma
1 in Appendix A.2.1) than the penalization term under M; when n and T go to infinity. Under M, we
expect a vanishing largest eigenvalue because of a lack of a common signal in the error terms. The neg-
ative penalizing term —g(n,T") dominates in (7), and this explains why we select the first model when &
is negative. On the contrary, the largest eigenvalue remains bounded from below away from zero (Lemma
4 in Appendix A.2.1) under My when n and T go to infinity. Under M3, we have at least one non van-
ishing eigenvalue because of a common signal due to omitted factors. The largest eigenvalue dominates
in (7), and this explains why we select the second model when ¢ is positive. We can interpret the crite-
rion (7) as the adjusted gain in fit including a single additional (unobservable) factor in model M;. We

. 1 o .
can rewrite (7) as £ =SSy — SS1 — ¢ (n,T), where SSy = T Z ; 1X22, is the sum of squared er-
1

i it

1
_ . X (=  _ p. 2 e e . . T
rors and S.S7 = min T E Et 17 (&;+ — 0;h¢)” , where the minimization is w.r.t. the vectors H € R

K
of factor values and © = (04,...,0,)" € R™ of factor loadings in a one-factor model, subject to the nor-
!
malization constraint

1
= 1. Indeed, the largest eigenvalue p; | — Z 1)X&;&; | corresponds to the
nT

difference between 5SSy and SS;. Furthermore, the criterion £ is equal to ihe difference of the penalized
criteria for zero- and one-factor models defined in Bai and Ng (2002) applied on the residuals. Indeed,
£ =PC(0)— PC (1), where PC (0) =SSy, and PC (1) = SS1 +¢g(n,T).

Lemma 1 in Appendix A.2.1 gives an asymptotic upper bound on the largest eigenvalue of a symmetric
matrix based on similar arguments as in Geman (1980), Yin et al. (1988), and Bai and Yin (1993) with-
out exploiting distributional results from random matrix theory valid when n is comparable with 7T". This
exemplifies a key difference with the proportional asymptotics used in Onatski (2010) or Ahn and Horen-
stein (2013) for balanced panel without observable factors. In Proposition 1, when 7 < 1, the condition
T/n = o(1) agrees with the “large n, small 7" case that we face in the empirical application (ten thou-
sand individual stocks monitored over forty-five years of either monthly, or quarterly, returns). Another key
difference w.r.t. the available literature is the handling of unbalanced panels. We need to address explicitly
the presence of the observability indicators ; ; and the trimming devices 1Y in the proofs of the asymptotic
results.

The recent literature on the properties of the two-pass regressions for fixed n and large 7" shows that the

12



presence of useless factors (Kan and Zhang (1999a,b), Gospodinov et al. (2014)) or weak factor loadings
(Kleibergen (2009)) does not affect the asymptotic distributional properties of factor loading estimates, but
alters the ones of the risk premia estimates. Useless factors have zero loadings, and weak loadings drift to
zero at rate 1/ V/T. The vanishing rate of the largest eigenvalue of the empirical cross-sectional covariance
matrix of the residuals does not change if we face useless factors or weak factor loadings in the observable
factors under M. The same remark applies under M. Hence the selection rule remains the same since the
probability of taking the right decision still approaches 1. If we have a number of useless factors or weak
factor loadings strictly smaller than the number m of the omitted factors under Mo, this does not impact
the asymptotic rate of the diagnostic criterion if Assumption 1 holds. If we only have useless factors in the
omitted factors under My, we face an identification issue. Assumption 1 (ii) is not satisfied. We cannot
distinguish such a specification from M since it corresponds to a particular approximate factor structure.
Again the selection rule remains the same since the probability of taking the right decision still approaches
1. Finally, let us study the case of only weak factor loadings under Ms. We consider a simplified setting:
Ry = wéjt Bi + €it, where €; 4 = 0;h; + u; ¢ has only one factor with a weak factor loading, namely m = 1
and 0; = 0;/T¢ with ¢ > 0. Let us assume that %Z 67 is bounded from below away from zero (see
Assumption 1 (ii)) and bounded from above. By the pr(i)perties of the eigenvalues of a scalar multiple of a

. 1
matrix, we deduce that cl/T2C < T g G?HH’ < CQ/TQC, w.p.a. 1, for some constants ¢, co such
n -

(2
that co > ¢; > 0. Hence, by similar arguments as in the proof of Proposition 1, we get:
AT = g(n,T) + Oy (Cpf +xX7T™") €< 2T — g(n,T) + Oy (Cpp + xT7)

where we define Y7 = X%,TX%T- To conclude M, we need that C;, 2+ 77! and the penalty g(n, T') van-
ish at a faster rate than 72¢, namely C .2+ 77! = o (T—2¢) and g(n,T) = o (T~*¢). To conclude M,
we need that g(n, T') is the dominant term, namely 772¢ = o (g(n,T)) and C;.2 + Y71~ = o (g(n,T)).
As an example, let us take g(n,T') = T 'logT and n = T2 with 7 < 1, and assume that the trim-
ming is such that Y7 = o(logT'). Then, we conclude My if ¢ < 1/2 and M if ¢ > 1/2. This means
that detecting a weak factor loading structure is difficult if ¢ is not sufficiently small. The factor loadings
should drift to zero not too fast to conclude M. Otherwise, we cannot distinguish it asymptotically from

weak cross-sectional correlation. When n is comparable with 1" (and without observable factors), the case
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¢ = 1/2 corresponds to the setting of weakly influential factors considered in Onatski (2012, 2015). Un-
der that asymptotic scheme, Onatski (2012) shows that the Principal Components estimator is inconsistent,
and remarks that there cannot exist a procedure allowing to consistently estimate the true number of latent
factors.

Several papers in the empirical asset pricing literature focus on distinguishing between useful, useless
and redundant factors starting from different points of view. Bryzgalova (2016) develops a shinkrage-based
estimator that identify the weak factors (i.e., factors that do not correlate with the assets) and ensure consis-
tent and normality to the estimates of the risk premia. Feng et al. (2017) propose a model-selection method
to evaluate the risk prices of observable factors. Freyberger et al. (2017) propose a nonparametric method
to determine which firm characteristics provide incremental information for the cross section of expected
returns. Kozak et al. (2018) use model selection techniques to identify characteristics portfolios with a
good explanatory power for returns. These papers do not deal with the identification of systematic factors
for which the errors are weakly cross-sectionally correlated. The model selection procedure is not able to

answer at our key question on the presence of omitted factors in the chosen specification.

4 Determining the number of factors

In the previous section, we have studied a diagnostic criterion to check whether the error terms are weakly
cross-sectionally correlated or share at least one unobservable common factor. This section aims at answer-
ing: do we have one, two, or more omitted factors? The design of the diagnostic criterion to check whether
the error terms share exactly k£ unobservable common factors or share at least £ 4+ 1 unobservable common

factors follows the same mechanics. We consider the following rival models:

M (k) :  the linear regression model (2), where the errors (¢;¢) satisfy a factor structure

with exactly k£ unobservable factors,
and

Mo (k) :  the linear regression model (2), where the errors (¢, +) satisfy a factor structure

with at least k£ + 1 unobservable factors.
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The above definitions yield M; = M (0) and My = M (0).

1
Assumption 4 Under model Ms(k), we have puy1 ( E 91-0;) > C,w.p.a. 1 asn — oo, for a constant
n -
7

C > 0, where 1 (.) denotes the (k + 1)-th largest eigenvalue of a symmetric matrix.

Models M (k) and Mo (k) with k& > 1 are subsets of model M. Hence, Assumption 1 (i) guarantees the

convergence of matrix T Z h¢h}, to a positive definite k x k matrix under M (k), and to a positive definite

t

m X m matrix under Mo (k), with m > k + 1. Assumption 4 requires that there are at least k& + 1 strong
factors under My (k).

The diagnostic criterion exploits the (k + 1)th largest eigenvalue of the empirical cross-sectional covari-

ance matrix of the residuals:

§(k) = prp (an Z 1?&'52) —g(n,T). ®)

i
As discussed in Ahn and Horenstein (2013) (see also Onatski (2015)) for balanced panels, we can
rewrite (8) as {(k) = SSk — SSky1 — g(n,T) where SS; = min % Z Z 1Y (8ix — Héht)2 and the
minimization is w.rt. H € RT™* and © = (64,...,0,) € R™¥F, Thle crli:terion (k) is equal to the
difference of the penalized criteria for k and (k 4 1)-factor models defined in Bai and Ng (2002) applied on
the residuals. Indeed, (k) = PC(k) — PC(k + 1), where PC (k) = SSk + kg(n,T) and PC(k + 1) =

SSi+1 + (kE+ 1)g(n,T). The following model selection rule extends Proposition 1.

Proposition 2 Model selection rule: We select M (k) if £(k) < 0, and we select Ma(k) if (k) > 0.
Under Assumptions 1(i), 2-4, and Assumptions A.1-A.11, the model selection rule is consistent since (a)

Pr(¢(k) < 0|JMy(k)] — 1 and (b) Prl&(k) > 0|Ma(k)] — 1, when n, T — cc.

The proof of Proposition 2 is more complicated than the proof of Proposition 1. We need additional
arguments to derive an asymptotic upper bound when we look at the (k + 1)th eigenvalue of a symmetric
matrix (Lemma 5 in Appendix A.2.2), and this further complexity explains why we have developed Proposi-
tion 1 as a special case. We rely on the Courant-Fischer min-max theorem and Courant-Fischer formula (see

beginning of Appendix 2) which represent eigenvalues as solutions of constrained quadratic optimization
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problems. We cannot directly exploit standard inequalities or bounds associated to a norm (as in the proof
of Proposition 1) when we investigate the asymptotic behavior of the spectrum beyond its largest element.
We know that the largest eigenvalue 11 (A) of a symmetric positive semi-definite matrix A is equal to its
operator norm. There is no such useful norm interpretation for the smaller eigenvalues p(A), k > 2. We
cannot directly exploit standard inequalities or bounds associated to a norm when we investigate the asymp-
totic behavior of the spectrum beyond its largest element. We cannot either exploit distributional results
from random matrix theory since we also allow for T/n = o(1). The slow convergence rate /T for the
individual estimates Bl also complicates the proof. In the presence of homogeneous regression coefficients
B; = p for all i, the estimate B in Bai (2009) and Moon and Weidner (2015) has a fast convergence rate
V/nT. In that case, controlling for the estimation error in &;; = &;; + x4 (6 — 3) is straightforward due
to the small asymptotic contribution of (3 — B ). Hence our results also apply to diagnose the absence of
omitted interactive effects before applying a difference-in-differences procedure to avoid bias. The approach
of Onatski (2010) requires the convergence of the upper edge of the spectrum (i.e., the first k£ largest eigen-
values of the covariance matrix, with k£ /7" = o(1)) to a constant, while the approach of Ahn and Horenstein
(2013) requires an asymptotic lower bound on the eigenvalues. Extending these approaches for residuals of
an unbalanced panel when 7'/n = o(1) looks challenging.

We can use the results of Proposition 2 in order to estimate the number of unobservable factors. It
suffices to choose the minimum & such that £(k) < 0. The next proposition states the consistency of that

estimate even in the presence of a degenerate distribution of the eigenvalues.

Proposition 3 Lerk = min {k = 0,1,...,T — 1 : &(k) < 0}, where k = T if€(k) > 0 forall k < T —1.
Then, under Assumptions 1(i), 2-4, and Assumptions A.1-A.11, and under M (ko ), we have P [12: =kol — 1,

asn,T — oo.

In Proposition 3, we do not need to give conditions on the growth rate of the maximum possible number
kmax of factors as in Onatski (2010) and Ahn and Horenstein (2013). We believe that this is a strong
advantage since there are many possible choices for kmax and the estimated number of factors is sometimes
sensitive to the choice of kmax (see the simulation results in those papers). In the supplementary materials
on our author websites, we show that our procedure selects the right number of factors with an observed 100

percent probability in most Monte Carlo experiments when n is comparable or much larger than 7.
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S Implementation and graphical diagnostic tool

In this section, we discuss how we can implement the model selection rule in practice and design simple
graphical diagnostic tools to determine the number of unobservable factors (see Figures 1-2 in the next sec-
T
1 1 1
. . . A2 ) I —
tion). First, recognize that 6~ = T Z Z 1Y&5, =tr <nT Z 1§5i5§> = Z 1 (nT Z 12‘5,6;).
it i j=1 i

1
The ratio (T E 12‘5252) / 52 gauges the contribution of the jth eigenvalue in percentage of the vari-
n -
(2

k

1

ance 62 of the residuals. Similarly, the sum z; g (nT Z 1?‘@5&) / 62 gauges the cumulated contri-
j= 7

bution of the k largest eigenvalues in percentage of 2. From Proposition 2, when all eigenvalues in that

sum are larger than g(n, T'), this is equal to the percentage of 62 explained by the k& unobservable factors.

Therefore, we suggest to work in practice with rescaled eigenvalues which are more informative. We can

1
easily build a scree plot where we display the rescaled eigenvalues i <T Z 1?5‘1-5;) / 62 in descending
n

7
order versus the number of omitted factors k, and use the horizontal line set at g(n,T)/62 as the cut-off
point to determine the number of omitted factors. This yields exactly the same choice as the one in Propo-

sition 3. The asymptotic validity of the selection rule in unaffected since 62

converges to a strictly positive
constant when n,T" — oo. Such a scree plot helps to visually assess which unobservable factors, if needed,

T T
explain most of the variability in the residuals. We can set g(n,T) /6% = <n +T > In < T:_ T) following
n n

T
a suggestion in Bai and Ng (2002). Those authors propose two other potential choices (%) In CZT
n

InC?
and <HCQ”T> . In our empirical application, n is much larger than 7', and they yield identical results.

nT
From Section 3, we know that £ =SSy — SS1 — g(n, T). Given such an interpretation in terms of sums

of squared errors, we can think about another diagnostic criterion based on a logarithmic version £ as in

Corollary 2 of Bai and Ng (2002). The second diagnostic criterion is

£=In(6%) —In (a;z — (an Z 1}@5;)) —g(n,T). )

We get 52 = SSp, and € = In(5S0/SS1) — g(n,T) is equal to the difference of IC (0) and IC (1) criteria
in Bai and Ng (2002). Then, the model selection rule is the same as in Proposition 1 with £ substituted for &.

For the logarithmic version, Bai and Ng (2002) suggest to wuse the penalty
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T T
g(n,T) = (n +T ) In < 1 T> since the scaling by 62 is implicitly performed by the logarithmic trans-
n n

- 1
formation of SSy and SS;. Since, from Equation (9), £ = In (1/ (1 — 11 (T g 1?@&) /&2>>
n -
1

—g(n,T) and z is close to In(1/(1 — x)) for a small x, we see that a rule based on the rescaled crite-
rion £/62 is closely related to the logarithmic version when the rescaled eigenvalue is small. This further
explains why we are in favour of working in practice with rescaled eigenvalues.

Prior to computation of the eigenvalues, Bai and Ng (2002) advocate each series to be demeaned and
standardized to have unit variance (see also Section 4 in King et al. (1994)). In our setting, each time se-

ries of residuals &; ; have zero mean by construction, and we also standardize them to have unit variance
. . . . L= _ 1 _
over the sample of 7" observations before computing the eigenvalues. Working with &;; = &; ;/ T Z 512,75
t
ensures that all series of residuals have a common scale of measurement and improves the stability of
the information extracted from the multivariate time series (see e.g. Pena and Poncela (2006)). Since

79

o 1 o
tr ( E 1?5‘1-5—;) = pXT withnX = g 1X, we suggest to work with the normalised matrix T E 1X8;8;

7 3

1
nXT 4
(A

so that the variance —— Z Z 1?5% of the scaled residuals is 1 by construction, and we can interpret
t

1 -
fj <nXT Z 1?@5;) directly as percentage of the variance of the normalised residuals.

1
From Johnstone (2001), we know that for a matrix of residuals, all of whose entries are independent

standard Gaussian variates in a balanced panel, the distribution of the largest eigenvalue of the correspond-
ing Wishart variable suitably normalized approaches the Tracy-Widom law of order 1 under proportional
asymptotics (see Onatski (2009) for the assumption of Gaussian errors). That result implies that, for such
standard Gaussian residuals, the largest eigenvalue that we compute should be approximately 1/7" if T is
smaller than n (see also Geman (1980)) without the need to rely on a scaling by an estimated variance
&2. This further explains why we are in favor of working with standardised residuals, so that we are as
close as possible to a standardized Gaussian reference model. This is akin to use the standard rule of
thumb based on a Gaussian reference model in nonparametric density estimation (Silverman (1986)). We
know the rate of convergence of the kernel density estimate but need an idea of the constant to use that

information for practical bandwidth choice. In our setting, we can set the constant to one, when we face

independent standard Gaussian residuals. The Gaussian reference model also suggests to use the penalisa-
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<\/ﬁ+ﬁ>2 nT

tion g(n,T) = — In (\/ﬁ+ ﬁ)z

substituted for n, and a data-driven constant substituted for the known constant 1 of the Gaussian reference

. This is our choice in the empirical section with nX

model (see the Monte Carlo section for a detailed explanation of the selection method based on the proposal
of Alessi et al. (2010); see also Hallin and Liska (2007) in the general dynamic factor model). We show
the good performance of such a rule in the Monte Carlo results for unbalanced panels (as already observed
by Hallin and Liska (2007) and Alessi et al. (2010) for balanced panels). We are not aware of a general
explicit characterisation of the limit distribution of the largest eigenvalue, and hence of the constant. Bao
et al. (2015) show the universality of the Tracy-Widom law for a balanced setting with n and 7" comparable

and independent entries.

T
1 __ 1 - =
Finally, we can also investigate the ratio /i (T g 12‘5}5‘2) / E 13 (T E 1?@52—) and the cu-
n n
i =1 i

k T
1 - 1 -
mulated contribution E 15 <nT E 1?@5;) / E I (nT E 12‘@5;) . The denominator corresponds
j=1 i =1 (

1 __
to the square of the Frobenius (or Hilbert-Schmidt) norm of the matrix T E 1?@5’& since the sum of the
n -
(]

squared eigenvalues of a positive semidefinite symmetric matrix A = (a;;) corresponds to tr(A’A) = Z a?j.
1,J

Those quantities measure the contributions of the omitted factors in terms of the off-diagonal terms kcor—
relation part) in addition to the diagonal terms (residual variance). Here we follow Fiorentini and Sentana
(2015, pages 158-159) who prefer to look at the fraction of the Frobenius norm instead of the usual fraction
of the trace of the sample covariance matrix to judge the representativeness of principal components. King
et al. (1994) use the Frobenius norm to decompose the sample covariance of residuals of a Vector AutoRe-
gressive (VAR) model and obtain starting values for maximum likelihood estimation of the parameters of a
factor model for the error terms. A selection rule based on the squared eigenvalues being above or below
the squared penalty delivers the same diagnostic, but helps to gauge the impact on correlation explanation

by the omitted factors.
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6 Empirical results

In this section, we compute the diagnostic criteria and the number of omitted factors using a large variety of
combinations of financial and macroeconomic factors. We estimate linear factor models using monthly and

quarterly data from January 1968 to December 2011.

6.1 Factor models and data description

We consider several linear factor models that involve financial and macroeconomic variables. Let us start
with the financial specifications listed in Table 1. We estimate these linear specifications using monthly
data. We proxy the risk free rate with the monthly 30-day T-bill beginning-of-month yield. The three
factors of Fama and French (1993) are the monthly excess return 7, ; on CRSP NYSE/AMEX/Nasdaq
value-weighted market portfolio over the risk free rate, and the monthly returns on zero-investment factor-
mimicking portfolios for size and book-to-market, denoted by 7,5+ and 7y, ;. The monthly returns on
portfolio for momentum is denoted by 7,0 ¢ (Carhart (1997)). The two operative profitability factors of
Fama and French (2015) are the difference between monthly returns on diversified portfolios with robust
and weak profitability and investments, and with low and high investment stocks, denoted by 7y, ¢ and
Tema,t- We have downloaded the time series of these factors from the website of Kenneth French. We denote
the monthly returns of size, investment, and profitability portfolios introduced by Hou et al. (2015) by 7y, ¢,
r1/4, and Trop ¢ (see also Hou et al. (2014)). Furthermore, we include quality minus junk (gmj;) and bet
against beta ( bab,) factors as described in Asness et al. (2019) and Frazzini and Pedersen (2014). The factor
return gmj, is the average return on the two high quality portfolios minus the average return on the two low
quality (junk) portfolios. The bet against beta factor is a portfolio that is long low-beta securities and short
high-beta securities. We have downloaded these data from the website of AQR. As additional specifications,
we consider the two reversal factors which are monthly returns on portfolios for short-term and long-term
reversals from the website of Kenneth French. Besides, the monthly returns of industry-adjusted value,
momentum and profitability factors are available from the website of Robert Novy-Marx (see Novy-Marx
(2013)). We also include the three liquidity-related factors of Pastor and Stambaugh (2002) that consist of
monthly liquidity level, traded liquidity, and the innovation in aggregate liquidity. We have downloaded

them from the website of Lubos Pastor.
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In Table 2, we list the linear factor specifications that involve financial and macroeconomic variables.
We estimate these specifications using quarterly data. We consider the aggregate consumption growth cg;
for the CCAPM (Lucas (1978), Breeden (1979)) and the Epstein and Zin (1989) model (see also Epstein and
Zin (1991)), the durable and nondurable-consumption growth rate introduced by Yogo (2006) and denoted
by dcg; and ndcg;. The investment factors used in Li et al. (2006) track the changes in the gross private
investment for households, for non-financial corporate and for non-financial non-corporate firms, and are
denoted by dhhy, dcorp,, and dncorp,. Finally, we consider the five factors of Chen et al. (1986) available
from the website of Laura Xiaolei Liu. Those factors are the growth rate of industrial production mp;, the
unexpected inflation wi;, the change in the expected inflation dei;, the term spread uts;, proxied by the
difference between yields on 10-year Treasury and 3-month T-bill, and the default premia upr;, proxied by
the yield difference between Moody’s Baa-rated and Aaa-rated corporate bonds.

To account for time-varying coefficients, we consider two conditional specifications:

(i) Zi—1 = (1,divY;—1) and (i) Zi—1 = (1,divYi—1)', Zis—1 = bm;—1, where divY;_ is the lagged
dividend yield and the asset specific instrument bm; ;1 corresponds to the lagged book-to-market equity of
firm 7. We compute the firm characteristic from Compustat as in the appendix of Fama and French (2008).
We refer to Avramov and Chordia (2006) for convincing theoretical and empirical arguments in favor of the
chosen conditional specifications. The parsimony and the empirical results below explain why we have not
included an additional firm characteristic such as the size of firm ¢. As additional specifications, we con-
sider the lagged default spread, term spread, monthly 30-day T-bill, aggregate consumption-to-wealth ratio
(Lettau and Ludvigson (2001)), and labour-to-consumption ratio (Santos and Veronesi (2006)) as common
instruments.

The CRSP database provides the monthly stock returns data and we exclude financial firms (Standard
Industrial Classification Codes between 6000 and 6999) as in Fama and French (2008). The dataset after
matching CRSP and Compustat contents comprises n = 10, 442 stocks, and covers the period from January
1968 to December 2011 with T = 546 months. We constructed the quarterly stock returns from the monthly
data and 7' = 176. In order to account for the unbalanced characteristic, if the monthly observability
indicators I; 4, I; ;1 and I; ;o are observed, we built the returns of the quarter s = 1,2, 3,4 as the average

of the three monthly returns at time ¢,¢ + 1 and ¢ 4 2. Otherwise, the observability indicator of the quarter
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s takes value zero.

6.2 Results for financial models

In this section, we compute the diagnostic criteria for the linear factor models listed in Table 1. We fix
X1,7 = 15 as advocated by Greene (2008) and x2 7 = 546/60, i.e., at least 60 months of return observations
as in Bai and Ng (2002). In Table 3, we report the trimmed cross-sectional dimension nX. In some time-
varying specifications, we face severe multicollinearity problems due to the correlations within the vector
of regressors x; ¢, that involves cross-products of factors f; and instruments Z;_;. These problems explain
why we shrink from nX = 6, 775 for time-invariant models to around three thousand assets for time-varying
models. Table 4 reports the contribution in percentage of the first eigenvalue p; with respect to the variance

. i 1 - . . . .
of normalized residuals — E 1X&;Z., that is equal to one by construction under our variance scaling to
nxT - (2 7

(2
one for each time series of residuals. We also report the number of omitted factors &, the contribution of
k

the first k eigenvalues, i.e., Z pj, and the incremental contribution of the (k 4 1)-th eigenvalue ju,1. For
j=1
each model, we also specify the numerical value of the penalisation function g (nX,T), as defined in Section

5.

Let us start with the results for the time-invariant specifications. The number k£ of omitted factors is
larger than one for the most popular financial models, e.g., the CAPM (Sharpe (1964)), the three-factor
Fama-French model (FF) and the four-factor Carhart (1997) model (CAR). On the contrary, for the recent
proposals based on profitability and investment (SFF, HXZ), quality minus junk (QMJ), and bet against beta
(BAB) factors, we find no omitted latent factor. We observe that adding observable factors helps to reduce

the contribution of the first eigenvalue p; to the variance of residuals. However, when we face latent factors,
k

the omitted systematic contribution Z pt; only accounts for a small proportion of the residual variance.
For instance, we find £ = 2 omittejd: 1factors in the CAPM. Those two latent factors only contribute to
p1 + pe = 4.06% of the residual variance. Figure 1 summarizes this information graphically by displaying
the penalized scree plots and the plots of cumulated eigenvalues for the CAPM. For instance, pug = 1.47%
lies below the horizontal line g(nX,T) = 1.50% in Panel A for the time-invariant CAPM, so that & = 2. In

Panel B for the time-invariant CAPM, the vertical bar p1 + puo = 4.06% is divided into the contribution of
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u1 = 2.16% (light grey area) and that of us = 1.90% (dark grey area). Figure 2 Panel A displays the scree

plots of squared eigenvalues for the CAPM and the square g2 (nX, T)) of the penalisation function relative

T
to the squared Frobenius norm Z i (an Z 12‘5_2-5;) . By construction, the conclusion of the number
of omitted factor is the same as lfzolr the scree pzlot shown in Figure 1. From the plot of cumulated squared
eigenvalues in Figure 2 Panel B, we conclude that the two omitted factors contribute more to the relative
explanation of the correlation part than of the residual variance. For example, we get that the sum of the
square of the two first eigenvalues accounts for 22.51% of the square of the Frobenius norm for the time-
invariant CAPM. Thus, the two latent factors are much more representative of the off-diagonal components.
We conclude similarly for the time-invariant FF model, even if the correlation explanation provided by the
single omitted factor is lower.

For the time-varying specifications (i) and (ii) of Table 4, we still find one omitted factor for the CAPM.
The scaled three-factor FF model with Z; 1 = (1,divY;_1)’ passes the diagnostic criterion. The largest
eigenvalue y; = 1.37% lies below the level g(nX,T) = 2.05% and its square ;2 only contributes to
5.80% of the square of the Frobenius norm, so that ¥ = 0. The additional stock specific instrument
Zit—1 = bm;_1 is not necessary to exhaust the cross-sectional dependence. Hence, the empirical mes-
sage of Table 4 is that we can choose either among time-invariant specifications with at least four financial
factors, or a scaled FF model if we are only concerned by finding a specification with weak cross-sectional
correlation. As already discussed in the introduction, this diagnostic step is crucial to decide whether we can
feel comfortable with the chosen set of observable factors before proceeding further in an empirical analysis
of a large cross sectional equity data set under the APT setting. Typical next steps are estimation of risk
premia or tests of no arbitrage restrictions and factor tradability as in GOS to search for suitable empirical
asset pricing models. The time-varying specification is more parsimonious for the factor space in the con-
ditional sense (K = 3 versus K = 4), but less parsimonious for the parameter space (d = 9 versus d = 5).
From an econometric point of view, it is not clear which parsimony we should favor to decide between the
time-invariant specification (more factors, less parameters) and the time-varying specification (less factors,
more parameters). For investment purposes, the first one is better suited for static (unconditional) decisions
while the second one is better suited for dynamic (conditional) decisions. The choice between the two mod-

els should meet the investor needs or answer the empirical research question at hand. For a balanced panel

23



of monthly returns for 4, 883 stocks on the period January 1994 to December 1998 (1" = 60), Bai and Ng
(2002) find only two latent factors. As observed in GOS, measures of limits-to-arbitrage and missing factor
impact (not reported here) like those in Pontiff (2006), Ang et al. (2009), Lam and Wei (2011), Stambaugh
et al. (2015) decrease with the number of observable factors.

Concerning the additional factors and instruments mentioned in Section 6.1, none of them allows to
reach a more parsimonious factor structure in a time-invariant or time-varying setting. Moreover, neither the
time-invariant CAPM, FF and CAR models, nor their time-varying specifications with term spread, default
spread, and book-to-market equity used in GOS, pass the diagnostic criterion. As conjectured in GOS, this

might be one reason for the rejection of the asset pricing restrictions.

6.3 Results for macroeconomic models

In this section, we perform the empirical exercises on the macroeconomic linear factor models listed in
Table 2. We fix x17 = 15 and x2,7 = 176/20, i.e., at least 20 quarterly return observations. In Table
5, we report the trimmed cross-sectional dimension nX. The quarterly dataset has 6, 707 stocks with more
than twenty quarterly observations. The trimming is driven by the multicollinearity between regressors,
when nX < 6,707. Table 5 further reports the empirical results for the macroeconomic models. The
time-invariant specifications which include only macroeconomic variables (CCAPM, NDC and DC, LVX,
and CRR) and exclude the market, do not pass the diagnostic criterion. We find £k = 1 omitted factors.
Moreover, 11 is about 8% of the residual variance in Table 5 and ;2 accounts for 37% of the square of the
Frobenius norm, in contrast to the 4.06% and 22.51% found for the time-invariant CAPM with monthly
returns. The latent factors in the macro economic models are both representative of the residual variance
(diagonal values) and the correlation part (off-diagonal values). When we incorporate the market (EZ and
YO), we find no omitted latent factors. This is not surprising since, for quarterly data, the CAPM already
achieves a specification with weak cross-sectional correlation, with 1 = 3.15%, g(nX,T) = 3.74%, and
nX = 6,707. We do not report results for time-varying specifications. We have a limited sample size
T = 176. Because of multicollinearity problems and the parameter dimension being up to d = 14, the
estimation yields imprecise results. The trimmed sample size nX is often lower than 7', which casts doubt

about empirical results obtained under a large panel assumption.
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Table 1: Financial linear factor models

Model Factors K
CAPM Tm,t 1
FF T'm,ts Tsmb,ty Thml,t 3
CAR Tm,ty Tsmb,ty Thml,t; Tmom,t 4
SFF T'm,ts Tsmb,t; Thml,ts Trmw,t; Tema,t 5
HXZ Tm,ty Tme,t;TI/At) TROE ¢ 4
FFand QMJ 7y ¢, Tsmb.ts Thimi t, M1 4
FF and BAB 7y, ¢+, Tsmb,t, Thmi ¢, baby 4

The table lists the linear factor models based on financial variables. We estimate these specifications by
using monthly data. For each model, we report the factors labeling and their number K. FF, CAR, 5FF,
HXZ, QMJ and BAB refer to the three Fama-French factors, the four Carhart factors, the five Fama-French

factors, the four Hou-Xue-Zhang factors, quality minus junk factor, and bet against beta factor.

Table 2: Macroeconomic linear factor models

Model Factors K
CCAPM cgt 1
EZ Tm,t, COt 2
NDC and DC  ndcgy, dcg: 2
YO Tm,t, Ndcgy, dcgs 3
LVX dhhy, dcorp:, dncorp, 3
CRR mpe, Wiy, dety, uts;, uprs 5

The table lists the linear factor models based on macroeconomic variables and the market. We estimate
these specifications by using quarterly data. For each model, we report the factors labeling and their number
K. EZ, NDC and DC, YO, LVX and CRR refer to the two Epstein-Zin factors, the two nondurable and
durable consumption growth factors, the three Yogo factors, the three Li-Vassalou-Xing factors, and the five

Chen-Roll-Ross factors.

32



Table 3: Trimmed cross-sectional dimensions nX and number d of parameters to estimate for financial models

Financial model = Time-invariant Time-varying
nX H d nXx (i) d nXx

CAPM 6,775 5 3,766 8 3,004
FF 6,775 9 3536 14 2,780
CAR 6,775 11 3,468 17 2,608
5 FF 6,775 13 2,957 20 1,991
HXZ 6,775 11 3,344 17 2,612
FF and QMJ 6,775 11 3,365 17 2,423
FF and BAB 6,775 11 3,224 17 2,441

For each financial model of Table 1, we report the trimmed cross-sectional dimension nX for estimation
from monthly data. For the time-varying specifications, we give the dimension d of vector x;; and nX for
two sets of instruments: (1) Z;_1 = (1,divY;_1) and (i) Z;_1 = (1,divY;_1)’, Zit—1 = bm; 1. For the

time-invariant specifications, we have d = K + 1 (see Table 1).
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Table 4: Results for time-invariant and time-varying financial models

Financial Panel A - Time-invariant Panel B - Time-varying
k k
model 1 k Z,uj Ug+1  penalty 11 k Zuj lk+1  penalty
j=1 j=1
CAPM 216% 2 4.06% 147% 150% | (i) 2.87% 1 287% 1.79% 1.82%
(i) 3.00% 1 3.00% 198% 2.00%
FF 203% 1 203% 1.16% 1.18% | (i) 137% 0 0.00% 137% 2.05%
(i) 1.53% 0 0.00% 1.53% 2.17%
CAR 203% 1 203% 1.12% 1.15% | (1) 134% 0 0.00% 134% 2.05%
(i) 1.51% 0 0.00% 151% 2.20%
SFF 142% 0 0.00% 142% 1.79% | (i) 145% 0 0.00% 1.45% 2.13%
(i) 1.81% 0 0.00% 181% 2.37%
HXZ 1.43% 0 000% 143% 179% | (i) 135% 0 0.00% 135% 2.07%
(i) 154% 0 0.00% 154% 2.20%
FFandQMJ | 1.39% 0 0.00% 139% 1.79% | (i) 133% 0 0.00% 133% 2.07%
(i) 1.60% 0 0.00% 1.60% 2.24%
FFand BAB | 1.64% 0 0.00% 1.64% 179% | (i) 1.40% 0 0.00% 140% 2.09%
(i) 1.58% 0 0.00% 1.58% 2.24%

The table shows the contribution of the first eigenvalue p; to the variance of normalised residuals, the
number of omitted factors k, the contributions of the first k, and of the (k + 1)-th eigenvalues, and the
penalty term. Panels A and B report results for time-invariant and time-varying financial models estimated

from monthly data, respectively. The time-varying specifications use two sets of instruments: (i) Z;_1 =

(1, diUY;_l), and (11) Zt—l = (1, diUY;_l),, Zi,t—l = bmm_l.
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Table 5: Results for the macroeconomic models

Macroeconomic model nX 1 k i Mj k41 penalty
J
CCAPM 6,707 8.12% 1 8.12% 6.24% 6.28%
EZ 6,707 3.07% 0 0.00% 3.07% 3.74%
NDC and DC 6,306 807% 1 8.06% 6.14% 6.17%
YO 6,270 338% 0 0.00% 338% 3.76%
LVX 6,707 796% 1 796% 6.09% 6.13%
CRR 6,153 642% 2 11.30% 245% 2.48%

For each macroeconomic model of Table 2, we report the trimmed cross-sectional dimension nX for time-
invariant specifications estimated from quarterly data. We further show the contribution of the first eigen-
value 11 to the variance of normalised residuals, the number of omitted factors &, the contributions of the

first k&, and of the (k + 1)-th eigenvalues, and the penalty term.
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Figure 1: Number of omitted factors and cumulated eigenvalues for the CAPM
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Figure 2: Number of omitted factors and cumulated squared eigenvalues for the CAPM
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Appendix 1 Regularity conditions

In this appendix, we list and comment additional assumptions used in the proofs in Appendix 2. The error
terms (g;¢) are €;; = u;; under model M1, and ¢;; = Gght + u; ¢ under model M (see Equation (5)).
Since models M (k) and My (k) are subsets of model M3, the assumptions stated for My also hold for

M; (k) and M3 (k), for any & > 1. We use M as a generic constant in the assumptions.

Assumption A.1 For a constant M > 0 and for all n,’T" € N, we have:

n2T2 E § ‘E Wity Ut UjtzUsg ity |sz75Ej Ta’)/za'}’]”] <M.
1,J t1,t2,13,04

Assumption A.2 We have E||u; |9 < M, for all i, t, and some constants ¢ > 8 and M > 0.

Assumption A.3 Let § = 6, 1 oo be a diverging sequence such that /T /59" = o(1) and 6 > nP, for
B >2/q. Let e;y = ui 1 1{|uis| < 6} — Elui1{|uit| < 0}|vi]. Then:

k
nk E § |E €1,y Cix,t1Cin,t1 Cin 2 Cig ta 'eik—1,tk—1eik,tk—1eik,tk’%’1» a%k”] < M",

Ulyeeslpe T150e0tg
for a sequence of integers k = k,, 1 oo and a constant M > 0, where indices i1, ..., 1 run from 1 to n, and

indices t1, ..., t; from 1 to T.
Assumption A.4 There exists a constant M > 0 such that ||z; || < M, P-a.s., for any i and t.

Assumption A.5 Under model Mo, a) there exists a constant M > 0 such that || h:| < M, P-a.s., for all
t. Moreover, b) ||0;|| < M, for all i.

Assumption A.6 Under model M, for a constant M > 0 and for all n,T € N, we have:

n2T2 Z Z ||E xz tlht1)<xl t2ht2) (xj7t3h£3)(.Tj7t4h;4)/|’}/i7’Yj]H] S M

1,7 t1,t2,t3,t4

Assumption A.7 The processes (I;(7y)) and (£.()) are independent.

Assumption A.8 There exist constants n, 7 € (0,1] and C1,Co,Cs,Cy > 0 such that, for all § > 0 and

n, T € N, we have:
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a) sup P

1<i<n
Furthermore the same upper bound holds for

”72[” hihy — %) || > 5|%] < 1T exp{—Ca0°T"} + C35~ ! exp{—CyT"}.

) sup P ||= E I; ~Yill = 6],

1<Z<n ’ it zt‘ z” ‘ )

c) sup P |* ) " (wigwh, — Elaiga vl) | = 5|%']-
1<i<n 7

Assumption A.9 1in£ E[L t|vi] > M_l,for all n € N and a constant M > 0.
<i<n
Assumption A.10 The trimming constants X1, and X2 are such that XiTxg,T =o0(Tg(n,T)).

Assumption A.11 We have M1(W) = 0,(C,, T) where W = [wy ] is the T x T matrix with elements

1 _
Wt,s = 77,7T Z(Ii,t - It)([i,s - Cll’ld It Z Izt
i

Assumption A.1 restricts serial dependence in the bivariate process of error terms (u; ¢, u;¢) of any two
assets. It involves conditional expectations of products of error terms wu; ; for different dates and any pair
of assets. That assumption can be satisfied under weak serial dependence of the errors (u; s, uj;), such
as mixing, with mixing size uniformly bounded across pairs (4, 7). Assumption A.2 is an upper bound on
higher-orders moments of u; ¢, to control tail thickness. Assumption A.3 is a restriction on both serial and
cross-sectional dependence of the error terms and on the growth rates of n and 7. We use Assumptions A.2
and A.3 to characterize the asymptotic behavior of the spectrum of the cross-sectional variance-covariance
matrix of errors under the rival models. Assumption A.2 yields the so-called truncation and centralization
lemmas, which are used together with Assumption A.3 in the proof of Lemma 1 building on Geman (1980),
Yin et al. (1988) and Bai and Yin (1993). For those lemmas, we do not need a structure on the error terms
based on matrix transformations of i.i.d. random variables as in Onatski (2010) and Ahn and Horenstein
(2013). In Appendix 3, we show that Assumptions A.1 and A.3 are satisfied under cross-sectional block-
dependence and time-series independence of the errors, provided n grows sufficiently faster than 7, i.e.,
the coefficient 7 in Assumption 3 is such that ¥ € (0,~*), with v* < 1 being a function of cross-sectional
dependence and heavy tails of errors which we characterize explicitly in Lemma 7. Under cross-sectional
independence of the errors, the condition 7'/n = o (1) is enough as discussed at the end of Appendix 3.

The arguments in Yin et al. (1988), page 520, show that Assumption A.3 is also satisfied under 1.i.d. wu;
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and proportional asymptotics. Assumptions A.4 and A.5 require upper bounds on regressor values, latent
factors and factor loadings. Assumption A.6 restricts serial dependence of the products of latent factors and
regressors. Recall that matrices x; ¢+h} are zero-mean under Assumption 2. In Assumption A.7, we assume a
missing-at-random design (Rubin (1976)), that is, independence between unobservability and return genera-
tion. Another design would require an explicit modeling of the link between the unobservability mechanism
and the return process of the continuum of assets (Heckman (1979)); this would yield a nonlinear factor
structure. Assumption A.8 a) restricts the serial dependence of the latent factors and the individual pro-
cesses of observability indicators. Specifically, Assumption A.8 a) gives an upper bound for large deviation
probabilities of the sample average of zero-mean random matrices h;h} — X5, computed over date with
available observations for assets ¢, uniformly w.r.t. asset 7. It implies that the unbalanced sample moment
of squared components of the latent factor vector converges in probability to the corresponding popula-
tion moment at a rate O, (7~"/?(log T)°), for some ¢ > 0. Assumptions A.8 b) and c) give similar upper
bounds for large-deviation probabilities of sample averages of observability indicators and cross-moments
of regressors uniformly w.r.t. asset . We use such assumptions to get the convergence of time-series av-
erages uniformly across assets as in GOS. Assumption A.9 implies that asymptotically the fraction of the
time period in which an asset return is observed is bounded away from zero uniformly across assets, so that
ri=plimnr=F [Ii,tm]_l is bounded uniformly across all assets as in GOS. Assumption A.10 gives an
upperT b_(>)cl)10nd on the divergence rate of the trimming constants. Assumption A.11 controls the rate at which
the largest eigenvalue of the matrix with entries made of cross-sectional empirical covariances of observabil-
ity indicators vanishes to zero. The matrix gathering those empirical covariances should not be associated

to an omitted factor structure.
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ONLINE SUPPLEMENTARY MATERIALS

A diagnostic criterion for approximate factor structure
Patrick Gagliardini, Elisa Ossola and Olivier Scaillet

These online supplementary materials provide the proofs of Propositions 1 to 3 (Appendix 2), the checks
of Assumptions A.1 and A.3 under block dependence (Appendix 3), the proofs of technical Lemmas 1-11

(Appendix 4), and the verification that conditional independence implies Assumption 2 (Appendix 5).

Appendix 2 Proofs

We start by listing several results known from matrix theory. They are used several times in the proofs.

(1) Weyl inequality: The singular-value version states that if A and B are T x n matrices, then
pivi—1[(A+ B)(A+ B))Y2 < ni(AA)Y? 4 p;(BB')Y2, for any 1 < i,5 < min{n, T} such that 1 <
i+j < min{n, T}+1 (see Theorem 3.3.16 of Horn and Johnson (1985)). The Weyl inequality fori = k+1
and 7 = 1 yields:

e [(A+ B)(A+ B)1"Y? < 1 (AA)Y? + iy (BB, (10)

tr1[(A+ BY(A+ BY)Y2 > 1 (AAYY? — i (BB')Y2, (11)

for any 7" x n matrices A and B and integer k such that 0 < k < min{n, T} —1. We also use Weyl inequality
for eigenvalues: for any 7" x 1" symmetric matrices A and B we have 1,1 j1(A + B) < pi(A) + p;(B),
forany 1 < 4,7 < 7T suchthati+ j < T + 1 (see Theorem 8.4.11 in Bernstein (2009)).

(ii) Equality between largest eigenvalue and operator norm: The largest eigenvalue 111 (A) of a symmetric
positive semi-definite matrix A is equal to its operator norm || A||o, = xnlf;zlmi 1||Ax|| Besides, || Allop < [|A]|
for any square matrix A, where || - || is the Frobenius norm (see e.g. Meyer (2000)).

(iii) Inequalities for the eigenvalues of matrix products: If A and B are m x m positive semidefinite and

positive definite matrices, respectively,

pi (A) i (B) < pu (AB) < g, (A) pa (B) (12)

for k =1,2,...,m (see Fact 8.19.17 in Bernstein (2009)).



(iv) Courant-Fischer min-max Theorem: If A is a 7' x T' symmetric matrix, we have, for k = 1, ..., 7T,

A) = min ma o' Az, 13
'uk( ) G:dim(G)=T—k+1 :EEQIHQC)ﬁ:l -

where the minimization is w.r.t. the (T' — k + 1)-dimensional linear subspace G of R” (see e.g. Bernstein

(2009)). The max-min formulation states:

pr(A) =  max x Az, (14)

min
G:dim(G)=k z€G:||z||=1
where the maximization is w.r.t. the k-dimensional linear subspace G of RT,

(v) Courant-Fischer formula: If A is a7 x T symmetric matrix, we have, for k =1, ..., T,

ur(A) = max 2 Az, (15)
x€f¢71:||xH:1

where F; kL is the orthogonal complement of Fj, with F, being the linear space spanned by the eigenvectors

associated to the k largest eigenvalues of matrix A, and Fy = RT.

A.2.1 Proof of Proposition 1

~ ~ o~ \N—1 - - ~ ~
a) The OLS estimator of ; in matrix notation is f; = (X{Xi) X!R;, with X; = I; ® X; and R; =
I; ©® R;, where I; is the T' x 1 vector of indicators I; ; for asset 7, and © is the Hadamard product. We get
the vector of residuals é; = R; — X (X{XZ)

1.
X!R;. Then, we have &, = I, © &; = M)”(iRi = Mf(igi’
NS B
where &; = I; ® ¢; and Mg = Ir — Py, with Py = X; (X{XZ-> X!. Thus, under M, we have the
decomposition 15¢; = & — (1 —15)& — 1) P &;. From Weyl inequality (10) with k = 0, and the inequality

between matrix norms, we get:

1/2 1/2
1 _ 1 - 1/2 1/2
T T
where:

1 - 1 -
him |- 3-8 b= |- S 1P EdlPg || (7
7

(2

. 1 - . .
We bound the largest eigenvalue of matrix T E £;€ and the remainder terms I; and I5 in the next two
n -

(A
lemmas.



Lemma 1 Under model M1 and Assumptions 3, A.2, A.3, A.7, as n, T — oo, we have 1y (an Z éﬁé) =
Op(Cr7)- l

Lemma 2 Under model M and Assumptions 3, A.1, A.2, A4, A.8b), c)and A.9, as n,T — oo, we have:
(i) I; = OP(T*I_’),for any b > 0; (ii) Iy = Op(XiTX%,T/T)-

XiTX%T

T
from Assumption A.10 on the trimming constants and the properties of penalty function g(n, T"), Proposition

From Inequality (16) and Lemmas 1 and 2, we get & = O,(C., %) + Op( ) —g(n,T). Then,
1(a) follows.

b) Let us now consider the case Ms. We have &, = M f(iéi and €; = lEIZHZ- + u;, where .FNIZ- =L oH
and H is the T' x m matrix of latent factor values, with m > 1. Hence, we have the decomposition
1% = Hib; +; — (1 — 1%)e; — 1§CPXZ.I:I¢9i - 12‘P)~Qﬂi. By using Weyl inequality (11) with & = 0, and
the inequality between matrix norms, we get:

) 1/2 ) 1/2 ) 1/2
1 (nT Z 1§(€i5§> > (nT Z Hz9z9§H{> — (nT Z ﬂiﬂ;> —1'2, (18)
(2 K3 K3
where 11/2 = 111/2 + I§/2 + 141/2, term I; is defined as in (17), and

1/2 1 ~ ~ 1/2 1 -
L% = | Y WPy HOWH P |7 L= | o S 1Py it Py ||

% %
1
By Lemma 1 applied on 4, instead of €;, we have p, (T E 11@2) = 0,(C; ZT) Moreover, from the
n - El
7

next Lemma 3 and Assumption A.10 on the trimming constants, we get I = o,(g (n,T")) under M.

Lemma 3 Under model Mo and Assumptions 3, A.2, A4, A.5 and A.6, as n, T — oo, we have: (i)
I = Op(T_E)’fOF any b > 0; (ii) I = Op(X%,TX%,T/T); (iti) Iy = Op(XiTX%,T/T)-

The next Lemma 4 provides a lower bound for the first term in the r.h.s. of Inequality (18).

1 - -
Lemma 4 Under model Mo and Assumptions 1, A.8 and A.9, we have u, (T ZHﬂﬂ;H{) > C,
n -

w.p.a. 1, for a constant C > 0.

Then, from Inequality (18) and Lemma 4, we get { > C/2, w.p.a. 1, and Proposition 1(b) follows.



A.2.2  Proof of Proposition 2

We prove Proposition 2 along similar lines as Proposition 1 by exploiting the Weyl inequalities (10) and (11)
for a generic k.

a) Let us first consider the case M (k). We have &; = M %, g andé; = ﬁ¢9i+ai, where ﬁi = I;®H and
H is the T' x k matrix of latent factor values. Then, 1)&; = Hib;+1i; — (1 — 1X)e;— 1§<P)~(if~li0i - 12‘P)~Q€Li.

From Weyl inequalities (10) and (11), and the inequality between matrix norms, we get:

1/2 1/2 1/2
1 . 1 ~ ~ 1 .
7 (2 (2

where 1'/2 = 111/2 + 131/2 + Ii/2 and terms [y, I3 and I are defined as in the proof of Proposition 1. Since
model M (k) is included in model My for any £k > 1, we get I = 0,(g (n,T’)), from Lemma 3 and
n,

1
Assumption A.10 on the trimming constants. Moreover, 11 T ity | = Op(C'*2 ) by Lemma 1 with

7
u; replacing €;. The first term in the r.h.s. of (19) is bounded by the next lemma.

1 . .
Lemma 5 Under model M (k) and Assumptions A.5 and A.11, we have pij1 (nT Z Hﬂﬂ;H{) = Op(C';}).
%

The bound in Lemma 5 would be trivial in the case Efi = H,i.e., with a balanced panel, because in that case

Lot (:T Z H@,-@QH’) = 0 under M; (k).

From Inezquality (19) and Lemma 5, we get £ = Op(C;QT) + 0p(g (n,T)) — g(n,T). Then, by the
properties of g(n,T'), Proposition 2(a) follows.

b) Let us now consider the case M (k). We have &; = Mj(iéi and &; = ﬁ,-ei + u;, where Efi =1L,0H
and H is the T' x m matrix of latent factor values, with m > k + 1. By similar arguments as in part a), using
Weyl inequalities (10) and (11), and the inequality between matrix norms, we get:

. 1/2 . 1/2 . 1/2
[k+1 <nT > 1?&'4) > kg1 (nT > Hﬂﬂﬂ%’) — (nT fmﬂ) — 1'% (0

(2

n,

1
As in part a) we have 1 <nT fLﬂLi) = 0,(C;2) and I = 0,(g(n,T)).
i

Lemma 6 Under model May(k) and Assumptions 1(i), 4, A8 and A9, we have

1 - -
M1 (nT Z Hﬁﬂ;H{) > C, w.p.a. 1, for a constant C > 0.
i

4



Then, from Inequality (20) and Lemma 6, we get { > C'/2, w.p.a. 1, and Proposition 2(b) follows.

A.2.3 Proof of Proposition 3

Let us define the events Ay, = {{(k) > 0}, kK = 0,...,ko — 1, and A, = {&(ko) < 0}. We have
Plk = ko) = P[{Ag N A; N ...N Ag,_1} N Ay, ]. For generic events B and C, we have P[BNC] = P[B]+
P[C] — P[B U C], and we conclude that P[B N C] — 1 if both P[B] and P[C] converge to 1 since
P[BUC] > P[B] and P[B U C] > P[C]. Applying repeatedly this argument to the probability P[{Ay N
A; NN A1} N Ay, yields Pk = ko] — 1 since P[Ay] — 1,k = 0,.... kg — 1, and P[4,] — 1,

under M (ko) from Proposition 2.

Appendix 3 Check of Assumptions A.1 and A.3 under block dependence

In this appendix, we verify that the high-level Assumptions A.1 and A.3 on serial and cross-sectional de-

pendences of error terms are satisfied under a block-dependence structure in a serially i.i.d. framework.

Assumption BD.1 The error terms ui(7y) are i.i.d. over time with Elui(y)] = 0, for all v € [0,1]. For
any n, there exists a partition of the interval [0, 1] into b, < n subintervals of approximate length B, =
O(1/by,), such that uy(y) and uy(v') are independent if v and ~' belong to different subintervals, and

byl =O0(n=%) asn — oo, where a € (0,1].

Assumption BD.2 The error terms (u (7)), the factors ( f;), and the instruments (Z;), (Zy(7)), v € [0, 1],

are mutually independent.

The block-dependence structure as in Assumption BD.1 is satisfied for instance when there are unob-
served industry-specific factors independent among industries and over time, as in Ang et al. (2010). In
empirical applications, blocks can match industrial sectors. Then, the number b,, of blocks amounts to a
couple of dozens, and the number of assets n amounts to a couple of thousands. There are approximately
nB,, assets in each block, when n is large. In the asymptotic analysis, Assumption BD.1 requires that the
number of independent blocks grows with n fast enough. Within blocks, covariances do not need to vanish

asymptotically.



Lemma 7 Under Assumptions A.2 and BD.1: (i) Assumption A.1 holds. (ii) Assumption A.3 holds if
o> 4/q, @1

and n > TY7 with

F<a-—4/q=:v". (22)

The condition in (21) yields a trade-off between the strength of cross-sectional dependence (which is
inversely related to parameter o) and the existence of higher order moments of the error terms (via coefficient
q > 8 defined in Assumption A.2). The condition (22) provides a restriction on the relative growth rate of
the cross-sectional and time-series dimensions. The upper bound 7* < 1 on parameter 7 implies that n
must grow sufficiently faster than 7. This upper bound involves both cross-sectional dependence (via o)
and heavy tails (via q) of error terms. We can have 7 (arbitrarily) close to 1 from below, if cross-sectional
dependence is sufficiently weak (i.e. v close to 1) and the tails of the errors are sufficiently thin (i.e. g large).

9 _
The proof of Lemma 7 shows that we can take 6 = n” for any 3 € <, 0427) to match Assumption A.3.
q

Appendix 4 Proofs of technical Lemmas

A.4.1 Proof of Lemma 1

We prove:

lim sup 1 <1<‘:’<‘:”) <, a.s., 23)
n

n,T—00
for a constant C' < oo, where £ is the T x n matrix with elements €t = I;te;¢. Then, the statement of
Lemma 1 follows. To show (23), we follow similar arguments as in Geman (1980), Yin et al. (1988), and
Bai and Yin (1993).

We first establish suitable versions of the so-called truncation and centralization lemmas. We denote
by E and E the T' x n matrices with elements (; ;) and (e;;), where & = €;:1{|e;+| < 0} and e;; =
&+ — El&itlvi], and § = 6,, T oo is a diverging sequence as in Assumption A.3. Let us define matrices
F and = with elements (Iiteit) and (1; +&; ) by analogy to €. Lemma 8 shows that we can substitute the

truncated &; ; and I; 4&; ; for €;; and I; ;&; ;, and Lemma 9 shows that we can substitute the centered I; ;e; ¢



for the I; +&; + to show boundedness of the largest eigenvalue in (23). We prove Lemma 8 and Lemma 9 in

Sections A.4.8 and A.4.9 below.

Lemma 8 Under Assumption A.2, if § = &, is such that § > n® for 8 > 2/q, then: (i) P (£ # Zi.0.) = 0,
and (ii) P (g’ %+ = i.o.) = 0, where i.0. means infinitely often forn = 1,2, ...

Lemma 9 Under Assumption A.2, if § = 6, T 0o such that /T /677 = o(1), then:

. 1 - -
1 (E ’> = <EE’> +o(1), a.s.
n n

From Lemma 8(ii) and Lemma 9, condition (23) is implied by:

[1]:

1 - ~
lim sup 1 <EE’> <, a.s., (24)
n

n,T'—o0

for a constant C' < co. Now, we use that the upper bound (24) is implied by the condition:

S (s () )]

for an increasing sequence of integers k = k,, T co. To prove the validity of condition (25), we use that:

1~ g 1 pr k 1 ~ ~ ~ ~ ~ ~ ~ ~
M1 EEE <Tr (HEE) = ﬂ E : E : €i1,t5, €i1,t1 Cin,t1 Cinta iz ta * " Cig_q,tp—1 Cip,tr_1Cig,tys

01 yereyi L1 yensbs

< 00, (25)

for any integer k, where in the summation the indices %1, ..., 7 run from 1 to n, and indices 1, ..., {x run

from 1 to T'. Therefore, from Assumption A.7:
1~ -~

p1 (EE/>
n

k
1~ -
Then, we get E | i1 (EE’ > < MP*, for the sequence k = k,, defined in Assumption A.3. Condition
n

E k E § |E €i1,ty, Ci1,t1 Cig, b1 CintaCis,ty * " Cig_q, b1 Cig,tr—1Cig,ty h’ilv ) %k”] .

110yl Eseesy

(25) holds for any C' > M, and the conclusion follows.

A.4.2 Proof of Lemma 2
i) We have I} :HnLTZ,L(l — 108 = ﬁ >l = 1901 — 13‘()(5,53) = ﬁzw 2,1 —
1X)(1 — 1X)Ii7t1[j7t1Iz-thIj’tZei’tlsj,tlgi@gj’t,z. By the Cauchy-Schwarz inequality:

< 2T2 Z Y Bl - 1)VE[L - 1]V B, ) B[S ) P, P Bl ).

1,5 t1,t2



Now, we have E[e},] < M from Assumption A.2 and E[1 — 1}] = P[1} = 0] = O(T™?) for any b > 0,
uniformly in ¢ and ¢ from Assumptions A.4, A.8c) and A.9 (see Lemma 7 in GOS). Then, I} = Op(T_Z_’)

for any b > 0.
ii) We have:
1 1
Bo= | Y 1Py EdPy P = s > 1T {PXiéié;PXiP &8Py }
X1X 1,2T ]2T Al X{éz EQXZ A_TLA A q leéj é:;X] A_1A
= n2T2 Z 1; 1 TT Tr Qx,i \ﬁ \ﬁ Qx,i Qm,ij@x,j \/T \ﬁ Qx,ij,ji ’
1,J 4

A 1 . A
where Quij = o= Y Ligljpmigaly and 7y = T/Tij. By using Tr(AB') < | A[[|B]. 1¥1Q; ]| <

27‘7
CXiT, X717 < xor |@it]| < M (Assumption A.4), 7;; 7 > 1, for all ¢ and ¢, we get:
X1 TX2 T
2
<
B< et 15Ky 2 = Xy
CXI,TXZ,T

—_— . . . . . . . . / . / .
= — o1 E E Ly dito Ljts A ta€it1 €ito€5,b3E 5,00 T gy Tito T 13 Tt
1,5 t1,2,13,t4

Thus:

E[I3|Lip, iz, @1, 505 Vi V)

CX?,TXg,T
SLLRES S sl s s Bl ssnesleir 2, vl

1,5 t1,t2,t3,t4

C M58 1A 8 4
Hence F[I3] < #, from Assumptions A.1 and A.4. It follows E[I5] = O(Xl’;#), which
4 2
implies I = Op(%).

A.4.3 Proof of Lemma 3

i) The proof of Lemma 3(i) is the same as that of Lemma 2(i), since the bound E|¢; ;8] < M applies under
My as well (Assumptions A.2 and A.5).

i1) The proof of Lemma 3(ii) is similar to that of Lemma 2(ii), by replacing &; with H;6; and using



Assumption A.6. We have:

1
n2T2

.. [ X'H, HX:\ ~ 1~ - (X/H
Qi | 220 ] 000 | =0 ) Qp Qi@ | —L=

1 -
B o= |l S0Py HOO P P =~ 1Ny | P Hi0,0,H]Pg, P, 0,0, P, |

+2 2

TT;T

= 2T2 E 1X1X fixl, Tr
n T3]

7.]

By using Tr(AB') < Al Bl 1¥(1Qz 1l < OXF 7 1¥7ir < xor. 10l < M. ]| < M. 77 > 1, for

all ¢ and ¢, we get:

2 < X1 TX2 T Z | H X
2= e \F
CX1 TX2 T
= 2T Z Z Ii,t11i7t2lj,t3lj7t4h;1 htﬂé’,tl$i7t2h§3ht4$},t3xj,t4-

1,5 t1,02,13,t4

Thus:

CXlTX2T
E[IS‘II,Z"IIJ’%/VJ'] < Z Z h:flth zt1$lt2ht3ht4 ]tngt4|72a7]”

2T
T 1,7 t1,t2,t3,t4
C' M3 4 8 4
Hence E[I3] < %, from Assumption A.6. It follows E[I3] = O(Xl’r‘;#), which implies
4 .2
X1,7X2,T
I, = OP(T).

iii) The proof of Lemma 3(iii) is the same as that of Lemma 2(ii), by replacing &; with ;.
A.4.4 Proof of Lemma 4

reRT =1

1 _ _
We have i1 (nT Z Hﬂﬂ;[—[{) =  max (nT Z H:0,6/H ) x. From Assumption 1 (i), matrix
1

1 1
TH/H =7 thhé is positive definite w.p.a. 1. Thus, for any a € R™ with |la|]| = 1, the vector
t



z(a) € RT defined by z(a) = — Hala'(H'H/T)a)~"/? is such that ||z(a)|| = 1, w.p.a. 1. Therefore:

5=

1 00 F 1 o
— H00.H | > rl L 1.0,0/
M1 (nTzl: 0:0; l) > aeRIng:a‘u‘Z(”:l z(a) (nTzl: 0,6 Z) 2(a)
2 ) ]
"| =N (H'H;/T)0;0,(H,H/T
a |- X} JT)0:0,(HH/T) | a
" aernial=1 d(H'H/T)a
a - Zﬂjﬂg (T- Zfi,tht%) 0:0; (T- le‘,thtlﬁ)] a
= max L i t t .
a€R™:|ja|=1

1
o (T 3 htm) a
t
1 1
We have a' (T Z hthff) a <y (T Z hthl't) ,forany a € R™ such that ||a|| = 1, and from Assumption
¢ t

1
1 (i), we have T Z hthg < 2u1(Xp) w.p.a. 1. Moreover, from the proof of Lemma 3 in GOS, under
¢

1
Assumptions A.8 and A.9, and n = O <T1/1> , v > 0, we have sup |= ZIZ- thehy — 3h|| = o0p(1),
- 1<i<n Ly <~ 7

sup |17 — 7| = o0p(1),and 1 < 7; < M, for all 7. It follows:
1<i<n

1 . - 1 1
— H0;0.H| > C DI = ;0. | Spa =C YXh| — 0,0, | ¥
M1 <nT ; 1YYy z> - aeRl;Inl:Eﬁfllzl a 2ip, (n ; 7 z) ha H1 ( h (n ; 7 z) h) 5
w.p.a. 1, for a constant C' > 0. From inequality (12) for the eigenvalues of a matrix product applied twice,

1 1 . .
we have pi; (Eh <n ZHﬂ;) Eh> > (n ZHﬁ;) ,um(Eh)2. From Assumption 1, the conclusion
(3 (3

follows.

A.4.5 Proof of Lemma 5

We start with the case k = 1, and then extend the arguments to the case k > 2.

- 1 - -
a) When £ = 1, let us consider matrix A = —TE 912H1HZ’ = (ats) with elements
n -
T

1
ars = T Zli,tli#@?hthszz at shihg. Further, define matrices A = (ats) and D = diag(hy : t =
i

1,...,T). Then A = DAD, and both A and A are positive semidefinite matrices. In the first step of the

10



proof, we show that:

pa(A) < M?us(A), (26)

where M is the constant in Assumption A.5 a).

Let G be a linear subspace of R” and consider the maximization problem mHa)ﬁ P Ax =
zeG:||z||=1

énHa)ﬁ 2'DADz. For x € G such that ||x|| = 1, define y = Dx. Then, y € D(G) (the image of
z€G:||z||=1

space G under the linear mapping defined by matrix D) and ||y||> < [|h||% 7 llz||? = ||hl|A, 7 < M2, where

|10, = max |ht| < M under Assumption A.5 a). Then:

max 2'Az < max y' Ay = M? max ' Ay. 27
zeG:||z|=1 yeD(9):|lyll<M yeD(G):llyll=1
Suppose that h; # 0 for all ¢t = 1,...,7 (an event of probability 1). Then D corresponds to a one-to-

one linear mapping. Let F; be the eigenspace associated to the largest eigenvalue of matrix A, and define

G = D~Y(F{"), which is a linear subspace of R” with dimension 7" — 1. Then, from Inequality (27) we get:

max oAz < M?  max y' Ay. (28)
z€DY(Fih)|lz[=1 yeFi-:|lyll=1
From the Courant-Fisher min-max theorem (13), we have: us (/Nl) < max x flx, and, from the
xGD*l(]:f-):Ha:H:l
Courant-Fisher formula (15), we have: po(A) = max y' Ay. Then, Inequality (28) implies bound
yeFllyl=1
(26).

1
are T' x n matrices with elements b;; = 6;1; and ¢;; = 6,(I;+ — I;), the Weyl inequality (11) implies

1 1/2 1 1/2 1 1/2
ug(A)l/2 <pus | —BB + (| —=CC’ =u [ —=CC’ , since matrix BB’ has rank 1.
nT nT nT

Finally, let us bound p2(A). By writing A = — (B + C)(B + C)', where B = (b;;) and C = (1)

Now —TCC" = —TC~’DC~", where the elements of the 7' x n matrix C are é&; = I;; — Iy and Disan x n
n n

1
diagonal matrix with elements 7. From Assumption A.5b), we have p; (TCC’ ) < M?p1 (W), where
n
. 1 -~ 1 - = .
the elements of matrix W = ﬁC’C” are wy s = T Z (Ii,t — It) (Iz}s — Is). Thus, from Assumption
7

A.11, we get pia(A) = O,(C,, %) From bound (26), the conclusion follows.
- 1 - -
b) Let us now consider the case k > 1. Consider the matrix A = T E HiﬁlﬂgHZ{ = (at,s) with ele-
n -
(2

~ 1 1 !
ments dys = —— > LiaLisOhubihs = 3 (nT Zli,tfi,semei,l) humhsg = @y hy mhs ., where
i i

m,l m,l

11



summation w.r.t. m, [ is from 1 to k. Then, we have A = 3", D™ AmO D) = DAD’, where A(™) =
(™)), D) = diag(hym : t =1,...,T), the T x (Tk) matrix D is defined by D = [D®) : ... : D®)] and

t,s

Ais the (Tk) x (Tk) block matrix with blocks A1),

B
Lemma 10 Let be a positive definite (or semi-definite) block matrix. Then, <
B" D B" D
A 0
2 , Where the inequality is w.r.t. the ranking of symmetric matrices.
0 D
AL
By repeated application of Lemma 10, we get: A < 2~F~1 . This implies A <
Alkk)

2k—1 dom D(m) A(mm) D(m) - Since two symmetric matrices are ranked if, and only if, their corresponding

eigenvalues are ranked, we get:

peg1 (A) < 28 gy (Z D“”)A(WMD(’“)) : (29)
m
Moreover, we use the next lemma.
Lemma 11 For k symmetric matrices Ay, As, ... Ak, pig+1(A1 + .. + Ax) < pa(Ay) + ... + po(Ag).

From Inequality (29) and Lemma 11, we get: juj41(A) < 281 > o M2 (D(m)A(m’m)D(m)) . By using
the arguments deployed for the case k = 1 in part a), we have jio (D™ A DY < M2 i (A7),
Therefore, we get 151 1(A) < 287 1M2 Y, ua(A™™). As in part a), the Weyl inequality and Assump-
tions A.5b) and A.11 imply 11 (AT™) < M2y (W) = Op(C,, 3.). Thus i1 (A) = O,(C, 7).

A.4.6 Proof of Lemma 6

From the Courant-Fisher max-min Theorem (14), we have:

1 ~ ~ 1 - .
—N"me0H | = ' ST me0H ) 30
pe (TZ : ) B e ® (TZ : ) G0

where the maximization is w.r.t. the linear (k + 1)-dimensional subspace G of R”. From Assumption 1 (i),

under model My (k) matrix H/ V/T has full column-rank equal to m, w.p.a. 1, with m > k + 1. Thus, for

12



1
any linear subspace A of R with dimension k + 1, the set G4 := {x eRT: ¢ = ﬁHa, a € A} isa

linear subspace of RT of dimension k + 1. We deduce from (30):
1Lk LZI:IH-HIJ{I( > max min 2’ LZE’-H'Q{EI{ x
A - TR T Adim(A)=k+1 2€Ga:||z]|=1 n &=t
H'H H
/ - 0 6/

Adlm(A) k41 acA: ||aH 1 o (;H’H> "

By similar arguments as in the proof of Lemma 4, under Assumptions A.8 and A.9, we get the inequality:

1 5 5
— H;0,0:H! > C 0,0. | ¥
it (nT zz: : ’) =Y i)kt 1 acht Ha|| ¢ ( Z > ha:

w.p.a. 1. By the max-min Theorem, the r.h.s. is such that:

1 1
i DI = 0;0. | Spa = Y| — 0;0. 121, | .
Azdirf(lg)xzkﬂ aejghlg\l\:l @ =h (n EZ: ! Z) hG = Hietl ( h (n EZ: ’ ’) h)
Moreover, from inequality (12) for the eigenvalues of product matrices applied twice, we have

1 . .
M1 (Eh <n Z@ﬂ;) Eh> > ka1 (( ZG 0: )) L Eh) . Then, from Assumptions 1 (i) and 4,

the conclusion follows.

13



A4.7 Proof of Lemma 7
A.4.7.1 Proof of Part (i)

By the serial independence of the error terms, we have:

1
73 Y > B [t it s, 2w 251, V5]
1,J t1,t2,t3,t4

1
- WZ Z E[ui,t1ui,t2uj,tguj7t4 ")/i,’)/j]

1,7 t1,t2,t3,ta

1
= o7 DO E iy ity w0, i)

Byt

1
+7’L2T2 Z Z E [uivtlui,tl ‘%] E [uj7t2u]}t2 |’7j}
i,J ti17#t2

1
tore > Bl i v ] B it 7] -
1,j t17#ts

The conclusion follows by taking absolute values and expectation, and using the triangular inequality, the

Cauchy-Schwarz inequality and Assumption A.2.

A.4.7.2 Proof of Part (ii)

Here, we treat €; ; as a random variable but not through the random draw ~;. This avoids the notational bur-
den coming from conditional expectations. We show directly the inequality

1
E E E | E€i) 1, € t1 €in t1 Cin taCig to * * * €y itp1 Cipitp1Cintel] < M", which implies Assumption
W1 yeyits t1yeorti

A.3. Under Assumption BD.1, there are b = b,, blocks of approximate size d = d,,, where bd = O(n).
1) Let w > 0 be such that E[E%t] < w?, for all i and ¢, and define ¢; ; = e; +/w. The scaled ¢; ; are such
that E[¢;¢] = 0, E| ft] < 1,and E[|¢;+]""%] = O(6"2), for all r > 3, uniformly in i and t. Note that ¢; ;

is a (nonlinear) transformation of ¢; ;. Hence, the variables ¢; ; have the same block dependence structure

14



as the variables ¢; ;. Moreover:

1
nF Z Z |Eeiy,t1, €11 €in 1 EigtoCinyta ™ ** Cin 1t 1 Cin,th1 it |
U1k Tlyenstl
ok 1
w nk Z Z |E (@i 5 Din 1 P 1 Pl b Pis o " Pk 1,1 Pt 1 i ]
U1yl E1yee bl

= W (31)

IN

Let us now bound ;..

2) For m = 1,...,k, let C,, denote the set of k-tuples (i1, ...,47x) such that indices i1, ..., iy belong
to m different blocks. Let N, denote the number of different 2k-tuples (i1, ..., %), (t1, ..., tx) such that
(1,...,1,) € Cp, and the expectation E[d;, ¢, Pi, 1, Pis,t1 Pio,toPiste =+ Dir_1,tx—1 Pi,tr_1 Dir,t] does not

vanish. Moreover, let 9, be an upper bound for such a non vanishing expectation. Then:

k
1
Ik < ﬁg NQO (32)
m=1

3) We need upper bounds for N,,, and @y, for m = 1,2, ..., k, and any integer k.

e m = 1: The number of k-tuples (i1, ..., ;) with all indices in the same block is O(bd*). Indeed, we
can select the block among b alternatives, and we have O(d") possibilities to select the indices within

the block. Then, N; = O(bd*T"*). Moreover, by the Cauchy-Schwarz inequality,

E [¢i17tk¢i1,t1 ¢i2,t1 ¢i27t2¢i37t2 T ¢ik—17tk—1¢ik7tk—l¢ikvtk] < SutpEHQbi,t’%] = 0(5%72)-
1

)

Thus, Q; = O(62F—1)),
e m = k: The number of k-tuples (i1, ..., i) with indices in k different blocks is O(b*d*). For such a
k-tuple:
E [¢i17tk¢i1,t1 ¢i2,t1 ¢i2,t2 T ¢ik7tk—1 ¢ik7tk} =F [¢i17tk¢i17tl] E [¢i2,t1 ¢i2,t2} K [(ﬁik,tkﬂ ¢ik,tk] .

Hence, the indices t1, ... t; must be all equal for this expectation not to vanish. Then, N = O(bk’ dk T)

and Qj < 1.!
'For k > b, there are no k-tuples (i1, ..., ix) with indices in k different blocks, and Ny, = 0. The upper bound Ny, = O(b*d*T)

trivially holds also in this case. However, this case will not occur with our choice of sequence k, since (37) implies k = o(b), see

below.
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e m = 2: The number Ny is O(b?) x {];} x O(d¥) x O(T*1), where {];} = 2871 _ 1 is the num-
ber of different ways in which we can divide k objects into two (non-empty) groups (a Stirling number
of the second kind). Indeed, O(b?) is a bound for the number of different ways to select the two dis-
tinct blocks. Then, for each j = 1, ..., k we select whether index ¢; is in the first or the second block;
we have {];} different possibilities. Once we have fixed the blocks, we have O(d*) alternatives to
select the indices. By block dependence, the expectation E[;, ¢, Pi, t, Pis,t1 Piorto * * * Pix a1 i )
can be splitted into two expectations, and at least a pair of indices in the k-tuple (¢, ..., tx) must be

equal for the expectation not to vanish. Hence the term O(T*~1).

Suppose the expectation E[@;, +, @iy t1 Dia t1 Diots -+ * Pinte_1 Pirti) 18 splitted into two expectations,
with 7 indices i; in the first block, and ry indices in the second block, r1 + 7o = k. Then,
E@iy 1, bir 11 Din,t1 Dt * it 1 Pitn] = O(621171) x O(621=1) = O(6**~2). Hence,
Q2 = O(5*F=2).

e Generic m: We have

N, = O@®™) x {i} x O(d¥) x O(TF—m+1), (33)

Qm = O(82k=m)y, (34)

k 1 :
where the Stirling number of the second kind { } = — Z(—l)m_J (m> 4j* gives the number of
m m/! = J

different ways in which we can divide k£ objects into m (non-empty) groups (see e.g. Rennie and

k
Dobson (1969)) and < > is a binomial coefficient.
m

From bounds (32), (33) and (34), and using d = O(n/b), we get:

k
I, < conkst Z bmdk{ k }Tk—m-i-l(;?(k—m)
n m
m=1

k
= constx T Y { :1 }(52T/b)km. (35)
m=1

4) We exploit the following upper bound for the Stirling numbers of the second kind (see Rennie and

k

k 17k k

Dobson (1969), Theorem 3) { } < = ( >mk_m. Then, we get: E { }(52T/b)k_m <
m 2\m = m
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k k
1 2 1 2 k—m__ 1 2 k i i -
5 E ( ) (6T /b)F~ 2 mE: < ) (k6T /b)* "= 2(1 + k6°T/b)", from the binomial theo
hus from (35), we get:
I, < constT(1 + k6>T/b)*. (36)

5) Assume that the sequence k = k,, 1 oo is such that:
k62T /b =o0(1), T = O(e"). (37)
From (36) and (37), we get I}, < (2¢)¥. Then, from (31):

1
k
e § § |E[€3),15 €ir 1 €in 11 in o Cig s ™ ** i1ty Cinoby 1 Cig ]| S (26w)",
AT YR AT 78

i.e., the bound in Assumption A.3 holds with C' = 2ew.

6) Let us now verify the compatibility of the different rates, i.e., that we can choose sequences § = n/
and k = clog(n), B,¢ > 0, such that /T /3971 = o(1), B > 2/q, and they match conditions (37). Let
n>TY7and b > n® withy < 1 and o € (0, 1]. Condition T' = O(eF) is satisfied if ¢ > 7. Condition
k62T /b = o(1) implies:

1
B < 5@‘7)- (38)
Condition v/T' /59! = o(1) implies 3 > ﬁ The latter inequality is implied by
q—
2
B>-, (39)
q

since ¥ < 1 and ¢ > 8 in Assumption A.2. Then, there exists a power 5 > 0 satisfying conditions (38) and
1 2

(39) if, and only if, 5(& — %) > —, which corresponds to Condition (22). This condition clarifies the link
q

between the behaviour of expectations of products of error terms and the assumption of a bounded largest

eigenvalue used for example in Chamberlain and Rothschild (1983) p. 1294 for arbitrage pricing theory.
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A.4.8 Proof of Lemma 8

We follow the arguments in the proof of Lemma 2.2 in Yin et al. (1988). From the conditions § > n” and
T < Con, we have:

00 n T
P(E#Eio) < lim » P U Ul
m=k

k—o00 )
om—1 <n<2m 1=1t=1

00 2m C2™
< lim mZkP (U U fleid > 2(’"”5})

i=1 t=1

>0}

o
< lim chmmp (|si,t| > 2<m—1>/3) :
m=

Thus, part (i) follows from the summability condition:

i 92m p (|sz-,t| > 2<m—1>5) < . (40)

m=1

To prove the summability condition (40), we use the Chebyshev inequality and Assumption A.2. We have
P (\5i7t| > 2<m_1)6> < E[|5i,t|q]/2(m_1)ﬁq < M/20m=D84_ Therefore, we get:

00 0 22m 0 1
2m , (mfl)ﬁ) e Bq L
Z 2P <’€z7t| >2 <M z:l 9(m—1)8q M2 Z:l 2(Bg—2)m < 00,
m= m=

m=1

since ¢ > 2.

Part (ii) is a straightforward consequence of part (i), since P(€ # Zi.0.) < P(E # Zi.0.).

A.4.9 Proof of Lemma 9

We follow the arguments in Bai and Yin (1993), p. 1278. We use the von Neumann inequality (von Neumann

(1937)): for any n x T matrices A and B,

T
tr(A'B) <Y puw(A'A)?u(B'B)Y2. 1)

1
1 1 (1 (1
= tr( =22 ) +tr( —EE | -2 (=g ) w? (EE



The last term in the r.h.s. is bounded by the von Neumann inequality (41):

1/2 == 1/2 1 ey 2 1;;/ 1 ~ 1 = =/
w'? [+ -w* (ZBE < tr(E2) +ur( EE —QEtr(:E>

- r|E-B)E-B)|. 42)

[1]
[1]:

The elements of matrix = — E are I; ; E[e; 41{|¢;+| < 6}|7:]. By the zero-mean property of the errors ¢, ;,

the Minkowski inequality and Assumption A.2, we have:
|Bleial{leial <0} = |Eleietleie] > 81| < Elleigl ] Plleie] > 8]/,

where 1/qg + 1/q = 1, with ¢ defined in Assumption A.2. By the Chebyshev inequality and Assumption

A.2, we get:
; Ellewd 1\" _ Bllewsl?) _ M
Blleal Pl > 1 < pllsapre (FUE) T el < S
Thus, we get:
1 = == = 1 M?
Etr (E—-E)(E- E)'] = Z Z L Eleigl{leis] < 6}* < Tm- (43)
it

§ = 6, is such that /T/§7~1 = o(1), the conclusion follows.

A.4.10 Proof of Lemma 10

‘We have:
) A 0 A B A -B
0 D B D B D |’
and:
A -B T A B X1
(90'1 xé) =(x’1 —xg) >0,
-B' D T2 B" D — T2

forall x = (2, 2%)".
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A.4.11 Proof of Lemma 11

By repeated application of the Weyl inequality for eigenvalues (see Appendix 2 (i) ) we have:

pe1(Ar + o+ Ag) <0 (A + o+ Agr) + po(Ay)

< 1 (A4 4 Ap_2) + po(Ak—1) + p2(Ag)

IN

p2(A1) + .+ pa(Ag).

Appendix 5 Verification that conditional independence implies

Assumption 2

Let us verify that Assumption 2 is true if the latent factors are independent of the lagged stock-specific
instruments, conditional on the observable factors and the lagged common instruments.

We have:

he LA{Zig—1,i=1,..} | fr,Z1-1 = he L{Zis,i=1,..} | fr, Zea
= ht 1 {.’i‘i7t,i = 1, } | Tt

= EL[ht|£Ci7t,i =1, ] = EL[ht|IEt],

where A L B|C denotes independence of A and B conditional on C.
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SUPPLEMENTARY MATERIALS

A diagnostic criterion for approximate factor structure
Patrick Gagliardini, Elisa Ossola and Olivier Scaillet

These supplementary materials provide the link with Stock and Watson (2002) (Appendix 6), and the

results of Monte-Carlo experiments (Appendix 7).

Appendix 6 Link with Stock and Watson (2002)

We consider the EM algorithm proposed by Stock and Watson (2002) applied to residuals &; ;:

. Eit, flLz=1,
it = L
Oihe, if I = 0.

Let us define the criterion &% = i, ( > Z Z («9 ht) —g(n,T). Below we show

that €% is the penalized difference of the EM crltena under the two rival models. Comparing the criteria £
1 A\ 2 1 ~192
SW o o Tinke , , I TP~
and £°" gives the following link: T Z zt: (1—1y) (91ht) =T He sH .
2
To study the EM algorithm, we work as if the true error terms ¢;; are observed when I;; = 1. This
error is replaced by the residual &; ;. We consider the jth iteration of the algorithm. Let ¢ = ((:), H )

¢
where L (¢ Z Z eie— 0 ht ; and E [-|e] denotes conditional expectation given the panel of

denotes the estimates of © and H obtained from the (j — 1)th iteration, and let Q) (C .C ) =E:[L(C)e],

observations under parameter C . We study @ (C , Q: ) under the two models. Under both M and M, we

consider a pseudo model for the innovations such that u; ; ~ 7.7.d. (0, aft) .

e Under M;: we get




We have

. 61'7,5, if Ii,t = 1, . 0, if Ii,t =1
E [ei’tM = and V [Qt\e] =
0, ifl;+=0, o?

i,

if I, = 0.

and £ [(5%)2 |€] =1 talt (1 —1;y) ft Thus,

QOZQ[)(CaC) ZZImezt%— ZZ

e Under Ms: we get

0(c0) = B | T T - an]
it
1
= o DB (e = ) e
Pt
1 1
= SN Vel + = ST (B i) - one)
% t 7 t
We have
5i,t7 if Ii,t = ]-a 05 if Ii,t = ]-5
Eit = E; [Ezt|€] =q and V [E;A&‘] =
Hz‘ht, if Ii,t - 0, O—i2,t7 if Ii,t =0.

1 x 1
Thus, (C ) v Z Z (5i,t — Hiht)Q + ﬁ Z Z (1—1iy) aZt, and the values of ( that
it it

¢
minimize (1 (( ,C ) can be calculated by mln — Z Z 5: Giht) ?_ This minimization problem

reduces to the usual PCA on data &: mcln—zz Eit — Oht = TZZE” m( )

Therefore, at convergence with { = C, we have
@ (0) = XX F-m (T) +;T;;<1
_ anzzzg ZZ 1) ()
n(B) Tz



Finally, the difference of the two EM criteria is
Q- () = m(Z) - LSS 0 (i)
0 1 ) = M nT nT i t it i/t )

which gives the criterion &% after penalization.

Appendix 7 Monte-Carlo experiments

From the core text, we know that our selection procedure is equivalent to the penalized least-squares strategy
of Bai and Ng (2002) applied on residuals when we use the same penalty term. The first part of our Monte-
Carlo experiments in Section A.7.1 aims to show, as expected, that the penalisation introduced in Section 5
delivers a performance similar to the one observed in the literature with other penalisations in the presence of
latent factors only. Indeed, we also consider the alternative methods to select the number of factors proposed
in Bai and Ng (2002), Onatski (2010), and Ahn and Horenstein (2013). We investigate settings with n and T’
of comparable sizes as well as n much larger than 7', as covered by our theory, starting with balanced panels.
Then we investigate how our selection procedure and the other selection criteria perform with unbalanced
panels. The main result is that the performance is similar when the operative sizes of an unbalanced panel,
i.e., the cross-sectional dimension nX and the average T} of the time-series dimensions T}, i = 1,...,nX,
obtained after trimming, are close to the sizes n and T of a balanced panel. Moreover, we show that the
several criteria considered work equally well and we cannot find a clear superiority of one over the other.
The second part of our Monte-Carlo experiments in Section A.7.2 aims to extend the performance study to
settings where we face observable factors, and apply the selection procedures to residuals. We show that the

performances are close to the ones obtained without observable factors.

A.7.1 Simulations with r latent factors

In this section, we perform simulation exercises in the presence of r latent factors only. We consider both
balanced and unbalanced panels in the study of the properties of our diagnostic criterion. In the balanced

case, we consider the simulation design in Ahn and Horenstein (2013). We generate S = 1, 000 datasets of



dimension n x T so that, at each simulation s =1, ..., S,

T
. | 1-p? .
2= ;szf;t +e5,, withel, = We;t, fori=1,.,n, andt =1,...,T, (44)

i—1 min(i+J,n)
where €], = pej, 4 +vj; + Z Bup ¢ + Z Bu, ¢+ and the error term v}, the factor loading
h=max(i—J,1) h=i+1
b3 i and the factor fjt are drawn from standardized normal distributions. Bai and Ng (2002) and Onatski

(2010) use a similar data generating process (DGP) in their simulation exercises. The DGP in Equation (44)
depends on three parameters: (i) p measures the magnitude of the time-series correlation in the idiosyncratic
errors efjt, (i1) B measures the magnitude of the cross-sectional correlation between the errors ef}t, (i) J
defines the number of units ¢ that are cross-correlated. At each simulation, we compute on the standardized
Rf,t our diagnostic criterion &(k). We also maximize (i) the edge distribution (E D) estimator introduced by
Onatski (2010), (ii) the eigenvalue ratio (£ R) and the growtn ratio (GR) estimators described in Ahn and
Horenstein (2013), (iii) the criteria PCy, I1Cy, AIC; and BIC;, with [ = 1,2, 3 proposed by Bai and Ng
(2002). We fix the maximun possible number of factors (kmax) equal to eight as in Ahn and Horenstein
(2013). The simulation settings and results provided in Ahn and Horenstein (2013) consider only balanced
panels with n and 7' comparable. Our setting extends their results also to panels characterized by a large
cross-sectional dimension. The trimming levels do not affect the number of assets n in the simulations since
the panel is balanced and T is sufficiently large. In order to understand how the criteria work in practice,
we consider several covariance structures, i.e., several combinations of parameters (p, 3,.J), and several
combinations of the cross-sectional dimension n and the time-series dimension 7'.

Table 6 reports the selection probability of the correct model estimated from the simulated datasets when
r = 0, ie., Pr(§ < 0|M;j). The selection probabilities are close to 100% for most combinations of the
cross-sectional sample size n and the time-series dimension 7'. Table 6, Panels A-D, compares the selection
probabilities when the magnitude of the time-series correlation changes in the error structure. Table 6,
Panels E-G contains the results when the magnitude of the cross-sectional correlation increases through the
parameters 3 and J. The increase of the correlation in the cross-section affects the selection probabilities
when the ratio T'/n is too far from zero. In Panels F and G, the selection probability falls to zero when

n is much smaller than 7". In Panel G, we can explain Pr(§ < 0|M;) = 85.30%, when n = T" = 150



by the cross-sectional correlation being confused with a common latent factor when n is too small. The
magnitude of the cross-sectional correlation in the errors has a larger effect on the selection probabilities
than the presence of the time-series correlation in the errors. Indeed, we always select correctly the model
in Panels B-D. Table 6 also reports the 2% of the replications that result in overestimation w.r.t. the y%
of the replications that result in underestimation of the number of factors for » = 3. The criterion & (k)
introduced in Equation (8) estimates the correct number of unobservable factors for any combinations of n

and 7 in the different designs for the error structure. The penalty function is based on a Gaussian reference
2
(V mt ﬁ) T
In
2
(v v7)

constant is selected as in Alessi et al. (2010) (see also Hallin and Liska (2007) in the general dynamic

model, namely g(n,,T") = ¢ , where c is a data-driven constant. The

ny T

factor model). The procedure for selecting the constant c relies on the behavior of the variance of the
selected number of factors l;:j (c) computed across cross-sectional subsamples j = 1,...,33 of increasing
size (n;,T'), for a whole interval for values of the constant c. If the panel is balanced, we choose the
smallest value of c in the second stability interval of the variance (i.e., the second interval of values c for
which the variance of l;:j (c) is insensitive to ¢ as advocated by Alessi et al. (2010)). The criterion £ (k) thus
compares well with the other selection methods proposed by the literature. In particular, Table 7 shows that
the criterion & (k) performs equally well as the maximization criteria proposed by Bai and Ng (2002), Ahn
and Horenstein (2013), and Onatski (2010) when r = 3 and the error terms e;t are either i.i.d. or correlated.
The criterion & (k) performs equally well as the criteria £ D, ER and GR when the error terms are serially
and cross-sectionally correlated.

For unbalanced panels, we explore the properties of the diagnostic criterion using a simulation design
that mimics the empirical features of our data. We simulate a matrix of observability indicators 1° € R"*T
as follows. We fix an integer min (7;) < T. For each i, we draw T; from a uniform distribution on an
interval of integers between min (7;) and 7. The 7; ones for asset ¢ (I7; = 1) are set for consecutive
dates starting from a random date ¢,;. The draws across individuals ¢ are independent. We generate R},
in Equation (44) if IJ, = 1, fori = 1,...,n,and ¢ = 1,...,T. In this framework, the trimming approach
is not needed. We keep the cross-sectional dimensions equal to n = 150, 500, 1500, 3000, 6000. In Table

8, we report the mean of the averages 7; of the time-series sizes T;, ¢ = 1,...,n, across simulations, as



well as the min and the max of the T;. The choice of the min (7}) in the simulation approach defines the
amount of missing values in the simulated sample. Since the effective time-series sizes are smaller than 7',
we need to compensate for this in the penalty function of the diagnostic criterion. Otherwise, we have a
tendency to underpenalize and to diagnose a too large number of omitted factors. Thus, we select a constant
c larger than the constant selected for balanced panels, namely, we choose the smallest value of c of the
third (instead of the second) stability interval of the variance of the selected number of factors. Tables 9-14
report the results for several levels of min (7;). In general, the unbalanced property of the dataset does not
seem to deteriorate the selection probabilities of the correct model when r = 0 or r = 3. We observe a
deterioration of the probability of the diagnostic criterion £ (k) when the time-series size is too short w.r.t.
the cross-sectional dimension and the amount of missing values is high (see Panel D in Table 9). Finally,
due the unbalanced property, we observe that the selection criteria by Onatski (2010) and Bai and Ng (2002)

tend to overestimate the number of factors.

A.7.2 Simulations with one observable factor and r latent factors

In this section, we gauge the impact of estimation error coming from using residuals instead of the true
errors in the diagnostic criterion and in the other criteria introduced previously. We repeat the experiments
described in the previous section, but with one observable factor and r latent factors in the DGP, so that, at

each simulation s = 1, ..., .5,

r
/ 1— p2
Rit = B’LFt + Zbi]fjt + 8;15, with E’it = HTf;ﬂZeib fori = 17 N, and t = 1, ceuy j_'7 (45)

j=1
where B; is the factor loading of the single observable factor F3, both initially drawn from standardized
normal distributions. At each simulation, we estimate a one-factor model on Rf,t’ and we compute the
diagnostic criterion on the standardized residuals, when 7 = 0 and » = 3. In Tables 15 and 16, we get the
results for the balanced case. The performances of the criterion £ (k) and the other criteria are similar to
what we get in Tables 6 and 7. Thus, the presence of observable factors does not corrode the performance
of the criteria considered. We conclude similarly for the unbalanced case through comparing the simulation
results reported in Tables 17-22 with the ones of Tables 9-14. We only observe a moderate tendency of the

criterion £ (k) to underestimate the number of latent factors when n is too small.
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Table 8: Operative time-series sample size

trimming level, 7= 150 | min (7;) =60 min(7;) =120 min (7;) = 240
mean (7;) 105 135 -
min (TZ) 98 133 -
max (7T;) 113 138 -
trimming level , 7' = 500 | min (7;) =60 min(7;) =120  min (7}) = 240
mean (7};) 279 310 370
min (73) 237 277 348
max (7T;) 300 346 395
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