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We give proofs of Propositions 1-4 of the paper in Section B. We gather the results of our

Monte Carlo experiments in Section C. We prove Lemmas 1-4 of the paper in Section D. We

provide additional theory in Appendix E, namely the characterization of the pseudo likelihood

and the PML estimator (E.1), the conditions for global identification and consistency (E.2), the

asymptotic expansions for the FA estimators (E.3), the local analysis of the first-order conditions

of FA estimators (E.4), the asymptotic normality of FA estimators (E.5), the definition of invariant

tests (E.6), and proofs of additional lemmas (E.7). We give numerical checks of Inequalities (6)

of Proposition 4 in Appendix F. Finally, we collect the maximum value of k as a function of T in

Appendix G.

B Proofs of Propositions 1-4

Proof of Proposition 1: (a) The proof of this part is made in three steps. (i) We first establish

the link between the LR statistic and the norm of matrix Ŝ = V̂ �1/2
" M

F̂ ,V̂"
(V̂y � V̂")M 0

F̂ ,V̂"

V̂ �1/2
" ,

namely we prove LR(k) = n

2kŜk
2 + op(1). The next lemma is instrumental to this step.

Lemma 1 Under Assumption 1, (a) the eigenvalues of matrix Ŝ are: �̂j , for j = k + 1, ..., T , and

0, with multiplicity k, where 1 + �̂j for j = k + 1, ..., T are the T � k smallest eigenvalues of

V̂yV̂ �1
"

, (b) the squared Frobenius norm is kŜk2 =
P

T

j=k+1 �̂
2
j
, and (c) diag(Ŝ) = 0.

Then, we apply a second-order expansion of the log function in the RHS of (2). The first-order term

vanishes because
P

T

j=k+1 �̂j = tr(Ŝ) = 0 by Lemma 1 a) and c). The second-order term equals
n

2kŜk
2 by Lemma 1 b). The remainder (third-order) term is op(1) because we have

p
n�̂j = Op(1)
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for j = k + 1, ..., T . This bound results from the expansion of the sample covariance:

V̂y = Ṽy +
1
p
n
 y + op(

1
p
n
) = Ṽy +Op(

1
p
n
), (B.1)

where Ṽy := FF 0 + Ṽ" and  y := 1p
n
("�F 0 + F�0"0) +

p
n
⇣

1
n
""0 � Ṽ"

⌘
, see Equation (E.2)

and Lemma 6 in Appendix E.2, and V̂" = Ṽ" + Op(
1p
n
), see Equation (E.20). Then, V̂yV̂ �1

"
=

ṼyṼ �1
"

+Op(
1p
n
), matrix ṼyṼ �1

"
has unit eigenvalues for order j = k+1, ..., T , and the eigenvalues

of matrices V̂yV̂ �1
"

and ṼyṼ �1
"

differ by quantities of order Op(
1p
n
) by Weyl’s inequalities.

(ii) Next, let us establish the asymptotic expansion of nkŜk2 in order to show equation (3).

Since ĜĜ0V̂ �1
"

= M
F̂ ,V̂"

, we have Ŝ = V̂ �1/2
" ĜŜ⇤Ĝ0V̂ �1/2

" , where Ŝ⇤ = Ĝ0V̂ �1
"

(V̂y � V̂")V̂ �1
"

Ĝ.

Besides, we have 0 = diag(Ŝ) (see Lemma 1 (c)). Therefore, 0 = diag(Ŝ) = V̂ �1
"

diag(ĜŜ⇤Ĝ0) =

2V̂ �1
"

X̂
0
vech(Ŝ⇤), i.e., vech(Ŝ⇤) is in the orthogonal complement of the range of X̂ . 40 It fol-

lows from the local identification assumption A.5 that MX̂ is well-defined and thus vech(Ŝ⇤) =

MX̂vech(Ŝ⇤).41 Next, we have

MX̂vech(Ŝ⇤) = MX̂vech(Ĝ0V̂ �1
"

(V̂y � V̂")V̂
�1
"

Ĝ) = MX̂vech(Ĝ0V̂ �1
"

(V̂y � Ṽ")V̂
�1
"

Ĝ), (B.2)

because the kernel of MX̂ is {vech(Ĝ0DĜ) : D diagonal}. Besides, we have the expansion
p
nvech(Ĝ0V̂ �1

"
(V̂y � Ṽ")V̂ �1

"
Ĝ) = vech(Ẑ⇤

n
) + op(1), where Ẑ⇤

n
= Ĝ0V̂ �1

"
ZnV̂ �1

"
Ĝ. It is be-

cause expansion (B.1) and Ĝ0V̂ �1
"

F = Ĝ0V̂ �1
"

M
F̂ ,V̂"

F = Op(
1p
n
) by the root-n consistency of FA

estimators (see Appendix E.5.1). Using kŜk2 = kŜ⇤
k
2, it follows that

n

2
kŜk2 = nvech(Ŝ⇤)0vech(Ŝ⇤) = nvech(Ŝ⇤)0MX̂vech(Ŝ⇤) = vech(Ẑ⇤

n
)0MX̂vech(Ẑ⇤

n
) + op(1).

(B.3)
40To see this step, write Ĝ = (ĝt,i) = [ĝ1 : · · · : ĝT�k]. By definition of the vech operator, vech(Ĝ0Et,tĜ) =

h
1p
2
ĝ2
t,1 : · · · : 1p

2
ĝ2
t,T�k

: {ĝt,iĝt,j}i<j

i0
. Therefore, X̂

0
= [ 1p

2
ĝ1 � ĝ1 : · · · : 1p

2
ĝT�k � ĝT�k : {ĝi �

ĝj}i<j ]. Thus, for any (T � k) ⇥ (T � k) symmetric matrix A = (ai,j), diag(ĜAĜ0) =
P

T�k

i=1 ai,idiag(ĝiĝ0i) +

2
P

i<j
ai,jdiag(ĝiĝ0j) =

P
T�k

i=1 ai,i(ĝi � ĝi) + 2
P

i<j
ai,j(ĝi � ĝj) = 2X̂

0
vech(A).

41Assumption A.5 is equivalent to X having full column rank by Lemma 7 in Appendix E.4. Besides, from Propo-

sition 8 in Appendix E.6 and the fact that ĜÔ = G + op(1) for some rotation matrix Ô (see below), we have

R̂X̂ = X + op(1) from some orthogonal matrix R̂ . Hence, X̂ is invertible with probability approaching 1.
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From M
F̂ ,V̂"

= MF,V"
+ op(1), we have ĜÔ = G+ op(1) for some (possibly data-dependent) (T �

k)⇥(T�k) orthogonal matrix Ô. Since vech(Ẑ⇤
n
)0MX̂vech(Ẑ⇤

n
) is invariant to post-multiplication

of Ĝ by an orthogonal matrix (see Proposition 8 in Appendix E.6), from (B.3) we get n

2kŜk =

vech(Z⇤
n
)0MXvech(Z⇤

n
) + op(1), which - together with step (i) - yields asymptotic expansion (3).

(iii) Let us now establish the asymptotic normality of vech(Z⇤
n
). For any integer m, we let

Am denote the unique m2
⇥

m(m+1)
2 matrix satisfying vec(S) = Amvech(S) for any m ⇥ m

symmetric matrix S.42 Duplication matrix Am satisfies A0
m
Am = 2Im(m+1)

2
, AmA0

m
= Im2 +

Km,m, and Km,mAm = Am, where Km,m is the commutation matrix (see also Magnus, Neudecker

(2007) Theorem 12 in Chapter 2.8). Then, we have vech(Z⇤
n
) = R0vech(Zn), where Zn =

V �1/2
" ZnV

�1/2
" , R = 1

2A
0
T
(Q ⌦ Q)AT�k, and Q = V �1/2

" G. Matrix R satisfies R0R = Ip. The

next lemma establishes the asymptotic normality of vech(Zn).

Lemma 2 (a) Under Assumptions 1-2, A.2, A.6 (a)-(b), we have ⌦�1/2
n vech(Zn) ) N(0, IT (T+1)

2
)

as n ! 1 and T is fixed, where ⌦n = Dn + nIT (T+1)
2

, and n = 1
n

P
Jn

m=1

⇣P
i 6=j2Im �

2
ij

⌘
. If

additionally Assumption A.6 (c) holds, then vech(Zn) ) N(0,⌦), with ⌦ := D + IT (T+1)
2

.

Lemma 2 yields the asymptotic normality of vech(Z⇤
n
), namely vech(Z⇤

n
) ) N(0,⌦Z⇤), with

⌦Z⇤ = R0⌦R. Part (a) then follows from expansion (3) and the standard result on the distribution

of idempotent quadratic forms of Gaussian vectors.

(b) We have ẑ⇤
m,n

=
P

i2Im Ĝ0V̂ �1
"

(ỹiỹ0i) V̂
�1
"

Ĝ with ỹi = yi � ȳ, since "̂i = M
F̂ ,V̂"

ỹi and

Ĝ0V̂ �1
"

M
F̂ ,V̂"

= Ĝ0V̂ �1
"

. We get ẑ⇤
m,n

=
P

i2Im Ĝ0V̂ �1
"

("̃i"̃0i) V̂
�1
"

Ĝ+
P

i2Im Ĝ0V̂ �1
"

(F�i�0
i
F 0) V̂ �1

"
Ĝ

+
P

i2Im Ĝ0V̂ �1
"

(F�i"̃0i + "̃i�0
i
F 0) V̂ �1

"
Ĝ =: z̃⇤

m,n
+ z⇤

m,n,1 + z⇤
m,n,2, where "̃i = "i � "̄ by us-

ing ỹiỹ0i = "̃i"̃0i + F�i�0
i
F 0 + F�i"̃0i + "̃i�0

i
F 0. Then, we can decompose ⌦̂Z⇤ into a sum of

a leading term and other terms, which are asymptotically negligible, so that ⌦̂Z⇤ = ⌦̃Z⇤ +

op(1), with ⌦̃Z⇤ = 1
n

P
Jn

m=1 vech(z̄
⇤
m,n

)vech(z̄⇤
m,n

)0, with z̄⇤
m,n

defined as z̃⇤
m,n

after replacing

42The explicit form for Am is Am =
⇥p

2(e1 ⌦ e1) : · · · :
p
2(em ⌦ em) : {ei ⌦ ej + ej ⌦ ei}i<j

⇤
, with ei being

the ith unit vector of dimension m.
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"̃i with "i. Let us now show that MX̂⌦̃Z⇤MX̂ = MX⌦Z⇤MX + op(1) up to pre- and post-

multiplication by a rotation matrix and its inverse. We have MX̂vech
⇣
Ĝ0V̂ �1

"
("i"0i) V̂

�1
"

Ĝ
⌘

=

MX̂vech
⇣
Ĝ0V̂ �1

"
("i"0i � �iiV") V̂ �1

"
Ĝ
⌘

, because of the kernel of MX̂ . Moreover, from the prop-

erties of matrix Am introduced in part (a), we have: vech
⇣
Ĝ0V̂ �1

"
("i"0i � �iiV")V̂ �1

"
Ĝ
⌘

= vech
⇣
Q̃0(eie0i � �iiIT )Q̃

⌘
= R̂

0
vech(eie0i � �iiIT ), where ei = V �1/2

" "i, and R̂ := 1
2A

0
T
(Q̃ ⌦

Q̃)AT�k with Q̃ = V 1/2
" V̂ �1

"
Ĝ. We get MX̂vech(z̄⇤

m,n
) = MX̂R̂

0
vech(⇣m,n), where ⇣m,n :=

P
i2Im(eie

0
i
� �iiIT ). Besides, vech(Zn) = 1p

n

P
Jn

m=1 vech(⇣m,n). Then, MX̂⌦̃Z⇤MX̂

= MX̂R̂
0
⌦̃nR̂MX̂ for ⌦̃n := 1

n

P
Jn

m=1 vech(⇣m,n)vech(⇣m,n)0. Further, E[⌦̃n] = V [vech(Zn)]

= ⌦n. Moreover, ⌦̃n � E[⌦̃n] = op(1), by using vec(⌦̃n) = 1
n

P
Jn

m=1 vech(⇣m,n) ⌦ vech(⇣m,n)

and kV [vec(⌦̃n)]k  C 1
n2

P
Jn

m=1 E [kvech(⇣m,n)k4] = o(1), where the latter bound is shown

in the proof of Lemma 2 using Assumption 2 (d). Additionally, by Assumption A.6, we have

⌦n = ⌦+ o(1). Thus, ⌦̃n = ⌦+ op(1). Now, from the proof of part (a) we have ĜÔ = G+ op(1)

for some (T � k) ⇥ (T � k) orthogonal matrix Ô. Then, by Proposition 8 (e) in Appendix E.6,

we have R̂MX̂R̂�1 = RMX + op(1), for a p dimensional orthogonal matrix R̂ ⌘ R(Ô). We

conclude that R̂MX̂⌦̃Z⇤MX̂R̂�1 is a consistent estimator of MX⌦Z⇤MX as n ! 1 and T is

fixed. Part (b) then follows from the continuity of eigenvalues for symmetric matrices, and their

invariance under pre- and post-multiplication by an orthogonal matrix and its transpose.

(c) Under H1(k) and Assumption A.7 (a), we have F̂
p

! F ⇤ and V̂"
p

! V ⇤
"

. Then, Ŝ p

! S⇤

with S⇤ = (V ⇤
"
)�1/2MF ⇤,V ⇤

"
(Vy � V ⇤

"
)M 0

F ⇤,V ⇤
"
(V ⇤

"
)�1/2

6= 0. Indeed, if S⇤ were the null matrix,

then we would have MF ⇤,V ⇤
"
(Vy � V ⇤

"
)M 0

F ⇤,V ⇤
"
= 0, which implies Vy � V ⇤

"
= PF ⇤,V ⇤

"
(Vy � V ⇤

"
) +

(Vy � V ⇤
"
)P 0

F ⇤,V ⇤
"
� PF ⇤,V ⇤

"
(Vy � V ⇤

"
)P 0

F ⇤,V ⇤
"

, with PF ⇤,V ⇤
"
= IT � MF ⇤,V ⇤

"
. From the probability

limits of Equation (FA2) for pseudo values, we have PF ⇤,V ⇤
"
(Vy � V ⇤

"
) = (Vy � V ⇤

"
)P 0

F ⇤,V ⇤
"

=

PF ⇤,V ⇤
"
(Vy � V ⇤

"
)P 0

F ⇤,V ⇤
"
= F ⇤(F ⇤)0 (see proof of Lemma 1 (c)). Thus Vy = F ⇤(F ⇤)0 + V ⇤

"
, in

contradiction with Assumption A.7 (b). Thus, nkŜk2 � Cn, w.p.a. 1, for a constant C > 0.

Moreover, using vech(ẑ⇤
m,n

) = vech(Ĝ0V̂ �1
"

(
P

i2Im ỹiỹ0i)V̂
�1
"

Ĝ) and the conditions on ⇥, we get

kvech(ẑ⇤
m,n

)k  C
P

i2Im kỹik2. Then, from Assumptions A.2 and A.3, E[kMX̂⌦̂Z⇤MX̂k] 

C 1
n

P
Jn

m=1 b
2
m,n

= O(n
P

Jn

m=1 B
2
m,n

). Moreover,
P

Jn

m=1 B
2
m,n

= o(1). Indeed, Assumption 2
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(d) implies Bm,n  cn� �

�+1 uniformly in m, for any c > 0 and n large enough, and hence
P

Jn

m=1 B
2
m,n

= cn� �

�+1
P

Jn

m=1 Bm,n  c, for any c > 0 and n large. Part (c) follows from the

Lipschitz continuity of eigenvalues for symmetric matrices.

Proof of Proposition 2: We have LR(k) = n

2kŜk
2 + op(1) = vech(Z⇤

n
)0MXvech(Z⇤

n
) +

op(1) from expansion (3). Moreover, the kernel of matrix MX implies that MXvech(Z⇤
n
) =

A(F, V")zAD

n
, where vector zAD

n
stacks the T (T � 1)/2 above-diagonal elements of matrix Zn

and A(F, V") is a deterministic matrix whose elements only depend on F, V". From Conditions (a)

and (b) of Proposition 2, and Lemma 2, we have zAD

n
) N(0,⌦z), where the diagonal matrix ⌦z

is the same as if the errors were independent normally distributed - up to replacing q with q + .

Proof of Proposition 3: Let us first get the asymptotic expansion of V̂y � Ṽ" =
1
n
Ỹ Ỹ 0

� Ṽ".

With the drifting DGP Y = µ10
n
+ F�0 + Fk+1�0

loc
+ ", and using �̄ = 0, �̄loc = 0, 1

n
[� : �loc]0[� :

�loc] = Ik+1 and Lemma 6 (a) in Appendix D, we get V̂y � Ṽ" = FF 0 + 1p
n
 y,loc +Ry, where

 y,loc = ck+1⇢k+1⇢
0
k+1 +

1
p
n
("�F 0 + F�0"0) +

p
n

✓
1

n
""0 � Ṽ"

◆
, (B.4)

and Ry =
1
n
("�locF 0

k+1 +Fk+1�0
loc
"0)+ [Fk+1F 0

k+1 �n�1/2ck+1⇢k+1⇢0k+1] + op(
1p
n
). Using Fk+1 =

p
�k+1⇢k+1 and

p
n�k+1 = ck+1 + o(1), we get Ry = op(1/

p
n). Subsituting the expansion for

V̂y � Ṽ" into (B.2), and repeating the arguments leading to expansion (3) yields expansion (5).

From Lemma 2, we get vech(Z⇤
n,loc

) ) N(ck+1vech(⇠k+1⇠0k+1),⌦Z⇤) as n ! 1. The result then

follows from the standard result on the distribution of idempotent quadratic forms of non-central

Gaussian vectors.

Proof of Proposition 4: The proof of part (a) is in three steps. (i) The testing problem asymp-

totically simplifies to the null hypothesis H0 : �1 = ... = �df = 0 vs. the alternative hypothesis

H1 : 9�j > 0, j = 1, ..., df . Let us define �0 = (0, ..., 0)0 for the null hypothesis and pick a

given vector �1 = (�1, ...,�df )0 in the alternative hypothesis, and consider the test of �0 versus

�1 (simple hypothesis). By Neyman-Pearson Lemma, the most powerful test for �0 versus �1

rejects the null hypothesis when f(z;�1, ...,�df )/f(z; 0, ..., 0) is large, i.e., the test function is

�(z) = 1
n

f(z;�1,...,�df )
f(z;0,...,0) � C

o
for a constant C > 0 set to ensure the correct asymptotic size.
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(ii) Let us now show that the density ratio f(z;�1,...,�df )
f(z;0,...,0) is an increasing function of z. To show

this, we can rely on an expansion of the density of
P

df

j=1 µj�2(1,�2
j
) in terms of central chi-square

densities (Kotz, Johnson, and Boyd (1967) Equations (144) and (151)):

f(z;�1, ...,�df ) =
1X

k=0

c̄k(�1, ...,�df )g(z; df + 2k, 0), (B.5)

where the coefficients c̄k(�1, ...,�df ) = Ae�
Pdf

j=1 �
2
j
/2E[Q(�1, ...,�df )

k]/k! involve moments of

the quadratic form Q(�1, ...,�df ) = (1/2)
dfX

j=1

⇣
⌫1/2
j

Xj + �j(1� ⌫j)
1/2
⌘2

of the mutually inde-

pendent variables Xj ⇠ N(0, 1), A =
Q

df

j=1 µ
�1/2
j

, and ⌫j = 1 �
1
µj

min` µ`. Without loss

of generality for checking the monotonicity, we have rescaled the density so that minj µj =

1. Then, from (B.5), we get the ratio: f(z;�1,...,�df )
f(z;0,...,0) =

P1
k=0 c̄k(�1,...,�df )g(z;df+2k,0)P1

k=0 c̄k(0,...,0)g(z;df+2k,0) . By dividing

both the numerator and the denominator by the central chi-square density g(z; df, 0), we get
f(z;�1,...,�df )
f(z;0,...,0) = e�

Pdf

j=1 �
2
j
/2

P1
k=0 ck(�1,...,�df ) k(z)P1

k=0 ck(0,...,0) k(z)
=: e�

Pdf

j=1 �
2
j
/2 (z;�1, ...,�df ), where  k(z) :=

g(z; df + 2k, 0)/g(z; df, 0) =
�( df2 )

2k�( df2 +k)
zk is the ratio of central chi-square distributions with

df + 2k and df degrees of freedom, and ck(�1, ...,�df ) = E[Q(�1, ...,�df )k]/k!. We use the

short notation ck(�) := ck(�1, ...,�df ) and ck(0) := ck(0, ..., 0). The factor e�
Pdf

j=1 �
2
j
/2 does

not impact on the monotonicity of the density ratio. We take the derivative of  (z;�1, ...,�df )

with respect to argument z and get @z (z;�1, ...,�df ) =
(
P1

k=1 ck(�) 
0
k
(z))(1+

P1
k=1 ck(0) k(z))

(
P1

k=0 ck(0) k(z))
2 �

(1+
P1

k=1 ck(�) k(z))(
P1

k=1 ck(0) 
0
k
(z))

(
P1

k=0 ck(0) k(z))
2 . The sign is given by the difference of the numerators, which

is
P1

k=1[ck(�)� ck(0)] 0
k
(z) +

P1
k,l=1,k 6=l

ck(�)cl(0)[ 0
k
(z) l(z)�  k(z) 0

l
(z)] =

P1
k=1[ck(�)�

ck(0)] 0
k
(z) +

P1
k,l=1,k>l

[ck(�)cl(0) � cl(�)ck(0)][ 0
k
(z) l(z) �  k(z) 0

l
(z)]. We use  0

k
(z) =

�( d2 )k

2k�( d2+k)
zk�1 and  0

k
(z) l(z) �  k(z) 0

l
(z) = (k � l)

�( d2 )
2

2k+l�( d2+k)�( d2+l)
zk+l�1 for k > l and z � 0.

The difference of the numerators in the derivative of the density ratio becomes:
1
2

�( d2 )

�( d2+1)
[c1(�) � c1(0)] +

1
22

2�( d2 )

�( d2+2)
[c2(�) � c2(0)]z +

P1
m=3

1
2m

⇣
m

�( d2 )

�( d2+m)
[cm(�)� cm(0)]

+
P

k>l�1,k+l=m

(k�l)�( d2 )
2

�( d2+k)�( d2+l)
[ck(�)cl(0)� cl(�)ck(0)]

⌘
zm�1 =

P1
m=1

1
2mmz

m�1, with m :=
P

k>l�0,k+l=m
(k�l)

�( d2 )
2

�( d2+k)�( d2+l)
[ck(�)cl(0)�cl(�)ck(0)]. A direct calculation shows that 1,2 �

0. Hence, a sufficient condition for monotonicity of the density ratio is m � 0, for all m � 3, i.e.,
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Inequalities (6). Thus, the test rejects for large values of the argument, i.e., �(z) = 1{z � C̄},

where the constant C̄ is determined by fixing the asymptotic size under the null hypothesis.

(iii) Since the test function � does not depend on �1, it is AUMPI in the class of hypothesis

tests based on the LR statistic (or the squared norm statistic). It yields part (a).

Let us now turn to the proof of part (b). From the definition of the m coefficients written as

m =
P

j>l�0,j+l=m

(j�l)�( df2 )2

�( df2 +j)�( df2 +l)
cj(0)cl(0)[

cj(�)
cj(0)

�
cl(�)
cl(0)

], it is sufficient to get m � 0, for all m,

that sequence cj(�)
cj(0)

, for j = 0, 1, ..., is increasing. To prove that, we link the coefficients cj(�) to

the complete exponential Bell’s polynomials (Bell (1934)) and establish the following recurrence.

Lemma 3 We have cl+1(�) =
1

l+1

P
l

i=0

⇣
1
2

P
df

j=1 ⌫
i

j

⇥
⌫j + (i+ 1)(1� ⌫j)�2j

⇤⌘
cl�i(�), for l � 0.

We use cl(�)
cl(0)

= c̃l(�)
�̄l

, where we obtain the sequences �̄l := cl(0)⌫
�l

df
and c̃l(�) := cl(�)⌫

�l

df
by

standardization with ⌫�l

df
. From Lemma 3, we have �̄l+1 =

1
l+1

P
l

i=0
1
2

⇣
1 +

P
df�1
j=2 ⇢i+1

j

⌘
�̄l�i with

�̄0 = 1, and c̃l+1(�) =
1

l+1

P
l

i=0

⇣
1
2

P
df

j=1 ⇢
i

j

h
⇢j +

i+1
⌫df

(1� ⌫j)�2j

i⌘
c̃l�i(�) with c̃0(�) = 1 (note

that ⇢1 = 0 and ⇢df = 1). To prove that sequence c̃l(�)
�̄l

is increasing, the next lemma provides a

sufficient condition from "separation" of the coefficients that define the recursive relations.

Lemma 4 Let (ai) be a real sequence, and let bi = 1
2

⇣
1 +

P
df�1
j=2 ⇢i

j

⌘
, for i � 1, where 0  ⇢j 

1. Let sequences (gl) and (cl) be defined recursively by gl+1 = 1
l
(b1gl + b2gl�1 + ... + bl) and

cl+1 = 1
l
(a1cl + a2cl�1 + ... + al), with g1 = c1 = 1. Suppose that ai � max{df�1

2 , 1}, for all i

(separation condition). Then, sequence ( cl
gl
) is increasing.

We apply Lemma 4 to sequences c̃l(�) and �̄l. We detail the case df � 3 (for df = 2 the

analysis is simpler). The separation condition 1
2

P
df

j=1 ⇢
i

j

h
⇢j +

i+1
⌫df

(1� ⌫j)�2j

i
�

df�1
2 , for i = 0,

yields �21 +
P

df

j=2(1 � ⌫j)�2j � ⌫df
⇣
df � 2�

P
df�1
j=2 ⇢j

⌘
, and, for i � 1, it yields

P
df�1
j=2 ⇢i

j
(1 �

⌫j)�2j + (1� ⌫df )�2df �
⌫df

i+1

⇣
df � 2�

P
df�1
j=2 ⇢i+1

j

⌘
. Inequalities (7) follow.

52



C Monte Carlo experiments

This appendix gives a Monte Carlo assessment of size and power and selection procedure for

the number of factors for the LR test under non-Gaussian errors. Let us start with a description

of the DGP we use in our simulations. In the DGP, the betas are �i
i.i.d.
⇠ N(0, Ik), with k =

3, and the matrix of factor values is F = V 1/2
" U�1/2, where U = F̃ (F̃ 0F̃ )�1/2 and vec(F̃ ) ⇠

N(0, ITk). We generate the diagonal elements of V" = diag(h1, ..., hT ) through a common time-

varying component in idiosyncratic volatilities (Renault, Van Der Heijden and Werker (2023)) via

the ARCH ht = 0.6 + 0.5ht�1z2t�1, with zt ⇠ IIN(0, 1). This common component induces a

deviation from spherical errors. The diagonal matrix � = Tdiag(3, 2, n�̄) yields 1
T
F 0V �1

"
F =

diag(3, 2, n�̄), i.e., the "signal-to-noise" ratios equal 3, 2 and n�̄ for the three factors. We take

̄ = 1 to study the size of LR(2). To study the power of LR(2), we take ̄ = 0 to get a global

alternative and ̄ = 1/2 to get a local alternative (weak factor). We generate the idiosyncratic

errors by "i,t = h1/2
t h1/2

i,t
zi,t, where hi,t = ci + ↵ihi,t�1z2i,t�1, with zi,t ⇠ IIN(0, 1) mutually

independent of zt. We use the constraint ci = �ii(1� ↵i) with uniform draws for the idiosyncratic

variances V ["i,t] = �ii
i.i.d.
⇠ U [1, 4], so that V ["i,t/h

1/2
t ] = ci

1�↵i

= �ii. Such a setting allows

for cross-sectional heterogeneity in the variances of the scaled "i,t/h
1/2
t . The ARCH parameters

are uniform draws ↵i

i.i.d.
⇠ U [0.2, 0.5] with an upper boundary of the interval ensuring existence

of fourth-order moments. We generate 5, 000 panels of returns of size n ⇥ T for each of the 100

draws of the T ⇥ k factor matrix F and common ARCH process ht, t = 1, ..., T , in order to keep

the factor values constant within repetitions, but also to study the potential heterogeneity of size

and power results across different factor paths. The factor betas �i, idiosyncratic variances �ii, and

individual ARCH parameters ↵i are the same across all repetitions in all designs of the section.

We use three different cross-sectional sizes n = 500, 1000, 5000, and three values of time-series

dimension T = 6, 12, 24. The variance matrix ⌦̂Z̄⇤ is computed using the parametric structure of

Lemma 9. We get the T �1 estimated parameters by least squares, as detailed in OA Section E.5.3

i). The p-values are computed over 5, 000 draws.
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We provide the size and power results in % in Table 1. Size of LR(2) is close to its nominal

level 5%, with size distortions smaller than 1%, except for the case T = 24 and n = 500. The

impact of the factor values on size is small for T above 6. The labels global power and local power

refer to ̄ = 0 and ̄ = 1/2, and power computation is not size adjusted. The global power is

equal to 100%, while the local power ranges from 80% to 85% for T = 6, and is equal to 100% for

T = 12 and T = 24. The approximate constancy of local power w.r.t. n, for large n, is coherent

with theory implying convergence to asymptotic local power. In the last panel of Table 1, we

provide the average of the estimated number k̂LR of factors, obtained by sequential testing with

LR(k), for k = 0, . . . , kmax, with kmax = 2, 7, 17 for T = 6, 12, 24 (see Table 3 of OA). We follow

the procedure described in Section 4.2, with size ↵n = 10/n. If we reject for all k = 0, . . . , kmax,

then the estimated number of factors is set to k̂LR = kmax + 1. For all sample sizes T = 6, 12, 24,

the average estimated number of factors is very close to the true number 2. We can conclude that

our selection procedure for the number of factors works well in our simulations.

D Proofs of Lemmas 1-4

Proof of Lemma 1: Let Û be the T ⇥ k matrix whose orthonormal columns are the eigenvectors

for the k largest eigenvalues of matrix V̂ �1/2
" V̂yV̂

�1/2
" . Those eigenvalues are 1 + �̂j , j = 1, ..., k,

while it holds F̂ = V̂ 1/2
" Û �̂1/2, where �̂ = diag(�̂1, ..., �̂k). We have IT � Û Û 0 = IT �

V̂ �1/2
" F̂ �̂�1F̂ 0V̂ �1/2

" = IT�V̂ �1/2
" F̂ (F̂ 0V̂ �1

"
F̂ )�1F̂ 0V̂ �1/2

" = V̂ �1/2
" M

F̂ ,V̂"
V̂ 1/2
" = V̂ 1/2

" M 0
F̂ ,V̂"

V̂ �1/2
" .

Thus, Ŝ = (IT � Û Û 0)
⇣
V̂ �1/2
" V̂yV̂

�1/2
" � IT

⌘
(IT � Û Û 0). By the spectral decomposition of

V̂ �1/2
" V̂yV̂

�1/2
" , we get (IT � Û Û 0)

⇣
V̂ �1/2
" V̂yV̂

�1/2
" � IT

⌘
(IT � Û Û 0) =

P
T

j=k+1 �̂jP̂j , where the

P̂j are the orthogonal projection matrices onto the eigenspaces for the T � k smallest eigenvalues.

Then, Part (a) follows. Part (b) is a consequence of the squared Frobenius norm of a symmetric ma-

trix being equal to the sum of its squared eigenvalues. For part (c), let P
F̂ ,V̂"

= IT �M
F̂ ,V̂"

and note

that F̂ F̂ 0 = P
F̂ ,V̂"

(V̂y�V̂")+(V̂y�V̂")P 0
F̂ ,V̂"

�P
F̂ ,V̂"

(V̂y�V̂")P 0
F̂ ,V̂"

= V̂y�V̂"�M
F̂ ,V̂"

(V̂y�V̂")M 0
F̂ ,V̂"

,

where the first equality is because the three terms on the RHS are all equal to F̂ F̂ 0 by (FA2). The
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Size (%) Global Power (%) Local Power (%) k̂LR

T 6 12 24 6 12 24 6 12 24 6 12 24

n = 500 6.0 5.2 6.7 100 100 100 80 100 100 2.0 2.0 2.1

(2.8) (0.3) (0.4) (0.1) (0.0) (0.0) (20.5) (0.0) (0.0) (0.1) (0.1) (0.2)

n = 1000 5.6 4.9 5.5 100 100 100 81 100 100 2.0 2.0 2.0

(2.3) (0.3) (0.3) (0.0) (0.0) (0.0) (21.1) (0.0) (0.0) (0.0) (0.0) (0.1)

n = 5000 5.3 5.0 4.9 100 100 100 85 100 100 2.0 2.0 2.0

(0.9) (0.3) (0.3) (0.0) (0.0) (0.0) (20.4) (0.0) (0.0) (0.0) (0.0) (0.1)

Table 1: For each sample size combination (n, T ), we provide the average size and power in %

for the statistic LR(2) (first three panels), and the average of the estimated number k̂LR of factors

obtained by sequential testing (last panel). Nominal size is 5% for the first three panels, and

↵n = 10/n for the last panel. Global power refers to the global alternative ̄ = 0, and local power

refers to the local alternative ̄ = 0.5. In parentheses, we report the standard deviations for size,

power, and k̂LR across 100 different draws of the factor path.
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conclusion follows from (FA1) and V̂" being diagonal.

Proof of Lemma 2: We have Zn = 1p
n
(W⌃W 0

�Tr(⌃)IT ). Hence, (Zn)tt =
1p
n

P
i,j
(wi,twj,t�

1{i=j})�ij = 1p
n

P
Jn

m=1 ⇣
tt

m,n
, with ⇣tt

m,n
=
P

i2Im [w
2
i,t

� 1]�ii + 2
P

i,j2Im
i<j

wi,twj,t�ij, together

with (Zn)ts = 1p
n

P
i,j
wi,twj,s�ij = 1p

n

P
Jn

m=1 ⇣
ts

m,n
, t 6= s, with ⇣ts

m,n
=
P

i2Im wi,twi,s�ii +
P

i,j2Im
i<j

wi,twj,s�ij +
P

i,j2Im
i>j

wi,twj,s�ij, t 6= s, so that vech(Zn) =
1p
n

P
Jn

m=1 vech(⇣m,n), where

⇣m,n is the T ⇥ T matrix having element ⇣ts
m,n

in position (t, s). Hence, vech(Zn) is the row sum

of a triangular array {vech(⇣m,n)}1mn of independent centered random vectors. Let ⌦m,n :=

V [vech(⇣m,n)]. Using Assumption 2 (a), we compute (i) E[(⇣tt
m,n

)2] =
P

i2Im(E[w4
i,t
] � 1)�2

ii
+

2
P

i,j2Im
i 6=j

�2
ij

; (ii) E[(⇣ts
m,n

)2] =
P

i2Im E[w2
i,t
w2

i,s
]�2

ii
+
P

i,j2Im
i 6=j

�2
ij
, t 6= s; (iii) E[⇣tt

m,n
⇣ss
m,n

] =
P

i2Im E[w2
i,t
w2

i,s
�1]�2

ii
, t 6= s; (iv) E[⇣tt

m,n
⇣rp
m,n

] =
P

i2Im E[w2
i,t
wi,rwip]�2

ii
, r 6= p; (v) E[⇣ts

m,n
⇣rp
m,n

]

=
P

i2Im E[wi,twi,swi,rwi,p]�2
ii
, t 6= s, r 6= p. It follows that V [vech(Zn)] =

1
n

P
Jn

m=1⌦m,n =

Dn+nIT (T+1)
2

= ⌦n. The eigenvalues of Dn are bounded away from 0 under Assumption A.6 (b),

because for any unit vector ⇠ 2 RT (T+1)/2, we have ⇠0Dn⇠ �
1
n

P
n

i=1 1i2S̄�
2
ii
⇠0V [vech(wiw0

i
)]⇠ �

c 1
n

P
n

i=1 1i2S̄�
2
ii
� c

�
1� 1

n

P
n

i=1(1� 1i2S̄)�ii
�2

� c
�
1� C̄ 1

n

P
n

i=1(1� 1i2S̄)
�2

�
c

4 , for all n.

We use the multivariate Lyapunov condition k⌦�1/2
n k

4 1
n2

P
Jn

m=1 E[kvech(⇣m,n)k4] ! 0 to invoke

a CLT. Since kA�1/2
k
4


k
2

�2
k
(A)

and kxk4  k
P

k

j=1 x
4
j
, for any k⇥ k positive semi-definite matrix

A and k ⇥ 1 vector x, it suffices to check that 1
n2

P
Jn

m=1 E[(⇣ts
m,n

)4] ! 0, for all t, s. Besides, we

can show that there exists a constant M > 0, such that E[(⇣ts
m,n

)4]  Mb2(1+�)m,n , for all m,n, t, s.

We get 1
n2

P
Jn

m=1 E[(⇣ts
m,n

)4]  M 1
n2

P
Jn

m=1 b
2(1+�)
m,n = Mn2�

P
Jn

m=1 B
2(1+�)
m,n = o(1), under As-

sumption 2 (d). Then, ⌦�1/2
n vech(Zn) ) N(0, IT (T+1)

2
) by the multivariate Lyapunov CLT. Under

Assumptions A.6 (a)-(c), ⌦n ! ⌦ follows from the Slutsky theorem, and ⌦ is positive definite.

Proof of Lemma 3: We have cj(�) = 1
j!E[Qj] = 1

j!
d
j (0)
duj where  (u) := E[exp(uQ)] =

exp[ (u)] is the Moment Generating Function (MGF) of Q = 1
2

P
df

j=1(
p
⌫
j
Xj+

p
1� ⌫j�j)2 with

Xj ⇠ i.i.d.N(0, 1). By the independence of variables Xj , we get (u) =
Q

df

j=1E[exp(u2 (
p
⌫
j
Xj+

p
1� ⌫j�j)2] where E[exp(u2 (

p
⌫
j
Xj +

p
1� ⌫j�j)2] = (1� ⌫ju)�1/2e

1
2

(1�⌫j)u

1�⌫ju
�
2
j , for u < 1/⌫j .

Thus we get the log MGF  (u) = 1
2

P
df

j=1

h
� log(1� ⌫ju) +

(1�⌫j)u
1�⌫ju �

2
j

i
, for u < 1/⌫df . Its lth
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order derivative evaluated at u = 0 is

 (l)(0) =
(l � 1)!

2

dfX

j=1

⌫ l�1
j

⇥
⌫j + l(1� ⌫j)�

2
j

⇤
, l � 0. (D.1)

By using the Faa di Bruno formula for the derivatives of a composite function, we have
d
l

dul e (u) = e (u)Bl( 0(u), 
00
(u), ..., (l)(u)), where Bl is the lth complete exponential Bell’s poly-

nomial (Bell (1934)). Hence,  (l)(0) = Bl( 0(0), 
00
(0), ..., (l)(0)). The complete Bell’s polyno-

mials satisfy the recurrence relation Bl+1(x1, x2, ..., xl+1) =
P

l

i=0

�
l

i

�
Bl�i(x1, ..., xl�i)xi+1. Thus,

 (l+1)(0) =
P

l

i=0

�
l

i

�
 (l�i)(0) (i+1)(0). After standardization with the factorial term, and using

equation (D.1), the conclusion follows.

Proof of Lemma 4: The proof is in four steps. (i) We first show that (ci) is increasing, i.e.,

Gc

i
:= ci+1 � ci � 0 for all i. For this purpose, from the recursive relation defining ci+1 we have:

ci+1 =
1

i

�
a1(ci�1 +Gc

i�1) + a2(ci�2 +Gc

i�2) + · · ·+ ai�1(c1 +Gc

1) + ai
�

=
1

i

�
(a1 � 1)Gc

i�1 + (a2 � 1)Gc

i�2 + · · ·+ (ai�1 � 1)Gc

1 + (ai � 1)
�

+
1

i

�
Gc

i�1 +Gc

i�2 + · · ·+Gc

1 + 1
�
+

1

i
(a1ci�1 + a2ci�2 + · · ·+ ai�1) .

The second term in the RHS is equal to 1
i
ci. Using a1ci�1 + a2ci�2 + · · · + ai�1 = (i � 1)ci,

the third term in the RHS is equal to i�1
i
ci. Thus, by bringing these two terms in the LHS, we

get Gc

i
= 1

i

�
(a1 � 1)Gc

i�1 + (a2 � 1)Gc

i�2 + · · ·+ (ai�1 � 1)Gc

1 + (ai � 1)
�
, for all i � 2, with

Gc

1 = a1 � 1. Since ai � 1 for all i, we get Gc

i
� 0 for all i � 1 by an induction argument .

(ii) We now strengthen the result in step (i) and show that Hc

i
:= ci+1 � ci

⇣+i�1
i

� 0 for all i,

with ⇣ = max{df�1
2 , 1}. Similarly as in step (i), we have

ci+1 =
1

i

�
(a1 � ⇣)Gc

i�1 + (a2 � ⇣)Gc

i�2 + · · ·+ (ai�1 � ⇣)Gc

1 + (ai � ⇣)
�

+
⇣

i

�
Gc

i�1 +Gc

i�2 + · · ·+Gc

1 + 1
�
+

1

i
(a1ci�1 + a2ci�2 + · · ·+ ai�1) ,

where the second term in the RHS equals ⇣

i
ci, and the third term equals i�1

i
ci. Thus, we get

Hc

i
= 1

i

�
(a1 � ⇣)Gc

i�1 + (a2 � ⇣)Gc

i�2 + · · ·+ (ai�1 � ⇣)Gc

1 + (ai � ⇣)
�
, for all i. By step (i),

we have Gc

i
� 0 for i � 1. Using the separation condition ai � ⇣ for all i, we get Hc

i
� 0 for all i.
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(iii) We show that Hg

i
:= gi+1 � gi

⇣+i�1
i

 0 for all i � 1. For df = 2 this statement follows

with ⇣ = 1 since gi+1 =
1
2i(gi + gi�1 + ...+ 1) = 2i�1

2i gi and hence (gi) is decreasing. Let us now

consider the case df � 3 with ⇣ = df�1
2 . As above we have Hg

i
= 1

i

P
i

l=1(bl � ⇣)Gg

i�l
, where

Gg

i
:= gi+1 � gi. We plug in bl � ⇣ = 1

2

P
df�1
j=2 (⇢l

j
� 1) = 1

2

P
df�1
j=2 (⇢j � 1)(1 + ⇢j + ...+ ⇢l�1

j
) =

1
2

P
df�1
j=2 (⇢j � 1)

P
l

k=1 ⇢
k�1
j

. Thus, we get:

Hg

i
=

1

2i

df�1X

j=2

(⇢j � 1)
iX

l=1

lX

k=1

⇢k�1
j

Gg

i�l
=

1

2i

df�1X

j=2

(⇢j � 1)
iX

k=1

⇢k�1
j

iX

l=k

Gg

i�l

=
1

2i

df�1X

j=2

(⇢j � 1)
iX

k=1

⇢k�1
j

gi�k+1 =
1

2i

df�1X

j=2

(⇢j � 1)
�
gi + ⇢jgi�1 + ...+ ⇢i�1

j

�
 0.

(iv) The inequalities established in steps (ii) and (iii) imply ci+1

ci
�

⇣+i�1
i

and gi+1

gi


⇣+i�1
i

for

all i. Then, we get ci+1

ci
�

gi+1

gi
, that is equivalent to ci+1

gi+1
�

ci

gi
, for all i, because the sequences ci

and gi are strictly positive. The conclusion follows.

E Additional theory

E.1 Pseudo likelihood and PML estimator

The FA estimator is the PML estimator based on the Gaussian likelihood function obtained from

the pseudo model yi = µ+ F�i + "i with �i ⇠ N(0, Ik) and "i ⇠ N(0, V") mutually independent

and i.i.d. across i = 1, ..., n. Then, yi ⇠ N(µ,⌃(✓)) under this pseudo model, where ⌃(✓) :=

FF 0 + V" and ✓ := (vec(F )0, diag(V")0)0 2 Rr with r = (k + 1)T . It yields the pseudo log-

likelihood function L̂(✓, µ) = �
1
2 log |⌃(✓)|�

1
2n

P
n

i=1(yi�µ)0⌃(✓)�1(yi�µ) = �
1
2 log |⌃(✓)|�

1
2Tr

⇣
V̂y⌃(✓)�1

⌘
�

1
2(ȳ � µ)0⌃(✓)�1(ȳ � µ), up to constants, where ȳ = 1

n

P
n

i=1 yi and V̂y =

1
n

P
n

i=1(yi � ȳ)(yi � ȳ)0. We concentrate out parameter µ to get its estimator µ̂ = ȳ. Then,

estimator ✓̂ = (vec(F̂ )0, diag(V̂")0)0 is defined by the maximization of

L̂(✓) := �
1

2
log |⌃(✓)|�

1

2
Tr
⇣
V̂y⌃(✓)

�1
⌘
, (E.1)
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subject to the normalization restriction that F 0V �1
"

F is a diagonal matrix, with diagonal elements

ranked in decreasing order.43

E.2 Global identification and consistency

The population criterion L0(✓) is defined in Appendix A, with Vy = V 0
y
= ⌃(✓0) = F0F 0

0 + V 0
"

.

Lemma 5 The following conditions are equivalent: a) the true value ✓0 is the unique maximizer

of L0(✓) for ✓ 2 ⇥; b) ⌃(✓) = ⌃(✓0), ✓ 2 ⇥) ✓ = ✓0, up to sign changes in the columns of F .

They yield the global identification in the FA model.

In Lemma 5, condition a) is the standard identification condition for a M-estimator with pop-

ulation criterion L0(✓). Condition (b) is the global identification condition based on the variance

matrix as in Anderson and Rubin (1956). Condition (b) corresponds to our Assumption A.4.

Let us now establish the consistency of the FA estimators in our setting. Write V̂y =
1
n

P
n

i=1("i�

"̄)("i�"̄)0+F [ 1
n

P
n

i=1(�i��̄)(�i��̄)
0]F 0+F [ 1

n

P
n

i=1(�i��̄)("i�"̄)
0]+[ 1

n

P
n

i=1("i�"̄)(�i��̄)
0]F 0,

where "̄ = 1
n

P
n

i=1 "i and �̄ = 1
n

P
n

i=1 �i. Under the normalization in Assumption A.1 we have:

V̂y =
1

n
""0 � "̄"̄0 + FF 0 + F

✓
1

n
"�

◆0

+

✓
1

n
"�

◆
F 0. (E.2)

Lemma 6 Under Assumptions 1, 2, and A.2, A.3, as n ! 1, we have: (a) "̄ = op(
1

n1/4 ), (b)
1
n
""0

p

! V 0
"

, and (c) 1
n
"�

p

! 0.

From Equation (E.2) and Lemma 6, we have V̂y

p

! V 0
y

. Thus, L̂(✓) converges in probability to

L0(✓) as n ! 1, uniformly over ⇥ compact. From standard results on M-estimators, we get

consistency of ✓̂. Moreover, from ȳ = µ+ "̄, we get the consistency of µ̂.

43If the risk-free rate vector is considered observable, we can rewrite the model as ỹi = F �̃i + "i = µ+ F�i + "i,

where ỹi = yi�rf is the vector of excess returns and µ = Fµ
�̃

. It corresponds to a constrained model with parameters

✓ and µ
�̃

. The maximization of the corresponding Gaussian pseudo likelihood function leads to a constrained FA

estimator, that we do not consider in this paper since it does not match a standard FA formulation.
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Proposition 5 Under Assumptions 1, 2, and A.2-A.4, the FA estimators F̂ , V̂" and µ̂ are consistent

as n ! 1 and T is fixed.

Anderson and Rubin (1956) establish consistency in Theorem 12.1 (see beginning of the proof,

page 145) within a Gaussian ML framework. Anderson and Amemiya (1988) provide a version of

this result in their Theorem 1 for generic distribution of the data, dispensing for compacity of the

parameter set but using a more restrictive identification condition.

E.3 Asymptotic expansions of estimators V̂" and F̂

The FA estimators V̂" and F̂ are consistent M-estimators under nonlinear constraints, and admit

expansions at first order for fixed T and n ! 1, namely V̂" = Ṽ"+
1p
n
 "+op(

1p
n
) and F̂j = Fj+

1p
n
 Fj

+ op(
1p
n
) (see Appendix E.5.1). The next proposition (new to the literature) characterizes

the diagonal random matrix  " and the random vectors  Fj
by using conditions (FA1) and (FA2)

in Section 2 (see proof at the end of the section).

Proposition 6 Under Assumptions 1, 2, and A.1-A.4, A.6, we have (a) for j = 1, ..., k

 Fj
= Rj( y � ")V

�1
"

Fj + ⇤j "V
�1
"

Fj, (E.3)

where Rj := 1
2�j

PFj ,V"
+ 1

�j
MF,V"

+
P

k

`=1, 6̀=j

1
�j��`

PF`,V"
and ⇤j := �

P
k

`=1,`6=j

�l

�j��`
PF`,V"

and

PFj ,V"
= Fj(F 0

j
V �1
"

Fj)�1F 0
j
V �1
"

= 1
�j
FjF 0

j
V �1
"

is the GLS orthogonal projection onto Fj . Further,

(b) the diagonal matrix  " is such that:

diag
�
MF,V"

( y � ")M
0
F,V"

�
= 0. (E.4)

Equation (E.3) yields the asymptotic expansion of the eigenvectors by accounting for esti-

mation errors of matrix V̂yV̂ �1
"

(first term) and of the normalization constraint (second term). To

interpret Equation (E.4), we can observe that the matrix MF,V"
( y� ")M 0

F,V"
yields the first-order
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term in the asymptotic expansion of
p
nŜ (up to the left- and right-multiplication by diagonal ma-

trix V �1/2
" ). Thus, Equation (E.4) is implied by the property that the diagonal terms of matrix Ŝ

are equal to zero as stated in Lemma 1 (c).

Let us now give the explicit expression of  ". By using MF,V"
 yM 0

F,V"
= MF,V"

ZnM 0
F,V"

, we

can rewrite Equation (E.4) as diag
�
MF,V"

(Zn � ")M 0
F,V"

�
= 0. Now, since  " is diagonal, we

have diag
�
MF,V"

 "M 0
F,V"

�
= M�2

F,V"
diag( "), where M�2

F,V"
= MF,V"

�MF,V"
. Thus, we get:

M�2
F,V"

diag( ") = diag(MF,V"
ZnM

0
F,V"

). (E.5)

To have a unique solution for vector diag( "), we need the non-singularity of the T ⇥ T matrix

M�2
F,V"

. It is the local identification condition in the FA model stated in Assumption A.5. Let us

write G = [g1 : · · · : gT�k]. Then, we have MF,V"
= GG0V �1

"
=
P

T�k

j=1 gj(V �1
"

gj)0, and so we get

the Hadamard product M�2
F,V"

=
P

T�k

i,j=1[gi(V
�1
"

gi)0]� [gj(V �1
"

gj)0] =
hP

T�k

i,j=1(gi � gj)(gi � gj)0
i

V �2
"

= 2 (X 0X)V �2
"

.44 Hence, we can state the local identification condition in Assumption A.5

as a full-rank condition for matrix X , analogously as in linear regression (Lemma 7). In Lemma

7 in Appendix E.4 i), we also show equivalence with invertibility of the bordered Hessian, i.e., the

Hessian of the Lagrangian function in a constrained M-estimation.

Under Assumption A.5, we get from Equation (E.5):

 " = TF,V"
(Zn), (E.6)

where TF,V"
(V ) := diag

�
[M�2

F,V"
]�1diag(MF,V"

VM 0
F,V"

)
�
, for any matrix V . Mapping TF,V"

(·) is

linear and such that TF,V"
(V ) = V , for a diagonal matrix V . We have diag(MF,V"

ZnM 0
F,V"

) =

diag (GZ⇤
n
G0) = 2X 0vech (Z⇤

n
),45 and so

diag( ") = V 2
"
(X 0X)�1 X 0vech (Z⇤

n
) . (E.7)

44Let us recall the following property of the Hadamard product: (ab0) � (cd0) = (a � c)(b � d)0 for conformable

vectors a, b, c, d. The last equalitiy because X 0 =
h

1p
2
g1 � g1 : · · · : 1p

2
gT�k � gT�k : {gi � gj}i<j

i
(see be-

ginning of the proof of Proposition 2 (a)) .
45We have diag(GAG0) = 2X 0vech(A) for any T ⇥ T symmetric matrix A; see beginning of the proof of Propo-

sition 1 (a).
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Anderson and Rubin (1956), Theorem 12.1, show that the FA estimator is asymptotically nor-

mal if
p
n(V̂y �Vy) is asymptotically normal. They use a linearization of the first-order conditions

similar as the one of Proposition 6. Their Equation (12.16) corresponds to our Equation (E.4).

However, they only provide an implicit characterization of the  Fj
and not an explicit expression

for  " and  Fj
in terms of asymptotically Gaussian random matrices like Zn as we do. These key

developments pave the way to establishing the asymptotic distributions of estimators F̂ and V̂" in

general settings, that we cover in Appendix E.5.

Proof of Proposition 6: From (E.2) and Lemma 6 we have V̂y = Ṽy +
1p
n
 y + op(

1p
n
), where

Ṽy = FF 0 + Ṽ" and  y =
1p
n
("�F 0 + F�0"0) +

p
n
⇣

1
n
""0 � Ṽ"

⌘
. Let us substitute this expansion

for V̂y into (FA2) and rearrange to obtain F̂ �̂ � FF 0V̂ �1
"

F̂ = 1p
n
 yV̂ �1

"
F̂ + (Ṽ"V̂ �1

"
� IT )F̂ +

op(
1p
n
), where �̂ = F̂ 0V̂ �1

"
F̂ = diag(�̂1, . . . , �̂k). From V̂" = Ṽ" +

1p
n
 " + op(

1p
n
), we have

Ṽ"V̂ �1
"

� IT = �
1p
n
 "V̂ �1

"
+ op(

1p
n
). Substituting into the above equation and right multiplying

both sides by (F 0V̂ �1
"

F̂ )�1 gives F̂ D̂ � F = 1p
n
( y �  ")V̂ �1

"
F̂ (F 0V̂ �1

"
F̂ )�1 + op(

1p
n
), where

D̂ := �̂(F 0V̂ �1
"

F̂ )�1. By the root-n convergence of the FA estimates (see Section E.5.1), we get

F̂ D̂ � F =
1
p
n
( y � ")V

�1
"

F��1 + op(
1
p
n
), (E.8)

and D̂ = Ik + Op(
1p
n
), where � = diag(�1, ..., �k). We can push the expansion by plugging

into (E.8) the expansion of D̂. We have F 0V̂ �1
"

F̂ = [Ik � (F̂ � F )0V̂ �1
"

F̂ �̂�1]�̂, so that D̂ =

[Ik � (F̂ �F )0V̂ �1
"

F̂ �̂�1]�1 = Ik + (F̂ �F )0V �1
"

F��1 + op(
1p
n
). By plugging into (E.8), we get:

F̂ � F + F [(F̂ � F )0V �1
"

F��1] =
1
p
n
( y � ")V

�1
"

F��1 + op(
1
p
n
). (E.9)

By multiplying both sides with MF,V"
, we get MF,V"

(F̂ � F ) = 1p
n
MF,V"

( y �  ")V �1
"

F��1 +

op(
1p
n
). Then, F̂ � F = 1p

n
MF,V"

( y �  ")V �1
"

F��1 + 1p
n
FA + op(

1p
n
), where A is a random

k ⇥ k matrix to be determined next. By plugging into (E.9), we get F (A + A0) = PF,V"
( y �

 ")V �1
"

F��1 + op(
1p
n
). By multiplying both sides by 1

2�
�1F 0V �1

"
and using F 0V �1

"
PF,V"

=

F 0V �1
"

, we get the symmetric part of matrix A, i.e., 1
2(A+A0) = 1

2�
�1F 0V �1

"
( y � ")V �1

"
F��1
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(we include higher-order terms in the remainder op( 1p
n
)). Thus, F̂ � F = 1p

n
 F + op(

1p
n
), where

 F = MF,V"
( y � ")V

�1
"

F��1 +
1

2
PF,V"

( y � ")V
�1
"

F��1 + FÃ, (E.10)

and Ã = 1
2(A � A0) is an antisymmetric k ⇥ k random matrix. To find the antisymmetric matrix

Ã = (ã`,j), we use that F̂ 0V̂ �1
"

F̂ is diagonal. Plugging the expansions of the FA estimates, for the

term at order 1/
p
n we get that the out-of-diagonal elements of matrix  0

F
V �1
"

F + F 0V �1
"
 F �

F 0V �1
"
 "V �1

"
F = 1

2�
�1F 0V �1

"
( y �  ")V �1

"
F + 1

2F
0V �1
"

( y �  ")V �1
"

F��1 + �Ã � Ã� �

F 0V �1
"
 "V �1

"
F are nil. Setting the (`, j) element of this matrix equal to 0, we get ã`,j = �ãj,` =

1
�j��`

h
1
2(

1
�j

+ 1
�`
)F 0

`
V �1
"

( y � ")V �1
"

Fj � F 0
`
V �1
"
 "V �1

"
Fj

i
, for j 6= `. Then, from Equation

(E.10), the jth column of  F is  Fj
= 1

�j
MF,V"

( y �  ")V �1
"

Fj +
1

2�j
PFj ,V"

( y �  ")V �1
"

Fj +
P

k

`=1: 6̀=j

1
�j��`

PF`,V"
( y �  ")V �1

"
Fj �

P
k

`=1: 6̀=j

�`

�j��`
PF`,V"

 "V �1
"

Fj , where we use PF,V"
=

P
k

`=1 PF`,V"
. Part (a) follows.

Let us now prove part (b). The asymptotic expansion of condition (FA1) yields:

diag( y) = diag

 
kX

j=1

(Fj 
0
Fj

+ Fj
F 0
j
) + "

!
. (E.11)

From part (a) and the definition of PFj ,V"
we have

P
k

j=1 Fj
F 0
j
= 1

2

P
k

j=1 PFj ,V"
( y� ")P 0

Fj ,V"
+

MF,V"
( y �  ")P 0

F,V"
+
P

6̀=j

�j

�j��`
PF`,V"

( y �  ")P 0
Fj ,V"

�
P

k

`6=j

�`�j

�j��`
PF`,V"

 "P 0
Fj ,V"

=: N1 +

N2 + N3 + N4, where PF,V"
=
P

k

j=1 PFj ,V"
= IT � MF,V"

and
P

6̀=j
denotes the double sum

over j, ` = 1, ..., k such that ` 6= j. Matrix N1 is symmetric and it contributes 2N1 to the RHS

of (E.11). Instead, matrix N4 is antisymmetric (it can be seen by interchanging indices j and `

in the summation) and it does not contribute to the RHS of (E.11). For matrix N3 we have N3 +

N 0
3 =

P
6̀=j

�j

�j��`
PF`,V"

( y � ")P 0
Fj ,V"

+
P

6̀=j

�`

�`��j
PF`,V"

( y � ")P 0
Fj ,V"

=
P

`6=j
PF`,V"

( y �

 ")P 0
Fj ,V"

=
P

`,j
PF`,V"

( y� ")P 0
Fj ,V"

�
P

j
PFj ,V"

( y� ")P 0
Fj ,V"

= PF,V"
( y� ")P 0

F,V"
�2N1,

where we have interchanged ` and j in the first equality when writing N 0
3. Thus, we get:

kX

j=1

(Fj 
0
Fj

+ Fj
F 0
j
) = MF,V"

( y � ")P
0
F,V"

+ PF,V"
( y � ")M

0
F,V"

+ PF,V"
( y � ")P

0
F,V"

= ( y � ")�MF,V"
( y � ")M

0
F,V"

. (E.12)
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Then, Equation (E.11) with (E.12) yields Equation (E.4).

E.4 Local analysis of the first-order conditions of FA estimators

Consider the criterion L(✓) = �
1
2 log |⌃(✓)|�

1
2Tr (Vy⌃(✓)), where Vy is a p.d. matrix in a neigh-

bourhood of V 0
y

. In our Assumptions, ✓0 is an interior point of ⇥. Let ✓⇤ = (vec(F ⇤)0, diag(V ⇤
"
)0)0

denote the maximizer of L(✓) subject to ✓ 2 ⇥. According to Anderson (2003), the first-order

conditions (FOC) for the maximization of L(✓) are: (a) diag(Vy) = diag(F ⇤(F ⇤)0 + V ⇤
"
) and (b)

F ⇤ is the matrix of eigenvectors of Vy(V ⇤
"
)�1 associated to the k largest eigenvalues 1 + �⇤

j
for

j = 1, ..., k, normalized such that (F ⇤)0(V ⇤
"
)�1F ⇤ = diag(�⇤1 , ..., �

⇤
k
).

i) Local identification

Let Vy = V 0
y

. The true values F0 and V 0
"

solve the FOC. Let F = F0 + ✏ ✏
F

and V" = V 0
"
+ ✏ ✏

V"
,

where ✏ is a small scalar and  ✏
F
, ✏

V"
are deterministic conformable matrices, be in a neighbour-

hood of F0 and V 0
"

and solve the FOC up to terms O(✏2). The model is locally identified if, and

only if, it implies  ✏
V"

= 0 and  ✏
F
= 0.

Lemma 7 Under Assumption 1, the following four conditions are equivalent: (a) Matrix M�2
F0,V

0
"

is non-singular, (b) Matrix X is full-rank, (c) Matrix ��2 is non-singular, where � := V 0
"
�

F0(F 0
0(V

0
"
)�1F0)�1F 0

0, (d) Matrix B0
0J0B0 is non-singular, where J0 := �

@
2
L0(✓0)
@✓@✓0 and B0 is any

full-rank r ⇥ (r � 1
2k(k � 1)) matrix such that @g(✓0)

@✓0 B0 = 0, for g(✓) = {[F 0V �1
"

F ]i,j}i<j the
1
2k(k � 1) dimensional vector of the constraints. They yield the local identification of our model.

In Lemma 7, condition (a) corresponds to Assumption A.5 and is equivalent to condition (b)

that X is full-rank. Condition (c) is used in Theorem 5.9 of Anderson and Rubin (1956) to show

local identification. Condition (d) involves the second-order partial derivatives of the population

criterion function. While the Hessian matrix J0 itself is singular because of the rotational invari-

ance of the model to latent factors, the second-order partial derivatives matrix along parameter
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directions, which are in the tangent plan to the contraint set, is non-singular. Condition (d) is

equivalent to invertibility of the bordered Hessian.

ii) Local misspecification

Now, let Vy = V 0
y
+ ✏ ✏

y
be in a neighbourhood of V 0

y
. Let F ⇤ = F0 + ✏ ✏

F
+ O(✏2) and

V ⇤
"
= V 0

"
+✏ ✏

V"
+O(✏2) be the solutions of the FOC. Consider Vy�⌃⇤, where⌃⇤ = F ⇤(F ⇤)0+V ⇤

"
,

i.e., the difference between variance Vy and its k-factor approximation with population FA. We

want to find the first-order development of Vy � ⌃⇤ for small ✏. From the FOC, we have that the

diagonal of such symmetric matrix is null, but not necessarily the out-of-diagonal elements.

From the arguments in the proof of Proposition 6, Equations (E.11) and (E.12), we get:

 ✏
F
F 0
0 + F0( 

✏

F
)0 =  ✏

y
� ✏

V"
�MF0,V

0
"
( ✏

y
� ✏

V"
)M 0

F0,V
0
"
, (E.13)

diag(MF0,V
0
"
( ✏

y
� ✏

V"
)M 0

F0,V
0
"
) = 0. (E.14)

As in Section E.3, Equation (E.14) yields:

diag( ✏
V"
) = (V 0

"
)2 (X 0X)�1 X 0vech

�
G0

0(V
0
"
)�1 ✏

y
(V 0

"
)�1G0

�
. (E.15)

Now, using Equation (E.13), we get Vy � ⌃⇤ = ✏
�
 ✏

y
� F0( ✏F )

0
� ✏

F
F 0
0 � 

✏

V"

�
+ O(✏2)

= ✏MF0,V
0
"
( ✏

y
� ✏

V"
)M 0

F0,V
0
"

+O(✏2) = ✏G0�⇤G0
0+O(✏2), where�⇤ := G0

0(V
0
"
)�1 ✏

y
(V 0

"
)�1G0�

G0
0(V

0
"
)�1 ✏

V"
(V 0

"
)�1G0. Using that vech(G0

0diag(a)G0) = Xa, and Equation (E.15), the vector-

ized form of matrix �⇤ is: vech(�⇤) = vech
�
G0

0(V
0
"
)�1 ✏

y
(V 0

"
)�1G0

�
�X(V 0

"
)�2diag( ✏

V"
) =

MXvech
�
G0

0(V
0
"
)�1 ✏

y
(V 0

"
)�1G0

�
. Thus, we have shown that, at first order in ✏, the difference

between Vy = V 0
y
+ ✏ ✏

y
and the FA k-factor approximation ⌃⇤ is ✏G0�⇤G0

0, with vech(�⇤) =

MXvech
�
G0

0(V
0
"
)�1 ✏

y
(V 0

"
)�1G0

�
. It shows that the small perturbation ✏ ✏

y
around V 0

y
keeps

the DGP within the k-factor specification (at first order) if, and only if, we have that vector

vech
�
G0

0(V
0
"
)�1 ✏

y
(V 0

"
)�1G0

�
is spanned by the columns of X .

Consider  ✏
y
= H⇠⇠0H 0, where H := [F0 : G0] and vector ⇠ = (⇠0

F
, ⇠0

G
)0 are partitioned in k

and T � k dimensional components, which corresponds to a local alternative with (k+ 1)th factor
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H⇠ and small loading ✏ in the perturbation ✏ ✏
y
. Then, we have G0

0(V
0
"
)�1 ✏

y
(V 0

"
)�1G0 = ⇠G⇠0G

since F 0
0(V

0
"
)�1G0 = 0 and G0

0(V
0
"
)�1G0 = IT�k. Thus, vech(�⇤) = MXvech (⇠G⇠0G). Hence, it

is only the component of vech (⇠G⇠0G) that is orthogonal to the range of X , which generates a local

deviation from a k-factor specification through the multiplication by the projection matrix MX . It

clarifies the role of the projector in the local power. On the contrary, the component spanned by

the columns of X can be “absorbed" in the k-factor specification by a redefinition of the factor F

and the variance V" through F ⇤ and V ⇤
"

.

E.5 Feasible asymptotic normality of the FA estimators

E.5.1 Asymptotic expansions

We first establish the asymptotic expansion of ✓̂ along the lines of pseudo maximum likelihood

estimators (White (1982)). The sample criterion is L̂(✓) given in Equation (E.1), where ✓ =

(vec(F )0, diag(V")0)
0 is subject to the nonlinear vector constraint g(✓) := {[F 0V �1

"
F ]i,j}i<j = 0,

i.e., matrix F 0V �1
"

F is diagonal. By standard methods for constrained M-estimators, we consider

the FOC of the Lagrangian function: @L̂(✓̂)
@✓

�
@g(✓̂)0

@✓
�̂L = 0 and g(✓̂) = 0, where �̂L is the 1

2k(k� 1)

dimensional vector of estimated Lagrange multipliers. Define vector ✓̃ :=
⇣
vec(F0)0, diag(Ṽ")0

⌘0
,

which also satisfies the constraint g(✓̃) = 0 by the in-sample factor normalization. We apply the

mean value theorem to the FOC around ✓̃ and get:

Ĵ(✓̄)
p
n(✓̂ � ✓̃) + A(✓̂)

p
n�̂L =

p
n
@L̂(✓̃)

@✓
, (E.16)

A(✓̄)0
p
n(✓̂ � ✓̃) = 0, (E.17)

where Ĵ(✓) := �
@
2
L̂(✓)

@✓@✓0 is the r ⇥ r Hessian matrix, A(✓) := @g(✓)0

@✓
is the r ⇥ 1

2k(k � 1) dimen-

sional gradient matrix of the constraint function, and ✓̄ is a mean value vector between ✓̂ and ✓̃

componentwise. Matrix A(✓) is full rank for ✓ in a neighbourhood of ✓0. For any ✓ define the

r ⇥ (r �
1
2k(k � 1)) matrix B(✓) with orthonormal columns that span the orthogonal comple-
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ment of the range of A(✓). Matrix function B(✓) is continuous in ✓ in a neighbourhood of ✓0.46

Then, by multiplying Equation (E.16) times B(✓̂)0 to get rid of the Lagrange multiplier vector,

using the identity Ir = A(✓)(A(✓)0A(✓))�1A(✓)0 + B(✓)B(✓)0 for ✓ = ✓̄ and Equation (E.17), we

get [B(✓̂)0Ĵ(✓̄)B(✓̄)]B(✓̄)0
p
n(✓̂ � ✓̃) = B(✓̂)0

p
n@L̂(✓̃)

@✓
. By the uniform convergence of Ĵ(✓) to

J(✓) := �
@
2
L0(✓)
@✓@✓0 , and the consistency of the FA estimator ✓̂ (Section E.2), matrix B(✓̂)0Ĵ(✓̄)B(✓̄)

converges to B0
0J0B0, where J0 := J(✓0) and B0 := B(✓0). Matrix B0

0J0B0 is invertible un-

der the local identification Assumption A.5 (see Lemma 7 condition d)). Then, B(✓̄)0
p
n(✓̂ �

✓̃) = [B(✓̂)0Ĵ(✓̄)B(✓̄)]�1B(✓̂)0
p
n@L̂(✓̃)

@✓
w.p.a. 1. By using again Ir = A(✓̄)(A(✓̄)0A(✓̄))�1A(✓̄)0 +

B(✓̄)B(✓̄)0 and Equation (E.17), we get
p
n(✓̂� ✓̃) = B(✓̄)[B(✓̂)0Ĵ(✓̄)B(✓̄)]�1B(✓̂)0

p
n@L̂(✓̃)

@✓
. The

distributional results established below imply
p
n@L̂(✓̃)

@✓
= Op(1). Thus, we get

p
n-consistency:

p
n(✓̂ � ✓̃) = B0(B

0
0J0B0)

�1B0
0

p
n
@L̂(✓̃)

@✓
+ op(1). (E.18)

Let us now find the score @L̂(✓)
@✓

. We have @L̂(✓)
@✓

=
⇣
@vec(⌃(✓))

@✓0

⌘0
vec
⇣
@L̂(✓)
@⌃

⌘
, where vec

⇣
@L̂(✓)
@⌃

⌘
=

1
2 (⌃(✓)

�1
⌦ ⌃(✓)�1) vec

⇣
V̂y � ⌃(✓)

⌘
. Moreover, by using vec(⌃(✓)) =

P
k

j=1 Fj ⌦ Fj + [e1 ⌦

e1 : · · · : eT⌦eT ]diag(V"), where et is the t-th column of IT , we get: @vec(⌃(✓))
@✓0 = [(IT ⌦ F1) + (F1 ⌦ IT ) : · · · : (IT ⌦ Fk) + (Fk ⌦ IT ) :

e1 ⌦ e1 : · · · : eT ⌦ eT ] . Thus, we get:
p
n@L̂(✓̃)

@✓
= 1

2

⇣
@vec(⌃(✓̃))

@✓0

⌘0 ⇣
Ṽ �1
y

⌦ Ṽ �1
y

⌘
p
nvec

⇣
V̂y � Ṽy

⌘
.

From Equation (E.2) and Lemma 6 we have V̂y = Ṽy +
1p
n
(Zn +WnF 0 + FW 0

n
) + op(

1p
n
), where

Wn := 1p
n
"�. Thus,

p
n@L̂(✓̃)

@✓
= 1

2

⇣
@vec(⌃(✓0))

@✓0

⌘0 �
V �1
y

⌦ V �1
y

�
vec (WnF 0 + FW 0

n
+ Zn) + op(1)

and, from Equation (E.18), we get:

p
n(✓̂�✓̃) =

1

2
B0 (B

0
0J0B0)

�1 B0
0

✓
@vec(⌃(✓0))

@✓0

◆0 �
V �1
y

⌦ V �1
y

�
vec (WnF

0 + FW 0
n
+ Zn)+op(1).

(E.19)
46Matrix B(✓) is uniquely defined up to rotation and sign changes in their columns. We can pick a unique representer

such that matrix B(✓) is locally continuous, e.g., by taking B(✓) = B̃(✓)[B̃(✓)0B̃(✓)]�1/2, where matrix B̃(✓) consists

of the first r � 1
2k(k � 1) columns of Ir �A(✓)[A(✓)0A(✓)]�1A(✓)0, if those columns are linearly independent.
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E.5.2 Asymptotic normality

In this subsection, we establish the asymptotic normality of estimators F̂ and V̂". From Lemma

2, as n ! 1 and T is fixed, we have the Gaussian distributional limit Zn ) Z with vech(Z) ⇠

N(0,⌦Z), where the asymptotic variance ⌦Z is related to the asymptotic variance ⌦ of Z such

that Cov(Zts, Zrp) =
p
V",ttV",ssV",rrV",ppCov(Zts,Zrp). Moreover, Z⇤

n
) Z⇤ = G0V �1

"
ZV �1

"
G

and Z̄n := Zn�TF,V"
(Zn) ) Z̄, where Z̄ = Z�TF,V"

(Z) = Z�V 2
"
diag ((X 0X)�1X 0vech(Z⇤))

(see (E.7)). The distributional limit of Wn is given next.

Lemma 8 Under Assumptions 1, 2 and A.2, A.3, A.8, as n ! 1, (a) we have Wn ) W̄ , where

vec(W̄ ) ⇠ N(0,⌦W ) with ⌦W = Q�⌦V", and (b) if additionally E[wi,twi,rwi,s] = 0, for all t, r, s

and i, then Z and W̄ are independent.

We get the following proposition from Lemmas 2 and 8 (see proof at the end of the section).

Proposition 7 Under Assumptions 1-2 and A.1-A.6, A.8, as n ! 1 and T is fixed, for j = 1, .., k:

p
ndiag(V̂" � Ṽ") ) V 2

"
(X 0X)�1X 0vech(Z⇤), (E.20)

p
n(F̂j � Fj) ) Rj(W̄F 0 + FW̄ 0 + Z̄)V �1

"
Fj + ⇤j{[V"(X

0X)�1X 0vech(Z⇤)]� Fj}, (E.21)
p
n(F̂jD̂ � Fj) )

1

�j
(W̄F 0 + FW̄ 0 + Z̄)V �1

"
Fj, (E.22)

where deterministic matrices Rj and ⇤j are defined in Proposition 6, and D̂ := �̂(F 0V̂ �1
"

F̂ )�1

and �̂ := diag(�̂1, ..., �̂k).

The joint asymptotic Gaussian distribution of the FA estimators involves the Gaussian matrices

Z⇤, Z̄ and W̄ , the former two being symmetric. The asymptotic distribution of V̂" involves re-

centering around Ṽ" = 1
n

P
n

i=1 E["i"0i], i.e., the finite-sample average cross-moments of errors,

and not V". For the asymptotic distribution of any functional that depends on F up to one-to-one

transformations of its columns, we can use the Gaussian law of (E.22) involving W̄ and Z̄ only.

68



The asymptotic expansions (E.20)-(E.21) characterize explicitly the matrices C1(✓) and C2(✓)

that appear in Theorem 2 in Anderson and Amemiya (1988). Their derivation is based on an

asymptotic normality argument treating ✓̂ as a M-estimator, see Section C.2. However, neither the

asymptotic variance nor a feasible CLT are given in Anderson and Amemiya (1988). We cannot

use their results for our empirics.

To further compare our Proposition 7 with Theorem 2 in Anderson and Amemiya (1988), let

Z̄ = Z � TF,V"
(Z) = Ž � TF,V"

(Ž), where Ž := Z � diag(Z) is the symmetric matrix of the

off-diagonal elements of Z with zeros on the diagonal.47 Hence, the zero-mean Gaussian matrix

Z̄ only involves the off-diagonal elements of Z. Moreover, since V 2
"
(X 0X)�1X 0vech(�⇤

n
) =

V 2
"
diag(V �1

"
�nV �1

"
) = diag(�n) for a diagonal matrix �n and �⇤

n
:= G0V �1

"
�nV �1

"
G, we

can write the asymptotic expansion of V̂" as
p
ndiag(V̂" � Ṽ") = V 2

"
(X 0X)�1X 0vech(Ž⇤

n
) +

diag(Zn) + op(1), where Ž⇤
n

= G0V �1
"

ŽnV �1
"

G and Žn := Zn � diag(Zn). Thus, we get:
p
ndiag(V̂" � Ṽ") ) V 2

"
(X 0X)�1X 0vech(Ž⇤) + diag(Z), where Ž⇤ = G0V �1

"
ŽV �1

"
G. Hence,

the asymptotic distribution of the FA estimators depends on the diagonal elements of Z via term

diag(Z) in the asymptotic distribution of V̂". In Theorem 2 in Anderson and Amemiya (1988), this

term does not appear because in their results the asymptotic distribution of V̂" is centered around

diag( 1
n
""0) instead of Ṽ". Our recentering around Ṽ" avoids a random bias term.

Finally, by applying the CLT to (E.19), the asymptotic distribution of vector ✓̂ is:

p
n(✓̂ � ✓̃) )

1

2
B0 (B

0
0J0B0)

�1 B0
0

✓
@vec(⌃(✓0))

@✓0

◆0 �
V �1
y

⌦ V �1
y

�
vec
�
W̄F 0 + FW̄ 0 + Z

�
. (E.23)

The Gaussian asymptotic distribution in (E.23) matches those in (E.20) and (E.21) written for the

components, and its asymptotic variance yields the ‘sandwich formula”. The result in (E.23) is

analogue to Theorem 2 in Anderson and Amemiya (1988), for different factor normalization and

recentering of the variance estimator.

Proof of Proposition 7: From (E.7), we have the asymptotic expansion:
p
ndiag(V̂" � Ṽ") =

diag( ")+op(1) = V 2
"
(X 0X)�1X 0vech(Z⇤

n
)+op(1). Moreover, from Proposition 6 (a) and using

47Here, diag(Z) is the diagonal matrix with the same diagonal elements as Z.
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 y � " = WnF 0 + FW 0
n
+ Z̄n, we have:

p
n(F̂j � Fj) = Rj( y � ")V �1

"
Fj + ⇤j "V �1

"
Fj +

op(1) = Rj(WnF 0+FW 0
n
+ Z̄n)V �1

"
Fj +⇤j[diag( ")� (V �1

"
Fj)]+op(1) = Rj(WnF 0+FW 0

n
+

Z̄n)V �1
"

Fj + ⇤j{[V"(X
0X)�1X 0vech(Z⇤

n
)] � Fj} + op(1). Lemmas 2 and 8 yield (E.20)-(E.21),

together with (E.22) from (E.8) since  y � " ) W̄F 0 + FW̄ 0 + Z̄.

E.5.3 Feasible CLT for the FA estimators

i) Feasible CLT for Zn via a parametric estimator of the asymptotic variance

We first show that, under strengthening of Assumption 2, we get a parametric structure for the

variance V [vech(Z)] = ⌦Z(V",#) with a vector of unknown parameters # of dimension T + 1.

Assumption 3 The standardized errors processes wi,t in Assumption 2 are (a) stationary martin-

gale difference sequences (mds), and (b) E[w2
i,t
wi,rwi,s] = 0, for t > r > s.

Assumption 3 holds e.g. for conditionally homoskedastic mds, and for ARCH processes (see be-

low). Let Z := V �1/2
" ZV �1/2

" . Then, using Lemma 2, under Assumptions 2 and 3, we have

V [Zt,t] =  (0)+2, V [Zt,s] =  (t�s)+q+ and Cov(Zt,t,Zs,s) =  (t�s), where  (t�s) :=

lim
n!1

1
n

P
i
Cov(w2

i,t
, w2

i,s
)�2

ii
. Quantity  (t�s) depends on the difference t�s only, by stationarity.

The other covariance terms between elements of Z vanish. Then, we have ⌦ = [ (0)�2q]D(0)+
P

T�1
h=1  (h)D(h) + (q + )IT (T+1)/2, where D(0) =

P
T

t=1 vech(Et,t)vech(Et,t)0 and D(h) =

D̃(h) + D̄(h) with D̃(h) =
P

T�h

t=1 [vech(Et,t)vech(Et+h,t+h)0 + vech(Et+h,t+h)vech(Et,t)0] and

D̄(h) =
P

T�h

t=1 vech(Et,t+h+Et+h,t)vech(Et,t+h+Et+h,t)0 for h = 1, ..., T�1, and where Et,s de-

note the T⇥T matrix with entry 1 in position (t, s) and 0 elsewhere. Hence, with Z = V 1/2
" Z V 1/2

" ,

we get a parametrization⌦Z(V",#) for V [vech(Z)] with # = (q+, (0)�2q, (1), ..., (T�1))0.

Then, we obtain a parametric structure for MX⌦Z⇤MX = MXR0⌦ZRMX .

Lemma 9 Under Assumptions 1-3 and A.1-A.6, we have:

MX⌦Z⇤MX =
T�1X

h=1

[ (h) + q + ]MXR0D̄(h)RMX . (E.24)

70



Hence, the parametric structure MX⌦Z⇤MX(V", G, #̃) depends linearly on vector #̃ that stacks the

T � 1 parameters  (h) + q + , for h = 1, ..., T � 1. It does not involve parameter  (0), i.e., the

quartic moment of errors, because the asymptotic expansion of the LR statistic does not involve the

diagonal terms of Z. Moreover, the unknown parameters appear through the linear combinations

 (h) + q +  that are the scaled variances of the out-of-diagonal elements of Z. We can estimate

the unknown parameters in #̃ by least squares applied on (E.24), using the nonparametric estimator

MX̂⌦̂Z⇤MX̂ defined in Proposition 1, after half-vectorization and replacing V" and G by their FA

estimates. It yields a consistent estimator of MX⌦Z⇤MX incorporating the restrictions implied by

Assumption 3.

To get a feasible CLT for the FA estimates, we need to estimate the additional parameters

 (0) � 2q and q + . We consider the matrix ⌦̂Z⇤ from Proposition 1, that involves fourth-order

moments of residuals.

Lemma 10 Under Assumptions 1-3 and A.1-A.6, and
p
n
P

Jn

m=1 B
2
m,n

= o(1), up to pre- and post-

multiplication by an orthogonal matrix and its transpose, we have ⌦̂Z⇤ = R0⌅̃nR + op(1), where

⌅̃n = [ n(0)� 2qn]D(0)+
P

T�1
h=1  n(h)D(h)+ (qn+n)IT (T+1)/2+(qn+ ⇠n)vech(IT )vech(IT )0

and ⇠n :=
1

n

JnX

m=1

X

i 6=j2Im

�ii�jj .

With blocks of equal size, the condition
p
n
P

Jn

m=1 B
2
m,n

= o(1) holds if Jn = n↵̄ and ↵̄ > 1/2.

Now, we have the relation 3D(0) +
P

T�1
h=1 D(h)� vech(IT )vech(IT )0 = IT (T+1)/2, which implies

3R0D(0)R+
P

T�1
h=1 R

0D(h)R� vech(IT�k)vech(IT�k)0 = Ip. Hence, matrix

R0⌅̃nR = [ n(0) + qn + 3n]R
0D(0)R+

T�1X

h=1

[ n(h) + qn + n]R
0D(h)R

+(⇠n � n)vech(IT�k)vech(IT�k)
0 (E.25)

depends on T + 1 linear combinations of the elements of #n = (qn + n, n(0) � 2qn, n(1), ...,

 n(T �1))0 and ⇠n�n. Thus, the linear system (E.25) is rank-deficient to identify #n. Moreover,

in Assumption A.3 (b), n is defined as a double sum over squared covariances scaled by n, and is
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assumed to converge to a constant . Such a convergence is difficult to assume for ⇠n since ⇠n is a

double sum over products of two variances scaled by n.

We apply half-vectorization on (E.25), replace the LHS by its consistent estimate ⌅̂, and plug-in

the FA estimates in the RHS. From Lemma 10, least squares estimation on such a linear regression

yields consistent estimates of linear combinations  (0) + q + 3 and  (h) + q +  for h =

1, . . . , T � 1. Consistency of those parameters applies independently of ⇠n � n converging as

n ! 1, or not.48 In order to identify the components of #, we need an additional condition. We

use the assumption  (T � 1) = 0. That condition is implied by serial uncorrelation in the squared

standardized errors after lag T � 1, that is empirically relevant in our application with monthly

returns data. Then, parameter q +  is estimated by \ n(T � 1) + qn + n, and by difference we

get the estimators of  (0)� 2q and  (h), for h = 1, ..., T � 2.

Let us now discuss the case of ARCH errors. Suppose the wi,t follow independent ARCH(1)

processes with Gaussian innovations that are independent across assets, i.e., wi,t = h1/2
i,t

zi,t, zi,t ⇠

IIN(0, 1), hi,t = ci + ↵iw2
i,t�1 with ci = 1 � ↵i. Then E[wi,t] = 0, E[w2

i,t
] = 1, ⌘i := V [w2

i,t
] =

2
1�3↵2

i

, Cov(w2
i,t
, w2

i,t�h
) = ⌘i↵h

i
. Moreover, E[wi,twi,rwi,swi,p] = 0 if one index among t, r, s, p is

different from all the others. Indeed, without loss of generality, suppose t is different from s, p, r.

By the law of iterated expectation: E["i,t"i,s"i,p"i,r] = E[E["i,t|{z2i,⌧}
1
⌧=�1, {zi,⌧}⌧ 6=t]"i,s"i,p"i,r] =

E[h1/2
i,t

E[zi,t|z2i,t]"i,s"i,p"i,r] = 0. Then, Assumption 3 holds. The explicit formula of ⌦ involves

 (h) = lim
n!1

1
n

P
n

i=1
2↵h

i

1�3↵2
i

�2
ii

, for h = 0, 1, ..., T � 1. Hence, setting  (T � 1) = 0 is a mild

assumption for identification purpose since ↵T�1
i

is small. If ↵i = 0 for all i, i.e., no ARCH

effects, we have  (0) = 2q and  (h) = 0 for h > 0, so that ⌦ = (q + )IT (T+1)
2

.

ii) Feasible CLT for Wn

Let us now establish a feasible CLT for Wn. In order to estimate matrix Q� in the asymptotic

48To see this, write the half-vectorization of the RHS of (E.25) as �⌘n, where � is the p(p+1)
2 ⇥ (T + 1) matrix

of regressors and ⌘n the (T + 1) ⇥ 1 vector of unknown parameters. Then, vech(⌦̂Z⇤) = �̂⌘n + op(1), by Lemma

10, the consistency of the FA estimates, and the last column of � not depending on unknown parameters. Thus,

⌘̂n := (�̂0�̂)�1�̂0vech(⌦̂Z⇤) = ⌘n + op(1). In particular, we also have \⇠n � n = ⇠n � n + op(1).
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variance ⌦W in Lemma 8, we use the estimated betas and residuals, and combine them with a

temporal sample splitting approach to cope with the EIV problem caused by the fixed T setting.

Specifically, let us split the time spell into two consecutive sub-intervals with T1 and T2 obser-

vations, with T1 + T2 = T and such that T1 > k and T2 � k. The factor model in the two

sub-intervals reads y1,i = µ1 + F1�i + "1,i and y2,i = µ2 + F2�i + "2,i, and let V1," and V2," denote

the corresponding diagonal matrices of error average unconditional variances.49 The conditions

T1 > k and T2 � k are needed because we estimate residuals and betas in the first and the sec-

ond sub-intervals, namely "̂1,i = M
F̂1,V̂1,"

(y1,i � ȳ1) and �̂i = (F̂ 0
2V̂

�1
2," F̂2)�1F̂ 0

2V̂
�1
2," (y2,i � ȳ2).

Here, F̂j and V̂j," for j = 1, 2 are deduced from the FA estimates in the full period of T ob-

servations. Define  ̂� = 1
n

P
m

P
i,j2Im(�̂i�̂

0
j
) ⌦ ("̂1,i"̂01,j). By using "̂1,i = (M

F̂1,V̂1,"
F1)�i +

M
F̂1,V̂1,"

("1,i � "̄1), MF̂1,V̂1,"
F1 = Op(

1p
n
) and 1

n2

P
m
b2
m,n

=
P

m
B2

m,n
= o(1), we get  ̂� =

(Ik ⌦ M
F̂1,V̂1,"

)
⇣

1
n

P
m

P
i,j2Im(�̂i�̂

0
j
)⌦ [("1,i � "̄1)("1,j � "̄1)0]

⌘
(Ik ⌦ M 0

F̂1,V̂1,"
) + op(1). Now,

we use �̂i =
h
(F̂ 0

2V̂
�1
2," F̂2)�1F̂ 0

2V̂
�1
2," F2

i
�i + (F̂ 0

2V̂
�1
2," F̂2)�1F̂ 0

2V̂
�1
2," ("2,i � "̄2), and "̄1 = op(n�1/4),

"̄2 = op(n�1/4) from Lemma 6 (a), as well as the the mds condition in Assumption 3. We get

 ̂� =  ̂�,1+  ̂�,2+op(1), where  ̂�,1 = (Ik⌦MF1,V1,")
⇣

1
n

P
m

P
i,j2Im(�i�

0
j
)⌦ ("1,i"01,j)

⌘
(Ik⌦

M 0
F1,V1,"

) and  ̂�,2 =
�
[(F 0

2V
�1
2," F2)�1F 0

2V
�1
2," ]⌦MF1,V1,"

� ⇣
1
n

P
m

P
i,j2Im("2,i"

0
2,j)⌦ ("1,i"01,j)

⌘

�
[(F 0

2V
�1
2," F2)�1F 0

2V
�1
2," ] ⌦MF1,V1,"

�0. We use 1
n

P
m

P
i,j2Im(�i�

0
j
)⌦("1,i"01,j) = Q�⌦V1,"+op(1),

and 1
n

P
m

P
i,j2Im("2,i"

0
2,j)⌦("1,i"01,j) = ⌦21+op(1), where⌦21 is the sub-block of matrix⌦Z that

is the asymptotic variance of 1p
n

P
n

i=1 "2,i ⌦ "1,i ) N(0,⌦21). Then,  ̂� = Q� ⌦ (MF1,V1,"V1,")+
�
[(F 0

2V
�1
2," F2)�1F 0

2V
�1
2," ]⌦MF1,V1,"

�
⌦21

�
[(F 0

2V
�1
2," F2)�1F 0

2V
�1
2," ]⌦MF1,V1,"

�0
+op(1). Thus, we get

a consistent estimator of Q� ⌦ (V �1/2
1," MF1,V1,"V

1/2
1," ) by subtracting to  ̂� a consistent estimator of

the second term on the RHS (bias term),50 and then by pre- and post-multiplying times (Ik⌦V̂ �1/2
1," ).

49We can take the two sub-intervals as the halves of the time span. If this choice does not meet conditions T1 > k

and T2 � k in a subperiod, we take the second sub-interval such that T2 = k, and add to the first sub-interval a

sufficient number of dates from the preceeding subperiod in order to get T1 = k + 1.
50Sample splitting makes the estimation of the bias easier, but we can avoid such a splitting at the expense of a more

complicated debiasing procedure.
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To get a consistent estimator of Q� , we apply a linear transformation that amounts to computing the

trace of the second term of a Kronecker product, and divide by Tr(V �1/2
1," MF1,V1,"V

1/2
1," ) = T1 � k.

Thus: Q̂� = 1
n(T1�k)

P
m

P
i,j2Im(�̂i�̂

0
j
)("̂01,jV̂

�1
1," "̂1,i)�

1
T1�k

P
T1

j=1(Ik⌦e0
j
)
n⇣

[(F̂ 0
2V̂

�1
2," F̂2)�1F̂ 0

2V̂
�1
2," ]⌦

[V̂ �1/2
1," M

F̂1,V̂1,"
]
⌘
⌦̂21

⇣
[V̂ �1

2," F̂2(F̂ 0
2V̂

�1
2," F̂2)�1]⌦ [M 0

F̂1,V̂1,"
V̂ �1/2
1," ]

⌘o
(Ik ⌦ ej), where the ej are T1-

dimensional unit vectors, and ⌦̂21 is obtained from Subsection E.5.3 i). If estimate Q̂� is not

positive definite, we regularize it by deleting the negative eigenvalues.

iii) Joint feasible CLT

To get a feasible CLT for the FA estimators from (E.20)-(E.21), we need the joint distribution

of the Gaussian matrix variates Z and W . Under the condition of Lemma 8 (b), the estimates of

the asymptotic variances of vech(Z) and vec(W ) are enough, since these vectors are independent.

Otherwise, to estimate the covariance Cov(vech(Z), vec(W )), we need to extend the approaches

of the previous subsections.

E.5.4 Special cases

In this subsection, we particularize the asymptotic distributions of the FA estimators for three

special cases along the lines of Section 4, plus a fourth special case that allows us to further discuss

the link with Anderson and Amemiya (1988).

i) Gaussian errors

When the errors admit a Gaussian distribution "i
ind
⇠ N(0, �iiV") with diagonal V", matrix

1p
q
V �1/2
" ZV �1/2

" is in the GOE for dimension T , i.e., 1p
q
vech(V �1/2

" ZV �1/2
" ) ⇠ N(0, IT (T+1)/2),

where q = lim
n!1

1
n

P
i
�2
ii

. Moreover, vec(W ) ⇠ N(0, Q� ⌦ V"), where Q� = lim
n!1

1
n

P
i
�ii�i�0

i
,

mutually independent of Z because of the symmetry of the Gaussian distribution.

ii) Quasi GOE errors

As an extension of the previous case, here let us suppose that the errors meet Assumption 2, the

Conditions (a) and (b) in Proposition 2 plus additionally (c) lim
n!1

1
n

P
n

i=1 V ("2
i,t
) = ⌘V 2

",tt
, for a con-

stant ⌘ > 0, and (d) lim
n!1

1
n

P
n

i=1 E["2
i,t
"i,r"i,p] = 0 for r 6= p. This setting allows e.g. for condition-
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ally homoskedastic mds processes in the errors, but excludes ARCH effects. Then, the arguments

in Lemma 2 imply vech(V �1/2
" ZV �1/2

" ) ⇠ N(0,⌦) with⌦ =

0

@ (⌘/2 + )IT 0

0 (q + )I 1
2T (T�1)

1

A.

The distribution of V �1/2
" ZV �1/2

" is similar to (scaled) GOE holding in the Gaussian case up to

the variances of diagonal and of out-of-diagonal elements being different when ⌘ 6= 2q. Hence,

contrasting with test statistics, the asymptotic distributions of FA estimates differ in cases i) and ii)

beyond scaling factors. It is because the asymptotic distributions of FA estimates involve diagonal

elements of Z as well.

iii) Spherical errors

Let us consider the case "i
ind
⇠ (0, �iiV") where V" = �̄2IT , with independent components

across time and the normalization lim
n!1

1
n

P
i
�ii = 1. By repeating the arguments of Section E.3

for the constrained FA estimators (see Section 5.3), we get Tr(MF ( y �  ")MF ) = 0 instead of

equation (E.4). It yields the asymptotic expansions
p
n(�̂2

� �̃2) = 1
T�k

Tr(MFZn) + op(1) =

�̄
2

T�k
Tr(Z⇤

n
)+op(1), and

p
n(F̂j �Fj) =

1
�̄2Rj( y� ")Fj �

1
�̄2⇤j "Fj +op(1) =

1
�̄2Rj(WnF 0+

FW 0
n
+ Z̄n)Fj + op(1), where we use  y �  " = WnF 0 + FW 0

n
+ Z̄n,  " = 1

T�k
Tr(MFZn)IT

and ⇤jFj = 0, and Z̄n = Zn �
1

T�k
Tr(MFZn)IT . Moreover, by sphericity, we have Rj =

1
2�j

PFj
+ 1
�j
MF+

P
k

`=1, 6̀=j

1
�j��`

PF`
. Thus, we get

p
n(�̂2

��̃2) ) �̄
2

T�k
Tr(Z⇤) and

p
n(F̂j�Fj) )

1
�̄2Rj(WF 0+FW 0+Z̄)Fj .51 The Gaussian matrix Z is such that Ztt ⇠ N(0, ⌘) and Zt,s ⇠ N(0, q)

for t 6= s, mutually independent, where ⌘ = lim
n!1

1
n

P
i
V ["2

i,t
], and vec(W ) ⇠ N(0, Q� ⌦ IT ).

Variables Z and W are independent if E["3
i,t
] = 0. FGS, Section 4.3.1, explain how we can

estimate q and ⌘ by solving a system of two linear equations based on estimated moments of "̂i,t.

iv) Cross-sectionally homoskedastic errors and link with Anderson and Amemiya (1988)

Let us now make the link with the distributional results in Anderson and Amemiya (1988). In

our setting, the analogous conditions as those in their Corollary 2 would be: (a) random effects
51The asymptotic distribution of estimator �̂2 coincides with that derived in FGS with perturbation theory methods.

The asymptotic distribution of the factor estimates slightly differs from that given in FGS, Section 5.1, because of the

different factor normalization adopted by FA compared to PCA even under sphericity.
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for the loadings that are i.i.d. with E[�i] = 0, V [�i] = Ik, (b) error terms are i.i.d. "i ⇠ (0, V")

with V" = diag(V",11, ..., V",TT ) such that E["i,t"i,r"i,s"i,p] = V",ttV",ss, for t = r > s = p, and

= 0, otherwise, and (c) �i and "i are mutually independent. Thus, �ii = 1 for all i, i.e., errors

are cross-sectionally homoskedastic. Under the aforementioned Conditions (a)-(c), the Gaussian

distributional limits Z and W are such that V [Ztt] = ⌘tV 2
",tt

, for ⌘t := V ["2
i,t
]/V 2

",tt
, V [Zts] =

V",ttV",ss, for t 6= s, all covariances among different elements of Z vanish, and V [vec(W )] = Ik ⌦

V". Equations (E.20)-(E.21) yield the asymptotic distributions of the FA estimates. In particular,

they do not depend on the distribution of the �i. Moreover, the distribution of the out-of-diagonal

elements of Z does not depend on the distribution of the errors, while, for the diagonal term, we

have ⌘t = 2 for Gaussian errors. As remarked in Section E.5.2, if the asymptotic distribution of

estimator V̂" is centered around the realized matrix 1
n

P
i
"i"0i instead of its expected value, that

distribution involves the out-of-diagonal elements of Z, and the elements of W . Hence, in that

case, the asymptotic distribution of the FA estimates is the same independent of the errors being

Gaussian or not, and depends on F and V" only, as found in Anderson and Amemiya (1988).

E.6 Orthogonal transformations and maximal invariant statistic

In this subsection, we consider the transformation O that maps matrix Ĝ into ĜO, where O is an

orthogonal matrix in R(T�k)⇥(T�k), and the transformation OD that maps matrix D̂ into D̂OD,

where OD is an orthogonal matrix in Rdf⇥df . These transformations are induced from the freedom

in chosing the orthonormal bases spanning the orthogonal complements of F̂ and X̂ . We show

that they imply a group of orthogonal transformations on the vector Ŵ =
p
nD̂

0
vech(Ŝ⇤), with

Ŝ⇤ = Ĝ0V̂ �1
"

(V̂y � V̂")V̂ �1
"

Ĝ, and establish the maximal invariant.

Under the transformation O, matrix Ŝ⇤ is mapped into O�1Ŝ⇤O. This transformation is mir-

rored by a linear mapping at the level of the half-vectorized form vech(Ŝ⇤). In fact, this mapping

is norm-preserving, since kvech(S)k2 = 1
2kSk

2 and kO�1SOk = kSk for any conformable sym-

metric matrix S and orthogonal matrix O. This mapping is characterized in the next lemma.
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Lemma 11 For any symmetric matrix S and orthogonal matrix O in Rm⇥m, we have

vech(O�1SO) = R(O)vech(S), where R(O) = 1
2A

0
m
(O0

⌦ O0)Am is an orthogonal matrix,

and Am is the duplication matrix defined in Appendix B. Transformations R(O) with orthogonal

O have the structure of a group: (a) R(Im) = I 1
2m(m+1), (b) R(O1)R(O2) = R(O2O1), and (c)

[R(O)]�1 = R(O�1).

With this lemma, we can give the transformation rules under O for a set of relevant statistics in

the next proposition. We denote generically withe· a quantity computed with ĜO instead of Ĝ.

Proposition 8 Under Assumptions 1 and A.5, (a) vech(f̂S⇤) = R(O)vech(Ŝ⇤), (b)fX = R(O)X ,

(c) Ip � fX(fX
0fX)�1fX

0
= R(O)[Ip � X(X 0X)�1X 0]R(O)�1, (d) eR = RR(O)�1,

(e) eR(Ip �fX(fX
0fX)�1fX

0
) = R(Ip �X(X 0X)�1X 0)R(O)�1.

From Proposition 8 (c), under transformation O, matrix D̂ is mapped into R(O)D̂. Combining

with transformation OD, we have êD = R(O)D̂OD. Thus, using Proposition 8 (a), under O and

OD, vector Ŵ is mapped into f̂W =
p
n êD

0
vech(f̂S⇤) = O0

D
ŴD. Thus, statistic Ŵ is invariant

under O, while OD operates as the group of orthogonal transformations. The maximal invariant

under this group of transformations is the squared norm kŴk
2 = Ŵ 0Ŵ .

Proof of Proposition 8: With f̂S⇤ = O�1Ŝ⇤O, part (a) follows from Lemma 11. Let G̃ =

GO. Then, for any diagonal matrix �, on the one hand, we have vech(G̃0�G̃) = X̃diag(�),

and on the other hand, we have vech(G̃0�G̃) = vech(O�1G0�GO) = R(O)vech(G0�G) =

R(O)Xdiag(�). By equating the two expressions for any diagonal matrix �, part (b) follows.

Statement (c) is a consequence thereof and R(O) being orthogonal. Moreover, with Q̃ = QO and

using vech(Q̃0ZQ̃) = vech(O�1Q0ZQO) = R(O)R0vech(Z), we deduce part (d). Statement (e)

is a consequence of (c) and (d).
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E.7 Proofs of Lemmas 5-11

Proof of Lemma 5: The equivalence of conditions (a) and (b) is a consequence of the fact that

function L (A) = �
1
2 log |A|�

1
2Tr(V

0
y
A�1), where A is a p.d. matrix, is uniquely maximized for

A = V 0
y

(see Magnus and Neudecker (2007), p. 410), and L0(✓) = L (⌃(✓)).

Proof of Lemma 6: (a) From Assumption 2, we have E["̄] = 0 and V ["̄] = V
h
1
n

P
n

i,k=1 si,kV
1/2
" wk

i

= V 1/2
"

1
n2

P
n

i,j,k,l=1 si,ksj,lE[wkw0
l
]V 1/2
" = ( 1

n2

P
n

i,j
�i,j)V" where the si,k are the elements of ⌃1/2.

Now, 1
n2

P
n

i,j=1 �i,j  C 1
n2

P
Jn

m=1 b
1+�
m,n

= O(n��1
P

Jn

m=1 B
1+�
m,n

) = O(n��1J1/2
n (
P

Jn

m=1 B
2(1+�)
m,n )1/2)

= o(n�1J1/2
n ) = o(n�1/2) from the Cauchy-Schwarz inequality and Assumptions 2 (c) and (d).

Part (a) follows. To prove part (b), we use E[ 1
n
""0] ! V 0

"
and V [vech((V 0

"
)�1/2( 1

n
""0)(V 0

"
)�1/2)] =

1
n
⌦n from the proof of Lemma 2, and 1

n
⌦n = o(1) by Assumption A.3. Finally, to show part (c),

write 1
n

P
n

i=1 "i�
0
i
= (V 0

"
)1/2 1

n

P
n

i,j=1 si,jwj�0
i
. Then, E[ 1

n

P
n

i=1 "i�
0
i
] = 0 while the variance of

vec( 1
n

P
n

i=1 "i�
0
i
) vanishes asymptotically since V [vec( 1

n

P
n

i,j=1 si,jwj�0
i
)] = 1

n2

P
n

i,j,m,l=1 si,jsm,l

(�i�0
l
)⌦ E[wjw0

m
] = 1

n2

P
n

i,l=1 �i,l(�i�
0
l
)⌦ IT = o(1) under Assumptions 2 and A.2.

Proof of Lemma 7: From the arguments in the proof of Proposition 6 with y = 0, the solution of

the FOC is such that ✏
F,j

= (⇤0
j
�R0

j
) ✏

V"
(V 0

"
)�1Fj for j = 1, ..., k, and diag(MF0,V

0
"
 ✏

V"
M 0

F0,V
0
"

)

= 0. Since  ✏
V"

is diagonal, the latter equation yields M�2
F0,V

0
"

diag( ✏
V"
) = 0. Under condition (a)

of Lemma 7, we get  ✏
V"

= 0, which in turn implies  ✏
F

= 0. Thus, condition (a) is sufficient

for local identification. It is also necessary to get uniqueness of the solution  ✏
V"

= 0. Moreover,

conditions (a) and (b) of Lemma 7 are equivalent as shown in Appendix E.3. Further, conditions (a)

and (c) are equivalent since ��2 = M�2
F0,V

0
"

(V 0
"
)2. Finally, let us show that condition (d) of Lemma

7 is both sufficient and necessary for local identification. The FOC for the Lagrangian problem are
@L0(✓)
@✓

�
@g(✓)0

@✓
�L = 0 and g(✓) = 0, where �L is the Lagrange multiplier vector. By expanding at

first-order around ✓0 and �0 = 0, we get H0

0

@ ✓ � ✓0

�

1

A = 0, where H0 :=

0

@ J0 A0

A0
0 0

1

A, with

A0 = @g(✓0)0

@✓
, is the bordered Hessian. The parameters are locally identified if, and only if, H0 is
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invertible. The latter condition is equivalent to B0
0J0B0 being invertible.52

Proof of Lemma 8: By Assumption 2, vec(Wn) = (Ik ⌦ V 1/2
" ) 1p

n

P
Jn

m=1 xm,n where the xm,n :=
P

i,j2Im si,j(�i ⌦ wj) are independent across m. Now, we apply the Liapunov CLT to show
1p
n

P
Jn

m=1 xm,n ) N(0, Q�⌦IT ). We have E[xm,n] = 0 and E[xm,nx0
m,n

] =
⇣P

i,j2Im �i,j�i�
0
j

⌘
⌦

IT and, by Assumption A.8, ⌦W,n := 1
n

P
Jn

m=1 E[xm,nx0
m,n

] converges to the positive definite ma-

trix Q�⌦IT . Let us now check the multivariate Liapunov condition k⌦�1/2
W,n

k
4 1
n2

P
Jn

m=1 E[kxm,nk
4] =

o(1). Since k⌦�1/2
W,n

k = Op(1), it suffices to prove 1
n2

P
Jn

m=1 E[(xp,t

m,n
)4] = o(1), for any p = 1, ..., k

and t = 1, ..., T , where xp,t

m,n
:=
P

i,j2Im si,j�i,pwj,t. For this purpose, Assumptions A.1 and A.2

yield E[(xp,t

m,n
)4]  C(

P
i,j2Im �i,j)

2. Then, we get 1
n2

P
Jn

m=1 E[(xp,t

m,n
)4]  C 1

n2

P
Jn

m=1 b
2(1+�)
m,n 

Cn2�
P

Jn

m=1 B
2(1+�)
m,n = o(1) by Assumptions 2 (c) and (d). Part (a) of Lemma 8 follows. Moreover,

E[vech(⇣m,n)x0
m,n

] = 0 and the proof of Lemma 2 imply part (b).

Proof of Lemma 9: From the proof of Proposition 1 we have MX⌦Z⇤MX = MXR0⌦RMX ,

where⌦ = D+IT (T+1)/2 = [ (0)�2q]D(0)+
P

T�1
h=1  (h)[D̃(h)+D̄(h)]+(q+)IT (T+1)/2. Then,

since the columns of R are orthonormal, we get MX⌦Z⇤MX = [ (0) � 2q]MXR0D(0)RMX +
P

T�1
h=1  (h)MXR0D̃(h)RMX +

P
T�1
h=1  (h)MXR0D̄(h)RMX +(q+)MX . Now, we show that

the the first two terms in this sum are nil. We have G0Et,tG = Q0V 1/2
" Et,tV

1/2
" Q = V",ttQ0Et,tQ

and thus vech(G0Et,tG) = V",ttvech(Q0Et,tQ) = V",ttR
0vech(Et,t) (see the proof of Proposi-

tion 1). Hence, the kernel of matrix MX is spanned by vectors R0vech(Et,t), for t = 1, ..., T .

We deduce that MXR0D(0) = 0 and MXR0D̃(h)RMX = 0. Furthermore, from IT (T+1)/2 =

2
P

T

t=1 vech(Et,t)vech(Et,t)0+
P

t<s
vech(Et,s+Es,t)vech(Et,s+Es,t)0 = 2D(0)+

P
T�1
h=1 D̄(h),

we get MX = MXR0IT (T+1)/2RMX =
P

T�1
h=1 MXR0D̄(h)RMX . The conclusion follows.

Proof of Lemma 10: By the root-n consistency of the FA estimators, ẑ⇤
m,n

= z⇤
m,n

+ Op(
bm,np

n
),

uniformly in m, where z⇤
m,n

=
P

i2Im G0V �1
"
"i"0iV

�1
"

G =
P

i2Im Q0eie0iQ. Under the condition
1

n3/2

P
Jn

m=1 b
2
m,n

=
p
n
P

Jn

m=1 B
2
m,n

= o(1), we have ⌦̂Z⇤ = 1
n

P
Jn

m=1 E[vech(z⇤
m,n

)vech(z⇤
m,n

)0] +

op(1), up to pre- and post-multiplication by an orthogonal matrix. Moreover, vech(z⇤
m,n

) =

52Indeed, we can show |H0| = (�1)
1
2k(k�1)

|A0
0A0||B0

0J0B0| by using J0A0 = 0, where the latter equality follows

since the criterion is invariant to rotations of the latent factors.
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R0[
P

i2Im vech(eie0i)] =
1
2R

0A0
T
[
P

i2Im(ei⌦ei)], and
P

i2Im(ei⌦ei) =
P

a,b
�a,b(wa⌦wb). Thus,

we get E
⇥
vech(z⇤

m,n
)vech(z⇤

m,n
)0
⇤
= 1

4R
0A0

T

nP
a,b,c,d2Im �a,b�c,dE[(wa ⌦ wb)(wc ⌦ wd)0]

o
ATR.

The non-zero contributions to the term in the curly brackets come from the combinations with a =

b = c = d, a = b 6= c = d, a = c 6= b = d and a = d 6= b = c, yielding:
P

a,b,c,d
�a,b�c,dE[(wa ⌦

wb)(wc⌦wd)0] =
P

a
�2
a,a
E[(waw0

a
)⌦(waw0

a
)]+(

P
a 6=c

�a,a�c,c)vec(IT )vec(IT )0+(
P

a 6=b
�2
a,b
)(IT 2+

KT,T ) =
P

a
[�2

a,a
V (wa⌦wa)]+(

P
a
�a,a)2vec(IT )vec(IT )0+(

P
a 6=b

�2
a,b
)(IT 2 +KT,T ). Then, us-

ing wa ⌦ wa = ATvech(waw0
a
), we get 1

4A
0
T

nP
a,b,c,d2Im �a,b�c,dE[(wa ⌦ wb)(wc ⌦ wd)0]

o
AT =

P
a
[�2

a,a
V (vech(waw0

a
))] + (

P
a
�a,a)2vech(IT )vech(IT )0 + (

P
a 6=b

�2
a,b
)IT (T+1)

2
. Then, since

1
n

P
n

i=1 �
2
i,i
V [vech(wiw0

i
)] = Dn, where matrix Dn is defined in Assumption A.6, we get ⌦̂Z⇤ =

R0⌅̃nR+op(1), where ⌅̃n = Dn+(qn+ ⇠n)vech(IT )vech(IT )0+nIT (T+1)
2

. Moreover, under As-

sumption 3, and singling out parameter qn along the diagonal, we have Dn = [ n(0)�2qn]D(0)+
P

T�1
h=1  n(h)[D̃(h) + D̄(h)] + qnIT (T+1)/2. The conclusion follows.

Proof of Lemma 11: We use vec(S) = Amvech(S), where the m2
⇥

1
2m(m + 1) matrix Am is

such that: (i) A0
m
Am = 2I 1

2m(m+1), (ii) Km,mAm = Am, where Km,m is the commutation matrix

for order m, and (iii) AmA0
m

= Im2 + Km,m (see the proof of Proposition 1 and also Theorem

12 in Magnus, Neudecker (2007) Chapter 2.8). Then, vech(S) = 1
2A

0
m
vec(S) by property (i),

and vech(O�1SO) = 1
2A

0
m
vec(O�1SO) = 1

2A
0
m
(O0

⌦ O0)vec(S) = 1
2A

0
m
(O0

⌦ O0)Amvech(S),

for all symmetric matrix S. It follows R(O) = 1
2A

0
m
(O0

⌦ O0)Am. Moreover, by properties

(i)-(iii), we have (a) R(Im) = I 1
2m(m+1), (b) R(O1)R(O2) = 1

4A
0
m
(O0

1 ⌦ O0
1)AmA0

m
(O0

2 ⌦

O0
2)Am = 1

4A
0
m
(O0

1⌦O0
1)(Im2 +Km,m)(O0

2⌦O0
2)Am = 1

4A
0
m
(O0

1O
0
2⌦O0

1O
0
2)(Im2 +Km,m)Am =

1
2A

0
m
[(O2O1)0 ⌦ (O2O1)0]Am = R(O2O1), and thus (c) [R(O)]�1 = R(O�1).

F Numerical checks of conditions (6) of Proposition 4

In this section, we check numerically the validity of Inequalities (6) for given df , �j , ⌫j , and

m = 3, ....,M , for a large bound M . The idea is to compute the frequency of the LHS of (6)

becoming strictly negative over a large number of potential values of �j and ⌫j , j = 1, ..., df , for
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any given df > 1.53 Table 2 provides those frequencies for m = 3, ..., 16 (cumulatively), with �j

uniformly drawn in [�, �̄] for j = 1, ..., df , and with ⌫1 = 0 54 and ⌫j uniformly drawn in [0, ⌫̄], for

j = 2, ..., df , and different combinations of bounds �, �̄, ⌫̄, and degrees of freedom df = 2, ..., 12.

Each frequency is computed from 108 draws of �j and ⌫j , j = 1, ..., df . In the SMC, we also

report a table of frequencies for large grids of equally-spaced points in [�, �̄]df ⇥ [0, ⌫̄]df�1, which

corroborate the findings of this section.

F.1 Calibration of ⌫̄, � and �̄

To calibrate the bounds ⌫̄, � and �̄with realistic values, we run the following numerical experiment.

For T = 20 and k = 7, we simulate 10, 000 draws from random T⇥k matrix F̃ such that vec(F̃ ) ⇠

N(0, ITk) and set F = V 1/2
" U�1/2, U = F̃ (F̃ 0F̃ )�1/2, G = V 1/2

" Q, Q = Q̃(Q̃0Q̃)�1/2, Q̃ are the

first T � k columns of IT � UU 0, for V" = diag(V",11, ..., V",TT ), with V",tt = 1.5 for t = 1, ..., 10,

and V",tt = 0.5 for t = 11, ..., 20, and � = Tdiag(4, 3.5, 3, 2.5, 2, 1.5, 1), ck+1 = 10T , and ⇠k+1 =

e1. With these choices, the “signal-to-noise" 1
T
F 0
j
V �1
"

Fj for the seven factors j = 1, ..., 7 are

4, 3.5, 3, 2.5, 2, 2.5, 1, and the “signal-to-noise" for the weak factor is 1
T
F 0
k+1V

�1
"

Fk+1 = 10n�1/2.

Moreover, the errors follow the ARCH model of Section E.5.3 (i) with ARCH parameters either (a)

↵i = 0.2 for all i, or (b) ↵i = 0.5 for all i, and q = 4, and  = 0 (cross-sectional independence).

The choices ↵i = 0.2, 0.5 both meet the condition 3↵2
i
< 1 ensuring the existence of fourth-

order moments. Moreover, with q � 1 = 3, we have a cross-sectional variance of the �ii that

is three times larger than the mean (normalized to 1). For each draw, we compute the df = 71

non-zero eigenvalues and associated eigenvectors of ⌦Z̄⇤ , and the values of parameters ⌫j and

�j . In our simulations (a) with ↵i = 0.2, the draws of maxj=1,...,df ⌫j range between 0.21 and
53From Footnote 39, we know that Inequalities (6) are automatically met with df = 1. A given value of df may

result from several different combinations of T and k, while a given T implies different values of df depending on k.

For instance, df = 2 applies with (T, k) = (4, 1), (8, 4), and (13, 8), among other combinations. For T = 20, the

tests for k = 1, 2, ..., 14 yield df = 170, 151, 133, 116, 100, 85, 71, 58, 46, 35, 25, 16, 8, 1, respectively.
54This normalization results from ranking the eigenvalues µj , so that µ1 is the smallest one.
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0.30, with 95% quantile equal to 0.28, while the 5% and 95% quantiles of the �j are 0.13 and

7.65. Instead, (b) with ↵i = 0.5, the maxj=1,...,df ⌫j range between 0.70 and 0.79, with 95%

quantile equal to 0.77, and the 5% and 95% quantiles of the �j are 0.12 and 6.64. To get further

insights in the choice of parameters ⌫̄,�, �̄, we also consider the values implied by the FA estimates

in our empirical analysis. Here, when testing for the last retained k in a given subperiod, the

median across subperiods of maxj=1,...,df ⌫j is 0.76, and smaller than about 0.90 in most subperiods.

Similarly, assuming ck+1 = 10T and ⇠k+1 = e1 as above, the median values of the smallest and the

largest estimated �j are 0.0024 and 5.84. Inspired by these findings, we set �̄ = 7, and consider

⌫̄ = 0.2, 0.7, 0.9, 0.99, and � = 0, 0.1, 0.5, 1, to get realistic settings with different degrees

of dissimilarity from the case with serially uncorrelated squared errors (increasing with ⌫̄), and

separation of the alternative hypothesis from the null hypothesis (increasing with �).

F.2 Results with Monte Carlo draws

In Table 2, the entries are nil for ⌫̄ sufficiently small and � sufficiently large, suggesting that the

AUMPI property holds for those cases that are closer to the setting with uncorrelated squared

errors and sufficiently separated from the null hypothesis. Violations of Inequalities (6) concern

df = 2, 3, 4, 5.55 Let us focus on the setting with ⌫̄ = 0.7 and � = 0.1. We find 3752 violations

of Inequalities (6) out of 108 simulations, all occurring for df = 2, except 65 for df = 3. For

those draws violating Inequalities (6) for df = 2, a closer inspection shows that (a) they feature

values ⌫2 close to upper bound ⌫̄ = 0.7, and values of �2 close to lower bound � = 0.1, and

(b) several of them yield non-monotone density ratios f(z;�1,�2)
f(z;0,0) , with the non-monotonicity region

corresponding to large values of z. As an illustration, let us take the density ratio for df = 2 with
55A given number of simulated draws become increasingly sparse when considering larger values of df , which

makes the exploration of the parameter space more challenging in those cases. However, unreported theoretical con-

siderations show via an asymptotic approximation that the monotone likelihood property holds for df ! 1 since the

limiting distribution is then Gaussian. This finding resonates with the absence of violations in Table 2 for the larger

values of df .
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⌫2 = 0.666, �1 = 1.372, and �2 = 0.130. Here, the eigenvalues of the covariance matrix are

µ1 = 1 (by normalization) and µ2 = (1 � ⌫2)�1 = 2.994, and the non-centrality parameter �2 is

small. The quantiles of the asymptotic distribution under the null hypothesis for asymptotic size

↵ = 20%, 10%, 5%, 1%, 0.1% are 9.3, 12.8, 16.2, 24.5, 36.5. Non-monotonicity applies for z � 16.

The optimal rejection regions {f(z;�1,�2)
f(z;0,0) � C} correspond to those of the LR test {z � C̃}, e.g.,

for asymptotic levels such as ↵ = 20%, but not for ↵ = 5% or smaller. Indeed, in the latter cases,

because of non-monotonicity of the density ratio, the optimal rejection regions are finite intervals

in argument z. With ⌫̄ = 0.7, we do not find violations with � = 0.5 or larger.
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df 2 3 4 5 6 7 8 9 10 11 12

⌫̄ = 0.2 � = 0 0.002 0 0 0 0 0 0 0 0 0 0

� = 0.1 0.000 0 0 0 0 0 0 0 0 0 0

� = 0.5 0 0 0 0 0 0 0 0 0 0 0

� = 1 0 0 0 0 0 0 0 0 0 0 0

⌫̄ = 0.7 � = 0 0.051 0.000 0.000 0 0 0 0 0 0 0 0

� = 0.1 0.037 0.000 0 0 0 0 0 0 0 0 0

� = 0.5 0 0 0 0 0 0 0 0 0 0 0

� = 1 0 0 0 0 0 0 0 0 0 0 0

⌫̄ = 0.9 � = 0 0.151 0.004 0.000 0.000 0 0 0 0 0 0 0

� = 0.1 0.134 0.004 0.000 0 0 0 0 0 0 0 0

� = 0.5 0.007 0.000 0 0 0 0 0 0 0 0 0

� = 1 0 0 0 0 0 0 0 0 0 0 0

⌫̄ = 0.99 � = 0 0.426 0.015 0.000 0.000 0 0 0 0 0 0 0

� = 0.1 0.411 0.014 0.000 0.000 0 0 0 0 0 0 0

� = 0.5 0.218 0.007 0.000 0 0 0 0 0 0 0 0

� = 1 0.078 0.001 0 0 0 0 0 0 0 0 0

Table 2: Numerical check of Inequalities (6) by Monte Carlo. We display the cumulative frequency

of violations in h of Inequalities (6), for m = 3, ..., 16, over 108 random draws of the parameters

�j ⇠ Unif [�, �̄] and ⌫j ⇠ Unif [0, ⌫̄], for �̄ = 7, and different combinations of bounds �, ⌫̄, and

degrees of freedom df . An entry 0.000 corresponds to less than 100 cases out of 108 draws.
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G Maximum value of k as a function of T

In Table 3, we report the maximal values for the number of latent factors k to have df � 0, or

df > 0.

T 1 2 3 4 5 6 7 8 9 10 11 12

df � 0 0 0 1 1 2 3 3 4 5 6 6 7

df > 0 NA 0 0 1 2 2 3 4 5 5 6 7

T 13 14 15 16 17 18 19 20 21 22 23 24

df � 0 8 9 10 10 11 12 13 14 15 15 16 17

df > 0 8 9 9 10 11 12 13 14 14 15 16 17

Table 3: Maximum value of k. We give the maximum admissible value k of latent factors so that

the order conditions df � 0 and df > 0 are met, with df = 1
2 [(T �k)2�T �k], for different values

of the sample size T = 1, ..., 24. Condition df � 0 is required for FA estimation, and condition

df > 0 is required for testing the number of latent factors.
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