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This appendix is divided in six sections. Section I provides a description of the

methodology for estimating the kernel density and the distribution characteristics (mo-

ments, proportion, and quantile). It also contains the proofs of the propositions dis-

cussed in the paper. Section II examines the asymptotic properties of the estimated

distribution characteristics under an alternative analytical approach (as opposed to the

numerical approach used in the paper). Section III provides a detailed discussion of the

Error-in-Variable (EIV) bias. Section IV describes our extensive Monte-Carlo analysis.

It also presents simulation results under the assumption that skill and scalability are

uncorrelated. Section V describes the construction of the data set and different fund

groups. Finally, Section VI explains the construction of our new formal specification

test. It also reports additional empirical results on (i) the validity of the panel spec-

ification, (ii) the impact of survivorship and reverse survivorship bias, (iii) the use of

alternative asset pricing models, (iv) the analysis based on daily fund returns, and (v)

the introduction of variables that capture changes in the economic conditions.

I Methodology

A Estimation Procedure

To begin the presentation of the methodology, we explain how to estimate the measure

 for each fund, where  ∈ {   ()} The estimation procedure explicitly
controls for the small-sample bias in the time-series regression  = −−1+0+
. This bias, which disappears asymptotically, arises because the mutual fund error

term  is positively correlated with the innovation in size , i.e.,  = + ,

where  is positive. Specifically,  denotes the size innovation projected onto the

space spanned by the factors :  =  − 0 where  = (1 
0
)
0 and  is the

innovation of the size regression  =  + −1 + . Failing to adjust for the

small-sample bias produces values for the skill and scale coefficients that are too high.1

As noted by Amihud and Hurvich (2004), adding the regressor  eliminates the

small-sample bias. To see this point, we can replace  with  +  to obtain

 =  − −1 + 0 +  +  (A1)

and verify that strict exogeneity holds, i.e., [ | ] = 0 where  = (1   )
0 

1Using the analysis of Stambaugh (1999), we have [̂ −] = −[̂− ]  0 and [̂ −] =
[̂ − ][−1]  0 where ̂ and ̂ denote the estimators of  and  without the small-sample

bias correction.
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is the ×(+3) matrix of the available observations of  = (1−−1  0 )0 and
 is the number of factors Of course, we do not observe the true projected innovation

. Therefore, we use the procedure proposed by Amihud and Hurvich (2004) and

Avramov, Barras, and Kosowski (2013) to compute a proxy for  denoted by 


.

This four-step procedure is applied to each fund  individually ( = 1  ). First,

we run the size regression to obtain the estimated coefficients ̂ and ̂  Second, we

compute the adjusted size innovation as

 =  − (̂ + ̂−1) (A2)

where the second-order coefficients corrected for the small-sample bias are given by

̂ = min(̂ + (1 + 3̂) + 3(1 + 3̂
2

) 2  0999) and ̂




= (1 − ̂) Third,

we regress  on the factors to obtain  =  − ̂
0

 Finally, we insert 




in

Equation (A1) to obtain

 =  − −1 + 0 + 


+  (A3)

From this regression, we can obtain estimated values for  that are adjusted for the

small-sample bias

B Asymptotic Properties of the Kernel Density

Proof of Proposition III.1 (Asymptotic properties). In this section, we provide

a proof of the asymptotic properties of the kernel density ̂() for each measure . To

this end, we initially focus on the skill coefficient, i.e.,  = . We allow for weak serial

dependence in the error terms (i.e., temporal mixing). To simplify the presentation and

avoid unnecessary technicalities related to spatial mixing conditions, we assume that the

error terms are cross-sectionally independent. To further ease the presentation, we do

not explicitly include the small-sample bias correction of the previous section because it

has no impact on the asymptotic analysis when  becomes large.2

2The inclusion of the estimated variable  in the set of regressors does not change the asymptotic

properties of the nonparametric density kernel estimator because the estimation error in  only affects

the higher order terms beyond −1.
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From the OLS estimation of the regression  =  − −1 + 0 + , we have:

̂ = 01̂
−1


1



X


 =  + 01̂
−1


1



X




=  +
1√

  

0
1̂

−1


Ã
1√


X




!
≡  +

1√

̂  (A4)

where  = (1−−1  0)0 Moreover, let us write

̂ =  +
1√

̂  (A5)

where  =  
1√


P
 ,  = 01

−1
, ̂ = (  − )

P
 

0
1̂

−1
+

 
P

 
0
1(̂

−1
 −−1 )   = plim→∞   and   = . The term ̂

√


corresponds to the estimation error of ̂ It is equal to the sum of  
√
 and ̂

where the second component captures the errors due to estimating the matrix  and

the random sample size . We can write ̂()− () = 1 + 2 + 3 + 4, where:

1 =
1




∙


µ
 −



¶¸
− ()

2 =
1




"


Ã
 + 

√
 −



!#
− 1




∙


µ
 −



¶¸


3 =
1



X


(


Ã
 + 

√
 −



!
−

"


Ã
 + 

√
 −



!#)


4 =
1



X


"
1

 

Ã
 + 

√
 + ̂ −



!#

− 1



X


"


Ã
 + 

√
 −



!#
 (A6)

The first term 1 is the smoothing bias, the second term 2 is the Error-In-Variable

(EIV) bias, and 3 is the main stochastic term. The remainder term 4 is associated

with ̂ and is negligible with respect to the others. We now characterize the first

three dominating terms.

(i) From standard results in kernel density estimation, the smoothing bias is such that

1 =
1
2
(2)()2

2 +(3), with 2 =
R
2().
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(ii) By a Taylor expansion of the kernel function  we have

2 =

∞X
=1

1

! 2+1


∙
()

µ
 −



¶
( )



¸
 (A7)

We can then apply  times partial integration and a change of variable to obtain

1

+1


∙
()

µ
 −



¶
( )



¸
=

1

+1

Z
()

µ
−



¶
()

= (−1) 1


Z


µ
−



¶

()

()

= (−1)
Z

 ()
()
(+ ) (A8)

where () = [( )
 | = ]() for  = 1 2 . We have 1() =

0 and lim→∞2() = [| = ]() ≡ () where  is equal to

2 plim→∞
1


P
 . By weak serial dependence of the error terms,

functions () for   2 are bounded with respect to  . Thus, we get:

2 =
1
2
(2)() +(1 32 + 2 )

(iii) Let us now consider term 3. For expository purpose, we treat the factor values

 as given constants. Then:

 [3] =
1

2


"


Ã
 +  

√
 −



!#
 (A9)

From the above arguments, we have 1



∙


µ
+ 

√
−



¶¸
= ()+ (1) and

1




⎡⎣Ã
 +  

√
 −



!2⎤⎦ =

Z
()2

1




"
̄

Ã
 + 

√
 −



!#

= ()

Z
()2+ (1) (A10)

where ̄() = ()2
R
()2. Therefore:

 [3] =
1


()

Z
()2+ 

µ
1



¶
 (A11)

Under regularity conditions, we can apply an appropriate central limit theorem
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(CLT) to obtain
√
3 ⇒  (0 ()1), where 1 =

R
()2. Grouping the

different elements completes the proof.3 QED

We can apply the same arguments for all the other measures used in the paper: (i)

the scale coefficient ( = ) (ii) the value added ( = ) and (iii) the subperiod

value added ( = ()) The only required change is to use the appropriate definition

for ̂ and  given in the paper.

C Optimal Bandwidth

Proof of Proposition III.1 (Optimal bandwidth) We now prove the remaining

part of Proposition III.1 by solving for the optimal bandwidth ∗ that minimizes the
Asymptotic Mean Integrated Squared Error (AMISE) of the density ̂(). From the

arguments in Section B above, we get the asymptotic expansion of the bias () of the

estimator ̂() with leading terms,

1() =
1

2
22

(2)() (A12)

2() =
1

2
(2)() (A13)

where 1() denotes the smoothing bias and 2() denotes the EIV bias.
4 We also

get the asymptotic expansion of the variance of the estimator ̂() with leading terms

2() = 1

()1 Combining these elements, we can write the AMISE as

() =

Z
[2() + ()2] =

Z
[2() + (1() + 2())

2]

=
1


1 +

42
2

4

Z
[(2)()]2

+
22

2

Z
(2)()(2)()+

1

4 2

Z h
(2)()

i2
 (A14)

3Okui and Yanagi (2020) also consider a kernel estimator for the density of the mean and autocorre-

lation of random variables. However, their distributional results differ from our regression-based results

aimed at measuring fund skill.
4From Equations (A12) and (A13), the integral of 1() and 2() is equal to zero if (1) and

(1) vanish at the boundary of the support (which is the case in our Gaussian reference model). Hence

it implies that the bias adjusted density (Equation (19) in the paper) integrates to one by construction.
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where we assume that
R
(2)()(2)() > 0 so that the AMISE is convex. The optimal

bandwidth ∗ minimizes the AMISE and solves the equation:

− 1

2
+ 1

3 + 2



= 0

⇐⇒ 1 = 1
5 + 2

3


 (A15)

where 1 = 2
2

R
[(2)()]21 and 2 =

2

1

R
(2)()(2)() (with 1, 2  0).

The analytical approximation of the optimal bandwidth ∗ depends on the relative
increase of  and  . If (i) 3 tends to a nonzero constant and (ii) 5 tends to zero,

Equation (A15) implies that asymptotically

∗ = 
−1
3

2

³


´− 1
3
=

µ
2

1

Z
(2)()(2)()

¶−1
3 ³



´− 1
3
 (A16)

This solution is admissible (i.e., it satisfies 5 → 0) if the sample sizes  and  are

such that 25 →∞ or, put differently, if  is small relative to . QED

We now consider the asymptotic distribution of the kernel density obtained with

the optimal bandwidth ∗. We can check that
√
∗(∗3 + ∗2 + 1 32) = (1) if

 4 → 0. Replacing () with its asymptotic approximation we have:

√
∗

µ
̂()− ()− 1

2
(2)()2

∗2 − 1

2
(2)()

¶
⇒  (0 ()1)  (A17)

where the smoothing bias is negligible and the dominant component is the EIV bias of

order (1 ) (because we have 25 →∞ and ∗2 → 0)

Note that if (i) 3 tends to zero and (ii) 5 tends to a nonzero constant,

Equation (A15) produces a different optimal bandwidth of the form ∗ ∼ 
− 1
5

1 −
1
5 (i.e.,

the usual Silverman rule). This solution is admissible (i.e., it satisfies 3 → 0) if the

sample sizes  and  are such that 25 → 0 or, put differently, if  is large relative

to 5

Our Monte-Carlo analysis in Section IV reveals that given our actual sample size,

the optimal bandwidth in Equation (A16) produces the best results. Motivated by these

results, we therefore use it in our baseline specification. We also verify that the empirical

results are remarkably similar under the two bandwidth choices

5 In the special case where 25 → , with   0, the two rates of convergence −15 and ( )−13

coincide. Then, Equation (A15) has a solution such that ∗ ∼ ̄15−15, where ̄ solves the equation
1 = 1̄ + 2̄

35. Therefore, the optimal bandwidth remains proportional to −15 (similar to the
Silverman rule).
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D Adjustment of the Density Bias

Proof of Proposition III.2. We now prove the second proposition of the paper

which provides closed form expressions for the two bias components 1() and 2()

and the optimal bandwidth ∗. We use a Gaussian reference model in which  and

 = log() follow a bivariate Gaussian distribution with mean parameters  ,

variance parameters 2 
2
, and correlation parameter .

6 We also use a standard

Gaussian kernel () = 1√
2
exp

¡−22¢ with 1 =
R
()2 = 1

2
√

and 2 =R

2() = 1. The constants 1 and 2 are given by:

1 = 2
√


Z
[(2)()]2 (A18)

2 = 2
√


Z
(2)()(2)() = 2

√


Z
(4)()() (A19)

where we use twice partial integration for 2.

Let us now compute the two integrals appearing in these formulas. We have () =
1



³
−


´
where () = 1√

2
exp

¡−22¢ is the standard Gaussian density. We have
(1)() = − 1



µ
− 


¶
 ()  (A20)

(2)() =
1

2

Ãµ
− 


¶2
− 1
!
 ()  (A21)

Therefore, the first integral is equal toZ
[(2)()]2 =

1

5

Z
(2 − 1)2 1

2
exp(−2) = 1

2
√
5

Z
(22− 1)2()

=
3

8
√
5

 (A22)

with the changes of variables from  to  = (− ), and from  to  =
√
2.

We can write the second integral asZ
(4)()() =

exp
¡
 +

1
2
2(1− 2)

¢
5

Z
(4)() exp()()

=
exp

¡
 +

1
2
2(1− 2)

¢
2
√
5

Z
(44− 32 + 3) exp()() (A23)

6The Gaussian marginal density of  implies that our reference model nests the standard model

underlying the derivation of the Silverman rule for kernel smoothing.
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where () = [exp()| = ]() = exp
³
 + 

³
−


´
+ 1

2
2(1− 2)

´
()

 = 
√
2 by using the same changes of variables as above, and (4)() = (4 −

62 + 3)(). To compute the integral in Equation (A23), we can exploit the following

equality that applies to a standard Gaussian random variable :
R
 exp()() =

[ exp()] = 


[exp()] with [exp()] = exp(22). This yields

R
(44 −

32 + 3) exp()() =
³
1
4
4

4
− 3 2

2
+ 3
´
exp(22) = 1

4
(4 − 62 + 3) exp(22)

Therefore, we obtain

Z
(4)()() =

3exp
³
 +

1
2
2

³
1− 2

2

´´
8
√
5

(4412− 22 + 1) (A24)

Using these results, we obtain the optimal bandwidth

∗ =
∙
3(4412− 22 + 1)

45
exp

µ
 +

1

2
2

µ
1− 2

2

¶¶¸− 1
3

( )−13 (A25)

where 2 ≥ 0 when either 22 ≤ 6− 2
√
6, or 22 ≥ 6 + 2

√
6

Finally, we can use the Gaussian reference model to obtain closed form expressions

of the smoothing bias and the EIV bias. Differentiating () twice, we obtain7

(2)() = exp

µ
 + 

µ
− 


¶
+
1

2
2(1− 2)

¶
()

×
(µ





¶2
− 2

2

µ
− 


¶
+

1

2

"µ
− 


¶2
− 1
#)

= exp

µ
 +

1

2
2

¶
1

2

Ãµ
−  − 



¶2
− 1
!

× 1




µ
−  − 



¶
 (A26)

Using Equations (A21) and (A26), we can replace (2)() and (2)() in Equations

(A12) and (A13) to obtain the two bias terms under the reference model:

1() =
1

2
22

(2)() =

∙
1

2
2

1

2
(̄2

1 − 1)
¸
1


(̄1) (A27)

2() =
1

2
(2)() =

∙
1

2
exp( +

1

2
2)

1

2
(̄2

2 − 1)
¸
1


(̄2) (A28)

7Alternatively, we can directly derive Equation (A26) by (i) rewriting () as a recentered Gaussian

density up to a multiplicative constant, i.e., () = exp

 +

1
2
2


1




−−




, and (ii)

differentiating this expression twice.
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where ̄1 =
−


 and ̄2 =
−−


 In our implementation, the parameters

of the bivariate Gaussian distribution are estimated by the sample moments of ̂ and

̂ = log ̂. QED

E Estimators of the Distribution Characteristics

To compute the characteristics of the distribution, we use a numerical approach based

on the bias-adjusted density ̃(). For the moments, we simply use the respective

definitions of the standard deviation, skewness, and kurtosis:

 = 
1
2 =

µZ
()(−)2

¶1
2

 (A29)

 =

Z
()(−)3


3
2

 (A30)

 =

Z
()(−)4

 2
 (A31)

where  denotes the variance of the distribution. To obtain the bias-adjusted estimatorsg f, andg, we replace () with the bias-adjusted density estimator ̃() in the

above expressions We also compute the mean ̃ as the empirical average of the estimated

measures which does not suffer from the EIV bias: ̃ = ̂ = 1


P
 ̂1


 .
8 Once we

have the bias-corrected estimates, we can approximate the asymptotic variance of the

mean, standard deviation, skewness, and kurtosis using the delta method to conduct

statistical inference:

(i) For the estimated mean, we have the asymptotic variance:


h
̃
i
=




 (A32)

which only requires a consistent estimator of the variance of the distribution 

(ii) For the estimated volatility, we have:


hgi = 

h¡
(2)−1Ψ2

¢2i


 (A33)

8The integrals of the bias terms 1() and 2() are equal to zero (footnote 4), which implies

that the empirical average is the same as the average obtained via a numerical integration of ̃()
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where Ψ2 = ( −[])
2 −

h
( −[])

2
i


(iii) For the estimated skewness we have:


hfi = 

h¡
−3Ψ3 − 3

2
−2Ψ2 − 3−1Ψ1

¢2i


 (A34)

whereΨ3 = ( −[])
3−

h
( −[])

3
i
 andΨ1 = ( −[])− [( −[])]

(see Bai and Ng (2005))

(iv) For the estimated kurtosisg we have:


hg

i
= 

h¡
−4Ψ4 − 2−2Ψ2 − −1Ψ1

¢2i
 (A35)

where Ψ4 = ( −[])
4 −

h
( −[])

4
i
(see Bai and Ng (2005))

We also use a numerical approach to compute the proportion and quantile estimators.

We denote the proportion of funds with a measure  below the threshold  by Φ() =

 [ ≤ ] and the quantile at any given percentile level  ∈ (0 1) by () = Φ−1()
where Φ is the cdf. We obtain bias-adjusted estimators of Φ() and () via a numerical

integration of the density, i.e., we have

Φ() =

Z 

−∞
() (A36)Z ()

−∞
() =  (A37)

where we replace () with the bias-adjusted density estimator ̃() (for the quantile,

we use an iterative procedure until Equation (A37) holds). We can then use the bias-

corrected estimated proportion and quantile to estimate their asymptotic variances

 [Φ̃()] =
Φ()(1−Φ())


 (A38)

 [̃()] =

(1−)
(())2


 (A39)

where  is the normal density obtained from the Gaussian reference model.
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II Overview of the Analytical Approach

A Moments

An alternative to the numerical approach described above is to estimate the distrib-

ution characteristics using an analytical approach. Asymptotically, both approaches

(numerical and analytical) are equivalent.

To begin, we consider the estimation of the cross-sectional expectation [()],

where  is a given smooth function of . We investigate the convergence properties

of the cross-sectional estimator 1


P
=1 (̂)1


 based on the OLS estimates ̂ of the

non-trimmed assets. The following proposition proves the asymptotic normality of the

estimator under the baseline specification  =  − −1 + 0 + .

Proposition A.1. As   →∞, such that  = ( 3),

√


Ã
1



X


(̂)1

 − [()]− B

!
⇒  (0  [()])  (A40)

where B = 1
2
[(2)()] and  [()] is the cross-sectional variance of ()

Proof of Proposition A.1. Equation (A4) yields the mean value expansion

(̂) = () + (1)(̄)
1√

̂ + (2)(̄)

1

2
̂2  (A41)

where ̄ lies between ̂ and . Then, we get

√


Ã
1



X


(̂)1

 − [()]− B

!

=
1√


X


(()− [()])− 1√


X


()(1− 1 ) +
1√


X


1

 
(1)(̄)̂

+
1

2

1√


X


³
1

 
(2)(̄)̂

2
 −

h
(2)()

i´
≡ 21 + 22 + 23 + 24 (A42)

We have 22 = (1) and 23 = (1
√
 ) = (1) using similar arguments as in Lemma

2 of Gagliardini, Ossola, and Scaillet (2016). The remainder term 24 = (
p
 3 +√

 2 + 1 ), which gives 24 = (1) if  = ( 3).9 Therefore, the asymptotic

distribution in Equation (A38) depends on the first term 21 ⇒ (0  [()]) from the

9The condition  = ( 3) is used to control the remainder term in the Taylor expansion of the

function  and the bias term.
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standard CLT. QED

The distribution results in Equation (A38) reveal that we have an asymptotic bias

B of order 1 which comes from the estimation error of ̂ (EIV contribution). To

compute the bias-adjusted estimated mean, standard deviation, skewness, and kurtosis,

we can use an analytical approach (based on the delta method) and replace the unknown

moments with consistent estimators based on empirical averages:

(i) The mean is given by  = [] Therefore, the asymptotic bias B is zero

because (2)() = 0. For this particular case, we do not need the condition

 = ( 3) for the above proposition to hold.

(ii) The variance is given by  = 
h
( − [])

2
i
 To obtain the bias of the stan-

dard deviation  = 
1
2  we apply the delta method:

B () = (2)−1B ([2
 ]) (A43)

where the asymptotic bias of the second moment is given by

B ([2
 ]) =

1

2
[2] (A44)

(iii) The skewness is given by  = 
h
( − [])

3
i

h
( − [])

2
i32

 Apply-

ing the delta method, we obtain

B () = (∇3)B ([3
 ]) + (∇2)B ([2

 ]) (A45)

where ∇ denotes the derivative of  w.r.t. [

 ] and the different terms are

given by

B ([3
 ]) =

1

2
[6]

∇3 =  []
−32

∇2 = −3[] []
−32 +[3

 ](
−3
2
) []

−52

+
©−3[2

 ][] + 2[]
3
ª
(
−3
2
) []

−52 (A46)

(iv) The kurtosis is given by  = 
h
( − [])

4
i

h
( − [])

2
i2
. Applying
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the delta method, we obtain

B () = (∇4)B ([4
 ])+ (∇3)B ([3

 ])+ (∇2)B ([2
 ]) (A47)

where the different terms are given by

B ([4
 ]) =

1

2
[122

]

∇4 =  []
−2

∇3 = −4[] []
−2

∇2 = 6[]
2 []

−2 +
©
[4

 ]− 4[3
 ][]

ª
(−2) []

−3

+
©
6[2

 ][]
2 − 3[]

4
ª
(−2) []

−3 (A48)

B Proportion and Quantile

We now turn to the analysis of the proportion estimator inferred from the cumulative

distribution function (cdf) and the associated quantile. The proportion estimator is

the cross-sectional average of the indicator function (̂) = 1{̂ ≤ } based on the
OLS estimates ̂ for the non-trimmed assets, Φ̂() =

1


P
 1{̂ ≤ }1 , while the

quantile estimator is the inverse function ̂() = Φ̂−1().

The next proposition extends Proposition A.1 to the proportion and quantile.

Proposition A.2. As   →∞, such that  = ( 3),

√

³
Φ̂()−Φ()− B ()

´
⇒ 

³
0  [Φ̂()]

´
 (A49)

√


µ
̂()−() +

B (())
(())

¶
⇒ 

³
0  [̂()]

´
 (A50)

where B () = 1
2
(1)(),  [Φ̂()] = Φ()(1−Φ() and  [̂()] =

(1−)
(())2



Proof of Proposition A.2. The proof builds on our previous analysis. From

Equation (A4), we have  [1{̂ ≤ }] = 
h
 +

1√

̂ ≤ 

i
. By using the results

in Gourieroux, Laurent, and Scaillet (2000), Martin and Wilde (2001), and Gagliardini

and Gourieroux (2011), we obtain:



∙
 +

1√

̂ ≤ 

¸
= Φ()− 1√


()[̂ | = ]

+
1

2




(()[̂2 | = ]) + (1 ) (A51)

From Equation (A47), the bias expansion is such that: [Φ̂()] − Φ() = B () +

13



 [1{̂ ≤ }(1− 1 )] + (1 ). We deduce the asymptotic normality of the propor-

tion estimator by controlling the different terms and applying the CLT. To deduce the

asymptotic normality of the quantile estimator, we use the Bahadur expansion for the

quantile estimator at level  ∈ (0 1): ̂()−() = − 1
(())

³
Φ̂(())− 

´
. QED

As in the previous section, we can approximate the asymptotic bias using the

Gaussian reference model.10 With our bivariate Gaussian reference model, the term

(1)() in the bias is equal to

(1)() = exp

µ
 + 

µ
− 


¶
+
1

2
2(1− 2)

¶
()

µ



− − 

2

¶
= exp

µ
 +

1

2
2

¶ −1


µ
−  − 



¶
× 1




µ
−  − 



¶
 (A52)

III Analysis of the EIV Bias Adjustment

In this section, we provide additional information on the EIV bias adjustment obtained

with the Gaussian reference model. As explained in the paper, this approach is ap-

pealing because the bias adjustment is available in closed form. It is also precisely

estimated because of parsimony–it only depends on the five parameters of the normal

distribution  = (    )
0. These benefits are not shared by a fully nonpara-

metric approach in which the bias is estimated via a nonparametric estimation of the

second-order derivatives (2) and (2)11

An important question is whether the EIV bias obtained with the normal reference

model provides a good approximation of the true bias (i.e., whether 2() ≈ 2()).

Two compelling arguments show that it is the case. First, Proposition III.1 shows that

the true bias 2() is a function of the second-order derivative of the true density 

As long as  peaks around its mean, this derivative takes negative values in the center

and positive values in the tails–exactly like the function 2(). The two terms 2()

and 2() only differ if  is a mixture of distributions whose components have means

10The asymptotic bias takes the same form as the one in Jochmans and Weidner (2018) where they

consider  parameters of interest directly drawn from a Gaussian distribution whose measurement errors

decrease at a parametric rate
√
 . In their setting, they use other arguments based on the behaviour of

the probability integral transform for their proofs. In a different context, Okui and Yanagi (2019) also

derive an estimator of the cdf to examine the mean and autocorrelation of random variables.
11We can estimate the th-derivative of a density  by kernel smoothing (Bhattacharya (1967)). The

rate of consistency of the derivative estimator equals
√
2+1 and is much slower than the rate

√
 for

the density estimator. In other words, the higher-order derivatives are imprecisely estimated because

the rate of consistency decreases with the derivative’s order 
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extremely far away from one another. In this case, we have a trough instead of a peak

around the mean.

Second, our extensive Monte-Carlo analysis calibrated on the data reveals that the

bias-adjusted density captures the true density well (see Section IV). Our Monte-Carlo

analysis resonates with the one performed by Silverman (1986) for the standard non-

parametric density estimation without the EIV problem. He shows that the rule of

thumb for the bandwidth choice, which relies on a normal reference model, is quite

robust to departures from normality.

The reference model allows us to conduct a comparative static analysis of the EIV

bias. As shown in Equation (A28), there are three key parameters that determine

2(): (i) the variance of the true measure 
2
 (ii) the average across funds of the

variance of the estimated measure, measured as 2̂ = 1

[] =

1

exp( +

1
2
2) and

(iii) the correlation  between the true measure and estimation variance

A higher value of 2 reduces the magnitude of the EIV bias because it makes the

cross-sectional variation of the estimated measure more aligned with that of the true

measure (i.e., the relative importance of  over noise increases) On the contrary, a

higher value of 2̂ makes the EIV bias more severe because the estimated measure

becomes more volatile (i.e., the relative importance of noise over  increases) Finally,

a higher value of || keeps the shape of the bias unchanged, but creates asymmetry.
In Figure A1, we quantify these changes for the skill coefficient . To begin, we

compute 2() in the benchmark case where the parameters of the reference model

are obtained from our sample. The mean  is set equal to 0.24% per month, the

variance terms 2 and 2̂ are equal to 00017
100

and 00011
100

, and the correlation  reaches

0.21. Plugging these parameter values in Equation (A28), we find that the EIV bias

adjustment requires a transfer of probability mass from the tails to the center equal to

15%. This proportion is obtained by integrating 2() over the area for which 2()

takes negative values.

Next, we sequentially increase the values of (i) 2 from
00017
100

to 00037
100

 (ii) 2̂ from
00011
100

to 00031
100

 and (iii)  from 0.21 to 0.44. We find that changes in the variance terms

have a significant impact on the shape of the EIV bias. Panel A shows that increasing

2 reduces the transfer of probability from 15% to just 7%, while Panel B shows that

increasing 2̂ implies an increase in probability transfer from 15% to 26%. Finally,

Panel C shows that increasing  implies that 87% of the probability transfer (0.13/0.15)

is at the right of the mean (versus 75% in the baseline case (0.10/0.15)).

Please insert Figure A1 here
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IV Monte-Carlo Simulations

A The Setup

We now conduct a Monte-Carlo analysis to evaluate the finite-sample properties of the

estimated skill and scale distributions obtained with our nonparametric approach. We

consider a hypothetical population of  funds with  return observations ( = 1 000

2,500, 5,000, and 10,000;  = 100 250, 500, and 1 000). To model the fund return 

and its lagged size −1, we use the baseline specification

 =  − −1 + 0 +  (A53)

along with an AR(1) model for the log size −1 = (−1) to ensure the positivity
of fund size,

 =  + −1 +  (A54)

where  is the vector of four factors (market, size, value, and momentum),  =

(1 − ) and  = [−1] The residual terms  and  are drawn from a

bivariate normal:  ∼ (0 2)  ∼ (0 2
) where 2

= (1−2)2 and 2
is the variance of −1 We also account for the positive correlation between the fund
residual and the innovation in fund size by setting ( ) equal to 

To determine the values for the fund-specific parameters {  
0
   

2

} we

randomly draw from the estimated vectors observed in our sample {̂ ̂ ̂
0
 ̂  ̂

2

}.

This approach allows us to maintain the correlation structure between the different

parameters, in particular between the skill coefficient, the scale coefficient, and the

size parameters:  = ( ) 
2

= 2( ).

12 The remaining parameters are

calibrated using the median values in the data, which yields  = 097  = 020 and

2 = 00167
2

To reproduce the salient features of the skill and scale distributions, we rescale the

estimated values of ̂ and ̂ to match the cross-sectional volatility reported in Table II

of the paper (4.1% and 1.7% per year for  and ). The true distributions of the skill

and scale coefficients are both non normal (the skewness is equal to 0.7 and 0.9, and

the kurtosis is equal to 11.7 and 12.1). Therefore, our Monte-Carlo setting allows us to

12 In particular, we capture the strong correlation between the skill and scale coefficients Interestingly,

this correlation has implications for modeling the prior distributions of  and  in an empirical Bayes

setting. For instance, Pastor and Stambaugh (2012) elicit the joint prior distribution of  and  by

setting their correlation equal to zero. Therefore, investors in their model believe that the variance of

 is higher than the one inferred from an empirical Bayes prior This initial belief implies a lower

allocation to active funds which could persist for a long time.
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examine the properties of the estimators when the Gaussian reference model (used for

the EIV bias adjustment) differs from the true distributions.

Conditional on the values {̂ ̂ ̂
0
 ̂  ̂

2

} taken by each fund, we examine the

properties of the estimators. For each iteration  ( = 1  500) we build the return

and size time-series of each fund as follows. First, we draw the initial value of 0()

from its unconditional distribution: 0() ∼ (  
2

)  Second, we draw the vector

1() from the realized values in the sample, and the innovations 1() and 1()

from the bivariate normal. Third, we construct the fund gross return and log size at

time 1 as

1() =  − 0() + 01() + 1()

1() =  + 0() + 1() (A55)

where 0() = exp(0()) Fourth, we repeat the two previous steps for each time

 ( = 2   ) we obtain the entire time-series for the fund gross return and size:

1()   (), 0()  −1() Fifth, we apply our nonparametric approach to
compute the bias-adjusted density ̃() and a set of several distribution characteristics

that include the mean, volatility, skewness, and the proportion of funds with a positive

measure + = 1−Φ(0). Finally, we repeat the entire procedure across all  iterations.

To assess the performance of the bias-adjusted density ̃, we compute the Mean

Integrated Squared Error (MISE) defined as

 =

Z
[2() + ()2] (A56)

where the bias and variance functions are given by

() =
1



X
=1

̃(; )− () (A57)

2() =
1



X
=1

Ã
̃(; )− 1



X
=1

̃(; )

!2
 (A58)

For the moment/proportion estimator ̃ (̃ = ̃ g f, ̃+) we compute the Mean
Squared Error (MSE) as

(̃) = 2(̃) + 2(̃) (A59)
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where the bias and the variance terms are given by

(̃) =
1



X
=1

̃()−  (A60)

2(̃) =
1



X
=1

Ã
̃()− 1



X
=1

̃()

!2
 (A61)

B Main Results

In Table AI, we report the MISE and its two components (integrated squared bias

and variance) for the skill distribution. In Panel A, we compute the MISE of the

bias-adjusted density ̃() for the baseline choice of the optimal bandwidth ∗ ∼

−13
2 ( )−13 (shown in Equation (A16)). In Panel B, we repeat the analysis for
the alternative choice of the optimal bandwidth under which ∗ ∼ 

−15
1 −15 Finally,

Panel C reports the MISE of the estimated density ̂() obtained with the standard

approach which does not adjust for the bias.

Our analysis reveals two main insights. First, accounting for the EIV bias improves

the estimation of the true distribution () To illustrate, we consider the scenario where

 = 2 500 and  = 250 which is representative of our actual sample after trimming (i.e.,P
=1 1


 ≈ 2 500 and 1



P
=1 1


  ≈ 250) . We find that the MISE of ̂() is nearly

two times larger than the level observed for ̃() with the baseline bandwidth (4.96

vs 906). Second, our nonparametric approach yields a stronger performance under

the baseline choice for the optimal bandwidth–in all scenarios using the alternative

bandwidth choice produces a higher MISE.

In Table AII, we examine the performance of the moment and proportion estimators

for the skill distribution. Panel A shows the MSE and its two components (bias and

standard deviation) of each bias-adjusted estimator obtained via a numerical integration

of ̃() (using the baseline bandwidth). Panel B reports the same statistics for the bias-

adjusted estimators obtained with the analytical approach described in Section II. For

comparison, Panel C reports the bias-unadjusted estimators (obtained via a numerical

integration of ̂())

The results show that the bias-adjusted estimators perform better when the numer-

ical integration is used. In most cases, it produces a lower MSE than the one obtained

with the analytical formulas. We also find that the unadjusted estimators are markedly

biased. When  = 2 500 and  = 250 the bias for the volatility and the unadjusted

proportion is equal to 1.08% per year and -5.52%, respectively. In contrast, our non-

parametric approach reduces the bias for all quantities. Overall, these findings highlight

18



the importance of controlling for the bias.

Next, we turn to the analysis of the scalability distribution. Tables AIII and AIV

report the MISE of the estimated density and the MSE of the moment and proportion

estimators. Similar to the skill coefficient, we find that ̃() outperforms ̂(). If

 = 2 500 and  = 250 the difference in MISE between the two estimated densities

is equal to 11.47 (28.58 vs 17.01) The bias adjustment is also important for the other

estimators. For instance, the standard approach underestimates the proportion of funds

with a positive scale coefficient by 6.8% (in absolute terms).

To sum up, the Monte Carlo analysis yields three main insights. First, the EIV bias

has a notable impact on the different estimators and thus cannot be ignored. Second,

the baseline choice for the optimal bandwidth produces a lower MISE for the bias-

adjusted density Third, the numerical approach generally outperforms the analytical

approach. These results justify the use of the optimal bandwidth in Equation (A16) and

the numerical approach for the empirical analysis of the paper.

Please insert Tables AI to AIV here

C Simulations with Uncorrelated Skill and Scalability

The asymptotic distribution of the OLS estimators ̂ and ̂ implies that they are

correlated at the fund level. If, for simplicity, we omit the factors , we have

√


"
̂ − 

̂ − 

#
⇒ 

⎛⎝" 0

0

#


⎡⎣ [2−1]
 [−1]

2
[−1]
 [−1]

2
[−1]
 [−1]

2
1

 [−1]
2

⎤⎦⎞⎠  (A62)

where (
√
 ̂
√
 ̂) =

[−1]
 [−1]

2  0 Therefore, one concern is that the strong

cross-sectional correlation between ̂ and ̂ observed in the data is mechanically driven

by the fund-level correlation between ̂ and ̂ To address this concern, we consider a

world where  and  are uncorrelated across funds. Consistent with this assumption,

we show that the cross-sectional correlation between ̂ and ̂ is equal to zero (even

though the fund-level correlation between ̂ and ̂ is positive).

We consider a simple modification of the Monte-Carlo setup in which  and 

are uncorrelated across funds. We draw the true coefficients  and  of each fund

 ( = 1  2 500) independently from the estimated vectors observed in our sample

(rescaled to match the cross-sectional volatility in Table II of the paper). If  and 

are positive, we assume that the average size [−1] is equal to 
2
(as in the model

of Berk and Green (2004) and that 2 is proportional to  (by a factor  calibrated
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on the data). These two assumptions provide a simple way to model the link that

exists between skill, scale, and size Specifically, we have  +
1
2
2 = log

³

2

´
⇒¡

1 + 1
2

¢
 = log

³

2

´
⇒  = log

³

2

´

¡
1 + 1

2

¢
 With a log-normally distrib-

uted size, we can then compute the parameters of the asymptotic distribution in Equa-

tion (A60) as [2−1] = 2+2 and  [−1] = [2−1]− ([−1])2 Otherwise,
if  and  are negative, we measure [−1] [2−1] and  [−1] as the median
values among funds for which ̂ or ̂ are negative

For each iteration  ( = 1  500) we draw [̂() ̂()]
0 from the asymptotic

distribution of each fund in Equation (A60). We then compute the average fund-level

correlation () between ̂ and ̂ as

(̂ ̂) =
1



X


Ã
1



X


(̂()− )
³
̂()− 

´!
 (A63)

and the average cross-sectional correlation () as

(̂ ̂) =
1



X


Ã
1



X


(̂()− ̄())
³
̂()− ̄()

´!
 (A64)

where ̄() = 1


P
 ̂() and ̄() = 1



P
 ̂() Consistent with the theoretical predic-

tions, we find that (̂ ̂) is equal to 0.18, whereas (̂ ̂) is essentially equal

to zero (i.e., (̂ ̂) =0.00004).

V Mutual Fund Dataset

A Construction of the Dataset

We now provide additional information on the construction of the mutual fund dataset.

To begin, we collect monthly data on net returns and size, as well as annual data on

fees, turnover, and investment objectives from the CRSP database between January

1975 and December 2019 (540 observations). We measure the monthly gross return of

each fund as the sum of its monthly net return and fees The net return is computed as

a value-weighted average of the net returns across all shareclasses using their beginning-

of-month total net asset values. The monthly fees are defined as the value-weighted

average of the most recently reported annual fees across shareclasses divided by 12. We

eliminate the monthly gross return observation when (i) the monthly net return is below

-100% or above 100%, or when (ii) the monthly fees are below 2.5 bps (0.3% per year) or
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above 83 bps (10% per year). We measure fund size by taking the sum of the beginning-

of-month net asset values across all shareclasses. We apply a linear interpolation to fill

in missing observations when funds report size on a quarterly basis. We also adjust size

for inflation by expressing all numbers in January 1, 2000 dollars (see Berk and van

Binsbergen (2015)). Finally, we correct for reporting errors for the TNA.13

We apply a set of filters before conducting the empirical analysis. First, we remove

all funds that are classifed as passive or closed for more than a third of the observations

using (i) the index fund indicator (letter B, D, or E), (ii) the ETF indicator (letter F

or N), (iii) and the closed fund indicator (letter N). Therefore, our sample focuses on

open-end, actively managed funds with a well-defined equity style (as described below),

and a weight invested in equities above 80%. Second, we eliminate funds if they are

tiny, i.e., if their size is below minimum size of $15 million for more than a third of the

observations (similar to Chen et al. (2004), Pastor, Stambaugh, and Taylor (2015)).

Third, we delete the following-month return after a missing return observation because

CRSP fills this with the cumulated return since the last nonmissing return. Fourth,

we run a correlation analysis to eliminate duplicates, i.e., funds for which the return

correlation is above 0.99 (using a minimum of 12 monthly observations).

To benchmark each fund, we use the four-factor model of Cremers, Petajisto, and

Zitzewitz (2012) which includes the vector  = (   )
0, where 

  and  capture the excess returns of the market, size, value, and

momentum factors. This model departs from the traditional model of Carhart (1997) in

two respects: (i) the market factor is proxied by the excess return of the SP500 (instead

of the CRSP index), and (ii) the size and value factors are index-based and measured

as the return difference between the Russell 2000 and SP500, and between the Russell

3000 Value and Russell 3000 Growth. Because the index-based returns for size and value

are not available between January 1975 and December 1978, we replace them with the

values of the size and value factors obtained from Ken French’s website (focusing on

the period January 1979-December 2018 does not change our main results). For the

momentum factor, we use data obtained from Ken French’s website.

The motivation for using this model is that it correctly assigns a zero alpha to the

SP500 and Russell 2000. Both indices cover about 85% of the total market capitalization

and are widely used as benchmarks by mutual funds. On the contrary, the Carhart model

fails to price these indices–for one, the Russell 2000 has a negative alpha of -2.4% per

13For instance, we find more than 1,500 observations in CRSP for which the TNA of a given shareclass

jumps (or is reduced) by a factor higher than 3 in a given month before going right back to the same

value the following month.
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year over the period 1980-2005 (Cremers, Petajisto, and Zitzewitz (2012)). Therefore,

small cap funds that use this index as a benchmark are likely to be classified as unskilled

under the Carhart model.

We obtain our final universe of funds after applying the selection rule in Equation

(8) of the paper. We follow Gagliardini, Ossola, and Scaillet (2016) and select funds for

which the condition number of the matrix ̂ is below 15 and the number of monthly

observations is above 60 These selection criteria produce a final universe of 2,427 funds.

To apply our nonparametric approach, we compute the asymptotic variance of each fund

measure using a lag of three months ( = 3) To mitigate the impact of outliers on the

vector ̂ of estimated parameters in the reference model, we also exclude the values for

̂ and ̂ whose cross-sectionally standardized values are above 10.

B Construction of the Fund Groups

To classify funds into the small cap and large cap groups, we proceed as follows. At

the start of each month, we classify each fund in different style groups using the style

information provided by Lipper. If this information is missing, we use the investment

objectives reported by Strategic Insight, Wiesenberger, and CRSP in a sequential man-

ner. Table AV provides the list of the 32 styles across the different data providers which

are used for forming our final universe of equity funds. In addition, it shows the mapping

between the 32 styles and the small/large cap dimensions. A value of: (i) 1 refers to a

small cap fund, (ii) 2 refers to a mid cap fund, and (iii) 3 refers to a large cap fund. A

fund is included in a given group (small cap, large cap) if its style corresponds to that

of the group for the majority of its monthly observations

Please insert Table AV here

For the turnover groups, we sort funds in three categories (low, medium, and high

turnover) based on their average monthly turnover. To measure the monthly turnover

of each fund, we follow Pastor, Stambaugh, and Taylor (2018) and use the most recently

observed ratio of min(buys,sells) on fund size.

Finally, we construct the set of broker and direct sold funds using the procedure

proposed by Del Guercio and Reuter (2014) and Sun (2020). At the start of each

month, we only select shareclasses that are sold to retail investors. We consider each

shareclass as direct sold if it charges no front or back load and has an annual distribution

fee (12b-1 fees) of no more than 0.25% per year. Otherwise, we consider it as broker

sold. Aggregating across shareclasses, the fund is then considered as broker sold (direct
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sold) for that particular month if at least 75% of its assets are broker sold (direct sold).

A fund is included in a given group (broker sold, direct sold) if it belongs to it for the

majority of its monthly observations

VI Additional Results

A Derivation of the Specification Test

In this section, we derive a new specification test to confirm the validity of our empirical

results. Our objective is to test the null hypothesis 0 that our baseline linear spec-

ification  =  − −1 is correct for each fund. Our specification test follows the
strategy of a Hausman test which evaluates the difference beween two consistent estima-

tors under the null hypothesis of well specification (Hausman (1978)). In our context, we

compare the linear estimator of the gross alpha ̂ with its model-free version proposed

by Berk and van Binsbergen (2015) and denoted by ̂ . Whereas the two estimators

converge to the same quantity under the null hypothesis 0 they converge to different

quantities under the alternative hypothesis of misspecification.

We consider our baseline model

 =  − −1 + 0 +  (A65)

and want to test this specification against the extended time-series regression model

 =  − −1 + 0−1 + 0 +  (A66)

where −1 is a vector of variables that are omitted in our baseline specification and
orthogonal to the factors  and error . To ease the presentation, we do not explictly

include the small-sample bias correction which has no impact on the asymptotic analysis

(see Section I.B).

The linear estimator of the gross alpha under Equation (A65) is

̂ = ̂ − ̂−1 (A67)

where ̂ = 01̂, ̂ = 02̂, ̂ = ̂−1
1


P
 , ̂ =

1


P
 

0
  =

(1−−1  0)0, and 1 (2) is a vector with one in the first (second) position and zeros

elsewhere. The model-free estimator of the gross alpha is given by

̂ =  − ̂
0
 (A68)
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where ̂ = 02̃
−1


1


P
  2 is a selection matrix that selects the lower  -

subvector of coefficients, ̃ =
1


P
 

0
 and  = (1 

0
)
0.

We build the difference ∆̂ = ̂ − ̂ when  = 1 and let ∆̂ be the  × 1
vector of such differences for fund  at dates with  = 1. We then select a × 1 vector
of variables −1 and regress it onto  to obtain the residuals ̃−1. Let us consider
the auxiliary time-series regression:

∆̂ = ̃0−1 +  (A69)

where  is the parameter vector and  is the error term. The 
2 of this regression is

2 = 1−
∆̂0̃

∆̂

∆̂0∆̂
=
∆̂0̃

∆̂

∆̂0∆̂
(A70)

where ̃
= ̃(̃

0
̃ )−1 ̃ 0

 =  −̃
and ̃ is the  ×  matrix of the available

values for ̃−1.14

We use the quantity 
2
 as the test statistic for the null hypothesis 0. We

now derive the asymptotic distribution under Equation (A65) or (A66). Suppose first

that Equation (A65) holds in the data, i.e., the linear specification with lagged size is

correctly specified. Then ̂ =  − −1 +  −  0(̂ − ) and

∆̂ = ̂ −̂ = −(̂−)+(̂−)−1− 0(̂−) = −0(̃−) (A71)

where ̃ = (̂ ̂ ̂
0
)
0 is a consistent estimator of . Hence, we have in vector notation:

∆̂ =  −(̃ − ), where  is the  × ( +2) matrix of the available values for

. Using ̃
0
 = 0 and assuming conditional homoscedasticity for the error term ,

we obtain:


2
 =

( 1√

0̃)(

1

̃ 0

̃)
−1( 1√


̃ 0

)

1

∆̂0∆̂

⇒ 2() (A72)

which holds because we have  1

∆̂0∆̂ =  1


0 = 2 ,

1√

̃ 0

 ⇒ (0 2̃
)

and ̃
=  1


̃ 0

̃ =  1


P
 ̃−1̃0−1.

Suppose now that the linear model is misspecified and data are generated according

to the model in Equation (A66). Consider the linear projection of −1 onto the constant
and −1, with residual ̃−1, and let 0−1 = +−1+0̃−1 (by our assumption,
̃−1 is also the residual in the regression of −1 onto ). By plugging into Equation

14Note that Equation (A67) does not include the constant, and the 2 is defined accordingly. Including

a constant and modifying the definition of 2 does not change the behaviour of the test statistic under

the null hypothesis and its consistency under the alternative.
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(A66), we get  = ∗ − ∗ −1 + 0̃−1 + 0 + , with pseudo-true parameter

values ∗ =  +  and ∗ =  − . Then, we have

̂ = ∗ − ∗ −1 + 0̃−1 +  −  0(̂ − ) (A73)

̂ = ̂ − ̂−1 (A74)

where ̂ = 01(
0
)

−1 0
(

∗
 +  + ̃) = ∗ + 01(

0
)

−1 0
( + ̃), ̂


 =

∗ + 02(
0
)

−1 0
(+ ̃), 

∗
 = (

∗
  

∗
  

0
)
0 and ̃ is the matrix of the observations

of the variables ̃−1 when  = 1. Combining Equations (A73)-(A74), we have

∆̂ =  − (̂ − ∗ ) + (̂

 − ∗ )−1 −  0(̂ − ) + 0̃−1 (A75)

or, in vector notation, ∆̂ =  −(̃ − ∗ ) + ̃, where ̃ is a consistent estimator

of ∗ . Then, we have:


1


̃ 0

∆̂ = 
1


̃ 0

 + (
1


̃ 0

 ̃) = ̃
Λ (A76)

where Λ =  ( 1

̃ 0

̃)
−1 1


̃ 0

 ̃ is the regression coefficient matrix of ̃−1 onto
̃−1, i.e., Λ is the coefficient vector associated with −1 in a regression of −1 onto
 and −1: −1 = 0 + Λ0−1 +  where  is the regression error with

variance  . By using  ̃ − ∗ = 0, we have


1


∆̂0∆̂ = 

1


[ + ̃]

0[ + ̃] = 2 + 0(
1


̃ 0 ̃)

= 2 + 0(Λ
0
̃

Λ + ) (A77)

which implies that

 2 =
0(Λ

0
̃

Λ)

2 + 0(Λ
0
̃

Λ + )
 (A78)

Based on Equation (A78), we know that the test based on 
2
 is consistent, namely


2
 diverges in large samples and the power of the test approaches one asymptotically

under misspecification. As long as Λ 6= 0, the vector −1 captures the effect of the
omitted component 0−1 and is therefore informative about the source of misspecifica-
tion of the linear specification  = − −1. If the omitted variables −1 coincide
with the chosen −1 (i.e., −1 = −1), we automatically obtain that Λ 6= 0 if

|(0−1 −1)|  1, and the consistency of the test follows.
Applying this theoretical framework, we consider two sets of variables for  First,
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we include the ratio of industry size to total market capitalization to capture changes

in industry competition, and aggregate turnover to capture changes in the level of mis-

pricing in capital markets (see Pastor, Stambaugh, and Taylor (2015, 2018)). Second,

we include higher order terms of fund size (2−1 and 
3
−1) to capture nonlinearities in

the relationship between the gross alpha and fund size. For each fund we then test the

null hypothesis 0 that the linear specification  =  − −1 is correct.

For the first set of variables, we reject the null hypothesis only 13.0% of the times

at the 5%-significance level. In other words, 
2
 is larger than the 95%-quantile of the

2() distribution for only 12.7% of the funds. Furthermore, we find that 29.3% of these

funds can be classified as false discoveries (0 is rejected whereas it is true) using the

approach proposed by Barras, Scaillet, and Wermers (2010). Turning to the analysis of

the second set of variables we obtain similar results–we reject 0 for 14.1% of the

funds (at the 5% level), among which more than 26.8% are false discoveries.

B Validity of the Panel Approach

In this section, we formally test whether the panel approach that imposes a constant

scale coefficient across funds ( = ) is consistent with the data. To this end, we use the

test of slope homogeneity developed by Pesaran and Yamagata (2008) for large panels.

The null hypothesis is 0:  =  for  = 1   against the alternative hypothesis 1:

 6=  for a non-zero fraction of pairwise slopes for  6= .

We denote by  and  the -vectors of the fund gross excess returns and lagged

fund sizes and by  the ×(+1)matrix of available values for  = (1 
0
)
0. The idea

of the test is to investigate the dispersion of individual slope estimates from a suitable

pooled estimate. We define the weighted sum of squared deviations:

̂ =
X


(̂ − ̂)
2 
0


̂2
 (A79)

where  =  − (
0
)

−1 0 is the projection matrix,  is the  ×  identity

matrix, ̂ = (0)
−10 is the estimated scale coefficient of each fund, ̂ =³P


0

̂2

´−1 ³P

0

̂2

´
is the weighted fixed effect pooled estimate, ̂2 is the variance

estimate defined as
(−̂)0(−̂)

−−1  and ̂ = (
P

 
0
)

−1P
 
0
 is the

standard fixed effect pooled estimate. Pesaran and Yamagata (2008) show that under
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the null hypothesis 0 the test statistic

∆̂ =
√


Ã
1

̂ − 1√
2

!
(A80)

is asymptotically distributed as a standard Gaussian random variable when   → ∞
such that

√
 2min → 0 with min = min166  Therefore, we can build the chi-square

test statistic ∆̂2 which is asymptotically distributed as a chi-square random variable 21

with one degree of freedom.15

We examine two specifications for the panel regression: (i) the linear specification

 =  − −1 and (ii) the log specification  =  − log(−1)16 We also con-
duct the test in the entire population and within each group (small/large cap, low/high

turnover, broker/direct sold). Examining each fund group separately allows us to de-

termine whether grouping funds into well-defined categories absorbs the heterogeneity.

Our results reveal that the test of homogeneity is always strongly rejected, i.e., for each

specification (size, log size), we reject 0 with probability one. Furthermore, the null

hypothesis of homogeneous coefficients is also rejected with probability one in each fund

group. Therefore, forming groups is not sufficient to absorb the large heterogeneity in

 and .

C Survivorship and Reverse Survivorship Bias

In this section, we examine the impact of the survivorship and reverse survivorship bias.

Our empirical analysis does not require that the funds remain alive until the end of the

sample in 2019. In other words, our original sample includes all both living and dead

funds. However, our fund selection rule requires that each fund has a minimum of 60

monthly observations (min = 60) to be included in our final sample. Our results could

therefore be subject to a survivorship bias if unskilled funds (0) disappear early. To

examine this issue, we repeat our analysis across different thresholds for min ranging

from 12 to 60. Panel A of Table AVI shows that our main results are not driven by

the survivorship bias–the skill distribution remains largely unchanged as min changes

from 60 to 12.

15The requirement on the relative rate between  and , namely  = ( 4min) for the asymptotic

validity of the testing procedure is weak and matches the time-series and cross-sectional sample sizes in

our application since  = 2 321 is much smaller that 
4
min =60

4 = 12,960,000.
16 In the logarithmic specification, the intercept loses its interpretation as a first-dollar alpha (i.e, it

corresponds to the alpha when −1 = 1 instead of 0). In addition, the intercept depends on the

measurement unit (e.g, $1 or $1M). The invariance to size denomination is an advantage of the linear

specification.
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It is a priori tempting to choose min = 12 (instead of 60) to mitigate the survivorship

bias and offer an improved estimation of the skill distribution. However, reducing min

may not be optimal because it potentially increases the severity of the reverse survivor-

ship bias (i.e., the reported skill could be biased downwards). The reverse survivorship

bias arises because some skilled funds (0) may perform unexpectedly poorly and

disappear early. For these funds, the estimated skill is lower than the true level because

it is computed based on unusually low return observations (Linnainmaa (2013)). By

reducing min, we increase the likelihood of including these funds in the sample.

To examine this issue, we compare the skill distributions among the disappearing

funds for min = 60 and 108. The assumption is that unskilled funds tend to disappear

early (during the first five years). In this case, the difference between the two distribu-

tions captures the impact of the reverse survivorship bias, i.e., it should decrease with

min as we exclude a larger number of skilled funds that disappear after unexpected poor

performance. Panel B shows that the difference in the proportion of skilled funds equals

4.1% as min decreases from 108 to 60. This number represents 85% of the proportion

difference when reducing min from 60 to 12 in Panel A. This back-of-the-envelope cal-

culation suggests that the reduction in skill observed for min = 12 is mainly due to the

reverse survivorship bias. Motivated by these results, we therefore choose min = 60 in

our baseline analysis.

Please insert Table AVI here

D Alternative Asset Pricing Models

Our empirical results potentially depend on the choice of the asset pricing model. To

address this issue, we repeat our analysis using the four-factor model of Carhart (1997)

which contains the same factors as the model of Cremers, Petajisto, and Zitzewitz (2012)

except that the market, size, and value factors are not computed from tradable indices.

We also consider the five-factor model of Fama and French (2015) which includes the

market, size, value, profitability, and investment factors.17

Table AVII shows that the skill and scalability distributions remain qualitatively

unchanged with the Carhart model. The skill coefficient is equal to 2.4% per year on

average, and is positive for 78.5% of the funds (vs 3.0% and 83.1% for the baseline re-

sults). The scale coefficient is, on average, equal to 1.3% per year and 80.8% of the funds

face diseconomies of scale (vs 1.3% and 82.4% for the baseline results). We observe the

17The size and value factors in the five-factor model are similar to ones used in the Carhart model.
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main difference for the small cap group in which the skill coefficient drops from 4.6% to

3.3% on average. This sharp reduction arises because the Carhart model assigns a nega-

tive alpha to the Russell 2000 index and therefore penalizes the performance of small cap

funds (consistent with the analysis by Cremers, Petajisto, and Zitzewitz (2012)). Next,

Table AVIII reports the results obtained with the five-factor Fama-French model. Under

this model, the scalability distribution remains largely unchanged but the proportion of

funds with positive skill decreases from 83.1% to 74.0%. This reduction suggests that

some funds achieve positive returns partly because they implement profitability- and

investment-based strategies.

Please insert Tables AVII and AVIII here

E Analysis based on Daily Fund Returns

Our baseline specification  = − −1 assumes that the skill and scale coefficients
remain constant over time. To examine the stability of these coefficients, we conduct

an extensive analysis using daily fund returns. This procedure allows us to capture

potential changes in the coefficients without explicitly modeling their dynamics (see

Lewellen and Nagel (2006)).

To conduct this analysis, we use the daily fund return CRSP database available

between January 1999 and December 2019. The CRSP database only reports the daily

net return and Net Asset Value (NAV) of each shareclass, but not its daily size. To

address this issue, we compute the number of shares for each shareclass at the start of

the month. We can then compute the daily size of each shareclass within the month

as the product between its daily NAV and the number of shares. We match the fund

identifier across the daily and monthly databases to maintain our selection of open-end,

actively managed funds with a well-defined equity style. We measure the daily gross

return of each fund as the sum of the daily net return and fees The daily net return is

computed as the value-weighted average of the daily net returns across all shareclasses.

The daily fees are defined as the value-weighted average of the most recently reported

annual fees across shareclasses divided by 21·12.
We can summarize our estimation procedure in two steps. First, we run the following

time-serie regression for each year  ( = 1999  2019):

 =  + 0 +  (A81)

where  is the fund daily gross excess return and  is the vector of daily factor excess
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returns in the model of Cremers, Petajisto, and Zitzewitz (2012). Using Equation (A81),

we can extract the daily gross alpha of the fund after controling for short-term variations

in factor loadings (i.e.,  is allowed to change on an annual basis):

 =  +  (A82)

Second, we run a regression of the daily gross alpha on lagged size to infer the time-

varying skill and scale coefficients Given the potential persistence over a small window

of only one year, we estimate the regression over a non-overlapping window  of five

years:

 =  − −1 +  (A83)

where each of the windows covers the years 1999-2004, 2005-2009, 2010-2014, and 2015-

2019 (i.e.,  = 1  4)

To examine the stability of the skill coefficient, we take the first window  = 1 as the

benchmark and test the null hypothesis of constant skill 0 : ∆ = 1 −  = 0

(for  = 2 34) Overall, there is little evidence of time-variation in the skill coefficient.

Using a 5%-significance threshold, we find that 0 is only rejected for (i) 10.7% of

the funds for  = 2 (ii) 9.6% of the funds for  = 3 and (iii) 14.1% of the funds for

 = 4 We also uncover a substantial fraction of false discoveries among these funds

(0 is rejected whereas it is true)–this fraction ranges between 30.1% and 45.5%

across the three windows ( = 2 34) using the approach proposed by Barras, Scaillet,

and Wermers (2010).

Repeating this analysis for the scale coefficient, we test the null hypothesis of constant

scale 0 : ∆ = 1 −  = 0 (for  = 2 34) The results are similar to those

obtained for the skill coefficient. Using a 5%-significance threshold, we find that 0

is only rejected for (i) 9.0% of the funds for  = 2 (ii) 7.8% of the funds for  = 3 and

(iii) 10.3% of the funds for  = 4 Among the rejected funds, the proportion of false

discoveries (0 is rejected whereas it is true) ranges between 41.2% and 56.1%.

We also find a remarkable similarity between the skill and scalability distributions

measured at the daily and monthly frequencies. Specifically, we measure the annual fund

skill and scale levels from daily data as  = (
1


P
  )21·12 and  = ( 1

P
  )21·12,

and examine the characteristics of the two cross-sectional distributions. We then conduct

our baseline monthly analysis over the same period as the one covered by the CRSP

daily database (1999-2019). The daily analysis reveals that 82.4% of the funds have a

positive skill coefficient which, on average, equals 4.7% per year (vs 77.8% and 3.6% for

the monthly analysis). For the scale coefficient, these numbers obtained at the daily
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frequency are equal to 79.5% and 1.3% per year (vs 76.8% and 1.4% for the monthly

analysis).

F Impact of Changes in Economic Conditions

We now extend our baseline specification to capture the impact of changes in economic

conditions. We consider two alternative specifications motivated by the recent mutual

fund literature. First, we examine whether the gross alpha changes with the level of

industry competition using

 =  − −1 − −1 (A84)

where −1 is defined as the demeaned ratio of industry size to total market capital-
ization (as in Pastor, Stambaugh, and Taylor (2015)). Second, we account for potential

changes in aggregate mispricing using an extended version of Equation (A84)

 =  − −1 + −1 − −1 (A85)

where −1 is defined as the demeaned aggregate turnover across all funds (as in Pastor,
Stambaugh, and Taylor (2018)). Under both specifications, we can still interpret  as

the alpha on the first dollar when industry competition and aggregate mispricing are

equal to their average levels (i.e., −1 = −1 = 0)
The results in Table AIX show that adding the industry variable −1 leaves the

skill and scalability distributions largely unchanged. For instance, we find that 82.3%

and 82.6% of the funds exhibit positive skill and scale coefficients (vs 83.1% and 82.4%

for the baseline results). When the variable −1 is used alone in the regression (i.e.,
 =  − −1) the majority of the funds respond negatively to an increase
in industry size (51.0% of the funds have a positive coefficient ) However, this

result is overturned when we include lagged size, i.e., only 46.6% of the funds have a

positive coefficient 
18 One possible explanation for this result is that −1 may not

capture changes in industry competition with sufficient granularity (see Hoberg, Kumar,

and Prabhala (2020) for a discussion).

Table AX also shows that the empirical evidence on skill and scalability remains

largely unchanged under the extended model in Equation (A85). In this case, the

average levels of the skill and scale coefficients are equal to 3.4% and 1.6% per year

(vs 3.0% and 1.3% for the baseline results). In addition, the proportions of funds with

18Therefore, this result departs from the evidence in Pastor, Stambaugh, and Taylor (2015) obtained

with a panel approach in which fund scale is assumed to be constant ( = )
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positive skill and scale coefficients equal 80.8% and 80.6% (vs 83.2% and 82.4% for the

baseline results). Consistent with Pastor, Stambaugh, and Taylor (2018), we find that

the majority of funds produce higher returns in times of higher mispricing in capital

markets. The proportion of funds with a positive coefficient  is equal to 60.8%.

Please insert Tables AIX to AX here
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Table AI
Properties of the Estimated Density:

Skill Coefficient

Panel A shows the Mean Integrated Squared Error (MISE) and its two components (integrated squared bias
and variance) for the bias-adjusted skill density under the baseline choice for the optimal bandwidth across
different values for the number of funds and the number of monthly observations. Panel B repeats the
analysis under the alternative choice of the optimal bandwidth. For comparison, Panel C reports the same
information for the bias-unadjusted density.

35

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 20.50 5.24 1.91 1.16 0.83 1000 19.92 4.50 1.26 0.56 0.29 1000 0.58 0.74 0.65 0.60 0.53

2500 20.62 4.96 1.59 0.84 0.60 2500 20.32 4.59 1.24 0.54 0.32 2500 0.30 0.37 0.36 0.30 0.29

5000 20.76 4.82 1.39 0.69 0.45 5000 20.58 4.59 1.18 0.50 0.27 5000 0.18 0.23 0.21 0.19 0.18

7500 20.14 4.73 1.35 0.64 0.40 7500 20.00 4.55 1.18 0.50 0.26 7500 0.14 0.18 0.17 0.14 0.14

10000 20.40 4.65 1.29 0.57 0.37 10000 20.29 4.51 1.16 0.46 0.26 10000 0.11 0.14 0.13 0.11 0.11

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 21.76 5.66 2.06 1.24 0.83 1000 21.53 5.33 1.74 0.90 0.52 1000 0.23 0.33 0.32 0.34 0.32

2500 21.58 5.33 1.75 0.91 0.62 2500 21.46 5.18 1.59 0.77 0.47 2500 0.12 0.14 0.15 0.14 0.15

5000 21.52 5.13 1.55 0.76 0.47 5000 21.46 5.05 1.46 0.67 0.38 5000 0.06 0.08 0.09 0.09 0.09

7500 20.85 5.01 1.48 0.70 0.41 7500 20.80 4.95 1.42 0.64 0.34 7500 0.05 0.06 0.07 0.06 0.07

10000 21.02 4.92 1.42 0.63 0.39 10000 20.99 4.87 1.37 0.58 0.33 10000 0.03 0.05 0.05 0.05 0.05

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 29.59 9.80 3.64 2.17 1.38 1000 29.46 9.59 3.41 1.91 1.13 1000 0.13 0.21 0.23 0.26 0.25

2500 28.87 9.06 3.08 1.56 1.01 2500 28.80 8.96 2.96 1.44 0.89 2500 0.07 0.10 0.12 0.11 0.12

5000 28.38 8.61 2.73 1.28 0.75 5000 28.34 8.54 2.66 1.21 0.68 5000 0.04 0.06 0.07 0.07 0.08

7500 27.68 8.31 2.55 1.15 0.63 7500 27.65 8.26 2.50 1.10 0.57 7500 0.03 0.05 0.06 0.05 0.06

10000 27.76 8.18 2.43 1.04 0.58 10000 27.73 8.14 2.38 1.00 0.53 10000 0.03 0.04 0.04 0.04 0.04

MISE Bias^2 Variance

Bias^2 VarianceMISE

Panel C: No Bias Adjustment

Panel A: Bias Adjustment (Baseline Choice for Optimal Bandwidth)

MISE Bias^2 Variance

Panel B: Bias Adjustment (Alternative Choice for Optimal Bandwidth)



Table AII
Properties of the Estimated Moments and Proportion:

Skill Coefficient

Panel A shows the Mean Squared Error (MSE) and its two components (bias and standard deviation) of the
bias-adjusted estimators (mean and volatility (annualized), skewness, and proportion of funds with a positive
skill measure) based on a numerical integration of the bias-adjusted density (under the baseline bandwidth
choice) across different values for the number of funds and the number of monthly observations. Panel B
reports the same information for the bias-adjusted estimators obtained with the analytical approach. For
comparison, Panel C reports the same information for the bias-unadjusted estimators (obtained by
integrating the bias-unadjusted density).
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.37 0.21 0.07 0.04 0.03 1000 1.15 0.43 0.23 0.14 0.12 1000 0.22 0.15 0.12 0.12 0.12

2500 1.31 0.21 0.06 0.03 0.02 2000 1.14 0.45 0.23 0.16 0.12 2000 0.14 0.08 0.08 0.07 0.07

5000 1.35 0.20 0.05 0.02 0.02 3000 1.16 0.44 0.22 0.15 0.11 3000 0.09 0.06 0.05 0.05 0.05

7500 1.28 0.21 0.05 0.02 0.02 4000 1.13 0.45 0.22 0.15 0.11 4000 0.08 0.05 0.05 0.04 0.05

10000 1.30 0.20 0.05 0.02 0.01 5000 1.14 0.44 0.22 0.15 0.11 5000 0.06 0.04 0.04 0.04 0.04

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.93 0.07 0.03 0.03 0.03 1000 1.36 0.18 0.03 0.01 ‐0.00  1000 0.28 0.19 0.16 0.16 0.16

2500 1.88 0.03 0.01 0.01 0.01 2500 1.36 0.15 0.02 0.01 0.01 2500 0.18 0.10 0.09 0.08 0.08

5000 1.77 0.02 0.01 0.00 0.00 5000 1.32 0.13 0.03 0.01 0.01 5000 0.13 0.08 0.06 0.06 0.06

7500 1.66 0.02 0.00 0.00 0.00 7500 1.28 0.13 0.02 0.02 0.01 7500 0.11 0.06 0.06 0.06 0.06

10000 1.65 0.02 0.00 0.00 0.00 10000 1.28 0.13 0.02 0.01 0.01 10000 0.08 0.07 0.05 0.05 0.05

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 0.29 0.13 0.11 0.10 0.09 1000 ‐0.01  ‐0.01  0.03 0.01 0.01 1000 0.54 0.37 0.32 0.31 0.30

2500 0.18 0.06 0.05 0.04 0.04 2000 0.14 0.01 0.03 0.04 0.04 2000 0.41 0.24 0.22 0.20 0.20

5000 0.09 0.03 0.03 0.03 0.02 3000 0.16 0.03 0.03 0.02 0.01 3000 0.26 0.18 0.17 0.16 0.16

7500 0.06 0.03 0.02 0.02 0.02 4000 0.11 0.02 0.04 0.02 0.02 4000 0.23 0.17 0.15 0.14 0.14

10000 0.06 0.02 0.02 0.02 0.02 5000 0.13 0.04 0.04 0.03 0.01 5000 0.21 0.14 0.12 0.13 0.13

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 21.85 4.06 1.46 1.47 0.95 1000 ‐4.40  ‐1.39  ‐0.48  ‐0.49  ‐0.13  1000 1.57 1.46 1.11 1.11 0.97

2500 21.47 2.38 0.72 0.50 0.47 2500 ‐4.53  ‐1.26  ‐0.44  ‐0.22  ‐0.18  2500 0.99 0.89 0.72 0.67 0.66

5000 19.89 1.94 0.49 0.32 0.29 5000 ‐4.41  ‐1.25  ‐0.48  ‐0.23  ‐0.17  5000 0.68 0.63 0.50 0.52 0.51

7500 19.17 1.53 0.39 0.22 0.19 7500 ‐4.34  ‐1.12  ‐0.45  ‐0.23  ‐0.12  7500 0.60 0.53 0.43 0.41 0.42

10000 19.23 1.59 0.28 0.16 0.13 10000 ‐4.36  ‐1.19  ‐0.35  ‐0.20  ‐0.11  10000 0.49 0.42 0.40 0.34 0.35

Panel A: Bias Adjustment (Numerical Integration)

Skewness

MSE Bias Standard Deviation

Mean

MSE Bias Standard Deviation

Volatility

MSE Bias

Proportion with Positive Skill Measure

MSE Bias Standard Deviation

Standard Deviation



Table AII
Properties of the Estimated Moments and Proportion:

Skill Coefficient (Continued)
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.37 0.21 0.07 0.04 0.03 1000 1.15 0.43 0.23 0.14 0.12 1000 0.22 0.15 0.12 0.12 0.12

2500 1.31 0.21 0.06 0.03 0.02 2500 1.14 0.45 0.23 0.16 0.12 2500 0.14 0.08 0.08 0.07 0.07

5000 1.35 0.20 0.05 0.02 0.02 5000 1.16 0.44 0.22 0.15 0.11 5000 0.09 0.06 0.05 0.05 0.05

7500 1.28 0.21 0.05 0.02 0.02 7500 1.13 0.45 0.22 0.15 0.11 7500 0.08 0.05 0.05 0.04 0.05

10000 1.30 0.20 0.05 0.02 0.01 10000 1.14 0.44 0.22 0.15 0.11 10000 0.06 0.04 0.04 0.04 0.04

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.14 0.06 0.03 0.03 0.03 1000 1.02 0.17 0.04 0.02 0.01 1000 0.31 0.19 0.16 0.16 0.16

2500 1.22 0.04 0.01 0.01 0.01 2500 1.09 0.17 0.04 0.02 0.02 2500 0.18 0.10 0.09 0.08 0.08

5000 1.15 0.03 0.01 0.00 0.00 5000 1.06 0.16 0.05 0.02 0.01 5000 0.13 0.08 0.06 0.06 0.06

7500 1.07 0.03 0.01 0.00 0.00 7500 1.03 0.16 0.04 0.03 0.02 7500 0.11 0.06 0.06 0.06 0.06

10000 1.09 0.03 0.00 0.00 0.00 10000 1.04 0.17 0.04 0.02 0.02 10000 0.08 0.07 0.05 0.05 0.05

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.60 0.90 0.42 0.23 0.18 1000 1.19 0.88 0.55 0.37 0.29 1000 0.42 0.36 0.34 0.31 0.30

2500 1.63 0.81 0.34 0.20 0.14 2500 1.24 0.88 0.54 0.39 0.31 2500 0.31 0.21 0.22 0.21 0.21

5000 1.63 0.78 0.30 0.16 0.11 5000 1.26 0.87 0.53 0.37 0.28 5000 0.18 0.16 0.16 0.16 0.16

7500 1.53 0.76 0.30 0.16 0.11 7500 1.23 0.86 0.53 0.37 0.29 7500 0.16 0.14 0.14 0.14 0.14

10000 1.51 0.77 0.30 0.16 0.09 10000 1.22 0.87 0.53 0.38 0.28 10000 0.15 0.12 0.12 0.13 0.12

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 14.48 3.49 1.47 1.43 0.93 1000 ‐3.46  ‐1.11  ‐0.37  ‐0.39  0.05 1000 1.58 1.50 1.15 1.13 0.96

2500 15.50 1.89 0.82 0.55 0.50 2500 ‐3.80  ‐1.01  ‐0.45  ‐0.24  ‐0.14  2500 1.04 0.93 0.79 0.70 0.69

5000 14.14 1.65 0.53 0.33 0.30 5000 ‐3.70  ‐1.11  ‐0.50  ‐0.24  ‐0.15  5000 0.68 0.65 0.53 0.52 0.53

7500 13.54 1.26 0.44 0.26 0.19 7500 ‐3.63  ‐0.99  ‐0.50  ‐0.28  ‐0.14  7500 0.60 0.52 0.44 0.42 0.42

10000 13.88 1.37 0.34 0.20 0.16 10000 ‐3.69  ‐1.09  ‐0.42  ‐0.27  ‐0.15  10000 0.49 0.43 0.40 0.35 0.37

Skewness

Panel B: Bias Adjustment (Analytical Approach)

Mean

MSE Bias Standard Deviation

Volatility

MSE Bias Standard Deviation

Proportion with Positive Skill Measure

MSE Bias Standard Deviation

MSE Bias Standard Deviation



Table AII
Properties of the Estimated Moments and Proportion:

Skill Coefficient (Continued)
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.37 0.21 0.07 0.04 0.03 1000 1.15 0.43 0.23 0.14 0.12 1000 0.22 0.15 0.12 0.12 0.12

2500 1.31 0.21 0.06 0.03 0.02 2500 1.14 0.45 0.23 0.16 0.12 2500 0.14 0.08 0.08 0.07 0.07

5000 1.35 0.20 0.05 0.02 0.02 5000 1.16 0.44 0.22 0.15 0.11 5000 0.09 0.06 0.05 0.05 0.05

7500 1.28 0.21 0.05 0.02 0.02 7500 1.13 0.45 0.22 0.15 0.11 7500 0.08 0.05 0.05 0.04 0.05

10000 1.30 0.20 0.05 0.02 0.01 10000 1.14 0.44 0.22 0.15 0.11 10000 0.06 0.04 0.04 0.04 0.04

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 11.00 1.18 0.25 0.12 0.07 1000 3.31 1.07 0.48 0.31 0.22 1000 0.27 0.16 0.15 0.15 0.15

2500 11.28 1.17 0.23 0.10 0.06 2500 3.35 1.08 0.47 0.30 0.22 2500 0.16 0.09 0.08 0.08 0.08

5000 11.17 1.15 0.24 0.10 0.05 5000 3.34 1.07 0.48 0.30 0.22 5000 0.12 0.07 0.06 0.06 0.06

7500 10.99 1.15 0.23 0.10 0.05 7500 3.31 1.07 0.48 0.31 0.22 7500 0.09 0.06 0.06 0.05 0.05

10000 11.06 1.16 0.23 0.09 0.05 10000 3.32 1.08 0.48 0.30 0.22 10000 0.07 0.06 0.05 0.05 0.05

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 0.10 0.09 0.08 0.08 0.08 1000 ‐0.19  ‐0.21  ‐0.14  ‐0.12  ‐0.09  1000 0.25 0.22 0.25 0.26 0.26

2500 0.06 0.06 0.05 0.04 0.04 2500 ‐0.15  ‐0.21  ‐0.15  ‐0.10  ‐0.07  2500 0.18 0.13 0.16 0.17 0.18

5000 0.03 0.06 0.04 0.03 0.03 5000 ‐0.14  ‐0.22  ‐0.15  ‐0.12  ‐0.09  5000 0.11 0.10 0.12 0.13 0.13

7500 0.04 0.06 0.04 0.03 0.02 7500 ‐0.17  ‐0.22  ‐0.15  ‐0.11  ‐0.08  7500 0.09 0.09 0.11 0.11 0.12

10000 0.04 0.05 0.03 0.02 0.02 10000 ‐0.17  ‐0.21  ‐0.15  ‐0.11  ‐0.10  10000 0.08 0.08 0.09 0.10 0.11

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 115.98 33.21 9.56 5.57 2.44 1000 ‐10.69  ‐5.61  ‐2.90  ‐2.10  ‐1.25  1000 1.31 1.31 1.07 1.08 0.93

2500 118.94 31.23 9.49 4.31 2.52 2500 ‐10.87  ‐5.52  ‐2.99  ‐1.96  ‐1.44  2500 0.86 0.85 0.75 0.68 0.68

5000 118.33 32.04 9.36 4.10 2.37 5000 ‐10.86  ‐5.63  ‐3.02  ‐1.96  ‐1.45  5000 0.54 0.58 0.50 0.50 0.52

7500 117.45 30.67 9.30 4.16 2.23 7500 ‐10.83  ‐5.52  ‐3.02  ‐2.00  ‐1.44  7500 0.50 0.48 0.41 0.40 0.40

10000 118.59 31.50 8.85 4.10 2.22 10000 ‐10.88  ‐5.60  ‐2.95  ‐2.00  ‐1.45  10000 0.42 0.38 0.38 0.33 0.36

Skewness

Panel C: No Bias Adjustment

Mean

MSE Bias Standard Deviation

Volatility

MSE Bias Standard Deviation

Proportion with Positive Skill Measure

MSE Bias Standard Deviation

MSE Bias Standard Deviation



Table AIII
Properties of the Estimated Density:

Scale Coefficient

Panel A shows the Mean Integrated Squared Error (MISE) and its two components (integrated squared bias
and variance) for the bias-adjusted scale density under the baseline choice for the optimal bandwidth across
different values for the number of funds and the number of monthly observations. Panel B repeats the
analysis under the alternative choice of the optimal bandwidth. For comparison, Panel C reports the same
information for the bias-unadjusted density.
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 77.11 18.04 5.35 2.95 2.08 1000 75.98 16.46 3.95 1.69 0.95 1000 1.13 1.58 1.40 1.26 1.14

2500 75.05 17.01 4.63 2.15 1.55 2500 74.51 16.29 4.03 1.64 1.05 2500 0.53 0.72 0.61 0.52 0.50

5000 75.13 17.03 4.09 1.89 1.18 5000 74.54 16.66 3.80 1.63 0.89 5000 0.59 0.37 0.29 0.26 0.29

7500 74.82 16.78 4.07 1.79 1.04 7500 74.12 16.57 3.87 1.60 0.85 7500 0.70 0.21 0.20 0.19 0.19

10000 74.13 16.61 4.03 1.71 1.02 10000 73.90 16.41 3.89 1.56 0.88 10000 0.23 0.19 0.14 0.15 0.14

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 91.92 20.42 5.85 3.16 2.12 1000 90.72 19.42 5.14 2.45 1.45 1000 1.21 1.00 0.71 0.71 0.67

2500 87.96 19.27 5.24 2.43 1.68 2500 87.38 18.76 4.93 2.17 1.41 2500 0.58 0.51 0.31 0.26 0.27

5000 86.18 18.79 4.63 2.18 1.32 5000 85.45 18.55 4.47 2.03 1.16 5000 0.73 0.24 0.17 0.15 0.17

7500 84.71 18.29 4.57 2.05 1.17 7500 83.90 18.16 4.44 1.94 1.05 7500 0.80 0.13 0.13 0.12 0.12

10000 83.13 17.98 4.48 1.95 1.15 10000 82.88 17.85 4.38 1.85 1.06 10000 0.24 0.13 0.09 0.10 0.09

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 97.17 31.16 10.69 5.84 3.60 1000 96.81 30.78 10.20 5.32 3.08 1000 0.36 0.38 0.48 0.52 0.51

2500 92.06 28.58 9.41 4.25 2.66 2500 91.89 28.39 9.20 4.06 2.44 2500 0.18 0.19 0.22 0.20 0.22

5000 89.26 27.34 8.39 3.80 2.14 5000 88.94 27.25 8.27 3.68 2.01 5000 0.32 0.09 0.12 0.12 0.14

7500 87.56 26.59 8.14 3.52 1.86 7500 87.13 26.52 8.05 3.43 1.76 7500 0.43 0.07 0.09 0.09 0.10

10000 85.48 26.25 7.87 3.36 1.77 10000 85.42 26.20 7.80 3.29 1.70 10000 0.06 0.05 0.07 0.08 0.07

Panel C: No Bias Adjustment

MISE Bias^2 Variance

Panel A: Bias Adjustment (Baseline Choice for Optimal Bandwidth)

MISE Bias^2 Variance

Panel B: Bias Adjustment (Alternative Choice for Optimal Bandwidth)

MISE Bias^2 Variance



Table AIV
Properties of the Estimated Moments and Proportion:

Scale Coefficient

Panel A shows the Mean Squared Error (MSE) and its two components (bias and standard deviation) of the
bias-adjusted estimators (mean and volatility (annualized), skewness, and proportion of funds with a positive
scale measure) based on a numerical integration of the bias-adjusted density (under the baseline bandwidth
choice) across different values for the number of funds and the number of monthly observations. Panel B
reports the same information for the bias-adjusted estimators obtained with the analytical approach. For
comparison, Panel C reports the same information for the bias-unadjusted estimators (obtained by
integrating the bias-unadjusted density).
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.63 0.12 0.02 0.01 0.01 1000 1.22 0.32 0.14 0.09 0.07 1000 0.38 0.11 0.06 0.06 0.06

2500 1.48 0.12 0.02 0.01 0.01 2000 1.20 0.34 0.14 0.10 0.08 2000 0.21 0.06 0.04 0.03 0.03

5000 1.49 0.12 0.02 0.01 0.01 3000 1.21 0.34 0.14 0.09 0.07 3000 0.16 0.05 0.03 0.02 0.02

7500 1.40 0.11 0.02 0.01 0.01 4000 1.18 0.33 0.14 0.10 0.07 4000 0.14 0.04 0.02 0.02 0.02

10000 1.43 0.11 0.02 0.01 0.01 5000 1.19 0.33 0.14 0.10 0.07 5000 0.10 0.04 0.02 0.02 0.02

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 14.87 0.12 0.01 0.01 0.00 1000 3.54 0.28 ‐0.02  ‐0.02  ‐0.03  1000 1.52 0.22 0.08 0.07 0.06

2500 16.29 0.19 0.00 0.00 0.00 2500 3.80 0.29 ‐0.03  ‐0.03  ‐0.02  2500 1.37 0.32 0.05 0.04 0.04

5000 22.82 0.09 0.00 0.00 0.00 5000 4.10 0.27 ‐0.03  ‐0.03  ‐0.02  5000 2.45 0.13 0.03 0.03 0.03

7500 32.68 0.07 0.00 0.00 0.00 7500 4.32 0.25 ‐0.03  ‐0.03  ‐0.02  7500 3.74 0.08 0.03 0.03 0.03

10000 16.64 0.07 0.00 0.00 0.00 10000 3.94 0.25 ‐0.03  ‐0.03  ‐0.02  10000 1.05 0.09 0.03 0.03 0.02

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 47.90 4.04 0.17 0.10 0.10 1000 1.85 0.02 0.01 ‐0.00  0.02 1000 6.67 2.01 0.41 0.32 0.31

2500 109.91 19.89 0.10 0.05 0.05 2000 4.50 1.02 0.10 0.06 0.05 2000 9.47 4.34 0.30 0.22 0.21

5000 206.97 10.49 0.04 0.02 0.02 3000 5.55 1.30 0.08 0.05 0.05 3000 13.27 2.96 0.18 0.14 0.14

7500 406.00 3.89 0.04 0.02 0.02 4000 6.36 0.94 0.10 0.07 0.06 4000 19.12 1.73 0.18 0.11 0.11

10000 254.93 7.25 0.03 0.02 0.01 5000 7.69 0.82 0.11 0.08 0.05 5000 13.99 2.57 0.13 0.10 0.10

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 65.64 4.91 1.55 1.51 1.16 1000 ‐7.45  ‐0.99  ‐0.05  ‐0.27  ‐0.10  1000 3.20 1.98 1.24 1.20 1.07

2500 62.50 2.05 0.68 0.41 0.49 2500 ‐7.65  ‐0.80  0.07 0.19 0.11 2500 1.98 1.19 0.82 0.61 0.69

5000 59.38 1.01 0.20 0.28 0.28 5000 ‐7.42  ‐0.70  0.11 0.13 0.08 5000 2.07 0.72 0.44 0.51 0.53

7500 56.14 0.77 0.23 0.18 0.17 7500 ‐7.32  ‐0.67  0.13 0.17 0.13 7500 1.60 0.57 0.46 0.38 0.40

10000 55.74 0.78 0.26 0.19 0.14 10000 ‐7.33  ‐0.66  0.22 0.14 0.12 10000 1.40 0.59 0.46 0.41 0.36

Proportion with Positive Skill Measure

MSE Bias Standard Deviation

Volatility

MSE Bias Standard Deviation

Skewness

MSE Bias Standard Deviation

Panel A: Bias Adjustment (Numerical Integration)

Mean

MSE Bias Standard Deviation



Table AIV 
Properties of the Estimated Moments and Proportion:

Scale Coefficient (Continued)
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.63 0.12 0.02 0.01 0.01 1000 1.22 0.32 0.14 0.09 0.07 1000 0.38 0.11 0.06 0.06 0.06

2500 1.48 0.12 0.02 0.01 0.01 2000 1.20 0.34 0.14 0.10 0.08 2000 0.21 0.06 0.04 0.03 0.03

5000 1.49 0.12 0.02 0.01 0.01 3000 1.21 0.34 0.14 0.09 0.07 3000 0.16 0.05 0.03 0.02 0.02

7500 1.40 0.11 0.02 0.01 0.01 4000 1.18 0.33 0.14 0.10 0.07 4000 0.14 0.04 0.02 0.02 0.02

10000 1.43 0.11 0.02 0.01 0.01 5000 1.19 0.33 0.14 0.10 0.07 5000 0.10 0.04 0.02 0.02 0.02

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 6.75 0.08 0.01 0.00 0.00 1000 2.10 0.21 0.03 0.02 0.01 1000 1.54 0.18 0.07 0.07 0.06

2500 7.26 0.15 0.00 0.00 0.00 2500 2.24 0.26 0.03 0.01 0.01 2500 1.49 0.28 0.05 0.04 0.04

5000 11.97 0.06 0.00 0.00 0.00 5000 2.45 0.22 0.03 0.01 0.01 5000 2.44 0.12 0.03 0.03 0.03

7500 8.80 0.05 0.00 0.00 0.00 7500 2.00 0.22 0.03 0.01 0.01 7500 2.20 0.06 0.03 0.03 0.03

10000 6.48 0.05 0.00 0.00 0.00 10000 2.24 0.22 0.03 0.01 0.01 10000 1.21 0.09 0.03 0.02 0.02

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 78.69 3.59 0.48 0.24 0.17 1000 3.19 0.21 ‐0.05  ‐0.03  ‐0.02  1000 8.28 1.88 0.69 0.48 0.42

2500 117.73 9.57 0.45 0.21 0.14 2500 3.37 0.24 ‐0.05  ‐0.04  ‐0.03  2500 10.31 3.08 0.67 0.46 0.37

5000 452.01 16.92 0.38 0.17 0.10 5000 3.44 0.23 ‐0.07  ‐0.05  ‐0.03  5000 20.98 4.11 0.62 0.41 0.32

7500 549.80 4.15 0.40 0.18 0.10 7500 3.41 0.22 ‐0.06  ‐0.05  ‐0.03  7500 23.20 2.03 0.63 0.42 0.32

10000 367.33 4.94 0.40 0.18 0.10 10000 3.43 0.22 ‐0.06  ‐0.04  ‐0.02  10000 18.86 2.21 0.63 0.42 0.31

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 41.51 4.31 1.79 1.44 1.41 1000 ‐5.61  0.15 0.35 ‐0.06  0.10 1000 3.17 2.07 1.29 1.20 1.18

2500 45.02 1.68 0.84 0.51 0.51 2500 ‐6.34  0.20 0.34 0.29 0.14 2500 2.20 1.28 0.85 0.66 0.70

5000 45.71 0.66 0.30 0.30 0.33 5000 ‐6.42  0.18 0.31 0.14 0.09 5000 2.12 0.79 0.45 0.53 0.56

7500 47.16 0.38 0.29 0.18 0.18 7500 ‐6.60  0.20 0.28 0.15 0.09 7500 1.91 0.58 0.46 0.39 0.42

10000 47.51 0.41 0.36 0.18 0.14 10000 ‐6.72  0.21 0.36 0.13 0.08 10000 1.56 0.61 0.48 0.41 0.37

Proportion with Positive Skill Measure

MSE Bias Standard Deviation

Volatility

MSE Bias Standard Deviation

Skewness

MSE Bias Standard Deviation

Panel B: Bias Adjustment (Analytical Approach)

Mean

MSE Bias Standard Deviation



Table AIV 
Properties of the Estimated Moments and Proportion:

Scale Coefficient (Continued)
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.63 0.12 0.02 0.01 0.01 1000 1.22 0.32 0.14 0.09 0.07 1000 0.38 0.11 0.06 0.06 0.06

2500 1.48 0.12 0.02 0.01 0.01 2000 1.20 0.34 0.14 0.10 0.08 2000 0.21 0.06 0.04 0.03 0.03

5000 1.49 0.12 0.02 0.01 0.01 3000 1.21 0.34 0.14 0.09 0.07 3000 0.16 0.05 0.03 0.02 0.02

7500 1.40 0.11 0.02 0.01 0.01 4000 1.18 0.33 0.14 0.10 0.07 4000 0.14 0.04 0.02 0.02 0.02

10000 1.43 0.11 0.02 0.01 0.01 5000 1.19 0.33 0.14 0.10 0.07 5000 0.10 0.04 0.02 0.02 0.02

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 24.88 0.89 0.09 0.03 0.02 1000 4.77 0.93 0.30 0.17 0.11 1000 1.45 0.18 0.07 0.06 0.06

2500 26.67 1.00 0.09 0.03 0.01 2500 4.99 0.96 0.30 0.16 0.11 2500 1.31 0.30 0.04 0.04 0.04

5000 34.43 0.90 0.09 0.03 0.01 5000 5.30 0.94 0.29 0.16 0.11 5000 2.51 0.11 0.03 0.03 0.03

7500 46.26 0.87 0.09 0.03 0.01 7500 5.52 0.93 0.30 0.16 0.11 7500 3.97 0.06 0.03 0.02 0.02

10000 26.96 0.87 0.09 0.03 0.01 10000 5.09 0.93 0.29 0.17 0.11 10000 1.01 0.07 0.02 0.02 0.02

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 29.55 1.90 0.13 0.10 0.09 1000 1.18 ‐0.26  ‐0.23  ‐0.20  ‐0.14  1000 5.31 1.35 0.28 0.25 0.26

2500 67.08 13.11 0.08 0.06 0.04 2500 3.06 0.46 ‐0.20  ‐0.17  ‐0.12  2500 7.60 3.59 0.21 0.17 0.17

5000 147.57 3.22 0.06 0.05 0.03 5000 3.98 0.45 ‐0.22  ‐0.18  ‐0.13  5000 11.48 1.74 0.11 0.11 0.11

7500 293.19 0.88 0.06 0.04 0.02 7500 4.57 0.20 ‐0.21  ‐0.17  ‐0.13  7500 16.50 0.92 0.12 0.08 0.09

10000 159.53 2.10 0.05 0.03 0.02 10000 5.46 0.15 ‐0.21  ‐0.17  ‐0.14  10000 11.39 1.44 0.09 0.08 0.08

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 164.79 49.68 13.90 7.38 3.97 1000 ‐12.75  ‐6.91  ‐3.55  ‐2.48  ‐1.65  1000 1.52 1.41 1.13 1.10 1.12

2500 163.81 46.76 13.13 5.01 2.98 2500 ‐12.76  ‐6.79  ‐3.54  ‐2.15  ‐1.59  2500 0.95 0.83 0.76 0.61 0.66

5000 160.98 46.56 12.92 5.51 2.98 5000 ‐12.67  ‐6.80  ‐3.57  ‐2.30  ‐1.64  5000 0.58 0.57 0.40 0.48 0.54

7500 163.14 47.12 13.06 5.37 2.85 7500 ‐12.76  ‐6.85  ‐3.59  ‐2.29  ‐1.64  7500 0.48 0.42 0.40 0.36 0.40

10000 163.64 47.03 12.63 5.48 2.87 10000 ‐12.78  ‐6.85  ‐3.53  ‐2.31  ‐1.66  10000 0.43 0.41 0.43 0.37 0.35

Proportion with Positive Skill Measure

MSE Bias Standard Deviation

Volatility

MSE Bias Standard Deviation

Skewness

MSE Bias Standard Deviation

Panel C: No Bias Adjustment

Mean

MSE Bias Standard Deviation



Table AV
Fund Style Classification

This table provides the list of 32 styles across the different data providers of style information
(Wiesbenberger, Strategic Insight, Lipper, Policy CRSP). For each style, it also shows the mapping between
each style and the growth/value (GV) and small/large cap (SL) dimensions. A value of 1 refers to growth or
small cap. A value of two refers to neutral fund in terms of GV or SL dimension. Finally, a value of 3 refers to
value or large cap.

Wiesenberger Symbol Name Style GV Style SL
1 G Growth 1
2 GCI Growth and current income 3
3 G-I Income 3
4 IEQ Equity income 3
5 LTG Long-term growth 1
6 MCG Maximum capital gains 1
7 SCG Small-cap growth 1 1

Strategic Insight Symbol Name Style GV Style SL
8 AGG Aggressive growth 1
9 GMC Equity mid-cap 2
10 GRI Growth and income 3
11 GRO Growth 1
12 ING Income and growth 3
13 SCG Small-cap 1
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Table AV
Fund Style Classification (Continued)

Lipper Symbol Name Style GV Style SL
14 CA Capital appreciation 1
15 G Growth 1
16 GI Growth and income 3
17 LCCE Large-cap core 2 3
18 LCGE Large-cap growth 1 3
19 LCVE Large-cap value 3 3
20 MC Mid-cap 2
21 MCCE Mid-cap core 2 2
22 MCGE Mid-cap growth 1 2
23 MCVE Mid-cap value 3 2
24 MLCE Multi-cap core 2
25 MLGE Multi-cap growth 1
26 MLVE Multi-cap value 3
27 MR Micro-cap 1
28 SCCE Small-cap core 2 1
29 SCGE Small-cap growth 1 1
30 SCVE Small-cap value 3 1
31 SG Small-cap 1

Policy CRSP Symbol Name Style GV Style SL
32 CS Common stock
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Table AVI
Impact of Survivorship and Reverse Survivorship Bias

Panel A contains the summary statistics of the distributions of the skill and scale coefficients for all funds in
the population across different thresholds for the minimum number of return observations (ranging from 12
to 60 monthly observations). It reports the first four moments, the proportions of funds with a negative and
positive skill coefficient, and the quantiles at 5% and 95%. We compute all cross-sectional estimates by
integrating numerically the bias-adjusted density obtained with our nonparametric approach. Figures in
parentheses denote the estimated standard deviation of each estimator. Panel B repeats the analysis for the
subpopulation of funds that disappear during the sample period across two thresholds for the minimum
number of return observations (60 and 108 monthly observations). This analysis provides a rough estimate
of the magnitude of the reverse survivorship bias.
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Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

Min. Observations=12

Skill Coefficent 2.7 (0.2) 5.4 (0.4) 0.1 (1.2) 37.6 (8.1) 21.8 (0.8) 78.2 (0.8) -3.2 (0.2) 9.5 (0.2)

Scale Coefficient 1.3 (0.1) 1.9 (0.1) 1.2 (0.9) 26 (7.3) 20 (0.8) 80 (0.8) -1.1 (0.1) 4.2 (0.1)

Min. Observations=36

Skill Coefficent 2.8 (0.1) 4.8 (0.3) 1.3 (0.9) 28.8 (5.3) 19.9 (0.8) 80.1 (0.8) -2.8 (0.1) 9.2 (0.2)

Scale Coefficient 1.3 (0.1) 1.9 (0.1) 1.8 (0.9) 25.6 (8.8) 19.2 (0.8) 80.8 (0.8) -1 (0.1) 4.1 (0.1)

Min. Observations=60

Skill Coefficent 3 (0.1) 4.1 (0.2) 1.6 (0.7) 23.4 (6) 16.9 (0.8) 83.1 (0.8) -2.2 (0.1) 8.9 (0.2)

Scale Coefficient 1.3 (0.1) 1.7 (0.1) 1.6 (0.7) 16.7 (11) 17.6 (0.8) 82.4 (0.8) -0.9 (0.1) 3.9 (0.1)

Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

Min. Observations=60

Skill Coefficent 2.5 (0.1) 4.9 (0.3) 2.2 (0.7) 27 (6) 25.8 (0.9) 74.2 (0.9) -3.6 (0.2) 9.9 (0.2)

Scale Coefficient 1.4 (0.1) 2.1 (0.1) 2.1 (0.7) 21.5 (7.3) 23.2 (0.9) 76.8 (0.9) -1.4 (0.1) 4.6 (0.1)

Min. Observations=108

Skill Coefficent 2.4 (0.1) 3.3 (0.1) 0.8 (0.3) 8 (1.1) 21 (0.8) 79 (0.8) -2.4 (0.1) 7.8 (0.1)

Scale Coefficient 1.3 (0.1) 1.6 (0.1) 1.3 (0.3) 9.9 (1.5) 19.2 (0.8) 80.8 (0.8) -0.9 (0.1) 3.7 (0.1)

Moments Proportions (%) Quantiles (Ann.)

Panel A: All Selected Funds

Moments Proportions (%) Quantiles (Ann.)

Panel B: Selected Funds that Disappear During the Sample Period



Table AVII
Distributions of Skill and Scalability

Four-Factor Model

Panel A contains the summary statistics of the distribution of the skill coefficient for all funds in the
population, small/large cap funds, low/high turnover funds (i.e., bottom or top tercile of funds sorted on
turnover), and broker/direct sold funds (i.e., funds that are sold through brokers or funds directly sold to
investors) based on the four-factor model of Carhart (1997). It reports the first four moments, the proportions
of funds with a negative and positive skill coefficient, and the quantiles at 5% and 95%. We compute all
cross-sectional estimates by integrating numerically the bias-adjusted density obtained with our
nonparametric approach. Figures in parentheses denote the estimated standard deviation of each estimator.
Panel B repeats the analysis for the scale coefficient. To ease interpretation, we standardize the scale
coefficient for each fund so that it corresponds to the change in gross alpha for a one standard deviation
change in size.
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Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 2.4 (0.1) 3.9 (0.3) 1.8 (1.1) 30.4 (15.4) 21.5 (0.8) 78.5 (0.8) -2.6 (0.1) 8.1 (0.1)

Fund Groups

Small Cap 3.3 (0.2) 4.2 (0.5) 1.9 (2.5) 27.9 (41) 19.4 (1.6) 80.6 (1.6) -3 (0.3) 9.8 (0.3)

Large Cap 1.6 (0.1) 2.7 (0.2) 1.2 (0.6) 13.5 (3.7) 24.5 (1.4) 75.5 (1.4) -2.1 (0.2) 5.9 (0.2)

Low Turnover 2.1 (0.2) 3.1 (0.2) -0.2 (0.7) 13.4 (2) 18.7 (1.4) 81.3 (1.4) -2 (0.2) 6.7 (0.2)

High Turnover 2.6 (0.2) 5 (0.5) 2.1 (1.3) 26.3 (15.4) 24.9 (1.5) 75.1 (1.5) -3.7 (0.2) 9.8 (0.3)

Broker Sold 2.4 (0.2) 4.1 (0.4) 2.6 (1.8) 37.7 (25.9) 22.2 (1.3) 77.8 (1.3) -2.7 (0.2) 8.3 (0.2)

Direct Sold 2.6 (0.1) 2.9 (0.2) 0.4 (0.5) 8.5 (1.8) 14.1 (1.2) 85.9 (1.2) -1.4 (0.2) 7.4 (0.2)

Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 1.3 (0.1) 1.7 (0.1) 1.5 (0.7) 16 (9.8) 19.2 (0.8) 80.8 (0.8) -1 (0.1) 3.8 (0.1)

Fund Groups

Small Cap 1.5 (0.1) 1.7 (0.1) -0.1 (1) 8.4 (9.9) 18.4 (1.5) 81.6 (1.5) -1.2 (0.1) 4.3 (0.1)

Large Cap 0.9 (0.1) 1.4 (0.1) 1.7 (0.6) 13.5 (4) 24.6 (1.4) 75.4 (1.4) -1 (0.1) 3 (0.1)

Low Turnover 0.8 (0.1) 1.1 (0.1) 0.4 (0.3) 4.7 (1.3) 21.6 (1.5) 78.4 (1.5) -0.9 (0.1) 2.7 (0.1)

High Turnover 1.7 (0.1) 2.1 (0.2) 1 (0.5) 8.9 (3.7) 18.7 (1.4) 81.3 (1.4) -1.2 (0.1) 5.1 (0.2)

Broker Sold 1.3 (0.1) 1.8 (0.1) 1.2 (0.5) 11.1 (1.4) 19.5 (1.2) 80.5 (1.2) -1 (0.1) 4.2 (0.1)

Direct Sold 1.3 (0.1) 1.3 (0.1) 0.6 (0.5) 7.5 (2.3) 15.3 (1.3) 84.7 (1.3) -0.7 (0.1) 3.4 (0.1)

Panel B: Scale Coefficient

Moments Proportions (%) Quantiles (Ann.)

Panel A: Skill Coefficient

Moments Proportions (%) Quantiles (Ann.)



Table AVIII
Distributions of Skill and Scalability

Five-Factor Model

Panel A contains the summary statistics of the distribution of the skill coefficient for all funds in the
population, small/large cap funds, low/high turnover funds (i.e., bottom or top tercile of funds sorted on
turnover), and broker/direct sold funds (i.e., funds that are sold through brokers or funds directly sold to
investors) based on the five-factor model of Fama and French (2015). It reports the first four moments, the
proportions of funds with a negative and positive skill coefficient, and the quantiles at 5% and 95%. We
compute all cross-sectional estimates by integrating numerically the bias-adjusted density obtained with our
nonparametric approach. Figures in parentheses denote the estimated standard deviation of each estimator.
Panel B repeats the analysis for the scale coefficient. To ease interpretation, we standardize the scale
coefficient for each fund so that it corresponds to the change in gross alpha for a one standard deviation
change in size.
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Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 2.4 (0.1) 4.4 (0.2) 1.4 (0.5) 16.8 (2.3) 26 (0.9) 74 (0.9) -3.1 (0.1) 8.9 (0.2)

Fund Groups

Small Cap 3.4 (0.2) 4.3 (0.3) 0.8 (0.5) 7.8 (2.8) 20.2 (1.6) 79.8 (1.6) -3 (0.3) 10.3 (0.3)

Large Cap 1.5 (0.2) 3.5 (0.2) 1.8 (0.4) 13.3 (2.3) 31.3 (1.5) 68.7 (1.5) -3 (0.2) 6.8 (0.2)

Low Turnover 1.5 (0.2) 3.9 (0.3) 1.4 (0.8) 18.4 (3.1) 32.8 (1.7) 67.2 (1.7) -3.2 (0.2) 7.1 (0.2)

High Turnover 3.5 (0.2) 5.1 (0.4) 1 (0.6) 12.8 (2.7) 19.7 (1.4) 80.3 (1.4) -3.5 (0.3) 11.5 (0.3)

Broker Sold 2.4 (0.2) 4.3 (0.3) 1 (0.6) 13 (2.8) 26.2 (1.4) 73.8 (1.4) -3.2 (0.2) 8.9 (0.2)

Direct Sold 2.5 (0.2) 3.6 (0.2) 1.1 (0.5) 11.3 (1.7) 21.8 (1.5) 78.2 (1.5) -2.1 (0.2) 8.1 (0.2)

Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 1.2 (0.1) 1.7 (0.1) 1.1 (0.5) 13.9 (4) 19.9 (0.8) 80.1 (0.8) -1 (0.1) 3.9 (0.1)

Fund Groups

Small Cap 1.5 (0.1) 1.7 (0.1) -0.1 (0.9) 7.3 (8.4) 18.4 (1.5) 81.6 (1.5) -1.2 (0.1) 4.4 (0.2)

Large Cap 0.9 (0.1) 1.5 (0.1) 1.9 (0.7) 16.9 (4.2) 24.7 (1.4) 75.3 (1.4) -1.1 (0.1) 3.2 (0.1)

Low Turnover 0.9 (0.1) 1.2 (0.1) -0.1 (0.5) 6.3 (2.4) 24.4 (1.5) 75.6 (1.5) -1 (0.1) 2.9 (0.1)

High Turnover 1.6 (0.1) 2.1 (0.2) 1 (0.6) 9.8 (4.3) 18.7 (1.4) 81.3 (1.4) -1.2 (0.1) 5.1 (0.2)

Broker Sold 1.3 (0.1) 1.8 (0.1) 0.8 (0.5) 10.5 (1.5) 19.7 (1.2) 80.3 (1.2) -1.1 (0.1) 4.2 (0.1)

Direct Sold 1.2 (0.1) 1.4 (0.1) -0.4 (0.4) 7.5 (1.4) 16.6 (1.3) 83.4 (1.3) -0.7 (0.1) 3.4 (0.1)

Panel B: Scale Coefficient

Moments Proportions (%) Quantiles (Ann.)

Panel A: Skill Coefficient

Moments Proportions (%) Quantiles (Ann.)



Table AIX
Distributions of Skill and Scalability

Changes in Industry Competition

Panel A contains the summary statistics of the distribution of the skill coefficient for all funds in the
population, small/large cap funds, low/high turnover funds (i.e., bottom or top tercile of funds sorted on
turnover), and broker/direct sold funds (i.e., funds that are sold through brokers or funds directly sold to
investors) after including a proxy for industry competition in the set of variables (the ratio of the industry size
on the total market capitalization). It reports the first four moments, the proportions of funds with a negative
and positive skill coefficient, and the quantiles at 5% and 95%. We compute all cross-sectional estimates by
integrating numerically the bias-adjusted density obtained with our nonparametric approach. Figures in
parentheses denote the estimated standard deviation of each estimator. Panel B repeats the analysis for the
scale coefficient. To ease interpretation, we standardize the scale coefficient for each fund so that it
corresponds to the change in gross alpha for a one standard deviation change in size.
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Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 3.5 (0.1) 5.1 (0.3) 1.4 (0.9) 28 (6.2) 17.7 (0.8) 82.3 (0.8) -2.7 (0.2) 10.5 (0.2)

Fund Groups

Small Cap 5.4 (0.3) 5.9 (0.6) 2.4 (1.2) 25.3 (8.9) 12.1 (1.3) 87.9 (1.3) -2.3 (0.3) 14.4 (0.4)

Large Cap 2 (0.2) 3.4 (0.2) 1.1 (0.6) 13.2 (1.7) 22.7 (1.3) 77.3 (1.3) -2.4 (0.2) 7 (0.2)

Low Turnover 3.1 (0.2) 4.3 (0.3) -0.7 (1) 17.1 (5.5) 18.4 (1.4) 81.6 (1.4) -2.7 (0.2) 9 (0.2)

High Turnover 3.9 (0.3) 6.2 (0.6) 2.1 (1.1) 26.3 (6.5) 19.3 (1.4) 80.7 (1.4) -3.4 (0.3) 12.5 (0.3)

Broker Sold 3.4 (0.2) 4.8 (0.4) 2 (1.3) 28.7 (13.8) 17.9 (1.2) 82.1 (1.2) -2.5 (0.2) 10.6 (0.2)

Direct Sold 3.8 (0.2) 4.2 (0.3) 0.5 (0.5) 9.4 (1) 12.9 (1.2) 87.1 (1.2) -1.5 (0.2) 10.1 (0.2)

Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 1.6 (0.1) 2.3 (0.1) 1.1 (0.6) 17.3 (4.3) 17.4 (0.8) 82.6 (0.8) -1.2 (0.1) 5.1 (0.1)

Fund Groups

Small Cap 2.2 (0.1) 2.6 (0.2) 1.5 (0.5) 11.8 (1.9) 14.8 (1.4) 85.2 (1.4) -1.3 (0.2) 6.1 (0.2)

Large Cap 1.2 (0.1) 1.6 (0.1) 1.1 (0.6) 10.3 (3.6) 20.4 (1.3) 79.6 (1.3) -1.1 (0.1) 3.7 (0.1)

Low Turnover 1.3 (0.1) 1.7 (0.1) 0.4 (0.9) 11.6 (6.5) 18.9 (1.4) 81.1 (1.4) -1 (0.1) 4.1 (0.1)

High Turnover 2.1 (0.1) 2.7 (0.2) 0.8 (0.8) 12.6 (5.4) 18.1 (1.4) 81.9 (1.4) -1.6 (0.2) 6.2 (0.2)

Broker Sold 1.7 (0.1) 2.3 (0.2) 1 (0.5) 11.2 (1.8) 17.9 (1.2) 82.1 (1.2) -1.2 (0.1) 5.2 (0.1)

Direct Sold 1.8 (0.1) 2 (0.2) 1.9 (1.4) 20.2 (21) 14.2 (1.2) 85.8 (1.2) -0.8 (0.1) 4.9 (0.1)

Moments Proportions (%) Quantiles (Ann.)

Panel A: Skill Coefficient

Moments Proportions (%) Quantiles (Ann.)

Panel B: Scale Coefficient



Table AX
Distributions of Skill and Scalability

Changes in Industry Competition and Aggregate Mispricing 

Panel A contains the summary statistics of the distribution of the skill coefficient for all funds in the
population, small/large cap funds, low/high turnover funds (i.e., bottom or top tercile of funds sorted on
turnover), and broker/direct sold funds (i.e., funds that are sold through brokers or funds directly sold to
investors) after including a proxy for industry competition and aggregate mispricing in the set of variables
(the ratio of the industry size on the total market capitalization and aggregate fund turnover). It reports the
first four moments, the proportions of funds with a negative and positive skill coefficient, and the quantiles at
5% and 95%. We compute all cross-sectional estimates by integrating numerically the bias-adjusted density
obtained with our nonparametric approach. Figures in parentheses denote the estimated standard deviation
of each estimator. Panel B repeats the analysis for the scale coefficient. To ease interpretation, we
standardize the scale coefficient for each fund so that it corresponds to the change in gross alpha for a one
standard deviation change in size.
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Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 3.4 (0.2) 5.4 (0.3) 1.4 (0.8) 26.2 (5.6) 19.2 (0.8) 80.8 (0.8) -3.1 (0.2) 10.8 (0.2)

Fund Groups

Small Cap 5.4 (0.3) 6.1 (0.6) 2.4 (1) 23.6 (8.2) 13.6 (1.4) 86.4 (1.4) -2.6 (0.3) 14.5 (0.4)

Large Cap 2.1 (0.2) 3.7 (0.3) 0.6 (0.6) 14 (1.5) 24.3 (1.4) 75.7 (1.4) -2.8 (0.2) 7.3 (0.2)

Low Turnover 3.1 (0.2) 4.7 (0.4) 0.2 (1.1) 20.1 (5.9) 18.8 (1.4) 81.2 (1.4) -2.7 (0.2) 9.6 (0.2)

High Turnover 3.8 (0.3) 6.3 (0.6) 2.1 (1) 25.1 (6.8) 21.7 (1.5) 78.3 (1.5) -3.9 (0.3) 12.6 (0.3)

Broker Sold 3.3 (0.2) 5.1 (0.5) 2.3 (1.4) 32.6 (14.7) 18.9 (1.2) 81.1 (1.2) -3 (0.2) 10.8 (0.3)

Direct Sold 3.8 (0.2) 4.5 (0.3) 0.7 (0.5) 10.9 (1) 14.3 (1.2) 85.7 (1.2) -1.9 (0.2) 10.3 (0.3)

Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 1.6 (0.1) 2.4 (0.1) 1.4 (0.5) 17.4 (3.2) 19.4 (0.8) 80.6 (0.8) -1.3 (0.1) 5.3 (0.1)

Fund Groups

Small Cap 2.2 (0.2) 2.9 (0.2) 1.4 (0.5) 10.9 (1.9) 17.1 (1.5) 82.9 (1.5) -1.5 (0.2) 6.4 (0.2)

Large Cap 1.2 (0.1) 1.6 (0.1) 0.7 (0.4) 7.3 (2.1) 21.6 (1.3) 78.4 (1.3) -1.2 (0.1) 3.7 (0.1)

Low Turnover 1.3 (0.1) 1.8 (0.2) 0.6 (1.3) 14 (14.4) 20.7 (1.4) 79.3 (1.4) -1.1 (0.1) 4.1 (0.1)

High Turnover 2 (0.1) 2.9 (0.2) 0.9 (0.6) 10.9 (2.9) 20 (1.4) 80 (1.4) -1.8 (0.2) 6.3 (0.2)

Broker Sold 1.7 (0.1) 2.3 (0.2) 1.2 (0.5) 11.4 (1.5) 19.4 (1.2) 80.6 (1.2) -1.3 (0.1) 5.2 (0.1)

Direct Sold 1.8 (0.1) 2.1 (0.2) 1.8 (1) 18 (9.9) 15.8 (1.3) 84.2 (1.3) -1 (0.1) 5.3 (0.2)

Moments Proportions (%) Quantiles (Ann.)

Panel A: Skill Coefficient

Moments Proportions (%) Quantiles (Ann.)

Panel B: Scale Coefficient
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Figure A1
Comparative Static Analysis of the EIV Bias 

Skill Coefficient

This figure performs a comparative static analysis of the EIV bias function for the skill coefficient. We plot the
benchmark curve using the parameters of the Gaussian reference model calibrated on our sample. In Panel
A, we plot the new EIV bias function after increasing the variance of the true skill coefficient by 0.002/100. In
Panel B, we plot the new EIV bias function after increasing the variance of the estimated skill coefficient by
0.002/100. In Panel C, we plot the new EIV bias function after increasing the correlation between the true
skill coefficient and the estimation variance by 50% in relative terms.

Panel A: Variance of the True Skill Coefficient

Panel C: Correlation between the Skill Coefficient and Estimated Variance

New Benchmark

Benchmark

Benchmark

50

Panel B: Variance of the Estimated Skill Coefficient
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