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D. SURVIVAL COPULA  
 
D.I. Survival models and copulas 
 
Definitions, relationships with multivariate 
survival distribution functions and 
relationships between copulas and survival 
copulas. 
 
D.II. Frailty models 
 
Use of a latent variable to introduce 
dependence between survival times. 
 
Link with Archimedean copula 
 
D.III. Dependence measures 
 
Particular care should be paid when 
measuring dependence among survival 
times. 
 
Properties of Kendall’s tau, Spearman’s rho 
and Tail dependences in a survival setting. 
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D.IV. Competing risk models 
 
Definition and properties 
 
D.V. Estimation 
 
Problems of censoring and truncation. 
 
D.VI. Conclusions 
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D.I. Survival models and copulas 
 
 
The term multivariate survival data covers 
the field where independence between 
survival times cannot be assumed.  
 
We may parallel the construction of 
multivariate distribution through the use of 
copulas in a survival framework. 
 
First we consider the univariate data 
separately in order to characterize the 
specific properties of the survival times. 
 
Then we search to describe the joint 
behavior of the survival times by taking 
into account the properties exhibited in the 
first step. 
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a) Univariate survival notions 
 
Let T  denote a survival time with 
distribution F  and density f . 
 
The survival function is given by  
 

[ ] )(1)( tFtTPtS −=>= . 
 
The hazard rate or risk function )(tλ  is 
defined as  
 

Δ

≥Δ+≤≤
=

→Δ

][
lim)(

0

tTtTtP
tλ . 

 
It can be interpreted as the instantaneous 
failure rate assuming the system has 
survived to time t . 
 

It is given by   )(
)()(
tS
tft =λ . 
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The hazard function is equal to  
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It is also known under the name: integrated 
hazard function or cumulative hazard 
function. 
 
We get the relationship :  
 

))(exp()( ttS Λ−=  
 
In some cases we can incorporate 
explanatory variables in the modeling of 
)(tλ , and we have then  

 
)()exp()( 0 tXt λβλ =  

 
where )(0 tλ  is called the “baseline” 
hazard function (Cox proportional hazard 
rate model). 
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b) Multivariate survival notions 
 
The previous definitions can be extended 
to the multivariate case.  
 
The multivariate survival function )(tS  is 
defined by  
 

[ ]ddd tTtTPttS >>= ,...,),...,( 111  
 
where dTT ,...,1  are d survival times with 
univariate survival functions )( jj tS . 
 
We have )0,...,0,,0,...,0()( jjj tStS = . 
 
Note that ),...,(1),...,( 11 dd ttFttS −≠ . 
 
The density is simply  
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Multivariate extensions of the hazard rate 
and the hazard function are given by  
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or equivalently:  
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Relationship between S  and Λ cannot be 
simply formulated, since conditional 
hazard rates need to be taken into account.  
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Copulas are then a natural tools to develop 
multivariate survival functions from 
marginal univariate survival functions. 
 
 
c) Survival copulas 
 
A multivariate survival function S  can be 
represented as follows : 
 

))(),...,((),...,( 111 ddd tStSCttS = , 
 
where C  is a copula (Sklar theorem for 
survival functions). 
 
The survival copula C  couples the joint 
survival function to its univariate margins 
in a manner completely analogous to the 
way a copula connects the joint 
distribution function to its margins.  
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There exists a link between the survival C  
and the copula C .  
 
In the bivariate case it is given by  
 

)1,1(1),( 212121 uuCuuuuC −−+−+=
 
Note that we can build a survival function 
as ))(),...,((),...,( 111 ddd tStSCttS =  
or as ))(),...,((),...,( 111 ddd tStSCttS =  
for a given copula C.  
 
This will not yield the same survival 
functions except in some cases. 
 
For example it can be shown that for 
elliptical copulas C  = C  (normal, 
student). It is also true for the Frank 
copula. 
 
Then it is equivalent to work with the 
copula or the survival copula.  
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D.II. Frailty models 
 
The main idea is to introduce dependence 
between survival times dTT ,...,1  by using 
an unobserved random variable W, called 
the frailty.  
 
It corresponds to a latent (or hidden) 
variable modeling. 
 
Given the frailty W with distribution G the 
survival times are assumed to be 
independent :  
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We take then  
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where )( jj tψ  is the baseline survival 
function in a proportional hazard model: 
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The unconditional joint survival function 
is further defined as  
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We only need to integrate w.r.t. the 
distribution G. 
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It can be shown that a survival frailty 
copula is a special case of the construction 
based on  
 

))(),...,((),...,( 111 ddd tStSCttS =   
 
where C  is an Archimedean copula with a 
generator corresponding to the inverse of 
the Laplace transform of the distribution of 
the frailty variable.  
 
Remark that frailty models exhibit a PQD 
behavior only, which might be an handicap 
for the modeling of some data. 
 
Recall that an Archimedean copula is such 
that  
 

))()((),( 21
1

21 uuuuC ϕϕϕ += −  
 
where ϕ  is called the generator of the 
copula. 
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The name Archimedean comes from one 
of the mathematical property of this 
category of copula which is related to the 
Archimedean axiom: if a,b are positive 
real numbers, then there exists an integer n 
such that na>b.  
 
Examples are the Frank copula and the 
Gumbel copula. 
 
They find a wide range of applications 
since (1) they are easy to construct, (2) 
there is a large variety of copula families 
which belong to this class, (3) they have 
nice mathematical properties. 
 
The high degree of analytical tractability 
of the class is an advantage, but the 
number of free parameters is typically low. 
 
This might become an handicap in high 
dimensions when the dependence structure 
of the data is complex. 
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D.III. Dependence measures 
 

a) linear correlation 
 

The traditional way of evaluating 
dependence in a bivariate distribution is by 
means of the standard correlation 
coefficient. 
 
This measure of dependence  is natural and 
unproblematic in the class of elliptical 
distributions, but it might be misleading in 
other contexts, typically encountered in 
survival data. 
 
Here are some usual misinterpretations of 
the Pearson correlation (counter-examples 
may be given). 
 
1. 1T  and 2T  are independent if and only if 

0),(corr 21 =TT . 
 
2. 0),(corr 21 =TT  means that there is no 
perfect dependence between 1T  and 2T . 
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3. for given margins, the permissible range 
of ),(corr 21 TT  is [-1,1]. 
 
Survival data are typically positive. Hence 
the lower bound –1 can never been 
reached. 
 
It is further difficult to obtain large range 
of correlation because of the type of 
distributions generally used in survival 
modeling. For the Weibull, the interval is 
often [-1/3,1/2] only. 
 
 

b) Kendall’s tau and Spearman’s rho 
 

The Kendall’s tau and Spearman’s rho of 
the survival copula and its associated 
copula are equal. 
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c) Tail dependence 
 

Tail dependence measures correspond to  
 
Upper tail dependence: 
 

[ ]uUuUP
uU >>=
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If ]1,0(∈Uλ , then upper tail dependence. 
If 0=Uλ , then no upper tail dependence. 
 
Lower tail dependence: 
 

[ ]uUuUP
uL <<=
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120
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If ]1,0(∈Lλ , then lower tail dependence. 
If 0=Lλ , then no lower tail dependence. 
 
The upper tail dependence of the survival 
copula will give the lower tail dependence 
of its associated copula, and vice-versa. 
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Lower tail dependence in survival copula 
will characterize “immediate joint death”, 
while upper tail dependence in survival 
copula will characterize “long-term joint 
survival”. 
 
Remark: Normal copula has no upper or 
lower tail dependence. Student copula 
may. 
 
D.IV. Competing risk models 
 
Competing risk models correspond to the 
study of any failure process in which there 
are different causes of failures. 
 
Let us consider d survival times dTT ,...,1 . 
In a competing risk model the survival 
time τ  is defined by 
 

),...,min( 1 dTT=τ . 
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We have then  
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The cdf of the survival time τ  is  
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and its density is given by  
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Explicit forms can be found for example 
for Weibull margins and a Gumbel 
copulas. 
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Under an iid scheme we get 
 

dtFtF ))(1(1)( 1−−=τ  
 
and  )())(1()( 1

1
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D.V. Estimation 
 
The estimation by maximum likelihood are 
exactly the same as before when 
observations are complete. 
 
Indeed ML estimation relies on the joint 
density of the survival times. 
 
However dealing with survival times is not 
as simple, because records on survival 
traits are often incomplete: survival data 
are often censored or truncated.  
 



D-22 

O. SCAILLET 

Under left truncation we only observe data  
above a fixed threshold. We have no 
information about the behavior below the 
limit (only reported losses above a given 
level).  
 
Under censoring we have usually a 
mixture between complete and incomplete 
data.  
 
For example under right censoring we 
observe T if it is below a threshold C or 
the threshold C itself if it is above. The 
threshold C may be fixed or random. 
 
Estimation under these schemes are much 
more difficult, especially when dealing 
with nonparametric estimation. 
 
For example under left truncation it is 
impossible to identify nonparametrically 
the part of the distribution below the 
threshold (we have no information!). 
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D.VI. Conclusions 
 
The joint behavior of survival times can be 
easily modeled through copulas. 
 
It is a powerful tool to analyze the 
dependence structure among these data, 
especially because symmetric distributions 
are not natural candidates for these data. 
 
Estimation procedures are also available in 
such a setting but are more difficult to 
implement when censoring or truncation 
mechanisms are present.  
 


