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B.I. Empirical copulas  
 
Data : 
 

{ }TtYYY nttt ,...,1,),...,( 1 =ʹ′=  
 

=   i.i.d. observations  
(observed returns or losses) 

 
Distributions : 
 

)(),( yFyf  = joint pdf and cdf of tY  
 

)(),( jjjj yFyf  = pdf and  cdf of margins 
 
Empirical cdfs: 
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To build empirical copulas, we use ranks 
instead of the original observations 
 
Let us build the grid : 
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The empirical copula is given by  
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where itR  corresponds to the rank of itY . 
 
⇒ We obtain step functions which are not 
differentiable. 
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B.II. Smoothed copulas 
 
B.II.1. Nonparametric estimation of 
densities 
 
The moments of a random variable are a 
summary of its distributional behavior. 
 
A full information is provided by its 
distribution. 
 
The cumulative distribution function for a 
single asset or loss i corresponds to 
 

)()( iitii yYPyF ≤= , 
 
while for two assets i and j, we have 
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A cdf may be expressed as an expectation: 
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where iit yY ≤1  = indicator function of the 

set { }iyitYitY ≤:  
 

iit yY ≤1   =  1  if  iyitY ≤ , 
    =  0  otherwise. 
 
In order to estimate expectations, we need 
to replace E by an empirical average: 
 

∑
=

≤=
T

t
yYii iitT

yF
1
11)(ˆ , 

 

∑
=

≤≤=
T

t
yYyYjiij jjtiitT

yyF
1

,11),(ˆ , 



B-6 

O. SCAILLET 

 
 
⇒ We obtain step functions which are not 

differentiable. 
 
⇒ We cannot build empirical 

counterparts of densities
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In order to do so we have to rely on a 
kernel estimation of univariate densities.  
 
Idea behind: 

 
We start from the histogram,  
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and replace bars by smooth bumps 
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The bump K  is called a Kernel. 
 
It should integrate to one and be 
symmetric. 
 
 
Example:  
 

Gaussian Kernel = Gaussian density 
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The smoothing parameter h  is called the 
bandwidth. 
 
The bandwidth h  plays the same role as the 
class length for histograms. 
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If h  is too large (large class), we get 
oversmoothing. 
 
 
If h  is too small (small class), we get 
undersmoothing. 
 
 
Rule of thumb to select the bandwidth: 
 

5/1ˆ −= Th σ  
 
where σ̂  is empirical standard deviation of 
the data. 
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It is possible to extend to higher 
dimensions and to the conditional case.  
 
Kernel estimation of a bivariate density: 
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Note that the curse of dimensionality 
appears when we are above five 
dimensions. 
 
We need a lot of information (data) to get 
an accurate estimation of the high 
dimensional object to be estimated. 

 
Kernel estimation of a conditional density: 
 
Recall the definition (Bayes Theorem) 
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⇒ we only need to replace the unknown 
quantities by their estimates 
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Extensions: 
 

1) Zero boundary 

 

Previous estimators have good properties 
when the data take values in ℜ.  

 
When data are bounded from below at 

zero (losses with a positive sign), they 
exhibit bias at the boundary (edge effect). 
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This boundary bias is due to weight 
allocation by the fixed symmetric kernel 
outside the density support when 
smoothing is carried out near the 
boundary.  

 
One of the remedy consists in replacing 

symmetric kernels by asymmetric kernels, 
which never assigns weight outside the 
support.  

 

The form of the estimators is the same  
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but the symmetric kernel is replaced by an 
asymmetric kernel. 
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Examples: 
 
Gamma Kernel: 
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Reciprocal Inverse Gaussian Kernel: 
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2) Compact support 
 
When the data are defined on [ ]1,0 , we face 
two boundaries. 
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It is then useful to use a kernel whose 
support is also [ ]1,0 , for example the Beta 
kernel: 
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Example: 

 
This estimator is useful to analyze the 
distribution of recovery rates at default. 
 
There is a renewed interest in LGD (loss 
given default), which is mainly prompted 
by Basle II and the explosion of the credit 
derivatives market. 
 
Data are scarce, in particular outside the 
US. 
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The market standard to model LGD is a 
parametric assumption of beta distributed 
recoveries. 
 
There are several measures of LGD 
 
  → ultimate recoveries 
  → trading price recoveries 
 
These measures often give very different 
results. 
 
Which one should be used depends who 
you are and what you do with your 
defaulted positions. 
 
The data concern 623 US defaulted bond 
issues spanning from 1981 to end 1999. 
 
These are trading price recoveries which 
are classified by industry and seniority. 
 
The data comes from the S&P/PMD 
database. 
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The market assumption of a beta 
distribution is often severely wrong.  
 
This could lead to underestimation of risk 
measures. 
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B.II.2. Nonparametric estimation of 
copulas 
 
Use of nonparametric kernel methods to 
smooth empirical copulas 
 
Let us consider a n-dimensional kernel:   
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Let us denote  
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where jh  are univariate bandwidths, and 
h is a diagonal matrix collecting them. 
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As before the pdf of jtY  at jy  is estimated 
via 
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and the pdf of tY  at y  is estimated via 
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Hence a smoothed estimator of the cdf of jtY  
at jy  is given by: 
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while the cdf of tY  at y  is estimated via 
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If a single Gaussian kernel )()( xxK j ϕ=  is 
used we get a simple form 
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where Φ,ϕ  are the pdf, cdf of a N(0,1). 
 
In order to estimate the copula at point u, we 
can directly exploit the expression : 
 

))(),...,((),...,( 1
1

1
11 nnn uFuFFuuC −−= , 

 
and use an empirical counterpart based on 
smoothed cdf and smoothed quantiles. 
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We use a plug-in method : 
 

)ˆ(ˆ)(ˆ ςFuC =  
 
where )ˆ,...,ˆ(ˆ 1 ʹ′= nςςς  and 

{ }jjj uyFy ≥= )(ˆ:infς̂ .  
 
Here jς̂  corresponds to a kernel estimate of 
the quantile of jtY  with probability level ju . 
 
Empirical illustrations :  
 
1,700 observations of daily returns on pairs 
(CAC40,DAX35) and pairs (S&P500,DJI) 
from 01/01/1994 to 07/07/2000, 
 
Two holding horizons: 1 day and 10 days (cf 
Basel Committee on Banking Supervision). 
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(CAC40,DAX35): comparison with 
independent: 2121 ),( uuuuC −  cf PQD 0≥  
comonotonic: ),(),min( 2121 uuCuu − , 

Gaussian: );,(),( *
2121 ρuuCuuC Gauss−  
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(S&P500,DJI): same comparison 
 

 
 

simple graphical device to detect adequacy 
of parametric copula 
Here we use the link )6/sin(2* ρπρ =   

where ρ  is the rank correlation  
to estimate the parameter value. 
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B.III. Parametric estimation 
 
Method of moments: 
 
In some cases there exist a link between 
Kendall's τ  or Spearman's ρ  and the 
parameter of the copula function. 
 
Examples: 
 
Gumbel copula:  
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we get 
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simple estimate: )/()(ˆ dcdc +−=τ  where 
c and d are the numbers of disjoint pairs 
which are concordant and discordant. 
 

If 0>
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 : pair is concordant 
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−
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 : pair is discordant 

If 0=
−

−

ij
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YY

 : pair is a tie  

(a tie add 0.5 to both counts) 
 
If 0=− ij XX  : pair is ignored 
 
 
The Kendall’s tau corresponds to the 
probability of concordance minus the 
probability of discordance. 
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Bivariate elliptical copula:  
 
such as Normal, Student copulas: 
 

θ
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Normal copula : 2
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π
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Maximum likelihood estimation: 
 
The log-likelihood is given by  
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The parameter θ  is associated with the 
copula function. 
 
The parameter jβ  is associated with the  
j-th margins. 
 
 
The ML estimator of both parameters is 
given by ),(maxarg)ˆ,ˆ( βθβθ l=  
 
Numerical optimization procedures are 
required to optimize the criterion (cf. 
gradient methods).  
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It is also possible to opt for a two step 
procedure: 
 

1) estimate the parameter jβ  of each 
margin by optimizing the univariate 
log-likelihood: 
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in order to get jβ̂  
 

2) plug the estimated parameters jβ̂ , 
and optimize the concentrated log-
likelihood:  

 

∑
=

=
T

t
nntnt YFYFcl

1
111 ));ˆ;(),...,ˆ;((ln)( θββθ

 



B-30 

O. SCAILLET 

 
Advantage:  
numerically easier (stability and 
tractability) to optimize in parameter 
spaces of lower dimensions. 
 
Inconvenient: 
less efficient asymptotically, i.e. less 
precise estimator (larger asymptotic 
variance) 
 

Semiparametric estimation: 
 

In previous estimation method, 
distributions of margins were 
parametrically specified. 
 
Alternative modeling: leave the margins 
unspecified and use a parametric 
specification for the copula only.  
 
Distributions of margins are estimated by 
empirical cdfs. 
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Concentrated log-likelihood becomes 
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Advantage:  
Avoid potential misspecification of 
margins 

 
Inconvenient: 
less efficient asymptotically, i.e. less 
precise estimator (larger asymptotic 
variance) 
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Example: Monte Carlo study concerning 
the impact of misspecification. 
 
Estimation performance measured in terms 
of Bias and MSE (Mean Square Error)  
 
MC experiments: 1000.  
Sample size: 200,500,1000. 
True model: Frank Copula, Student 
margins. 
 
Parameter of copula:  

 1=θ  ( 1100.,1645. == τρ ),  
 2=θ  ( 2139.,3168. == τρ ) 

 
Parameter of Student margins:  

 3=β  (degrees of freedom) 
 
Pseudo distribution: Normal margins 

We assume the margins to be normal 
instead of student to get the misspecified 
model. 
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We get a positive bias (overestimation of 
the dependence in the data) 
 
Almost no efficiency loss of 
semiparametric approach 
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B.IV. Conclusions 

 
Nonparametric tools are easy to implement 
and are useful graphical guides. 
 
If one has any doubt about the correct 
modeling of margins there is probably 
little to loose but lots to gain from shifting 
towards a semiparametric approach. 
 
 
 


