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B.I. Empirical copulas
Data :
{Yt=(Yl *3 nt) t_ ’T}

= 1.1.d. observations
(observed returns or losses)

Distributions :

J(¥), F(¥) =joint pdf and cdf of ¥,
fj (J’j )9Fj (J’j) = pdf and cdf of margins

Empirical cdfs:

F(y) =

Tr=1]n [[ L —yyl =1,....d

M’ﬂ

A 1 L
() =TE][Yﬁ <y, i=l...d
=1
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To build empirical copulas, we use ranks
instead of the original observations

Let us build the grid :

ﬂ.. Jn J. =0,...T;i=1,..,n
T T

The empirical copula is given by

@(le . fn) 2]‘[1[ <]

t =] i=
where R, corresponds to the rank of Y,

= We obtain step functions which are not
differentiable.
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B.I1. Smoothed copulas

B.I1.1. Nonparametric estimation of
densities

The moments of a random variable are a
summary of its distributional behavior.

A full information 1s provided by its
distribution.

The cumulative distribution function for a
single asset or loss i corresponds to

F(yl) P( lt— )9

while for two assets i and j, we have

Euy) =Pl sy, <)),
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A cdf may be expressed as an expectation:

R0 = [ 0= (1,0, G0
- EU Y, < y,J

1

where ‘Y, <y, = indicator function of the
Y. .Y

set i it
IYitSyi = 1 1f Yitsyl"

= (0 otherwise.

In order to estimate expectations, we need
to replace £ by an empirical average:

A 1 &
F;(y’) =_21Yit5yi )
I3

5 1 &
Ej(yzay]) - }Elynsyi,thsyj ’
t=1
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= We obtain step functions which are not

differentiable.
= We cannot build empirical
counterparts of densities
dF.(y;
ey =",

In order to do so we have to rely on a
kernel estimation of univariate densities.

Idea behind:

We start from the histogram,

T
=231,

and replace bars by smooth bumps

" ylt é‘i
V=—SK
i) Th,;l ( h )
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The bump «x 1s called a Kernel.

It should integrate to one and be
symmetric.

Example:

Gaussian Kernel = Gaussian density

The smoothing parameter 7 1s called the
bandwidth.

The bandwidth » plays the same role as the
class length for histograms.
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If » 1s too large (large class), we get
oversmoothing.

If » 1s too small (small class), we get
undersmoothing.

Rule of thumb to select the bandwidth:

h=6T"""

where & 1s empirical standard deviation of
the data.
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Figure 1.3. Histograms of birthweight data. Figures (a) and (b)
are based on binwidths of 0.2 and 0.8 respectively. Figures (c)

and (d) are each based on a binwidth of 0.4 but with left bin edge
at 0.7 and 0.9 respectively. :
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Figure 2.3. Kernel density estimates based on a sample of
n = 1000 observations from the normal mizture distribution fi
described in the text. The solid line is the estimate, the broken
line is the true density. The bandwidths are (a) h = 0.06, (b)
h = 0.54 and (c) h = 0.18. The kernel weight for each estimate
is ilustrated by small kernels at the base of each figure.
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Table 4.5.2 Some kernels and their efficiencies
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Kernel - K(u) D(Kopt, K)
Epanechnikov (3/4)(—u? + 1) I(Ju] < 1) 1
Quartic (15/16)(1 — u2)? I{ju| € 1) 1.005
Triangular (1-— |*u|) I(lu] €£1) 1.011
Gauss (27)" 12 exp(—u?/2) 1.041
Uniform (1/2) I(Ju| £ 1) 1.060

Note: The efficiency is computed as [V(KQP'L}B[KQPL]‘;[V{K)B{K)]}_lfj
for k=0, p = 2.
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Figure 4.16. Positive kernels for estimating m (from Table 4.5.2).
Label 1: quartic; label 2: triangular; label 3: Epanechnikov; label 4:
Gauss: label 5: uniform.
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It 1s possible to extend to higher
dimensions and to the conditional case.

Kernel estimation of a bivariate density:

T i =— EK(y”h é'i)[{(yj’t}l_é'j)

Note that the curse of dimensionality
appears when we are above five
dimensions.

We need a lot of information (data) to get
an accurate estimation of the high

dimensional object to be estimated.

Kernel estimation of a conditional density:

Recall the definition (Bayes Theorem)

15616 5)
/(&)
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= we only need to replace the unknown
quantities by their estimates

N

Sy =C;) 7@
Extensions:

1) Zero boundary

Previous estimators have good properties
when the data take values in .

When data are bounded from below at
zero (losses with a positive sign), they
exhibit bias at the boundary (edge effect).
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This boundary bias 1s due to weight
allocation by the fixed symmetric kernel
outside the density support when
smoothing 1s carried out near the
boundary.

One of the remedy consists in replacing
symmetric kernels by asymmetric kernels,
which never assigns weight outside the
support.

The form of the estimators 1s the same

FE) =~ S Ky, i80h)
i\G; _Th; VisSis

but the symmetric kernel 1s replaced by an
asymmetric kernel.
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Examples:

Gamma Kernel:

c/h —ylh

ye
K\y;C,h)=
:8,h) B (e h+ 1)

where L(X) = f e u*du
0

Reciprocal Inverse Gaussian Kernel:

K(yih) = exp[ - S Y a6
27thy 2h \¢-h y

2) Compact support

When the data are defined on |0,1|, we face
two boundaries.

f1 :
g frl e o g O. SCAILLET SW1SS nance:institute
.



B-15

It 1s then useful to use a kernel whose
support 1s also [0,1], for example the Beta
kernel:

I
K(y:E.h)= SIh (1 — 1=/
b:£.4) Be/hild—oy/hsn’ &7

L(@)T'(h)
T(a+p)

where B(a,f) =

Example:

This estimator 1s useful to analyze the
distribution of recovery rates at default.

There 1s a renewed interest in LGD (loss
given default), which 1s mainly prompted
by Basle II and the explosion of the credit
derivatives market.

Data are scarce, in particular outside the
US.
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The market standard to model LGD 1s a
parametric assumption of beta distributed
recoveries.

There are several measures of LGD

— ultimate recoveries
— trading price recoveries

These measures often give very different
results.

Which one should be used depends who
you are and what you do with your
defaulted positions.

The data concern 623 US defaulted bond
1ssues spanning from 1981 to end 1999.

These are trading price recoveries which
are classified by industry and seniority.

The data comes from the S&P/PMD
database.
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The market assumption of a beta
distribution 1s often severely wrong.

This could lead to underestimation of risk
measures.

Recovery on senior secured bond

18
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Recovery on junior bond
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B.I1.2. Nonparametric estimation of
copulas

Use of nonparametric kernel methods to
smooth empirical copulas

Let us consider a n-dimensional kernel:
K@x)=]]K;(x)),
7=

and 1ts primitive function

K() =T [K,@du=T]K, (),
=1 2o j=I

Let us denote
K=K, (x, /h;).
7=l

where /1; are univariate bandwidths, and

h is a diagonal matrix collecting them.
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As before the pdf of ¥}, at ¥; is estimated
via

h .

J

R I Y. —y.
/i) =(Th)) IEKJ-( m ]
=1
and the pdf of ¥, at V' is estimated via
A _1 T
f) = @) S K, - y;h)
=1

Hence a smoothed estimator of the cdf of ¥’ jt

at V; 1s given by:
F.(y;)= ff](“)d“

while the cdf of Y, at V is estimated via
M Yn

Fy)= [of £ (u)du

—00 =00
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If a single Gaussian kernel K j (x) = @(x) is
used we get a simple form

) T
Fj(yj)=;2<l>((ij ~Y)Ihy)
t=1

ad FO)=— zn Y, - v,)h;)

t 1 j=1
where @, P are the pdf, cdf of a N(0,1).

In order to estimate the copula at point u, we
can directly exploit the expression :

C(Uyseostty) = F(F (), F, ™ (1)),

and use an empirical counterpart based on
smoothed cdf and smoothed quantiles.
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We use a plug-in method :
Cu) =F(S)
where f = (fl,-..,fn)’ and

¢, =infy £ (N =u,|

Here S j corresponds to a kernel estimate of

the quantile of ';; with probability level ;.

Empirical illustrations :

1,700 observations of daily returns on pairs
(CAC40,DAX35) and pairs (S&P500,DJI)
from 01/01/1994 to 07/07/2000,

Two holding horizons: 1 day and 10 days (cf
Basel Committee on Banking Supervision).
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(CAC40,DAX35): comparison with
independent: C(M1 ,Mz) — U, cfPQD = 0
comonotonic: min(ul ) uz) — C(Ul s Un ),

Gaussian: C(uy,u,) — Cppes Uy Us 0)

POIOTIVE QUADPSNI DEFEN DEHCE (1 0473 POSMYE OULLRSHT DEPEMOEMCE [14 OAat)
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(S&P500,DJI): same comparison

POEMYE OUARRSHT CEPEHMDENCE [140 047}

PATATVE QUsOP=MI DEPEN DEHEE (1 4T}

simple graphical device to detect adequacy
of parametric copula

* .
Here we use the link © = 2sin( 07/ 6)
where 0O 1is the rank correlation
to estimate the parameter value.
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B.I11. Parametric estimation
Method of moments.
In some cases there exist a link between
Kendall's 7 or Spearman's [ and the

parameter of the copula function.

Examples:

Gumbel copula:

C(ulauz;e)
= exp(-[(=Inu;)’ + (=1nu,)?1"%)

we get

T=1-1/6

Hence é = 1/(1 —f)
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simple estimate: T=(c—-d)/(c+d) where
¢ and d are the numbers of disjoint pairs
which are concordant and discordant.

Y i Y,
If vy _x >0 : pair 1s concordant
jT
Y i Y,
<0 ir 1s discordant
If ;
Xj - X, pair 1s
Y i Y, ~
If ~ 7 :pairis ati
Xj - X, pair 1s a tie

(a tie add 0.5 to both counts)

IfXj — X; =0 pair is ignored

The Kendall’s tau corresponds to the
probability of concordance minus the
probability of discordance.
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Bivariate elliptical copula:

such as Normal, Student copulas:

2 .
T = —arcsind

JU

6 0

Normal copula : © = arcsin—
JT 2

Hence 6 =sin(én/2),
0 = 2sin( P/ 6)
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Maximum likelihood estimation:

The log-likelihood 1s given by
T
I(H,/)))=EIDC(E(YU;/31),. ( m"ﬁn)ﬁe)
T n
2 2 nf ( Jt 9
t=1 j=1

The parameter € is associated with the
copula function.

The parameter f j 1s associated with the
Jj-th margins.

The ML estimator of both parameters 1is

given by (5’, /3’) =argmax/[(8, )

Numerical optimization procedures are
required to optimize the criterion (cf.
gradient methods).
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It 1s also possible to opt for a two step
procedure:

1) estimate the parameter [0 j of each

margin by optimizing the univariate
log-likelihood:

T
l(/))j) = Elnfj(th;/jj)
t=1

in order to get j

2) plug the estimated parameters p s

and optimize the concentrated log-
likelihood:

1) = Y Inc(F Yy B))ses Fy (Y3 ,):0)
t=1
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Advantage:

numerically  easier (stability and
tractability) to optimize 1n parameter
spaces of lower dimensions.

Inconvenient:

less efficient asymptotically, 1.e. less
precise estimator (larger asymptotic
variance)

Semiparametric estimation:

In previous estimation method,
distributions of margins were
parametrically specified.

Alternative modeling: leave the margins
unspecified and use a parametric

specification for the copula only.

Distributions of margins are estimated by
empirical cdfs.
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Concentrated log-likelihood becomes

T JaY JaY
1(6) = EIHC(E (}flt)ﬂ"'ﬂFn (Ynt )90)
=1

Advantage:
Avoid potential misspecification of
margins

Inconvenient:

less efficient asymptotically, 1.e. less
precise estimator (larger asymptotic
variance)
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Example: Monte Carlo study concerning
the impact of misspecification.

Estimation performance measured in terms
of Bias and MSE (Mean Square Error)

MC experiments: 1000.
Sample size: 200,500,1000.

True model: Frank Copula, Student
margins.

Parameter of copula:
=1 (po=.16457=.1100),
6 =2 (p=.31687=.2139)

Parameter of Student margins:
f = 3 (degrees of freedom)

Pseudo distribution: Normal margins
We assume the margins to be normal
instead of student to get the misspecified
model.
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We get a positive bias (overestimation of
the dependence 1n the data)
of

Almost no  efficiency  loss

semiparametric approach

TABLE 1: Bias and MSE of copula parameter estimators

Sample size: n = 200
g = one-step  two-step  sem true
Bias 0.7012 0.6094 -0.0206 -0.0164
MSE | 1.5119 1.0591 01754 01797
§ =2 | one-step two-step  semi true
Bias 1.1144 0.9292 -0.0202 -0.0124
MSE | 2.2869 1.4851 0.1913 0.1928

Sample size: n = 500
=1 | one-step two-step Se1ml true
Bias 0.772 0.6931 -0.0081 -0.0067
MSE | 1.1114 08184 00673 0.0654
§ =2 | one-step two-step  semi true
Bias 1.2165 1.0354  -0.0067 -0.0045
MSE | 2.0494 1.3977 00730 0.0729

Sample size: n = 1000
g = one-step  two-step  sem true
Bias 0.7904 0.7190  -0.0046 -0.0045
MSE | 0.9647 0.7397  0.0360 0.0360
§ =2 | one-step two-step  semi true
Bias 1.2553 1.0784  -0.0037 -0.0037
MSE | 1.9702 1.3853 0.0357 0.0352
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B.IV. Conclusions

Nonparametric tools are easy to implement
and are useful graphical guides.

If one has any doubt about the correct
modeling of margins there 1s probably
little to loose but lots to gain from shifting
towards a semiparametric approach.
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