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Practical 2: GJR-copula Quantitative Risk Management

Introduction

The aim of this practical is to model stock returns by taking into account heteroskedasticity as
well as the non-normality of innovations with a GJR model, and the possibly nontrivial cross-
sectional dependence via a copula model. Specifically, we assume that the stock log-returns
follow:

xi,t:Hi+5i,ta izl,...,D, tzl,...,T (1)

where €, 4 = 0;12; ¢, ft; is the mean, U?t is the time-t conditional variance, and z; ; is an innovation.
b

The variance follows the GJR-GARCH(1,1,1) model given by:

Uzz,t = w; + (i + ’Yil{si,t_1<0})522,t—1 + ﬁiU?,t—p (2)

where the indicator function 1y, equals to 1 if condition z is satisfied and 0 otherwise. The
model has the following constraints to satisfy the stationarity and positivity:
for each stock 1,

o w; >0

® ;3 >0

e a;+7v >0

o o +vi+ B3 <1

The innovations z;; are independent identically distributed (i.i.d.) and follow marginal distri-
bution given by cumulative distribution function (cdf) Fs,. Furthermore, the joint innovations

follow copula Cy :
(Z%—‘? R 7zg)T ~ C@

Useful toolboxes

You are encouraged to code everything by yourself, but you might consider employing the
following libraries. The libraries are already installed in Jupyter application at the Nuvolos.

e scipy.stats does not contain a class for the Hansen’s skewed t-distribution. However, you
may find all necessary methods in SkewStudent class from skewstudent toolbox[]

e arch_model class from arch.univariate libraryP| has .fit() method for estimation of
univariate marginals (Exercise 2-a).

"https://github.com/khrapovs/skewstudent
®https://arch.readthedocs.io/en/latest/univariate/introduction.html


https://github.com/khrapovs/skewstudent
https://arch.readthedocs.io/en/latest/univariate/introduction.html

Exercise 1: simulation

a)

b)

d)

e)

Hand-write an algorithm that generates a GJR-GARCH as in — using the inverse
method: z;; = Fy. l(u@t), where v is a realization of a uniform random variable U ~ U(0, 1).

Using a), write a code to generate - with innovations distributed according to the
Student’s t-distribution. Use the inverse cdf for the Student’s t-distribution.

As in b), but the innovations follow the Hansen’s skewed t-distribution. The probability
density function (pdf) of the skewed t-distribution is given by:
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function. The parameters n(n>2)and A (=1 < A < 1) are degrees of freedom and a
skewness parameter, respectively. What happens if A = 02 Generation of the Hansen’s
skewed t-random variable with the inverse method is obtained using the following equation

[ /\\/71?( )—a], if u < 152, "
[1+>\\/7F (73) } if u > 152

where F~ Lis the inverse cdf of the Student’s t-distribution with 1 degrees of freedom.

(3)

where a = 4)\0 2 , 02 =143)2—a? and c = with I'(-) being the gamma

l\z
= o=

Using your code of Practical 1, generate first a Clayton copula of size n = 1000 and D = 2
with 6 = 3, and then generate a GJR-GARCH with the Student’s t-innovations using b)
and plot the two time series side-by-side. What can you tell about the extreme events?

Repeat d) with the Hansen’s t-distribution of point c).

Exercise 2: model fit by IFM

The IFM, or Inference For Margins, is a two-steps maximum likelihood method to fit a copula.
Use the sample generated in Exercice 1-e).

a)

b)

c)

d)

Fit each marginal z; (i = 1, 2) with the GJR-GARCH defined in (1))-(2) and the Hansen’s
skewed t-innovations.

% and plot them.

Compute estimated innovations 2; ; =
Compute the estimated probabilities by using

(1-\F, (bfj; \/%:) : if 2 < —a/b, -

(1+M\)F, (bﬁ; %) — ), if 2> —a/b.

U =

Fit the Clayton copula to the @’s as in Exercise 4 of Practical 1.



Exercise 3: fit comparison

Repeat Exercise 2 M = 1000 times and compare the estimators 6 with those obtained in Exercise
5 of Practical 1. Is the variance of 6 the same?



