Introduction

The aim of this practical is to model stock returns by taking into account heteroskedasticity as well as the non-normality of innovations with a GJR model, and the possibly nontrivial crosssectional dependence via a copula model. Specifically, we assume that the stock log-returns follow:

$$
\begin{equation*}
x_{i, t}=\mu_{i}+\varepsilon_{i, t}, \quad i=1, \ldots, D, \quad t=1, \ldots, T \tag{1}
\end{equation*}
$$

where $\varepsilon_{i, t}=\sigma_{i, t} z_{i, t}, \mu_{i}$ is the mean, $\sigma_{i, t}^{2}$ is the time- t conditional variance, and $z_{i, t}$ is an innovation. The variance follows the GJR-GARCH $(1,1,1)$ model given by:

$$
\begin{equation*}
\sigma_{i, t}^{2}=\omega_{i}+\left(\alpha_{i}+\gamma_{i} \mathbf{1}_{\left\{\varepsilon_{i, t-1}<0\right\}}\right) \varepsilon_{i, t-1}^{2}+\beta_{i} \sigma_{i, t-1}^{2}, \tag{2}
\end{equation*}
$$

where the indicator function $\mathbf{1}_{\{x\}}$ equals to 1 if condition x is satisfied and 0 otherwise. The model has the following constraints to satisfy the stationarity and positivity:
for each stock i,

- $\omega_{i}>0$
- $\alpha_{i}, \beta_{i} \geq 0$
- $\alpha_{i}+\gamma_{i} \geq 0$
- $\alpha_{i}+\gamma_{i}+\beta_{i}<1$.

The innovations $z_{i, t}$ are independent identically distributed (i.i.d.) and follow marginal distribution given by cumulative distribution function $(c d f) F_{\delta_{i}}$. Furthermore, the joint innovations follow copula C_{θ} :

$$
\left(z_{1}^{T}, \ldots, z_{D}^{T}\right)^{T} \sim C_{\theta}
$$

Useful toolboxes

You are encouraged to code everything by yourself, but you might consider employing the following libraries. The libraries are already installed in Jupyter application at the Nuvolos.

- scipy.stats does not contain a class for the Hansen's skewed t-distribution. However, you may find all necessary methods in SkewStudent class from skewstudent toolbox ${ }^{1}$
- arch_model class from arch.univariate library ${ }^{2}$ has .fit() method for estimation of univariate marginals (Exercise 2-a).

[^0]
Exercise 1: simulation

a) Hand-write an algorithm that generates a GJR-GARCH as in (11)-(2) using the inverse method: $z_{i, t}=F_{\delta_{i}}^{-1}\left(u_{i, t}\right)$, where u is a realization of a uniform random variable $U \sim \mathcal{U}(0,1)$.
b) Using a), write a code to generate (11)-(22) with innovations distributed according to the Student's t-distribution. Use the inverse $c d f$ for the Student's t-distribution.
c) As in b), but the innovations follow the Hansen's skewed t-distribution. The probability density function ($p d f$) of the skewed t -distribution is given by:

$$
f(z ; \eta, \lambda)= \begin{cases}b c\left(1+\frac{1}{\eta-2}\left(\frac{b z+a}{1-\lambda}\right)^{2}\right)^{-\frac{\eta+1}{2}}, & \text { if } z<-a / b \tag{3}\\ b c\left(1+\frac{1}{\eta-2}\left(\frac{b z+a}{1+\lambda}\right)^{2}\right)^{-\frac{\eta+1}{2}}, & \text { if } z \geq-a / b\end{cases}
$$

where $a=4 \lambda c \frac{\eta-2}{\eta-1}, b^{2}=1+3 \lambda^{2}-a^{2}$, and $c=\frac{\Gamma\left(\frac{\eta+1}{2}\right)}{\sqrt{\pi(\eta-2)} \Gamma\left(\frac{\eta}{2}\right)}$ with $\Gamma(\cdot)$ being the gamma function. The parameters $\eta(\eta>2)$ and $\lambda(-1<\lambda<1)$ are degrees of freedom and a skewness parameter, respectively. What happens if $\lambda=0$? Generation of the Hansen's skewed t -random variable with the inverse method is obtained using the following equation

$$
z= \begin{cases}\frac{1}{b}\left[(1-\lambda) \sqrt{\frac{\eta-2}{\eta}} F_{\eta}^{-1}\left(\frac{u}{1-\lambda}\right)-a\right], & \text { if } u<\frac{1-\lambda}{2}, \tag{4}\\ \frac{1}{b}\left[(1+\lambda) \sqrt{\frac{\eta-2}{\eta}} F_{\eta}^{-1}\left(\frac{u+\lambda}{1+\lambda}\right)-a\right], & \text { if } u \geq \frac{1-\lambda}{2},\end{cases}
$$

where F_{η}^{-1} is the inverse $c d f$ of the Student's t-distribution with η degrees of freedom.
d) Using your code of Practical 1, generate first a Clayton copula of size $n=1000$ and $D=2$ with $\theta=3$, and then generate a GJR-GARCH with the Student's t-innovations using b) and plot the two time series side-by-side. What can you tell about the extreme events?
e) Repeat d) with the Hansen's t-distribution of point \mathbf{c}).

Exercise 2: model fit by IFM

The IFM, or Inference For Margins, is a two-steps maximum likelihood method to fit a copula. Use the sample generated in Exercice 1-e).
a) Fit each marginal $x_{i}(i=1,2)$ with the GJR-GARCH defined in (1)-(2) and the Hansen's skewed t-innovations.
b) Compute estimated innovations $\hat{z}_{i, t}=\frac{x_{i, t}-\hat{\mu}_{i}}{\hat{\sigma}_{i, t}}$ and plot them.
c) Compute the estimated probabilities by using

$$
\hat{u}= \begin{cases}(1-\lambda) F_{\eta}\left(\frac{b \hat{z}+a}{1-\lambda} \sqrt{\frac{\eta}{\eta-2}}\right), & \text { if } \hat{z}<-a / b, \tag{5}\\ (1+\lambda) F_{\eta}\left(\frac{b \hat{z}+a}{1+\lambda} \sqrt{\frac{\eta}{\eta-2}}\right)-\lambda, & \text { if } \hat{z} \geq-a / b .\end{cases}
$$

d) Fit the Clayton copula to the \hat{u} 's as in Exercise 4 of Practical 1.

Exercise 3: fit comparison

Repeat Exercise $2 M=1000$ times and compare the estimators $\hat{\theta}$ with those obtained in Exercise 5 of Practical 1. Is the variance of $\hat{\theta}$ the same?

[^0]: ${ }^{1}$ https://github.com/khrapovs/skewstudent
 2 https://arch.readthedocs.io/en/latest/univariate/introduction.html

