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Introduction

The aim of this practical is to model stock returns by taking into account heteroskedasticity as
well as the non-normality of innovations with a GJR model, and the possibly nontrivial cross-
sectional dependence via a copula model. Specifically, we assume that the stock log-returns
follow:

xi,t = µi + εi,t, i = 1, . . . , D, t = 1, . . . , T (1)

where εi,t = σi,tzi,t, µi is the mean, σ2
i,t is the time-t conditional variance, and zi,t is an innovation.

The variance follows the GJR-GARCH(1,1,1) model given by:

σ2
i,t = ωi + (αi + γi1{εi,t−1<0})ε

2
i,t−1 + βiσ

2
i,t−1, (2)

where the indicator function 1{x} equals to 1 if condition x is satisfied and 0 otherwise. The
model has the following constraints to satisfy the stationarity and positivity:

for each stock i,

• ωi > 0

• αi, βi ≥ 0

• αi + γi ≥ 0

• αi + γi + βi < 1.

The innovations zi,t are independent identically distributed (i.i.d.) and follow marginal distri-
bution given by cumulative distribution function (cdf ) Fδi . Furthermore, the joint innovations
follow copula Cθ :

(zT1 , . . . , z
T
D)T ∼ Cθ

Useful toolboxes

You are encouraged to code everything by yourself, but you might consider employing the
following libraries. The libraries are already installed in Jupyter application at the Nuvolos.

• scipy.stats does not contain a class for the Hansen’s skewed t-distribution. However, you
may find all necessary methods in SkewStudent class from skewstudent toolbox.1

• arch model class from arch.univariate library2 has .fit() method for estimation of
univariate marginals (Exercise 2-a).

1https://github.com/khrapovs/skewstudent
2https://arch.readthedocs.io/en/latest/univariate/introduction.html
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Exercise 1: simulation

a) Hand-write an algorithm that generates a GJR-GARCH as in (1)-(2) using the inverse
method: zi,t = F−1

δi
(ui,t), where u is a realization of a uniform random variable U ∼ U(0, 1).

b) Using a), write a code to generate (1)-(2) with innovations distributed according to the
Student’s t-distribution. Use the inverse cdf for the Student’s t-distribution.

c) As in b), but the innovations follow the Hansen’s skewed t-distribution. The probability
density function (pdf ) of the skewed t-distribution is given by:

f(z; η, λ) =


bc

(
1 + 1

η−2

(
bz+a
1−λ

)2
)− η+1

2

, if z < −a/b

bc

(
1 + 1

η−2

(
bz+a
1+λ

)2
)− η+1

2

, if z ≥ −a/b,
(3)

where a = 4λcη−2
η−1 , b2 = 1 + 3λ2 − a2, and c =

Γ( η+1
2 )√

π(η−2)Γ( η2 )
with Γ(·) being the gamma

function. The parameters η (η > 2) and λ (−1 < λ < 1) are degrees of freedom and a
skewness parameter, respectively. What happens if λ = 0? Generation of the Hansen’s
skewed t-random variable with the inverse method is obtained using the following equation

z =


1
b
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√
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η F−1
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)
− a
]
, if u < 1−λ

2 ,

1
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√
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2 ,
(4)

where F−1
η is the inverse cdf of the Student’s t-distribution with η degrees of freedom.

d) Using your code of Practical 1, generate first a Clayton copula of size n = 1000 and D = 2
with θ = 3, and then generate a GJR-GARCH with the Student’s t-innovations using b)
and plot the two time series side-by-side. What can you tell about the extreme events?

e) Repeat d) with the Hansen’s t-distribution of point c).

Exercise 2: model fit by IFM

The IFM, or Inference For Margins, is a two-steps maximum likelihood method to fit a copula.
Use the sample generated in Exercice 1-e).

a) Fit each marginal xi (i = 1, 2) with the GJR-GARCH defined in (1)-(2) and the Hansen’s
skewed t-innovations.

b) Compute estimated innovations ẑi,t =
xi,t−µ̂i
σ̂i,t

and plot them.

c) Compute the estimated probabilities by using

û =

(1− λ)Fη

(
bẑ+a
1−λ

√
η
η−2

)
, if ẑ < −a/b,

(1 + λ)Fη

(
bẑ+a
1+λ

√
η
η−2

)
− λ, if ẑ ≥ −a/b.

(5)

d) Fit the Clayton copula to the û’s as in Exercise 4 of Practical 1.
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Exercise 3: fit comparison

Repeat Exercise 2 M = 1000 times and compare the estimators θ̂ with those obtained in Exercise
5 of Practical 1. Is the variance of θ̂ the same?
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