
Introduction to Programming

March 4, 2021

QRM: Session 1 March 4, 2021 1 / 37

Administrative Information

Please enrol to the Nuvolos course webpage, if you have not done it
yet. A link has been sent by email.
Please regularly check the schedule folder for an up-to-date
information on the next lecture/seminar. You will be notified by email
on any change in schedule.

QRM: Session 1 March 4, 2021 2 / 37

Outline

1 Programming in Finance
2 Excel
3 MATLAB
4 R
5 Implementation

Compiled
C/C++

Interpreted
Java
Python

Just-in-Time compilation
6 Summary

Relative performance
Learning curve
Purpose

QRM: Session 1 March 4, 2021 3 / 37

Programming in Finance

Why learning programming in finance?

Increasing demand for IT skills in the financial industry mostly due to
increasing complexity in the models and the quantity of data available.

Fundamental Analyst: Use statistical analysis to make forecast.
Commodities: Supply and demand models.
Fixed Income - Currency (FIC): Macro-economic model are derived
from statistical theory.
Equity: Financial modelling (Price-to-Earning, Dividend yield, ...)

Trading: 60% of market volume of US trading comes from
algorithms.

Execution: Most of the trading volume is now executed by algorithm
(VWAP, TWAP, PVOL, ...).
Strategies: Fundamental (see above) and technicals (Trend-Following,
Mean-Reverting, Statistical Arbitrage, ...) are implemented through
programming languages.

QRM: Session 1 March 4, 2021 4 / 37

Programming in Finance

Why learning programming in finance?

Risk Analyst: Determine the aggregate risk and stress test of a
portfolio using i.e. Extreme Value Theory and/or Copula.
Derivative Analyst: Increasing complexity in derivatives contract
makes Excel useless to price them.
Strategist: Asset allocation done via quantitative rule (Risk-Parity,
Black-Litterman, Constant-Weighting, ...) are automated.

QRM: Session 1 March 4, 2021 5 / 37

Excel

Excel

Microsoft Excel is the primary choice in the financial industry.
Excel is used for data storage, data modeling, data computations,
charts and graphs, etc.
Visual Basic for Applications (VBA) is the programming language of
Excel.
VBA enables building customized functions, automating processes
(so-called macros) and interacting with other programs.

QRM: Session 1 March 4, 2021 6 / 37

Excel

Macros: An Example

1 On the Developer tab, click Insert.
2 In the ActiveX Controls group, click Command Button.
3 Right click CommandButton1 (make sure Design Mode is selected).

Click View Code. The Visual Basic Editor appears.
4 Place your cursor between Private Sub CommandButton1 Click() and

End Sub. Add the code line shown below:
Private Sub CommandButton1 Click()
Range(”A1”).Value = ”Hello”
End Sub

5 Close the VB Editor. Click the command button on the sheet (make
sure Design Mode is deselected).
A common and easy way to generate VBA code is by using the Macro
Recorder.

QRM: Session 1 March 4, 2021 7 / 37

Excel

Threads

Excel works with a single thread. This means that instructions are
executed in a single sequence.
Threads are a way for a program to divide split itself into two or more
simultaneously running tasks.
The opposite of single-threaded processes are multi-threaded
processes. These processes allow the execution of multiple parts of a
program at the same time.
Multi-threaded processes enable maximum utilization of computer
processors which leads to lower execution times.
For example, calculating the price of a derivative with no closed-form
solution by MC simulations can be tedious under a single thread.

QRM: Session 1 March 4, 2021 8 / 37

Excel

Adding functionalities

In order to increase available functions, one can call MATLAB and R
functions inside the Excel environment (spreadsheet).
This requires the Spreadsheet Link toolbox (for MATLAB) or the
BERT toolkit (for R).
With this approach, the user can access the powerful function libraries
of MATLAB and R while still working in the excel environment.
You also benefit from the the speed of MATLAB and R functions.
For highly complex tasks and/or very large data sets, one has no
choice but to work outside the Excel environment, i.e. using another
programming language, and then write the results back in Excel.

QRM: Session 1 March 4, 2021 9 / 37

MATLAB

MATLAB

MATLAB is a programming language for engineers and scientists and
is intended primarily for numerical computing.
MATLAB features so-called toolboxes. Toolboxes provide a set of
functions that solves a specific problems.
Advantages: natural LA syntax, fast, easy to use, trusted functions,
lots of good toolboxes.
Disadvantages: Paying licence is needed from mathworks.com,
proprietary (closed-source), expensive compiler and coder,
dynamically-typed (see below).

QRM: Session 1 March 4, 2021 10 / 37

mathworks.com

MATLAB

Statically- and Dynamically-typed languages

A language is statically-typed if the type of variables is known at the
compile time.

A lot of trivial errors may be caught at an early stage by the compiler
A programmer must specify the type of each variable

A language is dynamically-typed if the type of variables is associated
with run-time values.

Possible errors due to misinterpreting the type of a variable
A programmer does not need to specify the type of each variable

QRM: Session 1 March 4, 2021 11 / 37

MATLAB

MATLAB Interface

QRM: Session 1 March 4, 2021 12 / 37

R

R

R is designed specifically for statistical computing and graphics.
R features so-called packages. Packages provide functions, compiled
code and sample data.
Advantages: Open-source (freely available from r-project.org.), more
than 7, 000 packages, extensive support on r-bloggers.com, easy to
learn.
Disadvantages: slower than other programming languages, difficult to
read, packages/functions have to be checked, purely functional.

QRM: Session 1 March 4, 2021 13 / 37

http://www.r-project.org
https://www.r-bloggers.com

R

R Interface

QRM: Session 1 March 4, 2021 14 / 37

R

Prototypes

MATLAB and R are often used by quant teams to create prototypes,
e.g. a first version of a new trading algorithm.
The goal when creating a prototype is to develop a solution fast and
to be able to implement/test it at low costs.
Prototyping happens mostly in hedge funds and in quant trading
groups within banks.
Assuming everything went well during the initial stages, prototypes
are then translated into faster languages (such as C++) by quant
developers in order to be implemented across the firm.
This is why a good understanding of lower level languages is also
important in the quant industry.

QRM: Session 1 March 4, 2021 15 / 37

R

Other applications

So far we have considered programming tools needed mainly for finance
(risk analyst or portfolio manager).

Let us now consider situations when we value
Speed of execution: high-frequency trader

C++: very efficient execution
Advanced tools: data scientist

Python: offers good libraries for machine learning

Why does C++ have high performance?

QRM: Session 1 March 4, 2021 16 / 37

Implementation Compiled

Compiled languages

Parsing and execution of a source code occur in two distinct steps:
1 The source code is translated (by a compiler) into the machine code

of a computer (once)
2 The machine code is then executed (it may be executed several times,

no need to compile each time)

Source
Code

Compiler Machine
Code

Input Executable
Program Output

QRM: Session 1 March 4, 2021 17 / 37

Implementation Compiled

Compiled languages

QRM: Session 1 March 4, 2021 18 / 37

Implementation Compiled

Compiled languages

Advantages:
Fast execution

Disadvantages:
Less flexibility
Debugging is less explicit

QRM: Session 1 March 4, 2021 19 / 37

Implementation Compiled

Debugging

Debugging is the process of identifying and removing errors from a
computer program.

Errors:
Static
Dynamic

Tools:
Breakpoints
Line by line execution
Exception handling mechanisms

QRM: Session 1 March 4, 2021 20 / 37

Implementation Compiled

Compiled languages: C/C++

Very efficient execution
Procedural (C) or fully object-oriented (C++)

But,
Hard to learn
No garbage collection (manual memory management)
Little errors checking built-in

QRM: Session 1 March 4, 2021 21 / 37

Implementation Compiled

C/C++ compiler

QRM: Session 1 March 4, 2021 22 / 37

Implementation Interpreted

Interpreted languages
An interpreter is a program that translates a high-level language into a
low-level one (some efficient intermediate representation) and immediately
execute this.

A source code is translated and executed on the fly (line by line)
The source code has to be interpreted at each execution
A program can be launched on any environment without a need to
recompile (given a previously installed interpreter)

Interpreter

Source
Code

Input

Output

QRM: Session 1 March 4, 2021 23 / 37

Implementation Interpreted

Interpreted languages

QRM: Session 1 March 4, 2021 24 / 37

Implementation Interpreted

Interpreted languages

Advantages:
Flexibility
Advanced tools for debugging

Disadvantages:
Slower compared to compiled languages

QRM: Session 1 March 4, 2021 25 / 37

Implementation Interpreted

Example: Java

Syntax very similar to C/C++ (but simpler!)
“Compile once, run anywhere”
Automatic garbage collection

QRM: Session 1 March 4, 2021 26 / 37

Implementation Interpreted

Java Virtual Machine (JVM)

QRM: Session 1 March 4, 2021 27 / 37

Implementation Interpreted

Example: Python

Open source (no license is needed)
Both functional and object-oriented
Increasing number of packages available (with continuous
development and support)
It becomes popular within the financial industry
Great for big projects (since it supports OOP)

QRM: Session 1 March 4, 2021 28 / 37

Implementation Interpreted

Most popular programming languages 2004-2019

Source: https://www.youtube.com/watch?v=Og847HVwRSI
QRM: Session 1 March 4, 2021 29 / 37

https://www.youtube.com/watch?v=Og847HVwRSI

Implementation Interpreted

1 #object - oriented way to implement sum of 2 numbers
2 # define a class
3 class BasicMaths :
4 #init method
5 def __init__ (self , a, b):
6 self.a=a
7 self.b=b
8 # define a method
9 def sum(self):

10 return self.a+self.b
11

12 #we need to instantiate an object
13 obj= BasicMaths (3 ,4)
14 # perform a method
15 obj.sum () # output is 7
16

17 # functional way to implement sum of 2 numbers
18 # define a function
19 def sum(a,b):
20 return a+b
21 #call the function
22 sum (3 ,4) # output is 7

QRM: Session 1 March 4, 2021 30 / 37

Implementation Interpreted

Example: Python

But,
Quite difficult to learn (harder than R, but easier than C++)
Be careful with libraries

QRM: Session 1 March 4, 2021 30 / 37

Implementation Interpreted

1 # import OLS from statsmodels
2 from statsmodels .api import OLS
3 # import linear_model from scikit -learn
4 from sklearn import linear_model
5

6 #y is a response vector (dependent variable)
7 #X is feature matrix (independent variables)
8

9 #Fit the model using scikit -learn
10 lm = linear_model . LinearRegression (X,y)
11 model = lm.fit ()
12

13 #Fit the model using statsmodels
14 #Note the difference in argument order
15 lm= OLS(y,X)
16 model = lm.fit ()

QRM: Session 1 March 4, 2021 30 / 37

Implementation Interpreted

Environments for Python

PyCharm is widely used for big scale projects (available on
https://www.jetbrains.com/pycharm)
Spyder is included in the Anaconda package
Jupyter

QRM: Session 1 March 4, 2021 31 / 37

https://www.jetbrains.com/pycharm
https://www.continuum.io

Implementation Just-in-Time compilation

Just-in-time compiled languages

It is a combination of the two abovementioned traditional approaches
1 A high-level language is first compiled to a bytecode (low level

language)
2 A dynamic compilation (not just an interpretation) of the bytecode

(in part) to the machine code

The goal is to reach performance of static compilation while maintaining
the advantages of bytecode interpretation.

Examples: Java, Julia.

QRM: Session 1 March 4, 2021 32 / 37

Summary Relative performance

Relative performance

Source: https://julialang.org/benchmarks/
QRM: Session 1 March 4, 2021 33 / 37

https://julialang.org/benchmarks/

Summary Learning curve

Learning curve

Source: codingdojo.com
QRM: Session 1 March 4, 2021 34 / 37

Summary Purpose

Purpose

Source: https://blog.hackerrank.com/emerging-languages-still-overshadowed-by-
incumbents-java-python-in-coding-interviews/

QRM: Session 1 March 4, 2021 35 / 37

https://blog.hackerrank.com/emerging-languages-still-overshadowed-by-incumbents-java-python-in-coding-interviews/
https://blog.hackerrank.com/emerging-languages-still-overshadowed-by-incumbents-java-python-in-coding-interviews/

Summary Purpose

Purpose

Source: https://www.kdnuggets.com/2019/03/typical-data-scientist-2019.html

QRM: Session 1 March 4, 2021 36 / 37

https://www.kdnuggets.com/2019/03/typical-data-scientist-2019.html

Summary Purpose

Purpose

Source: zdnet.com
QRM: Session 1 March 4, 2021 37 / 37

	Programming in Finance
	Excel
	MATLAB
	R
	Implementation
	Compiled
	Interpreted
	Just-in-Time compilation

	Summary
	Relative performance
	Learning curve
	Purpose

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

