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Abstract

We consider distributional free inference to test for positive quadrant dependence,
i.e. for the probability that two variables are simultaneously small (or large) being
at least as great as it would be were they dependent. Tests for its generalization
to higher dimensions, namely positive orthant dependence, are also analyzed. We
propose two types of testing procedures. The first procedure is based on the specifi-
cation of the dependence concepts in terms of distribution functions, while the second
procedure exploits the copula representation. For each specification a distance test
and an intersection-union test for inequality constraints are developed for time de-
pendent data. An empirical illustration is given for US insurance claim data, where
we discuss practical implications for the design of reinsurance treaties. Another ap-
plication concerns detection of positive quadrant dependence between the HFR and

CSFB/Tremont market neutral hedge fund indices and the S&P500 index.
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1 Introduction

The development and analysis of quantitative models for losses in large portfolios of
insurance contracts or financial assets has been an area of interest for practitioners,
regulators and academics for several years. These models aim at capturing the losses
due to default events or adverse movements of asset prices. In fact, most financial
institutions are now routinely using risk management systems to adequately control
their risks or to suitably allocate their capital. This has been driven by either in-
ternal requirements (efficient use of capital invested by shareholders, development of
new business lines) or external constraints (Capital Adequacy Requirement of the
Basle Committee on Banking Supervision, prudential rules imposed by European or
American regulators on financial institutions). Clearly, the dependence between fi-
nancial instruments materially affects risk measures and asset allocations resulting
from optimal portfolio selections. The analysis of the dependence structure cannot
be neglected and reveals much of the danger associated to a given position.
Unfortunately, contemporary techniques too often revolve around the use of linear
correlation to describe a dependence between risks and implicitly assume normally
distributed risks (mainly for mathematical convenience). But what does positive cor-
relation really mean? In a normal world, positive correlation entails strong positive
dependence notions, see Tong (1990). However, as illustrated by Embrechts, NcNeil
and Straumann (2000), the dependence properties of the normal world do not hold in
a non-normal world. Modern risk management calls for an understanding of stochastic
dependence going beyond simple linear correlation. In that respect, dependence con-
cepts like comonotonicity, multivariate total positivity, conditional increasingness in
sequence, association and positive quadrant dependence (and its multivariate exten-
sions) are of prime importance, and should be understood and used by practitioners.
In the management of large portfolios, the main risk is the joint occurrence of a
number of default events or the simultaneous downside evolution of prices. A better
knowledge of the dependence between financial assets or claims is crucial to assess the

risk of loss clustering. This clustering behavior can be described by a useful concept



known as positive quadrant dependence (PQD) for bivariate distributions (Lehmann
(1966)) and positive orthant dependences (POD) for more than two risks. This type
of dependence tells us how two, or more, random variables behave together when they
are simultaneously small (or large). More precisely two random variables are PQD if
the probability that they are simultaneously small is at least as great as it would be
were they independent. The aim of this paper is to provide procedures relevant to
testing for the presence or not of a PQD behavior in the data.

One of the main interests in this dependence structure is that it allows the risk
manager to directly compare the sum of PQD random variables with the correspond-
ing sum under the independence assumption (see the appendix for further details).
The comparison is in the sense of different stochastic orderings expressing the com-
mon preferences of rational decision-makers (in the framework of the classical von
Neuman-Morgenstern expected utility theory, as well as in other theories, cf. Yaari
(1987)). Inferring that two claims are PQD, regardless of the strength of this depen-
dence, immediately allows us to infer the underestimation of most insurance premiums
involving a portfolio of these two claims if the independence assumption is made in-
stead. In a financial setting the same holds true but for risk measures and derivative
prices related to a portfolio of two PQD financial assets.

A related notion, namely asymptotic dependence, is empirically analyzed and
tested in Poon, Rockinger and Tawn (2003). It exactly corresponds to the PQD
concept but for loss probabilities, resp. loss levels, tending to zero, resp. minus infin-
ity 1. These authors discuss the use of asymptotic dependence concepts in a number
of financial applications such as portfolio selection, risk management, Sharpe ratio
targeting, hedging, option valuation and credit risk analysis. Most of their discussion
remains valid in the PQD case but for less extreme risks, and we refer to their paper
to get further substantial justification for the use of dependence tests in resolving
interesting financial hypotheses. Note however that we prefer the PQD concept over
the asymptotic independence notion for several reasons. First, two asymptotically
independent variables may still exhibit a PQD behavior (cf. the notorious case of a

Gaussian copula), and thus PQD should be the primary object of focus. Even risks



which are far from extreme can lead to severe damages. Second, asymptotic indepen-
dence is essentially a bivariate concept, and has not yet been characterized in higher
dimensions. Third, current available inference for asymptotic independence has been
developed in an i.i.d. context, and has not yet been rigorously justified in a time series
context.

Finally let us emphasize that financial security systems are generally complex, and
their outcomes usually involve several dimensions. Describing relationships among
different dimensions is a basic technique for explaining the behavior of risk control
mechanisms to concerned business and public policy decision-makers. In that respect,
copula functions can be of great use for risk managers and actuaries. The concept of
“copulas" or “copula functions" as named by Sklar (1959) originates in the context
of probabilistic metric spaces. The idea behind this concept is the following: for
multivariate distributions, the univariate marginals and the dependence structure
can be separated and the latter may be represented by a copula. The word copula,
resp. copulare, is a latin noun, resp. verb, that means “bond", resp. “to connect" or
“to join". The term copula is used in grammar and logic to describe that part of a
proposition which connects the subject and predicate. In statistics, it now describes
the function that “joins" one-dimensional distribution functions to form multivariate
ones, and may serve to characterize dependence concepts such as PQD and POD
(see Nelsen (1999) and Joe (1997) for definitions and further details). Specification
of PQD and POD hypotheses can thus be made in terms of distribution functions
(specification in terms of loss levels) or copulas (specification in terms of probability
levels), and this will lead to different inference procedures. Note that some regulators
in the banking industry think in terms of probability levels in place of loss levels
when assessing financial risks. Credit rating analysis is also directly linked to default
probability levels and not loss levels. This explains why we develop both types of
inference.

The paper is organized as follows. In Section 2, we start with the definition of
PQD before presenting its multivariate extensions. In Section 3 we describe the null

and alternative hypotheses we are interested in, and develop testing procedures in



a time series setting. These procedures are closely related to the inference tools for
traditional first order and second order stochastic dominance (and their phrasing in
terms of utility functions), which also rely on distance and intersection-union tests for
inequality constraints (see Davidson and Duclos (2000) and the references therein).
They are of a nonparametric nature and thus avoid misspecification problems and
distortions which could be associated with parametric approaches (see Fermanian
and Scaillet (2003, 2004) for several examples related to copula modeling). Two
empirical illustrations are given in Section 4. We first consider US insurance claim
data, and provide a comparison of premiums computed under different dependence
assumptions. This allows us to discuss effect of PQD on the pricing of reinsurance
treaties. In a second application we examine whether there is PQD between the
HFR and CSFB/Tremont market neutral hedge fund indices and the S&P500 index.
Section 5 concludes. Proofs are gathered in the appendix. In the latter we also
give further illustrations of the interest in positive dependence notions with the help
of various stochastic inequalities. We provide some relevant examples coming from
insurance and finance. We believe that the examples and results developed in the
appendix help to clarify the link between the PQD concept and stochastic dominance
(as well as their economic interpretation in terms of a utility function) as well as why

PQD is important in a number of actuarial and financial applications.

2 Dependence notions

2.1 Positive quadrant dependence

The concept of positive quadrant dependence (PQD) is introduced in Lehmann (1966)
and describes how two random variables behave together when they are simultane-
ously small (or large). As already mentioned, joint occurrence of large losses or very
negative returns is of particular interest in risk management.

Formally, two random variables Y; and Y5, or the random pair Y = (Y7, Y3)’, are



said to be positively quadrant dependent if, for all (y1, ) € R?
PIY1 <y1,Ys <gp] > P[Y1 < 1| P[Ys < o). (2.1)

This states that two random variables are PQD if the probability that they are simul-
taneously small is at least as great as it would be were they independent. Of course,

(2.1) is equivalent to
PY1 > 1, Ya > yo] > P[Y1 > 5] P[Y2 > o] (2.2)

which enjoys a similar interpretation (with “small" replaced with “large") 2.

Since “positive" refers to a comparison with independence, let Y denote an
independent version of the random vector Y, that is, Y and Y=+ have identical
univariate marginals and Y= has independent components. Considering (2.1)-(2.2),
PQD appears as a comparison of the joint distribution of Y to that of Y. It can thus
be considered as a special case of comparisons of pairs of bivariate distributions with
identical marginals. This yields the concordance order introduced by Yanagimoto and
Okamoto (1969) and further studied by Tchen (1980) and Kimeldorf and Sampson
(1987) (see Cebrian, Denuit and Scaillet (2004) for testing procedures). PQD is in
particular satisfied when random variables are regression dependent (see Dachraoui
and Dionne (2003) for definition and use of this dependence concept for optimal
portfolio selection in presence of dependent risky assets).

Clearly, Y] and Y, are PQD if, and only if, ¢1(Y1) and g¢o(Y3) are PQD for any
increasing functions ¢g; and go. This indicates that PQD is a property of the underlying
copula and is not influenced by the marginals (see Joe (1997) for a proof). Inequality
(2.1) can then also be written in terms of the copula C' of the two random variables,

since (2.1) is equivalent to the condition that, for all w € [0, 1]%,
O(Ul, UQ) Z OL(Ul, UQ) = Uq1U2, (23)

where C* is called the independence copula.

Remark that bivariate copulas are directly linked with scale invariant measures of



association such as Kendall’s 7 and Spearman’s p through:

1 1
s o= 11— 4/ / 8C(u1,uQ) 00(’&1,U2)du1du27
0 0 au1 aUQ

1 1
p = 12/ / O(U1’U2)dU1du2_3,
0 0

which are obviously equal to zero when C(uy, us) = C*(uy, us).

2.2 Positive orthant dependences

The bivariate notion of PQD has been generalized to higher dimensions in several
ways, see e.g. Newman (1984). We consider here positive orthant dependences.

Positive orthant dependence offers a direct extension of PQD in three or more
dimensions where orthants replace quadrants. This yields the following definitions,
directly inspired from (2.1) and (2.2). A random vector Y = (Y3,...,Y,)" is said to
be positively lower orthant dependent (PLOD, in short) when the inequalities

PIY < 4] > PIY* <y = [[ PV < (2.4

i=1
hold for any y € R™. Tt is said to be positively upper orthant dependent (PUOD, in

short) when the inequalities

PIY > 3> PY" > 4] = [ PV > 0] 23

=1
hold for any y € R™. Of course, (2.4) and (2.5) are no more equivalent when n > 3.
Intuitively, (2.5) means that Y7, Y5, ... Y, are more likely to simultaneously have
large values, compared with a vector of independent random variables with the same
corresponding univariate marginals. Inequality (2.4) is similarly interpreted. When
(2.4) and (2.5) hold together, then Y is said to be positively orthant dependent (POD,
in short). In particular POD is fulfilled when variables are associated (see Milgrom
and Weber (1982) for definition and use of the association concept in auction theory).
In terms of the copula C' associated to the random vector Y, (2.4) can be written

as

C(u) > Huj (2.6)
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and (2.5) as

Clu) > ] - ). (2.7)

j=1
for all u € [0,1]", where C denotes the survival copula associated with C' (see Nelsen
(1999) for a definition).

Finally let us remark that other dependence concepts such as negative quadrant
dependence (NQD) and negative orthant dependence (NOD) may also be defined by
reversing the sense of one, or all inequalities in (2.1) and (2.4) (see Nelsen (1999)).
Testing procedures similar to ours may easily be developed for these cases. We focus
hereafter on PQD and PLOD, and not on NQD and NOD, since we believe that the
former notions are the most relevant in standard risk management applications with
long positions. Nevertheless, the other concepts could also be of interest for other
applications as, for instance, when determining whether a risk tends to hedge another

one.

3 Hypotheses testing

We consider a strictly stationary process {Yy,t € Z} taking values in R™. The
observations consist in a realization of { Yy; ¢t =1,...,T'}. These data may correspond
to either observed individual losses on n insurance contracts, the amounts of claims
reported by a given policy holder on n different guarantees in a multiline product
or observed returns of n financial assets. For inference we will also need to assume
that the process is strong mixing (a-mixing) with mixing coefficients «; such that
ar = O(T~?) for some a > 1 as T" — oo (see Doukhan (1994) for relevant definition
and examples).

We denote by f(y), F(y), the pdf and cdf of Y = (V3,...,Y,,) at point y =
(y1, s Yn)'. The marginal pdf and cdf of each element Y; at point y;, j =1, ...,n, will
be written f;(y;), and Fj(y;), respectively.

Hereafter we develop two testing methods. The first is based on a specification in

terms of distribution functions (specification in terms of loss levels), while the second
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relies on copulas (specification in terms of probability levels).

3.1 Inference based on distribution functions

Let us start with the definition (2.4) of PLOD. Obviously we get that (2.4) can
be rewritten in terms of cdfs as F(y) > [[;_, Fj(y;). As in traditional stochastic
dominance tests we use a version of the conditions defining PQD and PLOD on a
predetermined grid, and only consider a fixed number of distinct points, say d points
Y; = (Yi1, -, Yin) In R" 4 =1,....d. In actuarial science, these points will cover the
whole range of possible losses. The direct insurer may desire resorting to a truncated
distribution when reinsurance has been bought, while the reinsurer may want to
restrict its attention to the conditional distribution of excesses over a high threshold.
If special attention is paid to the joint occurrence of larges losses, the grid ought to
be refined in these regions.

We define D = F(y,) —I—, Fj(yi;), and D = (D, ..., D%)". The null hypoth-

esis of a test for PLOD may be written as
HY = {Dy: D >0},
and we take as alternative hypothesis:
H; = {Dy : Dy unrestricted }.

To examine these hypotheses we will use the usual distance tests for inequality con-
straints, initiated in the multivariate one-sided hypothesis literature for positivity of
the mean (Bartholomew (1959a,b)).

We may also consider a test for non-PLOD based on the null hypothesis:

HY = {Dy : D% <0 for some i},
and the alternative hypothesis:
H}. = {Dy : D} > 0 for all 4}.

These hypotheses will be tested through intersection-union tests based on the mini-

mum of a ¢-statistic.



Both testing procedures will be built from the empirical counterpart ZA?}; of Dt
obtained by substituting the empirical distributions for the unknown distributions.

The joint and individual empirical distributions are given by

T n
. 1 .
Fly,) = TZH]I{Yﬁgyij}, i=1,...d, (3.1)

t=1 j=1

~

T
1 . .
Fi(yy) = T g {Yj: < wi;}, i=1,..,d,j=1,..,n. (3.2)
t=1

The following proposition gives the asymptotic distribution of Dy for time de-

pendent data.

Proposition 3.1. The random vector T(Dy — D) converges in distribution to
a d-dimensional normal random variable with mean zero and covariance matriz 'V g

whose elements for k1l =1,....d are

VFEg = Z Covll{Yo < y,.}, I{Y, < y,}]

teZ

ST I] Bl Coll{Yao <y}, {Y: < y,}]
h=1 j=1,j#h teZ

ST I Bwa)ld_ Coll{ Yo < .}, I Yo < yuw}]
W=1 j=1,j£N teZ

ST Bl T B D Covll{Yao < i} I{Yie < yun }]-
h=1 W'=1 j=1,5#h j=1,j#h' teZ

In the i.i.d. case the asymptotic covariance matrix V5 can be simplified. Let us

define y,.,, = (Yr1 A Y11, s Yen A Yin)' Where a A b = min(a,b). We further denote:

Ynt = (Urts oo Y A Yty s Yin)'s and Fjo (Yenr) = PV < (Y AYiin ), Yie < (Yga A

Yijn)]s J1,J2 = 1,...,n, j1 7 jo. Then the covariance matrix V has elements
VEkl = b;ﬁAkzbz, k.l=1,..,.d,

where

bi:(l - I Bwy) - - 11 Fj(yij)>7 i=1,....4d,

j=1,j#1 j=Lj#n



and Ay, is equal to

F(yrn) — Fyp) F(y,) F(yk/\ll) = F(y) Fi(yn) - F(yk/\nl) — F(y) Fn(Yin)
F(yine) — Fly) Fi(yr)  Filyenn) — Fr(ye) Fr(yin) o Fin(Yrar) — Fr(yer) Fu(yim)
F(yl/\nk) - F(yl)Fn(ykn) Fln(yk/\l) - Fl(yll)Fn(ylm) Fn(yk/\l,n) - Fn(ykn)Fn(yln)

A consistent estimate Vp of V- can be obtained by replacing the unknown dis-

tribution F' by its empirical counterpart F.

3.2 Inference based on copulas

Let us now proceed with the analogous quantities when we use copulas, and take d
points w; = (s, ..., W), With w;; € (0,1), ¢ =1,....,d, j = 1,...,n. The d points
correspond here to probability levels instead of return or loss levels. We may then

define D, = C(w;) — [}, uij, and Do = (D¢, ..., D). As in the previous lines we

may consider the null hypothesis for a test for PLOD:
HY ={D¢: D¢ > 0},
together with the alternative hypothesis:
H} = {D¢ : D¢ unrestricted },
while the test for non-PLOD can be based on the null hypothesis:
HY = {D¢ : D5 <0 for some i},

with
H} ={D¢ : D > 0 for all i},
as alternative hypothesis.
We assume hereafter that all cdfs are continuous, and that the cdf Fj of Y}, is such

that the equation Fj(y) = u;; admits a unique solution denoted by (;;, i = 1, ...,d,
j=1,...n, while f;((;;) > 0 at each quantile ¢;.
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In view of the relationship C(u) = F(F; " (u1), ..., F,"(un)), we may think of
estimating C(u;) = F(¢;) by C(u;) = F(C;) where ¢; = (G, ..o, Gn)' is made of the
empirical univariate quantiles CAU The main difference when compared with (3.1) is
that the levels are no longer given deterministic values, but quantiles estimated on
the basis of sample information, and thus random quantities. As we will see in a
moment this slightly complicates matters, but one often prefers (or is imposed, for
instance, by regulators) to work with predetermined probability levels instead of loss
levels.

Let us put Cppp = (Crts - Ghi A Qs s Gen)'s Ukt = (nj A wgg), and Fj, (Crpy) =
PlYj, < (Cejy A Gia), Yio < (Chjy A Q)5 J1.J2 = 1,..,n, j1 # jo. Then the following

proposition gives the asymptotic distribution of De.

Proposition 3.2. The random vector \/T(ﬁc — D¢) converges in distribution to
a d-dimensional normal random variable with mean zero and covariance matrix Vo

whose elements for k1 =1, ....d are

Vog = Z Co[l{Yo < ¢}, I{Y: < ¢}

teZ
n ag(Ck)

— Th Cot[I{ Yy < Y, <
th(ékh ; ov{Yno < Gen}, I{ Yy < G4}
n 35((1)

— ! Cor[I{ Yy < Y < Cuy
th ) Z; ou[l{Yo < ¢}, I{ Ve < Qv }]

n  OF(¢,) 9F(C)

+ Z Z fha‘”h zp Z Coo[l{Yno < Cen}, {Yir < G}

h—1 h'=1 Ckh fh’ Clh’ teZ

As in the previous case the asymptotic covariance matrix V¢ can be simplified in

the i.i.d. case. We get for its elements:

Vo kl = b;CAkzbz, k.l=1,..,.4d,

_mg(cn _ag(cn !
b,=11 e e —= | i=1,...4d,
( f1(Gn) fa(Gin) )

where

11



and

F(Crn) = F(C)F(C) F(Cray) = F(Cu)un o F(Cpnt) — F(Cr)tn
A, — F(Cipi) — F(C)um Ugpl,1 — Uk U1 o Fip(Canr) — Uratiin
F(Cink) = F(C)uen  FinlCrnr) —wnten o Ukntn — Uknlin
Note that the asymptotic covariance matrix V¢ involves derivatives of F' and
the univariate densities f;. These quantities may be estimated by standard kernel
methods (see e.g. Scott (1992)) in order to deliver a consistent estimate V¢ of V.

For example we may take a Gaussian kernel and different bandwidth values h; in each

where ¢ and ® denote the pdf and cdf of a standard Gaussian variable. In the

dimension, which leads to:

(L) B s Yie— G \ 17 Vi —
et = o 2 (B e (%

14

filly) = <Thj>1zso<yﬂ‘th;?”>,

t=1

}ﬂ

empirical section of the paper, we opt for the standard choice (rule of thumb) for the

bandwidths h;, that is 1.057~'/® times the estimated standard deviation of Y;.

3.3 Testing procedures

The distributional results of Propositions 3.1 and 3.2 are the building blocks of the
testing procedures. The first testing procedure considers Hl" (resp. HS') against H{
(resp. HY) and makes use of distance tests. It will be relevant when one or more
components of D x, K = F,C, are found to be negative (in such a case one wants to
know whether this invalidates PLOD).

Let Dy, K = F,C, be the solution of the constrained quadratic minimization
problem:

~ ~ -1 ~
i%fT(D —Dg)'V, (D — Dg) s.t. D >0, (3.3)

where Vi is a consistent estimate of Vi, and put

fx =T(Dx — D) Ve (Dg — Dx).

12



Roughly speaking, Dy is the closest point to Dy under the null in the distance
measured in the metric of VK, and the test statistic é 18 the distance between D e
and Dy. The idea is to reject HE when this distance becomes too large.

The asymptotic distribution of £x under the null (see e.g. Gouriéroux, Holly and
Monfort (1982), Kodde and Palm (1986), Wolak (1989a,b)) is such that for any

positive x:
d

Pléx > 2] =) P} > alw(d.d—i, Vi) +o(1),

i=1
where the weight w(d, d — 1, VK) is the probability that D has exactly d — i positive
elements.

Computation of the solution D can be performed by a numerical optimization
routine for constrained quadratic programming problems available in most statistical
software. Closed form solution for the weights are available for d < 4 (Kudo (1963)).
For higher dimensions one usually relies on a simple Monte Carlo technique as ad-
vocated in Gouriéroux, Holly and Monfort (1982) (see also Wolak (1989a)). Indeed
it is enough to draw a given large number of realizations of a multivariate normal
with mean zero and covariance matrix VK. Then use these realizations as D i in the
above minimization problem (3.3), compute Dy, and count the number of elements
of the vector greater than zero. The proportion of draws such that Dy has exactly
d — i elements greater that zero gives a Monte Carlo estimate of w(d,d — i, V). If
one wishes to avoid this computational burden, the upper and lower bound critical
values of Kodde and Palm (1986) can be adopted.

Let us now turn our attention to the second procedure aimed to test H{', resp.
HE | against HI', resp. H, and relying on the intersection-union principle. It will be
used when all the components of D are found to be positive. The question is then
whether this suffices to ensure PLOD.

Let 4% = VT D% /\/oxu, K = F,C. Then under HY, the limit of Pfinf4% >
21 o) will be less and exactly equal to a if D% = 0 for a given i and D% > 0 for
[ # i, while its limit is one under H}.. Hence the test consisting of rejecting HY when

inf 4% is above the (1 — a)-quantile z;_, of a standard normal distribution has an

13



upper bound « on its asymptotic size (see e.g. Howes (1993), Kaur, Prakasa Rao and
Singh (1994)).

Power issues are extensively discussed by Dardanoni and Forcina (1999) (see also
the comments in Davidson and Duclos (2000)). First, approaches based on distance
tests exploit the covariance structure, and are thus expected to achieve better power
properties relative to approaches, such as ones based on t-statistics, that do not
account for it. In a set of Monte Carlo experiments for standard stochastic dominance
and nondominance tests, they find that, indeed, distance tests are worth the extra
amount of computational work (see also Tse and Zhang (2003) for further Monte
Carlo evidence). Since the form of our tests is very similar, we expect their results
to hold in our setting as well. Second, it is possible that nonrejection of the null of
dominance, here PLOD, by distance tests occurs along with the nonrejection of the
null of nondominance, here non-PLOD, by intersection-union tests. This is due to
the highly conservative nature of the latter, and will typically occur in our setting if
Dy is close enough to zero for a number of coordinates. Finally, Barrett and Donald
(2003) report that distance tests for stochastic dominance do not seem to suffer from
size distortion problems in samples as small as 7' = 50 3. They also confirm the nice

behavior of distance tests in terms of power.

4 Empirical illustrations

This section illustrates the implementation of the testing procedures described in
the previous section. We provide two empirical applications; the first concerns the
detection of PQD in US insurance claim data, and its effect on premium valuation,

the second is devoted to hedge fund and stock index data.

4.1 US Losses and ALAE’s

Various processes in casualty insurance involve correlated pairs of variables. A promi-
nent example is the loss and allocated loss adjustment expenses (ALAE, in short) on

a single claim. Here ALAE are type of insurance company expenses that are specif-
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ically attributable to the settlement of individual claims such as lawyers’ fees and
claims investigation expenses. The joint modeling in parametric settings of those two
variables has been examined by Frees and Valdez (1998), and Klugman and Parsa
(1999). The data used in these empirical studies were collected by the US Insurance
Services Office, and comprise general liability claims randomly chosen from late set-
tlement lags. Frees and Valdez (1998) choose the Pareto distribution to model the
margins and select Gumbel and Frank copulas (on the basis of a graphical procedure
suitable for Archimedean copulas). Both models express PQD by their estimated
parameter values. Klugman and Parsa (1999) opt for the Inverse Paralogistic for the
losses and for the Inverse Burr for ALAE’s. They use Frank’s copula. Again, the
estimated value of the dependence parameter entails PQD for losses and ALAE’s. In
the following we rely on a nonparametric approach to assess PQD. This assessment
has many implications in insurance, for example, for the computation of reinsurance
premiums (where the sharing of expenses between the ceding company and the rein-
surer has to be decided on) and for the determination of the expense level for a given
loss level (for reserving an appropriate amount to cover future settlement expenses).
The data consist in 77 = 1,466 uncensored observed values of the pair
(LOSS,ALAE). Some summary statistics are gathered in Table 1. The estimated
values for Pearson’s r, Kendall’s 7 and Spearman’s p are 0.3805, 0.3067 and 0.4437,
respectively. All of them are judged significantly positive at 1%. Because some very
high values of the variables are contained in the data set, we will work on a logarith-
mic scale. This will not alter the results of our analysis since (LOSS,ALAE) PQD <
(log(LOSS),log(ALAE)) PQD. Note that the transformation of the margins results
in a new Pearson’s r (linear correlation coefficient) of 0.4313, while Kendall’s and
Spearman’s values are left unchanged. These are not affected by strictly increasing

transformation of the variables.
please insert Table 1

Figure 1 shows the kernel estimator of the bivariate pdf of the pair

(log(LOSS),log(ALAE)), together with its contour plot. This estimation relies on
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a product of Gaussian kernels and bandwidth values selected by the standard rule
of thumb ( Scott (1992)). The graphs obviously suggest strong positive dependence
between both variables.

In order to test whether PQD holds on the whole observation domain, we take
49 points coming from the equally spaced grid {6,7,...,12} x {6,7,...,12}. This
leads to a vector D with only one negative component —0.00015. We wish to check
whether this invalidates PQD or not. The distance between D # and D # 1s found
to be 2.4 x 10~ 7. Lower bounds on the critical values obtained by Kodde and Palm
(1986) are given in Table 2 for different levels a. Note that they do not depend on
the grid size d. In view of these bounds we do not reject the null of PQD at any

reasonable confidence level.
please insert Table 2

Let us now consider a positive dependence, but only in the upper tails*. We take
the grid {10,10.3,10.6,11,11.3,11.6,12} x {10,10.3,10.6,11,11.3,11.6,12}. All 49
components of D are strictly positive, which means that H{ is automatically not
rejected. The intersection-union test may then be used to know whether the data
exhibit PQD. We get min 4% = 0.10081 which does not allow us to reject ﬁg in favor
of PQD. This non rejection is due to the closeness of Dy to zero for a large number
of coordinates. This point has already been discussed at the end of Section 3.

Let us now turn to copula based tests. For the wu;’s, we take the 81 deciles of the
grid {0.1,0.2,...,0.9} x {0.1,0.2,...,0.9}. All components of the corresponding Do
are positive, so that H{ cannot be rejected. For the intersection-union test, we obtain
min 9, = 0.94894 which does not allow us to reject ﬁf in favor of ﬁf. If we focus on
the tails, taking the high percentiles in {0.91,0.92,...,0.99} x {0.91,0.92,...,0.99},
we get that all components of D¢ are again positive resulting in the non-rejection of
HE'. Further, min 4}, = 0.6983, so that ﬁf is not rejected, either.

It has to be pointed out that the choice of the bandwidth has very little impact
on the values of the test statistics. They have been computed with half, twice and

three times the standard choice, and this has only resulted in small variations.

16



Let us now discuss the practical implications of the presence of PQD in the pre-
vious data. We look at the impact on premium valuation in reinsurance treaties.
We consider a reinsurance treaty on a policy with unlimited liability and insurer’s
retention R. Assuming a prorata sharing of expenses, the reinsurer’s payment for a

given realization of (LOSS,ALAE) is described by the function

0 if LOSS < R,

LOSS — R + %ALAE if LOSS > R.

The pure premium relating to this reinsurance treaty is

g(LOSS,ALAE) =

m = E[g(LOSS,ALAE)].

The results in Table 3 provide the premiums the reinsurer would have assessed
to cover costs of losses and expenses according to various insurer’s retention. Three

situations have been considered:

1. the first one assumes independence, i.e.

T T
1
=5 > > g(LOSS:, ALAE, )

t=1 t'=1

2. the second one takes into account the dependence expressed by the data, i.e.

T
1
f= ; g(LOSS;, ALAE,);

3. and the last one resorts to the classical comonotonic approximation for

(LOSS,ALAE), i.c.
T
= % 3 g (LOSSt, Byt (Fl (LOSSt))) .
t=1

We see that substantial mispricing could result from the independence hypothesis (as
predicted by the theory developed in the appendix), while the comononotic approxi-
mation is too conservative. We see that independence generates lower premiums than
those suggested by the data, which themselves are smaller than those based on the

comonotonic assumption (as they are theoretically bound to be under PQD).

please insert Table 3
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4.2 Hedge fund and stock indices

This second empirical illustration concerns data on the HFR and CSFB/Tremont mar-
ket neutral hedge fund indices and the S&P500 index. We consider returns recorded
monthly from 31/01/1994 to 31/10/2003, i.e. 118 observations. Figure 2 shows bivari-
ate scatterplots of the data. Table 4 gathers the summary statistics for these data.
The estimated values for Pearson’s r, Kendall’s 7 and Spearman’s p are 0.2786, 0.1889
and 0.2743 for the pair (HFR,CSFB/Tremont). All of them are judged significantly
positive at 1%. We can already observe that the amount of dependence between
the two indices is not as high as could have been expected. In fact their respective
composition does not span exactly the same hedge fund universe, and this explains
the observed differences. For the pair (CSFB/Tremont,S&P500), we get r=0.3952,
7=0.2543 and p=0.3728, which are again significant at 1%. On the contrary we get
r=0.1406, 7=0.0630 and p=0.0875 for the pair (HFR,S&P500), and these values can-
not be taken as significantly different from zero at 1%. This second index seems to
be more “market neutral" than the first one, and is often preferred by practitioners
as a benchmark for such strategies. We can remark that both indices exhibit a low
linear dependence (low beta) with the S&P500 index because of the “neutral” target
of the hedge funds composing them. However these indices may exhibit a strong non-
linear dependence. If so, this should be revealed by a PQD behavior. Figure 3 shows
the three series, while Figure 4 displays the estimated autocorrelation coefficients for
various lags. It can be seen that the monthly returns have a rather low degree of

autocorrelation.
please insert Table 4
please insert Figure 2
please insert Figure 3
please insert Figure 4

We only provide the results for the copula based tests since the regulatory environ-

ment for risk management in banks is specified in terms of probability levels instead
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of loss levels. For the wu;’s, because of the small amount of data points, we take
the grid {0.2,0.4,0.6,0.8} x {0.2,0.4,0.6,0.8}. All components of the corresponding
D¢ are positive for the pairs (HFR,CSFB/Tremont) and (CSFB/Tremont,S&P500)
(but not for the pair (HFR,S&P500)), so that HS cannot be rejected in these two
cases. For the intersection-union test, we obtain min4, = 0.2626 for the couple
(HFR,CSFB/Tremont) and min4. = 0.6941 for the pair (CSFB/Tremont,S&P500)
so that we do not reject ng in favor of Ff either. Some of the components of D¢
are negative for the pair (HFR,S&P500). Therefore, we compute &0 = 0.0025 and we
do not reject the null hypothesis of PQD.

Note that the PQD behavior directly implies (cf. the theoretical results of the
appendix) that the price of a call option on a basket made of one of the market
neutral hedge fund index and the S&P500 index will be underestimated if we use
a zero correlation as input (independence) in the Black-Scholes model (even if the

assumption of normally distributed returns is true for the margins).

5 Concluding remarks

In this paper we have analyzed simple distributional free inference for positive quad-
rant and positive lower orthant dependences. The various testing procedures have
proven to be empirically relevant to the analysis of dependences among insurance
and financial data. In particular they suggest the strong PQD nature of these data.
Hence they complement ideally the existing battery of inference tools dedicated to
joint risk analysis. They should further help to achieve a better understanding and
design of insurance contracts as well as option contracts in terms of premium valua-

tion.
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APPENDIX

A Proof of Proposition 3.1

Let us consider the second term H Fj(yw) of ﬁ} It can be approximated by
j=1

j=1 j=1 h=1

Ey(yig) = 11 Filw) + { 11 j(yij)} (Fn(yin) = Fulyin)) + 0p(T1/?),

where Fj(y;;) is a mean value located between Fj(y;;) and Fj(y;;). Since we know
that the empirical process v'T (F — F) tends weakly to a centered Gaussian process
G in the space of a.s. bounded function of R" (see e.g. Rio (2000)), and that the

covariance function of G is given by

Cov[G(y,),G(y)] = > Covll{ Yo <y}, I{Y: < g,}],

teZ

the stated result follows after computation of all covariance terms.

B Proof of Proposition 3.2

Let M ={I{ - < x}..I{ - <a,}:2;, € Rj=1,..,n}. Since M satisfies Pollard’s
entropy condition for some finite constant taken as envelope, the sequence
T n
{F(w) = T_le]I{th <wzj}:T> 1}
=1 j=1
is stochastically differentiable at ¢; with random derivative (d x 1)-vector DF((;) (see
e.g. Pollard (1985), Andrews (1989,1999) for definition, use and check of stochastic

differentiability). It means that we have the approximation:

A

F(&z) = F(Cz) + Dﬁ(fz)'(ﬁ’z -G+ Op(Til/Q)a

where ¢, is a mean value located between &'1 and ¢;.

Similarly we get the approximations:
Fi(Gij) = F(Gis) + DE;(Gi) (Gis — Gij) + 0p(T173).
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Combining these approximations and using F;(¢;;) = ui; = F;(G;) leads to

~

F(&z) = F(Cz) - DF(Z’i)’diag Si + Op(T_1/2)7

where S; is the stack of (F}(G;)—ui;)/DEj((iy), 7 = 1, ..., n, and diag S; is the diagonal
matrix built from this stack.

Using the convergence in probability of Djﬁ(&i) to 0F(¢;)/0xj, j =1,...,n, and
D, F;(Ci;) to f;(Ci;), we may deduce the given result from the behaviour of the em-

pirical process T (F — F') at the limit and computations of all covariance terms.

C Applications of positive dependence notions

C.1 PQD

Let us define the following utility classes. Let U; contain all non-decreasing utilities
u: R — R. Let Us be the restriction of U; to its concave elements. More generally,
for k > 3, let Uy, be (k — 1) times continuously differentiable utility functions u such
that lim, . o u(2) = u(+00) is finite, lim, . u¥(z) =0for j =1,...,k— 1 and
(—1)k=14(*=1) is non-decreasing.

In what follows, we assume that decision-makers maximize a von Neumann-
Morgenstern expected utility (but we mention that results involving U; and U, still
hold in dual theories for choice under risk, see e.g. Denuit, Dhaene and Van Wouwe
(1999) for further information).

Let Y7 and Y, be two random variables such that Fu(Y;) < Eu(Ys) holds for all
u € Uy (resp. u € Us), provided the expectations exist. Then Y] is said to be smaller
than Y5 in the stochastic dominance (resp. increasing concave order), denoted as
Y1 <4 Ys (resp. Y7 =iy Ya). From the very definitions of <4 and <., we see that these
stochastic orderings express the common preferences of the classes of profit-seeking
decision-makers, and of profit-seeking risk-averters, respectively. This provides an
intuitive meaning to rankings in the <4- or =<;.,-sense.

If Y1 <iev Y2 and EY; = EY,, then we write Y7 <., Y5. In this case Fu(Y;) <

FEu(Y;) for all the concave utilities u, so that Y5 is preferred over Y; by all risk-
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averters. Furthermore, if Fu(Y;) < Fu(Y3) for all u € Uy, provided the expectations
exist, then Y is said to be smaller than Y5 in the k-increasing concave order, denoted
as Y] =<p_icv Yo. By convention we assume that <j_;., reduces to <;., and =, for
k =2 and k = 1, respectively.

For a more detailed exposition of stochastic orderings, see e.g. the review papers
by Kroll and Levy (1980) and Levy (1992), the classified bibliography by Mosler and
Scarsini (1993) and the books by Shaked and Shanthikumar (1994) and Mari and
Kotz (2001). For a rigorous treatment of <j ., see Rolski (1976) and Fishburn
(1976).

As already mentioned in the introduction, one of the main interests in PQD arises
from the comparison with random pairs with identical marginals but independent
components. This comes from the following result for which we provide a short
proof. It is a straightforward adaptation of the result in Dhaene and Goovaerts

(1996) established in the convex actuarial setting.

Proposition C.1. If Y] and Yy are PQD, then Y, +Ys <., Y- + Y-, where Y- + Y5+
is the sum of the components of the independent version Y+ of Y defined in (2.1).

Proof: Let us first note that

/ PYi+Ys < fdt = [PV +¥, <1 —/ {APY14Y, < 1] = E(r—Y1—Y3),.

—00 —00

So, we want to show that the inequality E(z —Y; — Y3), > E(x — Y — Y;4), holds
for any real constant x. Now, let us express E(x —Y; — Y3), in terms of the joint cdf

of Y. Note that

/]I[ylgt,ygga:—t]dt:/ Iy <t <ax—yldt=(r—y1—y2)s

whence it follows that

E@—H—BM:/‘ngubgm—Wt

— 00

Finally,

Blz — Y~ Ya)s — Bw - i — Y1),
:/‘{Hﬁgtﬁgx—ﬂ—ﬂﬂgﬂﬂngx—ﬂwa

— 00
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where the integrand {...} is non-negative provided Y; and Y5 are PQD, which ends
the proof. Q.E.D.

This means that when PQD holds, every risk-averter agrees to say that Y; + Y5 is
less favorable than the corresponding sum under independence. Consequently, most
insurance premiums and risk measures will be larger for X; + X5 than for Xi* + X5
(since the principles used to calculate such quantities are in accordance with the
common preferences of risk-averters). For instance, since the function z — —(x —k&),,
with (-), = max{0, -}, is concave for any k € R, the inequality F(Y> + Y5t — k), <
E(Y1+Y5— k), holds true for all k. In actuarial science the quantity E(Y;+ Y2 — k)
is referred to as the stop-loss premium related to the portfolio Y7 + Y5 (k is called
the deductible). In finance, when appropriately discounted, it can be regarded as the
price of a basket option with Y; + Y5 as underlying asset portfolio and & as strike price.
The convenient assumption of independence may thus lead to serious underpricing of
insurance premiums or option prices. This type of underpricing has been illustrated
in the empirical section of the paper.

Let us now provide an application of PQD in life insurance. Standard actuarial
theory of multiple life insurance traditionally postulates the independence for the
remaining lifetimes in order to evaluate the amount of premium relating to an insur-
ance contract involving multiple lives. Nevertheless, this hypothesis obviously relies
on computational convenience rather than realism. A fine example of possible de-
pendence among insured persons is certainly a contract issued to a married couple.
In such a case, the actuary has to wonder whether the independence assumption is
reasonable and whether it would not be wiser to build an appropriate price list incor-
porating possible effects of a dependence among time-until-death random variables.

Specifically, let T, (resp. T.,) be the husband’s (resp. wife’s) lifetime, where x;
(resp. ) stands for the age of the husband (resp. wife) at the start of the contract. In
light of clinical studies, the PQD assumption for 7}, and 7}, seems reasonable. This
has been empirically investigated using official Belgian statistics by Denuit and Cornet
(1999) in a Markovian parametric setting. Of course, the statistical tests developed

in this paper are useful in that respect, since they avoid the parametric assumption
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often made in actuarial studies, namely a Gompertz-Makeham distribution for the
remaining lifetimes.

For insurance policies sold to married couples, PQD for 7,, and 7, allows the
actuary to know whether the independence assumption generates implicit safety load-
ing or, on the contrary, leads to insufficient premium amounts. Indeed, this simply

comes from the fact that the PQD assumption for 7, and T;, ensures that

min{7T;-, T} <4 min{T},,T,,} and max{T},, T}, } =<q max{T; T:}

x1? 2 T1? T T2

which readily follow from (2.1)-(2.2). Now, let us consider annuities (i.e. contrac-
tual guarantees that promise to provide periodic income over the lifetimes of indi-
viduals). The n-year last-survivor (resp. joint-life) annuity pays $ 1 at the end of
the years 1,2,...,n as long as either spouse survives (resp. both spouses survive).
The net present value of the insurer’s payments are obviously increasing functions
of max{T,,,T,,} for the last-survivor annuity and of min{7,,,T,,} for the joint-life
annuity. The net single premium corresponding to the last-survivor (resp. joint-life)
annuity is denoted ag >y (1€SP. a(sya0)m); it is simply the mathematical expec-
tation of net present value of the insurer’s payments (see Gerber (1995) for further

details on actuarial notations and concepts). Let us denote as a=—— _ and a- | _

(z122);7 (z122)5m]
the corresponding premiums computed on the basis of the independence assumption
for the remaining lifetimes. In case T, and T}, are PQD then Oraa) ] < %;ﬁl and

A(zy29)im| = aém) 7 hold true. Similar conclusions can be obtained for most standard

life insurance contracts making the PQD assumption of paramount importance. This
has been pointed out by Norberg (1989) and further analyzed by Denuit and Cornet
(1999).

In a banking context, one area which is very close to insurance risk is operational
risk. Knowing that lifetimes on two different types of operational risk (for example,

fraud and IT crashes) are PQD may help to decide whether reserve funds built as if

they were independent are high enough to absorb operational losses.
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C.2 PLOD

Proposition C.1 no longer holds if PLOD is substituted for PQD. Rather, the following

result holds true.

Proposition C.2. Provided Y is PLOD, the stochastic inequality ZLIYZ- =< n—icv
S Vit holds.

Proof: Let u € U,. Then, invoking integration by parts yields

eu(3om) - /,.,/ymu@gmygy}

Provided Y is PLOD, we get
Eu (Z Yﬁ) — Eu (Z K)
i=1 i=1
— [ [Pyt <Py < s} (Z yz> Aoy .. dyoy > 0,
yeR”

for any u € U,,, whence the announced result follows. Q.E.D.

Comparing Propositions C.1 and C.2, we see that <., is replaced with =<, _i.,
in dimension n. Besides, as can be seen from Proposition C.2, we only get weaker
orderings in higher dimensions. To get <., as in Proposition C.1, we need another
dependence notion called positive cumulative dependence (PCD in short) which is
defined as follows: the random variables Y7, Y5, ..., Y, are PCD if the random couples
()20 Vi, Y;) are PQD for j =2,3,...,n

The following result is inspired from Denuit, Dhaene and Ribas (2001).

Proposition C.3. Provided Y is PCD, the stochastic inequality > i | Vi <0 > 5y Yi*
holds.

Proof: We proceed by recurrence. From Proposition C.1, we know that provided

Y is PCD,

Vit % +Yin =W+ +Y%) + Y S V4. + YT+ Y
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Next, by induction hypothesis,
Vit Y=< Y+ Y

Since the concave order is closed under convolution (i.e. given three independent
random variables A, B and C, A <., B = A+ C <. B+ C; see e.g. Shaked and
Shanthikumar (1994) for details) we then have that

Yi+.. .+ +Yh 20 Y+ + Y+ Y
Now, invoking the transitivity of the <., order relation yields
Y1++Yk+Yk+1 jcv Y1L++Y]j+y]$r1,

which yields the stated result. Q.E.D.
From (2.4) and (2.5), it is easy to get the following result that reinforces a sto-
chastic inequality obtained by Baccelli and Makowski (1989).

Proposition C.4. Let S be a subset of {1,2,...,n}. Provided Y is POD, the sto-

chastic inequalities min;cg YiL <¢min;cs Y; and max;cg Y; =4 maX;cg Y;L both hold.

Let us illustrate the importance of Proposition C.4 in life insurance. Consider
n individuals aged z1, xo, ..., x,, respectively, with remaining lifetimes 7},, T,, ...,
T.,, respectively. The joint life status (z1,xs, ..., 2,) exists as long as all individual

statuses exist. This status has remaining lifetime:

Tiwrwayen) = Min{ Ty, Toy, ..., Ty }

The last survivor status (1, xe, . . ., T,) exists as long as at least one of the individual

status is alive. Its remaining lifetime is given by

max {1y, Try, - T, }-

(wlanV--azn) =

Let us now assume that T = (T,,,T%,,...,T%,) is POD. Let us also introduce the

following straightforward notation:

Ty ) = min {10 Ty T }

(z1,22,..., 1) T x9)
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and

T =max {1, . T,.... T, } .

($1,$2,...,$n) z17 z2?

From Proposition C.4, it follows that

T(ﬁl, =a Tz ,20,....0,,) and 15

1'2,---,11771) (2171,2132 aaaaa wn)

which in turn implies that

-+ — and «

a —<a —_— S
(x1,22,..zn)in| —  (#1,22,....2n)in| (z1,22,2n)in| = (z1,22,...,7n)in|’

where the superscript “1" is used to indicate that the annuity is based on T(Ll’

or Tm This means that for POD remaining lifetimes, the independence as-
sumption (while leaving the marginal cdfs unchanged) leads to an underestimation of
the net single premium (and reserves) of a joint life annuity. The opposite conclusion
holds for the last survivor annuity. Similar conclusions can be drawn for endowment
and whole life insurance.

Finally let us stress that similar contracts have recently been proposed in finance
in the context of over-the-counter credit derivatives. For example the writer of the
so-called “first-to-default" contract have to pay to the buyer a given amount of dollars
contingent to the first time of an observed default among a given set of names. In

that setting assuming independence between time-until-default will also lead to price

underestimation.
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Notes

Tt is worth mentioning that we depart from the actuarial literature by assigning a negative sign
to losses in this paper. This is in line with the agreement in force in finance for asset returns.

2Remark that the inequality (2.2) can also be restated in terms of a conditional probability:
P[Y; > y1|Y2 > ya| > P[Y1 > 1], as in the definition of asymptotic independence.

3Note that we usually face large sample sizes in finance and insurance, and thus we do not expect
size distortion to be a major issue.

4In other applications where the number of observations available in tails is small because of

limited data sets, one should be cautious about performance of tests focusing on these regions.
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LOSS ALAE

Mean 37,109.58  12,017.47
Std Dev. 92,512.80  26,712.35
Skew. 10.95 10.07
Kurt. 209.62 152.39
Min 10.00 15.00
Max 2,173,595.00 501,863.00
1st Quart.  3,750.00 2,318.25
Median 11,04850  5,420.50

3rd Quart.  32,000.00 12,292.00

Table 1: Summary statistics for variables LOSS and ALAE.
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o 25% 10% 5% 25% 1%  0.5% 0.1%
Lower bound | 0.455 1.642 2.706 3.841 5.412 6.635 9.500

Table 2: Lower bounds on critical values for the distance test.
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R 10,000 50,000 100,000 500,000 1,000,000
indep.  33,308.9054 19,108.3604 12,402.7515 1,800.9984 804.9684
dep. 36,765.8687 21,227.8071 13,801.1927 1,875.0277 850.1686
comon. 38,962.6734 23,271.1908 15,407.7782 2,308.0139 985.3801

Table 3: Pure premiums for a reinsurance treaty with retention R.
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HFR

Mean 0.0070372
Std Dev. 0.0094661
Skew. 0.2279256
Kurt. 0.4175570
Min -0.0167000
Max 0.0359000
1st Quart. | 0.0015250
Median 0.0063000
3rd Quart. | 0.01.2975
CSFB/Tremont
Mean 0.0085466
Std Dev. 0.0089309
Skew. 0.2007868
Kurt. 0.1991623
Min -0.0115000
Max 0.0032600
Ist Quart. | 0.0028250
Median 0.0081000
3rd Quart. | 0.0142750
S&P500
Mean 0.0068819
Std Dev. 0.0462238
Skew. -0.7155344
Kurt. 0.5972095
Min -0.1575860
Max 0.0923238
1st Quart. | -0.0220540
Median 0.0122834
3rd Quart. | 0.0391559

Table 4: Summary statistics for HFR, CSFB/Tremont and S&P500.
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Figure 1: Kernel estimation of the bivariate pdf for
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