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Abstract

This paper defines two distribution free goodness-of-fit test statistics for copulas. It states their
asymptotic distributions under some composite parametric assumptions in an independent identically
distributed framework. A short simulation study is provided to assess their power performances.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In modern finance and insurance, the identification of dependence structures between
assets is becoming one of the main challenges we are faced with. Copulas have been
recognized as key tools to analyze dependence structures. They are becoming more and
more popular among academics and practitioners because multivariate gaussian random
variables do not provide satisfying models.

The copula of a multivariate distribution can be considered as the part describing its
dependence structure as a complement to the behavior of each of its margins. One attrac-
tive property of copulas is their invariance under strictly increasing transformations of the
margins. Actually, the use of copulas allows to solve a difficult problem, namely to find
a whole multivariate distribution, by performing two easier tasks. The first step starts by
modelling every marginal distribution. The second step consists of estimating a copula,
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which summarizes all the dependencies between margins. However, this second task is
still in its infancy for most of multivariate financial series, partly because of the presence of
temporal dependencies (serial autocorrelation, time varying heteroskedasticity, particularly)
in returns of stock indices, credit spreads, interest rates of various maturities.

Estimation of copulas has been essentially spread out in the context of i.i.d. samples. If
the true copulais assumed to belong to a parametric fainiy{Cy, 0 € @}, consistentand
asymptotically normally distributed estimates of the parameter of interest can be obtained
through maximum likelihood methods. There are mainly two ways to achieve this: a fully
parametric method and a semiparametric method. The first method relies on the assumption
of parametric marginal distributions. Each parametric margin is then plugged in the full
likelihood and this full likelihood is maximized with respecttoAlternatively and without
parametric assumptions for margins, the marginal empirical cumulative distribution func-
tions can be plugged in the likelihood. These two commonly used methods are detailed
in Genest et al[20] and Shi and Louis [40]. Hu [27] has proved general conditions for
consistency and asymptotic normality of M-estimates in copula models. Chen and Fan [8]
have studied such inference issues vfitmixing processes.

Beside these two methods, it is also possible to estimate a copula by some nonparametric
methods based on empirical distributions, following Deheuvels [10-12]. The so-called
empirical copulas look like usual multivariate empirical cumulative distribution functions.
They are highly discontinuous (constant on some data-dependent pavements) and cannot be
exploited as graphical device. Recently, smooth estimates of copulas in a time-dependent
framework have been proposed in Fermanian and Scaillet [17]. They allow to guess which
parametric copula family should be convenient. This intuition needs to be properly verified
to be validated. In a statistical sense, it means to lead a goodness-of-fit test on the copula
specification. This is our topic.

To be specific, consider an i.i.d. sampledslimensional vector$X;);-1... . Denote
X; = (X1, ..., X;q). andH, resp.C, the cumulative distribution function, resp. the copula,
of X. Our goal is to find a technique to solve the similar GOF problem for copulas, say to
distinguish between two assumptions:

Ho : C = Co, againstH, : C # Co, when the zero-assumption is simpbe
Ho : C € C,againstH, : C ¢ C, when the zero-assumption is composite

Here,Cp denotes some known copula, abe= {Cy, 0 € O} is some known parametric
family of copulas. The copula is the cdf 6F1(X1), ..., F:(Xy)).

In a multidimensional framework, it is usually difficult to build distribution free GOF
tests. Some more or less satisfying solutions exist. Juste[28ahave proposed to use the
transformation of Rosenblatt [38] before testing a simple GOF assumption. Several authors
have tried to replace an evaluation oval-dimensional space by a univariate function, by
considering some families of subsetsfifh indexed by a univariate parameter. Then, some
Kolmogorov—Smirnov type test statistics are available. See Saunders and Laud [39], Foutz
[18] or more recently Polonik [36]. Moreover, Khmaladze [30,31] and especially [32] has
transformed the usual empirical process into an asymptotically distribution free empirical
process, for simple and composite assumptions. Nonetheless, these techniques are involved
or cannot be extended easily to slightly different situations. Actually, the simplest way to
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build GOF composite tests for multivariate r.v. is to consider multidimensional chi-square
tests, as in Pollar{B5].

Particularly, it seems to be too difficult to adapt these techniques for copulas. The difficulty
is coming from the fact the marginal cdfB; are unknown. Particularly, the chi square test
procedures do not work anymore in general, when replacing marginal cdfs’ by some usual
estimates. For all these reasons, the general problem of GOF test for copulas has not been
dealt conveniently by authors. Some of them use the bootstrap procedure to evaluate the
limiting distribution of the test statistic (e.g. Andersen et al. [3]). Genest and Rivest [20]
solve the problem in the case of archimedean copulas, for which the problem can be reduced
to aone dimensional one, for which some standard methods are available. For instance, Frees
and Valdez [19] use Q—Q plots tofitthe “best” archimedean copula. None of the authors have
dealt the case of time-dependent copulas, except Patton [33,34], but the latter author tests
all the joint specification and not only the copula itself. Recently, some authors have applied
Rosenblatt’s transformation (cf. [37]) to the original multivariate series, before testing the
copula specification: Breymann et al. [7], Chen et al. [9]. The latter authors compare the
smoothed copula density of their transformed r.v. to the uniform density by mearis?of a
criterion, as in Hong and Li [29]. So their methodology is relatively closed to ours (see
below the test statisticg). Nonetheless, as we said previously, the use of Rosenblatt’s
transformation is a tedious preliminary, especially with high dimension variables, and it is
model specific. Thus the test methodology is not really distribution-free.

Note that we could build some test procedures based on some estimatsscdf by
modelizing the marginal distributions simultaneously. It seems to be a good idea, because
some “more or less usual” tests are available to check the GOFtsélf. Nonetheless, it
is not our point of view. Indeed, doing so produces tests for the whole specification—the
copula and the margins—but not for the dependence structure itself—the copula only. A
slightly different point of view could be to test each marginal separately in a first step. If
each marginal model is accepted, then a test of the whole multidimensional distribution can
be led (by the previously cited methodologies). Nonetheless, such a procedure is heavy,
and it is always necessary to deal with a multidimensional GOF test. Moreover, it is always
interesting to study dependence in depth first, independently of the specification of margins.

To build a GOF test, a natural way would be to use to asymptotic behavior of the empirical
copula process. According to Fermanian et al. [16], we know that the bivariate empirical
copula process/2(C,, — Co) tends in law, under the null simple assumption, towards the
gaussian processc,, where

Geo(u, v)
= Beo(u, v) — 01C0o(u, v)Bey(u, 1) — 02Co(u, v)Beo(Lv). (u,v) € [0, 1%,
We have denoted b a brownian bridge of0, 1], such that

E[Bcu, v)Bc@W', V) ]=Curu',vAv)—Cu,v)Cu',v),

foreveryu, u’, v,v" € [0, 1]. Herea Ab = inf(a, b). Unfortunately, this limiting process is
a lot more complicated than with the multidimensional brownian bridlgg For instance,
the covariance betweeBc,(u, v) and G¢,(u', v’) is the sum of 18 terms (while there
are 2 terms irB¢,’s case). These terms invol¥& and its partial derivatives. Thus, GOF
tests based directly on empirical copula processeseem to be unpractical, except by
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bootstrapping. Nonetheless, such procedures are computationally intensive. Even if the
bootstrapped empirical copula process is weakly convergent (Fermaniar{¥8]plwe
prefer to propose a more usual test procedure.

A simple chi-square type test procedure is defined in Section 2. Then, a more powerful
and more sophisticated test statistics is described in Section 3. The power of these tests is
studied by simulations in Section 4. The proofs are postponed in Appendixes A-D.

2. A simple direct chi-square approach

There exists a simple direct way to circumvent the difficulty. Indeed, by smoothing the
empirical copula process, we get an estimate of the copula density. The limit of these
statistics is far simpler tha@c,. Let us consider first an i.i.d. framework.

For each index, set thed-dimensional vector¥; = (F1(X;1),..., Fa(Xiq)) and
Yni = Fna1(Xi1), ..., Fua(Xia)), denoting byFy andF, x the true and the empirical
kth marginal cdf oiX. Obviously, the copul& is the cdf ofY;. The empirical copula process
we consider here is

1 n d
Co(w) = =3 [T 1Rk (X0 <up),

i=1k=1
instead of the “usual” copula process

CHu) = Fn(anl(ul), R and(ud)), Wheranfk(u) = inf{t|Fx () > u}.

It is easy to verify these two empirical processes differ only by the small quantityat
most. Thus, it would not be an hard task to adapt the proofsto

We will assume the law of the vecto¥s has a density with respect to the Lebesgue
measure. By definition the kernel estimator of a copula denstypointu is

1 u-—v 1 " U_Yn,i

whereK is ad-dimensional kernel ankl = 1 (n) is a bandwidth sequence. More precisely,
J K =1,h(n) > 0,andh(n) — Owhem — co.Asusual, we denotk,(-) = K(-/h)/h?.
For convenience, we will assume

Assumption (K). The kernelK is the product ofd univariate even compactly supported
kernelsK,,r =1, ...,d. Itis assumegy -times continuously differentiable.

These assumptions are far from minimal. Particularly, we could consider some multivari-
ate kernels whose support is the whole spgategif they tend to zero “sufficiently quickly”
when their arguments tend to the infinity (for instance, at an exponential rate, like for the
gaussian kernel). Since this speed depends on the behaviowefare rather the simpler
assumption (K).
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As usual, the bandwidth needs to tend to zero not too quick.

Assumption (B0).Whenn tends to the infinityuh¢ — oo, nh**¢ — 0 and

nh3+d/2/(|n2 )32 — .

We have set Inn = In(Inn). Assumption (B0O) can be weakened easily by assuming (K)
with px > 3 (see details in the proofs).
Moreover, a certain amount of regularity ofs necessary, for instance

Assumption (TO0).z(u, 0) and its first two derivatives with respect tioexist and are uni-
formly continuous onV(u;) x V(0p), for every vectoray,, k = 1, ..., m, denoting by
V(ug) (resp.V(6p)) an open neighborhood of; (resp.fp).

In the appendix, we prove:

Theorem 1. Under (K) with px = 3, (B0) and (70), for every m and every vectors
Ui, ..., Uy, in 10, 1[4, such thatr(uy) > O for every kwe have

law

h)Y2((ty = D)(UD). .. (T = D) == N(O. ),
whereX is diagona) and its kth diagonal term isf K 2.2(uy).

Now, imagine we want to build a procedure for a GOF test with some composite zero
assumption. UndetHp, the parametric family i€ = {Cy, 0 € ©}. Assume we have
estimated) consistently by, and

0—0g=0pn?). (2.2)

We denote by (-, 0p) (or simplert when there is no ambiguity) the “true” underlying copula
density. Clearlyz(u, 8) — t(u, 0p) tends to zero quicker than, — 7)(u) under (T0) and
Eq. 2.2). Thus, a simple GOF test may be

m

_ ok N (@ (ug) — Ty, 0))2
- JK? ,;1 (U, 0)

S

Corollary 2. Under the assumptions of Theordrand Eq.(2.2),if t(u, 0) is continuously
differentiable with respect thin a neighborhood o for everyu €10, 1[¢, thenS tends in

law towards a m-dimensional chi-square distribution under the composite zero-assumption
Ho.

We could replace by the convolution oK andt in Theorem 1 and Corollary 2. This
allows to remove the assumptian*t? — 0. Indeed, this assumption prevents us from
using the usual asymptotically optimal bandwidth that minimizes the asymptotic mean
squared error.
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The points(u)k=1....» are chosen arbitrarily. They could be chosen in some particular
areas of thel-dimensional square, where the user seeks a good fit. For instance, for risk
management purposes, it would be fruitful to consider some dependencies in the tails. For
the particular copula familg, it is necessary to specify these areas.

Clearly, the power of thé test depends strongly on the choice of the pojat$i=1... -

This is a bit the same drawback as the choice of cells in the usual GOF chi-square test. With-
outapriori, itisalways possible to choose a uniform grid ofthe typeV, io/N, ..., iz/N),

for every integersy, ..., iz, 1<iy <N — 1. Nonetheless, the numberwill become very

large when the dimensiahincreases.

More seriously, the power of the test will not be very large surely. Actually, the adequacy
of the fit for a finite number of points is not a guarantee for a good adequacy of the whole
copula. That is why we propose another test statistics. This statistics will consider the whole
underlying distribution potentially, and not only of a finite number of points.

3. The main test

Thistestis based on the proximity between the smoothed copula density and the estimated
parametric density. Undéto, they will be near each other. To measure such a proximity,
we will invoke theL? norm. To simplify, denote the estimated paramezt(ic@) density by
7. Consider the statistics

Iy = / (t — Kp + HAWo(U) du,

wherew is a weight function, viz a measurable function fr¢ 1]¢ towardsR*. Note
that we consider the convolution between the kekehndz instead oft itself. This trick
allows to remove a bias term in the limiting behavior&f(see Far{13]). Note that the
expectation of,, («) is different fromKj, * t(u), contrary to the usual i.i.d. density case.
This will complicate slightly the proof.

The minimization of the criteriory, is known to produce consistent estimates in nu-
merous situations. These ideas appear first in the seminal paper of Bickel and Rosenblatt
[5]- They are applied in the usual density case for i.i.d. observations. Rosenblatt [38] ex-
tended the results in a two-dimensional framework and discusses consistency with respect
to several alternatives. Fan [13] extended these works to deal with every choices of the
smoothing parameter. The comparison of some nonparametric statistics-especially non-
parametric regressions- and their model-dependent equivalents has been formalized in a lot
of papers in statistics and econometrics: Hardle and Mammen [26], Zheng [42], Fan and Li
[14], among others.

Similar results have been obtained for dependent processes more recently: Fan and Ullah
[15], Hjellvik et al. [25], Gouriéroux and Tenreiro [22], e.g. For instance, Ait-Sahalia [2]
applies these techniques to find a convenient specification for the dynamics of the short
interest rate. Recently, Gouriéroux and Gagliardini [23] use such a criterion to estimate
possibly infinite dimensional parameters of a copula function, for instance the univariate
function defining an archimedean copula. Instead of for inference purposes, we will use
as a test statistics, like in Fan [13].
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Let us assume that we have found a convenient estimatbr of

Assumption (E). There existd) € R? such that

0 —00=n""A0)"Y_ B0, Yi) +0p(r), (3.1)
i=1

andr, tends to zero quicker thaim/2(In» n) ~1/2 whenn tends to the infinity. Hered (6o)
denotes & x ¢ positive-definite matrix an® (0o, Y) is ag-dimensional random vector.
Moreover,E[B(6o, Y;)] = 0 andE[|| B(6o, Y) %] < oo.

Particularly, under (E)) — 0 = Op(n=Y2). Typically, B(0, -) is a score function. In
SectionD in Appendix A-D we prove these assumptions are satisfied particularly for the
usual semiparametric maximum likelihood estimator whose theoretical properties are de-
tailed in Genest et al. [20] and Chen and Fan [8]. But more general procedures can be used,
like M-estimators.

Assumption (T). For some open neighborhodt0p) of o,

e 7(u, 0) and its first two derivatives with respectfi@xist and are uniformly continuous
on[0, 114 x V(8p), or

e 7(U, 0) and its first two derivatives with respectfi@xist and are uniformly continuous
on[e, 1—¢]¢ x V(0p), for somes > 0, and the support @b is included in(eg, 1 — 9]¢,
for somegg > «.

Whenrt and its derivatives with respect 6fre uniformly bounded of®, 114 x V(6p),
can be chosen arbitrarily. Unfortunately, it is not always the case. For instance, by choosing
a bivariate gaussian copula density. To avoid technical troubles, we reduce the GOF test to
a strict subsample gb, 11¢, sayw’s support.
Assumption (B).nh? — oo andnh*/2/InZn — oo.

n—oo

Actually, the latter condition could be relaxed. Itis sufficient to exgang to higher order
terms. We had chosen the order 4 so that condition (B) is not too strong. But, it is possible
to exchange some degree of regularityKadgainst less constraints on the bandwidth.

Theorem 3. Under assumption®g, (T), (E), (B) and(K) with px = 4, we have

pdr2 <Jn S f K2(t).(zw)(U — ht) dt du
nh

d
1 2 2\ law 2
+E T w.X%fK,)n:goN(O,Za ),
r=

2
02=f12w-/{/K(u)K(u+v)du} av.
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Thus, a test statistics may be

. n2h? (J, — (nh)~1 [ K2(t).(Go) (U — ht) dtdu + (nh)™ [#20. Y0, [ K?)?
2 [P0 [{f KWK (U + V) du}2dv

Corollary 4. Under the assumptions of Theor@ythe previous statisticg tends in law
towards a chi-square distribution.

See the proof in the appendix. Since the kekied even, we can replace the second term
of the previous numerator by the simpler expressigni?)~! [ K2. [ 2w. Moreover, the
third term in the numerator can be replaced by

2 . . 1 A2 2
%Z/ KM K, (1)t — ht)2(u)w(u) dt du — Ezr:/r co-/K,.

This expression is a consequence of the proof, and offers surely a better approximation,
even if it is a bit more complicated.

Moreover, under some additional regularity assumptions, we could replges, inside
T. Indeed, it can be proved the kernel estimator of the density converges uniformly
with respect tau on w’s support at a convenient rate. The proof requires to control the
uniform upper bound of the remainder ter®Rigu), k = 1, 2, 3 that are defined in the proof
of Theoreml. This can be done by applying lemma B1 in Ai [1], e.g. The details are left to
the reader.

Note that our test statistics differs from similar GOF test statistics in an i.i.d. framework
with usual density functions (e.g. Fan [13]). Indeed, there is an additional term

d
(nh)—lf%zw.ZfK,z,
r=1

in 7. This is the price to work with copulas, and to estimate the margins empirically.
Nonetheless, wheti > 2, this additional term is negligible with respect to

(nhd)*lf K2(t).Gw)(u — ht) dt du.

4. A short simulation study

To asses the power of our test statistics, we have led a simple analysis by simulation. We
generate some samples whose copula is the mixture of a bivariate frank’s copula and an
independent copula, viz

Coullts v) = av (1 ; o) n <1 N (exp(—0u) — 1)(exp(—0v) — 1)) ’

exp(—0) — 1
0+#0, ael01].
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More precisely, we generate iid uniform sampl&s 1, U; 2)i=1....2000Nn [0, 1]2. For every
i=1,...,200, we get

Xi1=® (U1 andX; 2 = o7 1(V)),

whereV; satisfiesthe equaligyCy ,(U; 1, Vi) = U, 2. Thus, therandomvecto(¥; 1, X; )
have the desired copula.

We compute the test statistiSsand7 with these data sets. The zero assumption is: “the
true underlying copula is Frank’s”. Concerni§gwe choose 81 points on the uniform grid
(i/10, j/10),i,j = 1,...,9. We use the convolution betwe&nand? instead oft itself.
ConcerningS and 7T, the kernel is a sufficiently regular compactly supported kernel, say

15

2 2
K(u) = (16) []@ - ud®1u €10, 1)).
k=1

The bandwidths are chosen by the usual Silverman's[Atlg i = /(63 + 63)/2n~ Y/,

denoting byo—,% the empirical variance of;, x, k = 1, 2. Note that these two variances are
the same in our case because they depend on the sample size only. The weight function
is chosen as(u) = 1(u € [0.01, 0.99]). The parameters of the copulas are estimated by
the usual semiparametric maximum likelihood procedure (see Shi and Louis [40]).

For different values for and 6, we compute the two test statistiSsand 7. We have
made 100 replications for 200 points samples: see Table 1. Whsrezero, we check
the asymptotic level 05 is underestimated by all but one case (thus the test is a bit too
conservative). When increases, the percentages of rejection grow, especially fof the
test. The latter seems to be more powerful tisareven if this advantage weakens when
the copula is more and more far from the Frank’s copula (viz when the zero assumption is
more and more false). Moreover, the reported powers are higher and highef iglarger
and larger, because the corresponding Frank’s copula (and its mixture with the independent
copula) becomes far away from the independent one.

Whenu is near 1, note that the power is very weak. In such a case, the underlying copula
is “almost” the independent copula. Since the latter belongs to the boundary of the Frank’s
family (when leaving) to tend to zero), it is doubtful the estimatdsatisfies assumption
(E) (e.g. cf. Andrews [4]). Moreover, the estimation of an “almost discontinuous” function
7 near the boundaries ¢, 1]2 induces some non-standard limit laws, especially biases.
Even if we have restricted ourselves into the interior of the unit square by the fumgtion
there may be a practical issue with the (small) samples we have considered. Thus, in such
a case, the results cannot be easily interpreted.

Globally, these partial results are very convincing. Particularly, with very small sample
sizes, the power of the te§tis far from ridiculous even when the proportion of perturbation
is weak. Our results seem to be better than those reported by the test 1 proposed by Chen et
al. [9]. In the latter case, the powers are near zero when the sample size is not greater than
500 for every level of perturbation (but with a different model). Nonetheless, our results
need to be completed by a more in depth simulation study.
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Table 1
Percentages of rejection at 5% level witk= 200 and 100 replications

% of noise Parameter % of rejection % of rejection
o 0 (testS) (testT)
5 0 2
10 0 0
0.0 15 0 1
20 0 1
25 0 8
5 0 0
10 0 0
0.1 15 0 7
20 0 22
25 0 60
5 1 1
10 1 5
0.2 15 3 36
20 17 80
25 31 95
5 3 3
10 13 21
0.3 15 18 67
20 57 95
25 84 100
5 7 12
10 19 33
0.5 15 58 71
20 89 98
25 95 100
5 2 1
10 3 0
0.9 15 6 0
20 2 2
25 37 3
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AppendixA.. Proof of Theorem 1

We will prove that the behavior af, (u) is the same as the behavior of

THU) = n_lz Kp(u—Y;),

i=1
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for everyu. Indeed,

. (_1) n
T(U) = T (W + = (@KU =Y (Yai = i)

i=1

+52 Z(de)hw =Y (Y = YD)?

? Z(d3K)h(u Y5 (Y = Y)®
i=1

= 7, (U) + R1(u) + R2(u) + R3(u),
for some random vector sat|sfy|ng||Y;’; ;= Yill<IYni —Yil ae.

Let us first studyRr1 (u). Its expectation m(n‘lh‘l). Moreover,

2 1
E[RT(W)] = 2,2 ZE[(dK)h(U =Y  Ypi =Yi) - (dK)p(U =Y ;) - (Ynj = Y)]

= Z ZE[(dK)h(u S ALY - Y
i,j

'(dK)h(U =Y QANY<Y) =Yl

We will denote byl(y <u) ad-dimensional vector whodeh component id(yx <uy). The
expectations of the summands are zero, except if there are some equalities inka@lmihg
|. For instance, assunte= [ # i # j. Let us note that

E[@dK)p(u—Y,) - AY;<Y) =Y)IY; =yi]
= f @K)n(u—v) - (Ly; <V) = V)2(V) dV

d
=Y [ @ROW) - A <y = ) =y 4+ o)z = ) v

d
-y f @ K)V) - (L0r <ty — yi)/B) — ey + hop) (1) + B (U, V) v,

whereys is a bounded compactly supported function, fosufficiently large. Since we
assume is the product of some univariate kerndls, r =1, ..., d, we get

E[@dK)p(U—=Y ;) - (LY; <Y ;) =Y pIY;: =yl
d

— W)Y K, (”
r=1

for every coupldi, j) withi # j, where¢ is bounded, compactly supported and indepen-
dent ofy;. Thus, the corresponding term E{R%(u)] is

nh2 IT(U) 2 Kr (

! _hy"”) + O(h) - p(u), (A1)

) + O(h)d)(u)}
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h

1 U, — Uy —
L TZ(U):ZKr< hy>K( hy) s

r#S

X {r(u) DK (” — ys) + 0(h>¢>(u>} t(yn)t(y2) dy

+ Z K} (” ;y) dyr} +om™ Y = 0(%) = o~ h™%),

by some usual changes of variables with respegt Bindy,. The other equalities between
i, j, k andl provide a similar conclusion. Thus, the varianceRafu) is o(n 1A ~4), and
R1(U) = 0op(1/+/nh?).

The study ofR»(u) is similar. We get by the same methadR»(u)] = O(n~1h—2) and
E[R3(u)] = O(n~2h~*), henceRy(u) = op(1/+v/nhd). Since,

Inon 12
”Yn,i - Yi”oo = Op n s (A-2)

we deduce directlyRz(u) = Op(h—39n=%/2, Ing/zn), which is op(n=Y2p=4/2 if
nh3+4/2/1n3/? 5 tends to the infinity when — oo. Thus, under our assumptions,

1
T,(U) = 7, (U) + op <—> :
v nhd
Moreover, Bosq and Lecoutrd8] theorem VII1.2 provides the asymptotic normality of
the joint vector(nh?)Y2((¢X — t)(uy), ..., (t¥ — 7)(Uy)). This concludes the proof.0]

AppendixB.. Proof of Theorem 3

Clearly,

Jy = / (th — Kj, * D)2(W)w(U) du
= /(r,, — Et)?w+ 2/@,, — E1,)(U) - (ETy — Kjp % D) (Wo(U) du

—i—/(Ern — Kp * %)Za) = /(’L’n - Ern)zw—i— 25+ . (B.1)
The main term of/,, will be

n 2
/(‘cn — Et,)%0 = 1/ (Z Kn(U—Y,:) — EKj(u — Ym»)) o(u) du
n i=1

l n
= ﬁ Z / (Kh(u - Yn,i) - EKh(U - Yn,i)) ' (Kh(u - Yn,j)
ij=1
—EKp(U—Ypy j))o(u)du

*
Jil
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Thus,
* 1 . 2
Sy == Z a, ;® v Z Qp,iGy,jO = J J (B.2)
n i=1 i<j

where we have set

ani(UW) = Kp(U—Yy ;) — EKp(U—Yy).
Intuitively, a,, ; (u) is close taz; (u) = Kp(u —Y;) — EK,(u—Y;). For technical reasons,
we will need to expand the difference between the two latter terms up to the fourth order,
viz

an,i(u) —a;(u) = bn,i(u) + Cn,i(u) + dn,i(u) + en,i(u)a

1

bn,i(u) = (_T [(dK)h(U -Y)- (Yn,i —Y;)—EK),(u—Y;)- (Yn,i _ Yz)] ,
Cp i (U)
= gz [ =Y0) - (Vs =Y)® = E@K)u=Y) - (Y = YD |
dy i (U)
_ (_l) 3 (3) 3 ' (3)
~ e [(d KU =Y - (Yoi =YD = E@K)pU—=Yi) - (Yoi—=Yi) ] ,
en,i(u)
24h4 [(d4K)h(u — Y>I< ) (Yn l_Y )(4) E(d4K)h(u _ Y* ) (Yn l_Y )(4)]

for someYj;i that lies betweely; andY,; a.e. Most of the sums involving the previous
terms will be negligible with respect tg/tzh?/?).
B.1. Study of/,

Now

;:,2 = ZZ/ at+bnl+cnz+dnz+enl][a1 +bn]+cn]+dnj+enj]

<Jj

nZZ/ata]w+ ZZ/(al n,j +aj nz)w+

i<j i<j
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From Hall[24], it is known that

nhd/z ! /a-a‘wla—u; !
i<j i 2\/2

2
az=f12w/ U K(u)K(u+v)du} av.

Therefore, the main term of*, seems to be of orded (n~*2~4/2). We will check it by
studying the terms of the expansionjf, successively.

N(0, 62), (B.3)

2 n?

B.1.1. Studyofy, =222, _; [aib, jo
Note that the expectation @}, is not zero, because sor¥igappears insida,_;, for every
j. For convenience, set

-1 & _
by, j(U) = % > by (W), with
k=1

by jx(U) = (dK)p(u—=Y ;) (AYr<Y) —Y))
—E[dK)p(u—Y;) - (AYr<Y ) =Y )l

Moreover,
_2 n
= () S [t
i<j k=1
) i
= (@)Z X [absor X a0+ T [abuo
i<j ki k#j i<j i<j

=10 + 1,2 + 1,%.

First, let us stud;Ta(s). Its expectation is zero. Its variance is

E[(T,%)?]
4
=57 O D / Elaiy(U)by 1. jo (Ui, U2)by . j»(U2) (U@ (U2) du1 dup
i1<j1 i2<j2
4 @ yd
= 62 ) + > =Vi1t+ Va2

i1<j1,i2=i1,j2=j1  i1<j1,i2=]1,j2=i1
The first of these terms is
@ _ _4 ,
Va1 = WZ/ {Kh(ul_yl) _fK(V)T(Ul—hV)dV}

i<j

: {Kh(UZ—Yi)—/K(V)T(UZ—hV)dV}
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AW@K)pur—yj) - A=y;) — E[dK)pur —Y) - (1—Y)]}
AdK)n(uz —y;) - (1—y;)
—E[(dK)p(U2 =Y) - (L =Y)]}r(y)t(y)oUn)w(uz) durduz dy; dy;.

The “hardest” term among the latter ones is
4 1
2 Z f Kp(ur —y) Kp(u2 —y)(dK)p(ur —y;) - (1 =Yy;) - (dK)p(u2 —y;)

i<j

‘(L—y;) - t(y)T(y)o(Unw(uz) dy; ¥ duydu;
4
— iz 2 | KOOK @2+ 9)@KIG) - (L= U +53)

i<j
(dK)(U2+Y;) - (1 —ug+hy;)t(Us — hyi)t(Us — hY;)
xw(Up)w(Uy + hlz) dy; dy; duy dlp.

SinceK is compactly supported, clearly, we can assume every variable belongs to some
compact real subset. Thus, the latter term is of ordén=2=7. Itis o(n~=2h~9) sincenh
tends to the infinity whem is large. The seven other terms %ﬁ) can be dealt similarly.

Actually, they are even of a weaker order (we win an extra factprMoreover,

4
V2 = me {Kh(ul—)/i)—/K(V)T(Ul—hv)dv}
i<j
: {Kh(UZ—y]')—/K(V)‘E(Uz—hv)dv}
A@K)n (U1 = y) - (A= y) — E[@K)p(us = Y) - (1= )]}

A@dK)p(uz —yj)-(1-y))
—E[(dK)p(uz = Y) - (1= Y)]} t(y)(y)w(u)w(uz) duyduz dy; dy;.

Working exactly likeV,>, we can show/,3 = 0 (n~*h~2~%). Thus, we have proved that

1
@ _
T,” =op (nhd/2> .

Second, let us study“(z). Recall that

—2
72 = (ﬁ) > / ai(W(@K)y(u =Y ;) - (LY, <Y;) = Y Ho(u) du.

i<j

The expectation of this term is not zero. By applying Eq1j, we obtain

E[T?] = (;—;) <1— 711) / E |:(Kh(u — Y1) — E[Kn(U—Y)])

d
. (f(u) Z K, (—” _hyl”) + O(h)qS(u))} o) du
r=1
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-1 1 r— Yr
_ & )<1——) {/(Kh(u—y) [Kh<u—Y>])Kr<” y)
nh h

- 2(y)t(Ww(u) dudy + O(h)} () kaz fr w+0n?t

Note we have used the fact that the density,ofs uniform on[0, 1].

The order of the expectation @12 is then(nh)~L. Unfortunately, it is nob(1/nh?/2)
whend = 2. Nonetheless, its variance will be small enough so that we can consider this
term is reduced to its expectation. Indeed,

Var(T,?)
4
=gz Y[ Bl @K - Y A< Y
11<J1,12<]2
“ai,(U2) - (dK)p(uz =Y j5) - (LY, <Y ) — Y )
_E[ail (ul)bn,jl,il (ul)] ' E[aiz(UZ)bn,jz,iz (UZ)]]
xw(Up)w(U2) dug duy

-l Y o+ Y o+ Y o+ X

i1<j1,i2<jo,i1=iz2 i1<j1,i2<jo,i1=j2 1<j1,i2<j2,j1=i2 i1<j1,i2<j2,j1=j2

=v@+v3+vE+va.

Let us study the first of the previous terms.

4
VA= o[-y - [ KO- nay

i1<j1,i1<J2
: {Kh(uz —VYi) — / K (t)t(uz — ht) dt}
AWdK) () - (AYi, <UL — hYj) — (U — h¥ )}
AdK)(Y},) - (AYiy <U2 — hYj,) — (U2 — h¥j,))}
xt(Yi)T(Ug — hYjy)t(U2 — hYj,)

1 n?
w(ul)w(uZ)dulduzdyjldyjz+0( 6,2 hd)

The remainder term corresponds to the case i2, j1 = j2. The main previous term of
V(z) can be expressed as a sum of four terms. The first one involves the fgtor —
y,l) Kp(uz2 —yi,). The second (resp. the third) one involves the fa&ipfu, — y;,) (resp.
K;(uz — yi,)) only. The last one has no such factor (viz no more denominatofs.
If necessary, we can set one or two changes of variables ampng (ur — yi,)/ 4,
iy = (U2 —y;)/horlz = (uz — up)/h. It allows to clear all the factors—“. Thus we
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get easily,

1 1 1
@ _ 3 _
Vi1 =0 <n6h2 n ) +0 (n4h2+d) =0 <n2hd> : (B4)

sincenhtends to the infinity. The three other termaéz), [ = 2, 3,4 can be dealt similarly,
because there exist always four free variabigs > and three ones amorig, i2, j1, j2)
that can be used for some change of variables. Like previously, all the factbdisappear.
To concludeV,? = 0(1/(n3h?) + 1/(n*h2+?)), and

1 (=D
@ @ 2
7% = ET® + P(nhd/2> / § /K +0p< hd/2>

Now, let us deal withr(l). Recall that

o (- Z)Z Z [a, 0.

i<j kk#ik#j

CIearIy,T(l) is centered. Moreover, its variance is

) 1= Y Y Y %

i1<j1i2<j2 k1#i1, j1 k2#i2, j2

XE/ (airbn, juky) (U1) - (@ipbn, jok,) (U2) 0 (U1)(U2) dU1 dU.

A lot of the latter terms are zero. The only nonzero terms appear in the following cases:
(ky = iz andkz = i1), (ky = kz andiy = ip), (k1 = i2, k2 = j1 andiy = j2), (k1 = j2,
ko =iy andiz = j1), (k1 = j2, k2 = j1 andiy = ip), (k1 = k2, i1 = jz andiz = j1).

Thus, the variance oTx(l) is the sum of six terms, denoted b;éll) [ =1,...,6.
Assuming that there are no other equalities exéept i> andky = il; the first variance
term is

b= t% /{Kh(ul—yil)—/K(t)f(ul—ht)dt}

i1,02,11702

Ky (U2 = Yip) — / K(t)t(uz — ht) dt}

r(ul)ZK ( - ) + 0(h)¢<u1>}

7(Up) Z K, ( 2 ’”) + O(h)¢>(uz)} (Vi) (i)
xw(ul)w(uz) dyi, dyi, duy dus.
This sum can be splitinto 16 other terms. The main one is

: Ul — Yior
mZZ/Kh(ul_yil)Kh(Uz—yiz)T(ul)Kr (l”TyZ)

r.s iq,ip
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U2y — Yiys
T(U2) Ky % T(Yip)T(Yip ) w(U1)w(Uz) dYi, dYi, dui dup

—uzr + hyiy
= a2 ZZ/K(yzl)K(ylz)r(ul)K (%)

s 11,12
Ui +hy; B B
(U)K, (%) (U2 — h¥iy) (U1 — Y, (Uy)
xw(Uz) dy;, dy;, duy dup

If r #£ s, set the change of variabl@s, = (u1, — uz,)/h andiiyy = (w1, — u2s)/ h to get
an extra factok?. If r = s, we obtain only one factdr. Thus, the previous variance term
isOm*h=2.n2.-h)=0m2hY). Thisiso(n=2n=9).

Imagine we have some other equalities between the indicés j1, j2, k1 andkz in
v;”. For instancej; = j2. This would not be a problem because we gain a factand
we can always remove the annoying fadior’ by some change of variables with respect
to ug, Uz and the variableg. Thus, we get the orde? (n %12 - n3) = o(n=2h~9).

The 15 other terms that are coming from the expansiovra(ﬂff can be dealt similarly.
Thus,V,} = o(n=2n~9).

Another critical term should be

e LYy Y | Bt powo @b o)

i<jri<jek.k#i, j1.j2
xw(Ur)w(U2) du dua.

Sincek is different from all other indices, this equals

NN

1<j11<jJ2

{Kh<u1—yi>—fK(t)r(ul—hwdt} - {Kh(uz—yi)—/K(t)f(uz_ht)dt}

(dK)p(U1 = Yj) - (AYe<Yjy) —Yju) - @K)p(U2 = Yj) - (LY <Yjo) —Yjp)
(Y)Y )T )TV oD w(U) dy; dyj, dYj, dyr duy dup

4
=W2 Z/{K(Y/i)—h"/K(t)r(ul—ht)dt}
i k

Kn(Uz — U1 + h¥i) — / K(t)r(uz — ht)dt}

7(uy) Z ( ) + 0(h)¢<u1>}
7(U2) Z ( ) + O(h)¢(uz)}

(U — hyz)f(yk)w(ul)w(uz) dy; dyy duy dua.
We have assumed there are no additional equalities betiyvggnj,. By settinghlly, =
uz — u1, we remove the factok—?. Moreover, by settingiiiy,, = u1, — yir, we get an
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extra factoh. Thus, the term if of orde© (n=*h =2 - n? - h) = o(n~2h~%). When there are
some other equalities between the other indicgs and j», we gain a facton even if we
lose eventually a factor?. In every case, the order of these terms is lower thagh .
Therefore V(l) =o(n2h9).

All the other termsvogll), [ =3,...,6 are simpler. Indeed, with respect\t’éll), there is
an additional equality between the indices. At the opposite, it should be harder to remove
all the four termsi—¢. Actually, it can be done at least three times over four, because there
are always two free variablgs(at least), and we haug or uy at our disposal too. Thus,
all these terms ar®@ (n =812 - n3h~?) = o(n—2h~4) sincenh? tends to the infinity.

Therefore, the variance dfofl) is negligible with respect ta =24~ and Ta(l) = op
(1/(nh?/?)). To conclude,

_ = 1)/ Z/KZ—I—op( hd/2> (B.5)

B.1.2. Study OT/; =2n"? Zi</ bn,iby,jo
Note that '

Ty = n4h222/{<d1f)h(u—v> A <Y = Vi)

i<j k,k'
—E[dK)p(u—=Y;) - AYe<Y) =YD}
AR RU =Y ) - AYe<Y;)) = Y;) = E[(dK)p(u—Y)
~(ANYp <Y) =Y Hlio) du.

The latter term needs to be considered with respect to the potential number of equalities
between the indices j, k, k'
No equalities between j, k, k' : Tlgl)
Thus, the expectation of the corresponding term is zero. Moreover, its variance is

ngihll X2 > ) E / (KU = Yiy) - (1Y i <Yiy) = Yiy)

i1<J1 i2<]2 kiF#kjF#i1.j1 koF#ky#io. j2
(dK)p(up =Y - (]-(Yk’1 <Y) =Y - @dK)p(U2—=Y,) - (MY, <Yi) —Yi,)
(dK)p(Uu2 =Y ;) - (1(Yk’2 <Yj,) =Y j)w(Uu)w(uz) dug dus.

The expectations are zero, except if there are some equalities between our eight indices.
More precisely, the equalities have to concern all the indiges, k2, k5, otherwise the
corresponding term is zero. This provides the following cases:

k1 = ko andk} = k5,

k1= k/2 andk/l = ko,

ki =iz, k2 = i1, k} = k, or their variations,

ky =iz, k} = jo, k2 = i1, k; = j1, or their variations.
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The corresponding variances are call!é#;, j = 1,...,4. Let us deal with the first
configuration. It provides the “variance-type” term

4
a2 2 2 F f (dK)n(u1 = Yip) - Ak <Yi) = Yi) dK)p(us = Y j;)
i1<j1 i2<jo k#k'
ANV <Y ) = Y ) EK)n(Uz = Yi) - (LY <Yi) = Vi)
x(dK)p(Uz2 =Y j,) - (A <Y j,) = Y j)w(up)w(uz) dul duz

d
S0 3 30 3 [ E A Co PR
r=1

i1<j1 i2<j2 k#k'

d
j— Iyt
WD Y Ky <%Tk> + O(h)qb(ul)}

r'=1

d _—
wU2) Y K, (“‘T"> + O(h)¢(uz)}
s=1

d
s — Y It
(Up) Y Ky <“ZT’<) + O(h)¢(uz)} w(Up)m(Uz) duy dUs.
=1

The main member of the previous expansion is

4 ~ Yir v = Yoy
X XY Y [ ek () k()

i1<j1 i2<j2 k#k' r,r',s,s’

—Y, 1 — Yo
(U)K, (“ZT") Ky (”Tk) w(Upw(Uz) duy du,.

The “worse” situation occurs when= s andr’ = s’. In this case, we get

4 Ulr — Ykr Uy — Yr'r'
o 2 D Zfrz(ul)lo( . )K( : >r2<uz)

i1<j1 i2<j2 k#k'

uzr — Yk uger — Yi'r!
K, < 4 h r) Kr’( 4 h 4 )Tr(ykr)fr’(yk’r’)

xm(Up)w(Up) duy dup dyk, dyg,
4 ~ ~ Ugr —u1 +hy
- W Z Z ZfTz(ul)Kr(ykr)Kr/(yk/r/)fz(UZ)Kr (lTykr)

i1<j1 i2<j2 k#k'

h
xw(Up)w(Uz) duy duz dyi, dyi,.

Uz — uy + hypy - -
Ky ( - 4 - )Tr(ulr — Wy )T (g — hypr)
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By settinghiio, = up- — u1,, we get an extra factdr. The previous variance term is then
O(n=8h~t-n®) = 0(n?h™4). Thus, V) = o(n=?h~7).
The variance term/lgl) corresponding to the cage = k, andk] = k2 can be dealt

exactly asvfgll) The third one Vlﬁlg), is

8h4 oy Z / (dK)(u1 = Yi) - (WY 5, <Yip) = Yi) (dK)n(uz = Y jy)

ll<.]1 12<.]2
(1(Yk <Y11) - jl)(dK)h(uz - iz) . (1(Y11 <Yi2) - iz)
(dK)p(U2 =Y ) - (LY <Y j,) = Y j)w(up)w(uz) duy duy.

It can be bounded easny/(l) 0(1/(n8h% - n®) = o(1/(n%h?)), sincenh? tends to the
infinity whenn s large.

V(l) and the other variance terms that are obtained by adding some equalities between
the |nd|ces can be dealt similarly. All of them provide negligible terms. To conclude,

1
1 _
T/g =op (nhd/z).

Only the equalityk = k’: T/;Z)
We get

2 2
T[)E ' = A2 Z k;' /(dK)h(U =Yi) - (AYe<Y) = Y)AK)p(Uu =Y ;)
i<j i, ]
S(AYr<Y;) =Y Ho(u) du.

Its expectation is nonzero. More precisely,

W EED WA

i<j k#i,j

~{r(u)z <
s A DPID DI M BTl

r#s i<j k#FLj o T=S <] kL)

_ @ 2 -2
= Eﬁ1+Eﬁ2+0(n ).

> + O(h)¢(u)}

) + O(h)¢(u)} w(u) du

By settinghyy, = u, — yir andhygs = us — yis, We get easily

@ _ 1 3 5\
Eﬁ’1_0<n4h2.n ~h)—0(n ).
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ConcerningEéz)l, one change of variables only is possible. It provides

d
2 2 Uy — Ykr
Efy= 2350, 2.2 / (UK ? (T) oW1y € [0, 1]) dudye

i<j k#i,j r=1

2 nn-1 d
— W.T.(n—Z){;_l/Kf./fzw}
1 1
E Er /\K,?[TZQ)+0(E)7

for n sufficiently large. Therefore, the expectation f is noto(n—th=%/?) (in the case
d = 2). Let us deal now with its variance. To lighten the notations, we set
eo(U) = E[(dK)p(Uu—Y1) - (1(Y3<Y1) — Y1)
“@dK)p(Uu—=Y2) - (L(Y3<Y2) —Y2)I.

Therefore,

4
Var(Tlgz)) _ ot Z Z Z E/{(dK)h(Ul—Yil)

i1<j1,i2<j2 ka#i1, j1 ka#i2, j2

ANV <Yi) = Yiy)

(dE)p(U1 =Y ) (LY, <Yjp) = Yj) —eo(Up)}

AWK (U2 = Yi) - AV, <Yip) — Yip)

S dK)p(U2 =Y ) - (LY, <Y jp) — Y j) —eo(U2)})

xw(Ur)w(U2) du dua.
When there are no equalities between the indige$, k1, iz, j2, k2, the corresponding
expectation is zero. At the opposite, there could be one, two or three equalities between
them. In every case, it is always possible to make some changes of variables with respect

toy;, andy;,. Moreover, it is possible to séfi; = u, — ug, as previously. Thus, it is easy
to check that

1
@y _ 5, 4p—d\\ _  ,—25—d
Var(Tﬁ )_O<W-(n +n"h ))_o(n h™).
Thus,

2 1 1,
ng)z EZ/KE/TZCU+OP(H Lp=di2y,

Only the equalitk =i orj (ork’ =i orj): Tés)
The expectation is zero and the variance can be dealt exactly as in the latter case.
Two equalities, or more, between the indicﬁé‘!)

To fix the ideas, imagine there are two equalities between our four indices. It means
i = kandj = k/, or the reverse. It is obvious to bound the expectatiorTﬁf by
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O(n~*h=2.n?) = o(n~1h~9/2). Moreover, the variance is cleary(n—8n=* . n* . h=9),
by the same calculations as previously. Thl)lg,) is negligible with respect ta—1h~4/2,
in probability.

To conclude,

1
= —hZ/KrZ/rzw+0p(n_1h_d/2). (B.6)
n

B.1.3. Study on2)", _; aic, jw and2n =2y, i aid, jo
To deal with these two terms S|multaneously, denote

Tn = o 3 > [tk — v~ - v)

i<j ki,....km
A@" KU =Y;) (WY, <Y;) =Y (A, <Y;) = Y))
—E[(d"K)p(u—=Y;)- (LY <Y;) = Y;)--- (1Y, <Y )Hljo(u) du,

for m = 2,3. All the summands are centered, except when there are some equalities
involving all the indicesy, . . ., k,, andi (at least). By splittindr;, ,,, we get several terms.

If all the previous indices, j, k1, ..., k, are different from each other, the expectation is
zero and the variance is

VV(}% - 4+2mth Z Z Z Z

i1<j1 i2<j2 ki.ookim K. k),
E f{Kh(Ul —Yi) — EKp(U1 — Yi)} - {Kn(u2 — Yi, — EKp(u2 — Yiy)}

A@"K)pu1 =Y ) - AV <Yj) = Yj) oo ANVk, <Y j) = Y}
A@" KUz =Y j) - (Y <Y jp) = Yjp) .. (A(Y i, <Y i) = Y )}
xm(Up)w(U2) duy duy.

The corresponding terms are zero except when there are some equalities involving all the
indicesky, ..., kn, ki, ..., k,, andiy, i>. There are at least + 1 equalities. Moreover,

there are always three “free” random variables at least, viz three integrations with respect
to somey are available. It is possible to gain another fadtbiby the change of variables

hlia = uz — ug. Thus, in every case,

@ _ 1 442m—(m+1) | __ 1
Vim =0 (n4+2mh2m N =0\t )

This quantity iso(n=2h~4) whenm = 2, 3 sincenh? tends to the infinity when — oo.
Imagine now there are some identities between the indicg1, .. ., k,. The expec-
tation of the corresponding term is zero, except if these equalities involyeall . . , &,
Whenm = 2 (resp.n = 3), two equalities at least are necessary. This implies the expec-
tation isO(n=2""h~"n™) = O(n"2h~"™) = o(n~Lh~%/2). Moreover, its variance can be
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dealt exactly Iike\@f},ﬁ. Thus, we have proved that, when= 2, 3,

1
Tom =or parz )

B.1.4. Study 02n 2"
same type.
To deal with these terms simultaneously, denote

CniCn, j®, 202y _: cn.iby, jo» and the other terms of the

i<j i<j

Ts.m,p

= W oY /{(d'"K)hw Y)Y <Y) = Y))
i<j Kok 11,00l
(MY, <Y) =Y — E[@"K)p(u—=Y))
ANV <Y) =Y. ANV, <Y )1
{@P KU =Y ) - (Y <Y ) = Yj) . (AY, <Y ) = Y))
— E[d”K)p(u—Y ;) - AY <Y ) = Y)) ... (Y, <Y Hlou) du,

formandl = 1,2, 3, m + p>3. All the summands are centered, except when there are
some equalities involving all the indices, . . ., k,, andly, ..., I, (at least) .

Imagine we are dealing with all the terms of the previous sum corresponding to differ-
ent indices. Thus the expectation is zero and the variance is a sum eve(#4 + p)
indices (denoted by, i2, j1, jo, k1. k. ... k. ky,, 11,15, ..., 1, I}, with obvious nota-
tions). Nonzero terms occurs when all the’, [ and/’ indices are matched. At least, this
providesm + p equalities. Moreover, there are always three opportunities to make some
usual changes of variables and to remove the faétbrgvhen this factor appears, it means
we have an additional equality involvirigor j indices. Thus, we win an extra factar
Therefore, the variance is

1 4+m+p 3+m+py,—d

In every case, this is(n—2h~9).

Now, imagine there are some equalities betwiegnky, . .., ky, I1, ..., 1,. The variance
of such a term can be dealt as previously. It is sufficient to verify that its expectation is
negligible. This expectation is a sum of terms that are nonzero only if there are some
equalities involvingks, . .., kw, [1, ..., [,. If m + p is even, there are at least + p)/2
equalities. Ifm + p is odd, there are at leagin + p)/2] + 1 equalities. In every case, the
factorsh? disappear by some changes of variables with respggtaody ;. Tosummarize,
this expectation i) (n =" +P)/2p=m=p) (resp.0 (n 1" +P/2=1p=m=p)Yif m + p is even
(resp. odd). These terms arér~1h=4/2) if nh® — oco.

Thus

1
Tomp=or <m) ~
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B.1.5. Study of the remainder terms
These terms are likei22 Y a;e, jo.Actually, every term that involves, ; is negligi-

i<j

ble. For instance,
Cst n? In2n
_2 4 2
2n Z dijep, j gm hd SUp”Yn j Y/”OO = OP <nzh—4+d) .
i<j
This term isop (n~1h~4/2) under (B). Thus, we have got

V2 1
n2 = hd/zN +2T1+Tﬁ+0})< hd/2)

hd/z L& 1)/r o. Z/K2+0p< hd/Z) (B.7)

whereN, tends in law towards a gaussian i(0, ¢2).
B.2. Study of/",

With the previous notations

:,12,122/[1 a)_ /[al+bnl+cn,]w

= Z / [a? + b2, + (c:;,i)2 + 2aiby i + 2by i + 2aic o,
i

where the expansion &f has been stopped at the second order. We denote

{(d2K>h(u YiD-(Yni = YDP — E[(d®K)p(u =Y} )

n,i

C:,i (u) = 2h2

- (Yni = YDPY
1 Inon
= Op <h‘1+2 SUp”Yni—Y I ) Op (W)

Therefore, it is easy to bounfa; ¢’ e | b, i, andf(cj;’i)zw.Allthe corresponding
terms inJ,"; are negligible if

3/2 2

Inon In; InSn 1
n2pd+2 n5/2hd+3 + n3pd+4 < nhd2’

This is satisfied under condition (B). The main ternypf, is provided by/ aizco. Note that

E%Zfazw - /K (HEo)U— It dt+ 0m ™)

:nhd[ /“"+0< hd>
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sinceK is even. Moreover, the variance is

1 2
vV = FEZ/ |:{Kh(u1—Y,~) —/K(t)r(ul—ht)dt}
2¥)
—E{Kp(ui —Y;) — / K(t)t(ug — ht)dt}z}
2
. [{Kh(uz -Y) —/K(t)r(uz—ht)dt}
2
— E {Kh(uZ -Y)) —/K(t)v:(uz —ht)dt} :| w(Uup)w(uz) dug dus.

The nonzero terms are obtained wthiea j. By the change of variablds/; = u; —y; and
hil; = Up — Uy, itis easy to verify thaV = O(n=3-h=2?). Thus, sinceth? — oo, we get

iz Z/a,?w = % / K2(t)(tw)(U — ht) dt + op(n~th~9/?).
n N n

Let us consider now = n—2 Y [aib, ;. Its expectation is
i

E |:n22/a,~bn,,~w:| =n*l/E[a1bn,1]a)

-1
= (nzh) {Kh(u -y) - / K(t)t(u — ht)dt}
1
= ;hlid /{K(W /K(t)r(u — ht)dt} - (dK)(V) - (L—u— hv)

(U — hvV)o(u) dvdu 4+ O(n~h™Y).

Thus, this expectation is(n 1 ~/2). Moreover, its variance is

1
Var(T) = ZE} / a; (U1)a; (Uz)by i (U1, j (Uz) (U1 (Up) dUy duz — E[T]?
iJ

1
= F / a1(U1)a1(uz)b, 1(U)by 1(U2) (U w(Up) dug duy — E[T]?

1
= mE / ai1(Up)ai1(U2)(dK)p(Ur — Y1) - (Yp1— Y1)

(dK)p (U2 = Y1) - (Yn1 — YDoUDo(U2) dug duz + O (n~*h 2720,
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Invoking an a.e. upper bound for the empirical process, we get

1
Var(T) < WE/ laz(un)az(u)| - [[(dK)nll5, (s — Y1) - [(dK)plloo(Uz = Y1)

1 Cst 1 In2n
Y1 = Yilleow(Up)w(U2) dup duz + O <n4h2+2"> < B2 nd

The latter upper bound is(n 24 ~¢). Thus, we have provefl = op(n~1h=%/2).
It remains to deal with—2 > fbiia). By a change of variable with respectupwe

get directly the upper bound
1 1 Inon
-2 2 —1;—d/2
n Ei /bn’ico = Op (nh2 T, ) =op(n "h ),

if nh?+4/2/In,n — oo. The latter condition could be relaxed by a more cautious analysis
of the latter term, as done previously. It is useless, facing the set of technical assumptions
we have already done. To conclude,

1 1
Jiy = —3 K2(t)(tw)(u — ht) dt + op (W) . (B.8)

B.3. Study of/,
Recall that

Ji = /(rn —Et,) - (Et, — Kj, * T)w, and

T,(U) — ET,(U) = n1 Z /[ai(u) + bj,,-(u)]w(u)du, with

-1
nh

—E[@K)p(u—=Yy ) (Yni =YD},
I1Y;; = Yill <IYni—Yilla.e. Thus,

by (U) = Y @KU = Y5 ) - (Yui = Yi)
i=1

for some random variablé¢*

n,i’

1

1
Ji = / {r_z Z[ai () + b:,i(u)]} AEB; (W) — Ky % (T —1)(U)} o(u) du
= 1 Z/(li (WKp * (T — 1) (Ww(u)du + 1 Z/ai(U)EﬁZ (W) du
n < n 2 ’

+% Z/b;,.(u)lg, % (T — 2)(UW)o(U) du + % Z/b;,.(u)Eﬁ;i(u)w(u)du

=12 +5P+ 12+ 59,
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by denoting

-1
Bri(w) = %(dK)h(U = Yni) Vi =Y.

Clearly,

2(U) — t(u) = dg(u, ) - (0 — Oo) + 27 25(u, D)
(0 - 00)?, (B.9)

for somed), |0 — 0o]| < |10 — 0ol a.e. Implicitly,0 depends om.

B.3.1. Study ofl(o)
Note that

JI(O) =nt Z / a; (WK V)(t —7)(u— hv)w(u) dudv
i—1
= ”_12 / ai (U)K (V)3gt(u — hv, Op) - (0 — Op)w(u) du dv
i=1

+@m Tty / ai (WK Ve —hv, 0) - (0 — 00 Pow dudv = 19 + 79
i=1

Actually, the latter random quantifydepends on — hv. The first previous terml(ﬁ) canbe

dealt exactly as in Fg3]. This author has assuméds the maximum likelihood estimator
of 0, which impliesB(0p, Y;) is a score function. Actually, by reading carefully her proof,
we notice we need onlB (0o, Y;) is centered and belongs itf, viz our assumption (E).

Thus,J,(g) = Op(n~1). Moreover, by some change of variables,

Cst - . ~
121< =~ Z/ K@K IW)I957(Y; — b — hv, D)
i=1

o(Y; — hi)ydidv - [0 — 0o)%
To bound the previous right hand side, we could assume
E [ sup ||651(Yi —u, 0| - |ol(Y; — v)} < o00. (B.10)
{Wv.0)lull+lIvI < 2k, 1000l < }

This assumption is satisfied under the stronger condition (T)) fufficiently large.
Thus, underB.10), we get]ﬁ% = 0p(|0 — 0012 = Op(n~Y).

B.3.2. Study of,?
b = (;—hl) Z / ai(WELdK)p(U—Y5) - (Yo — Y o) du.
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Clearly, this term is centered. By a limited expansioKaip to thepth order, we prove that

1 1 [ (p+1)/2
E[(dK)(u— Y;k) “Yni —=Y)]l=0 (; + W . (%) ) . (B.11)

The latter upper bound is uniform with respectitar herefore, the variance d[‘l) is

E[(JP)?]

1
pr% Z E/ai(ul)ai (UW)E[AK)p(u1 = Y7) - (Yni — Y]

“E[dK)p(U2 = Y7) - (Yni — Y)]lw(u)
xw(U2) dua duy

1 1 1 1 Inpn\ P71 1
ol — =4+ — . ——— . [—== —of —).
nh? n2  nh? h2p+2d n n2hd

by a change of variables with respecytandu,, and ifn? h2t27+4 /(Iny n)?*1 — o0o. The
latter condition is satisfied under our assumptions with 2.

B.3.3. Study of,”
With obvious notations,

JP =n 3 / b (WK (V)(t — ) (U — hv)w(u) du dv
i=1

=n"t i /[bmi + ¢, JWK (W[JgT(u — hv, Oo) - 0 — 00)
i=1
+2715§T(U — v, 0) - (0 — 00)@w(u) dudv
=nt Zn: f bu.i (WK (V)[3gT(u — hv, 0p) - (0 — Og)]w(u) du dv
i=1
o (22 ok 1 () )
n n2nl2 T, " ;.

under the conditiong.10). The main term of the latter expansion is

1
T = 2 Z/bn,i(u)K(v)agr(u — hv, 00) A(0p) 1B (0o, Y j)o(u) du.
ij

Thus, when # j, the expectation of the summanddsgr—1), and

E[T]

n_12 Y Elbyi(WK (V)dpt(u — kv, 60) A(00) B (0o, Yl (U)du+ O(n ™)

oL (In2n 1/2+1 B 1
nh n n = nhd/2 )"
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Moreover, by the same reasoning, its variance is

1 |n2 n 1

Note that one remainder term is

1
- Z/bn,i(u)l((v)agr(u — hv, Og)w(u) du - 0p(ry).

. s 1/2 o
The latter term is negligible |<'”ﬂ) << —bp vizif

n

1 1
rm =0 . .
WA L

B.3.4. Study of,®
Clearly, under the previous assumptions,

4@ _ o (L. (In2n Y21 1
— —_ — =0 [ s
! PA\n n nh P\ wnarz

sincenh?/Inyn — oo. To conclude,

I 1
=or )

B.4. Study of}

With the previous notations,

Qi = /(E‘cn — Ky *D)%w

— /[Kh *(%—r)]2w+/[Eﬁ:;,.]2w—2/Kh % (t—DEBS .

Applying Eq. B.11) with p = 2, we get

o {11 (Inpn\*?
Eﬁm»(u)—0<;+ﬁ'<7> )

uniformly with respect tau. Thus, it is straightforward that

% 12, 1
/[Eﬁnl] (L)—O(W>

Moreover, under assumption (T) and by a limited expansion with respect to

o 2 1
/[Kh*(‘l,'—f)] w=0p ; .

(B.12)
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By applying Schwartz’s inequality, we obtain

1
J|| =op <W> . (Bl3)

Theorem3 results from Egs. (B.1), (B.2), (B.7), (B.8), (B.12) and (B.13)]

AppendixC.. Proof of Corollary 4

It is sufficient to prove that

1 1
—7 f K2(t)((2 — 1) w)(U — ht)dtdu = op (W) , and (C.1)

1 1
- / K2t (3% — ®)w = op (W) . (C.2)

Note that, under (T) and by a limited expansion with respe6t tee have

sup  [|7(u, g)) —1(u, Op)|l = OP(”é — 0ol = OP(n_l/Z),

uele,1—¢]4

Thus, Egs. €.1) and (C.2) are clearly satisfied becausé tends to the infinity when
n — oo, proving the result. [J

AppendixD.. The semiparametric estimator

Consider the parametric famity= {z(-, 0), 0 € ©}. The semiparametric estimator @®f
satisfies, by definition] = arg max.g Q. (0), where

n
0u(0) =n"> " INT(Y,. 0).
i=1
We prove that) satisfies condition3.1). By a limited expansion, there exists some random

vector0* such tha, 0, (0%) - (0 — 0o) = —8p 0, (00), with [|0* — 0ol| <10 — Oo|l a.e.
First, with obvious notations,

990 (00) = 11" GgIn <(Y;, 00) + 11" 05 510 (Y1, 00) - (Y — Yi)
i=1 i=1

1< 3
+oo > Oy T(Y5. 00) - (Yui —Y)P = So+ 81+ Sa.
i=1
We assume that

El19gIn (Y, 0)l| + 1195 In (Y, 00) + 105,y IN (Y, 0) ] < ce. (D.1)
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Obviously,So is asymptotically normal. The expectationsifis O (n~1) and its variance
is O(n=2). Thus,S1 is Op(n~1). Moreover,

1 3
IS2ll<Cre - =3 1dyypIn 2(YV7i O0)ll - 1Y i = Y. (D.2)
i=1

Assume the following conditions of regularity:
1. There exist some constantgt  such that, a.e.,

105y IN (Y5, 00) | <21 05y9 I 7Y, 00) | + Blldgyg IN T(Y i O0) . and

2. Forevenyu € (0, 1)?, ||6)3,yeln (U, 00) || < Cst.r(u)® ... r(ug), whereay = (—1+
0 /p,/p1+---+1/pr=1,0>0,andr(t) = t(1—1).

The latter condition ensures the consistency of the empirical mewﬁgln T(Y i, 00)|]

(see Genest et g20], Proposition A.1). Thus, we géftS2|| = Op(n~LInon). We have

obtained

99 0n(bp) = n_lz dpIn ©(Y;, 0) + Op(nan/n).
i=1

Moreover, with obvious notations,

350(0%) = 050,(00) + 113" 331N (Y, 0) - (0% — o)
i=1

= lim E[050,(00)] + Op(n~Y?2),

if 65 0,(0) is asymptotically normal, and if

n
n~l sup (183N (Y, 0)] < oo ae. (D.3)

i=1 0eV(0p)

Here,V(0p) denotes a neighborhood @4. Applying Proposition A.1 of Genest et §21],

these two conditions can be are ensured if:

1. Foreveny € (0, 1)4, M(u) = ||a§ Int(u, Op)|| < Cst.r(uy)?- - r(ug)?, whereb, =
(=0.54+v)/qx, 1/q1 + ...+ 1/qr = 1,v > 0. Moreover,M (u) has continuous partial
derivativesM, (u) = OM (u)/duy, such that (u) < Cst.r (D)@ .. r(ug)dd , d* =
b, d " =b; —1if j #k.

2. Forevenu € (0, 1)?, SUR)cV (0) ||62 Int(u, 0)|| <Cst.r(u)...r(ug), wherecy =
(=1+n/p;, 1/pi+...+1/p, =1,n>0.

Condition (1) ensures the asymptotic normality of the empirical mean(df,,;). Condition

(2) ensures conditior.3).

It can be checked that the previous conditions are satisfied by alarge number of commonly
used copula families. Particularly, it is the case for the gaussian copula.
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Thus, under the previous conditions, we get

N 1 " I
Jﬂe%>:V%Aww*-gg%mrwh%>+op<%”),

A(lo) = ~lim E [30,,(0)]

and @.1) is satisfied. [J
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