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Abstract

This paper defines two distribution free goodness-of-fit test statistics for copulas. It states their
asymptotic distributions under some composite parametric assumptions in an independent identically
distributed framework. A short simulation study is provided to assess their power performances.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In modern finance and insurance, the identification of dependence structures between
assets is becoming one of the main challenges we are faced with. Copulas have been
recognized as key tools to analyze dependence structures. They are becoming more and
more popular among academics and practitioners because multivariate gaussian random
variables do not provide satisfying models.
The copula of a multivariate distribution can be considered as the part describing its

dependence structure as a complement to the behavior of each of its margins. One attrac-
tive property of copulas is their invariance under strictly increasing transformations of the
margins. Actually, the use of copulas allows to solve a difficult problem, namely to find
a whole multivariate distribution, by performing two easier tasks. The first step starts by
modelling every marginal distribution. The second step consists of estimating a copula,
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which summarizes all the dependencies between margins. However, this second task is
still in its infancy for most of multivariate financial series, partly because of the presence of
temporal dependencies (serial autocorrelation, timevaryingheteroskedasticity, particularly)
in returns of stock indices, credit spreads, interest rates of various maturities.
Estimation of copulas has been essentially spread out in the context of i.i.d. samples. If

the true copula is assumed to belong to a parametric familyC = {C�, � ∈ �}, consistent and
asymptotically normally distributed estimates of the parameter of interest can be obtained
through maximum likelihood methods. There are mainly two ways to achieve this: a fully
parametric method and a semiparametric method. The first method relies on the assumption
of parametric marginal distributions. Each parametric margin is then plugged in the full
likelihood and this full likelihood is maximized with respect to�. Alternatively and without
parametric assumptions for margins, the marginal empirical cumulative distribution func-
tions can be plugged in the likelihood. These two commonly used methods are detailed
in Genest et al.[20] and Shi and Louis [40]. Hu [27] has proved general conditions for
consistency and asymptotic normality of M-estimates in copula models. Chen and Fan [8]
have studied such inference issues with�-mixing processes.
Beside these twomethods, it is also possible to estimate a copula by some nonparametric

methods based on empirical distributions, following Deheuvels [10–12]. The so-called
empirical copulas look like usual multivariate empirical cumulative distribution functions.
They are highly discontinuous (constant on some data-dependent pavements) and cannot be
exploited as graphical device. Recently, smooth estimates of copulas in a time-dependent
framework have been proposed in Fermanian and Scaillet [17]. They allow to guess which
parametric copula family should be convenient. This intuition needs to be properly verified
to be validated. In a statistical sense, it means to lead a goodness-of-fit test on the copula
specification. This is our topic.
To be specific, consider an i.i.d. sample ofd-dimensional vectors(Xi )i=1,...,n. Denote

Xi = (Xi1, . . . , Xid). andH, resp.C, the cumulative distribution function, resp. the copula,
of X. Our goal is to find a technique to solve the similar GOF problem for copulas, say to
distinguish between two assumptions:

H0 : C = C0,againstHa : C �= C0,when the zero-assumption is simple,or

H0 : C ∈ C,againstHa : C �∈ C,when the zero-assumption is composite.

Here,C0 denotes some known copula, andC = {C�, � ∈ �} is some known parametric
family of copulas. The copula is the cdf of(F1(X1), . . . , Fd(Xd)).
In a multidimensional framework, it is usually difficult to build distribution free GOF

tests. Somemore or less satisfying solutions exist. Justel et al.[28] have proposed to use the
transformation of Rosenblatt [38] before testing a simple GOF assumption. Several authors
have tried to replace an evaluation over ad-dimensional space by a univariate function, by
considering some families of subsets inRd indexed by a univariate parameter. Then, some
Kolmogorov–Smirnov type test statistics are available. See Saunders and Laud [39], Foutz
[18] or more recently Polonik [36]. Moreover, Khmaladze [30,31] and especially [32] has
transformed the usual empirical process into an asymptotically distribution free empirical
process, for simple and composite assumptions. Nonetheless, these techniques are involved
or cannot be extended easily to slightly different situations. Actually, the simplest way to
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build GOF composite tests for multivariate r.v. is to consider multidimensional chi-square
tests, as in Pollard[35].
Particularly, it seems tobe toodifficult to adapt these techniques for copulas.Thedifficulty

is coming from the fact the marginal cdfs’Fj are unknown. Particularly, the chi square test
procedures do not work anymore in general, when replacing marginal cdfs’ by some usual
estimates. For all these reasons, the general problem of GOF test for copulas has not been
dealt conveniently by authors. Some of them use the bootstrap procedure to evaluate the
limiting distribution of the test statistic (e.g. Andersen et al. [3]). Genest and Rivest [20]
solve the problem in the case of archimedean copulas, for which the problem can be reduced
toaonedimensional one, forwhich somestandardmethodsareavailable. For instance, Frees
andValdez [19] useQ–Qplots to fit the “best” archimedean copula.Noneof the authors have
dealt the case of time-dependent copulas, except Patton [33,34], but the latter author tests
all the joint specification and not only the copula itself. Recently, some authors have applied
Rosenblatt’s transformation (cf. [37]) to the original multivariate series, before testing the
copula specification: Breymann et al. [7], Chen et al. [9]. The latter authors compare the
smoothed copula density of their transformed r.v. to the uniform density by means of aL2

criterion, as in Hong and Li [29]. So their methodology is relatively closed to ours (see
below the test statisticsT ). Nonetheless, as we said previously, the use of Rosenblatt’s
transformation is a tedious preliminary, especially with high dimension variables, and it is
model specific. Thus the test methodology is not really distribution-free.
Note that we could build some test procedures based on some estimates ofX’s cdf by

modelizing the marginal distributions simultaneously. It seems to be a good idea, because
some “more or less usual” tests are available to check the GOF ofH itself. Nonetheless, it
is not our point of view. Indeed, doing so produces tests for the whole specification—the
copula and the margins—but not for the dependence structure itself—the copula only. A
slightly different point of view could be to test each marginal separately in a first step. If
each marginal model is accepted, then a test of the whole multidimensional distribution can
be led (by the previously cited methodologies). Nonetheless, such a procedure is heavy,
and it is always necessary to deal with a multidimensional GOF test. Moreover, it is always
interesting to study dependence in depth first, independently of the specification ofmargins.
To build aGOF test, a natural waywould be to use to asymptotic behavior of the empirical

copula process. According to Fermanian et al. [16], we know that the bivariate empirical
copula processn1/2(Cn − C0) tends in law, under the null simple assumption, towards the
gaussian processGC0, where

GC0(u, v)

= BC0(u, v)− �1C0(u, v)BC0(u,1)− �2C0(u, v)BC0(1, v), (u, v) ∈ [0,1]2.
We have denoted byBC a brownian bridge on[0,1]2, such that

E[BC(u, v)BC(u
′, v′)] = C(u ∧ u′, v ∧ v′)− C(u, v)C(u′, v′),

for everyu, u′, v, v′ ∈ [0,1]. Here,a∧b = inf (a, b). Unfortunately, this limiting process is
a lot more complicated than with the multidimensional brownian bridgeBC0. For instance,
the covariance betweenGC0(u, v) andGC0(u

′, v′) is the sum of 18 terms (while there
are 2 terms inBC0’s case). These terms involveC0 and its partial derivatives. Thus, GOF
tests based directly on empirical copula processesCn seem to be unpractical, except by
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bootstrapping. Nonetheless, such procedures are computationally intensive. Even if the
bootstrapped empirical copula process is weakly convergent (Fermanian et al.[16]), we
prefer to propose a more usual test procedure.
A simple chi-square type test procedure is defined in Section 2. Then, a more powerful

and more sophisticated test statistics is described in Section 3. The power of these tests is
studied by simulations in Section 4. The proofs are postponed in Appendixes A–D.

2. A simple direct chi-square approach

There exists a simple direct way to circumvent the difficulty. Indeed, by smoothing the
empirical copula process, we get an estimate of the copula density. The limit of these
statistics is far simpler thanGC0. Let us consider first an i.i.d. framework.
For each indexi, set thed-dimensional vectorsYi = (F1(Xi,1), . . . , Fd(Xi,d)) and

Yn,i = (Fn,1(Xi,1), . . . , Fn,d(Xi,d)), denoting byFk andFn,k the true and the empirical
kthmarginal cdf ofX. Obviously, the copulaC is the cdf ofYi . The empirical copula process
we consider here is

Cn(u) = 1

n

n∑
i=1

d∏
k=1

1(Fn,k(Xi,k)�uk),

instead of the “usual” copula process

C∗
n(u) = Fn(F

−
n,1(u1), . . . , F

−
n,d(ud)), whereF

−
n,k(u) = inf {t |Fn,k(t)�u}.

It is easy to verify these two empirical processes differ only by the small quantityn−1 at
most. Thus, it would not be an hard task to adapt the proofs toC∗

n .
We will assume the law of the vectorsYi has a density� with respect to the Lebesgue

measure. By definition the kernel estimator of a copula density� at pointu is

�n(u) = 1

hd

∫
K

(
u− v
h

)
Cn(dv) = 1

nhd

n∑
i=1

K

(
u− Yn,i

h

)
, (2.1)

whereK is ad-dimensional kernel andh = h(n) is a bandwidth sequence. More precisely,∫
K = 1,h(n) > 0,andh(n) → 0whenn → ∞.Asusual,wedenoteKh(·) = K(·/h)/hd .

For convenience, we will assume

Assumption (K). The kernelK is the product ofd univariate even compactly supported
kernelsKr , r = 1, . . . , d. It is assumedpK -times continuously differentiable.

These assumptions are far fromminimal. Particularly, we could consider somemultivari-
ate kernels whose support is the whole spaceRd , if they tend to zero “sufficiently quickly”
when their arguments tend to the infinity (for instance, at an exponential rate, like for the
gaussian kernel). Since this speed depends on the behavior of�, we are rather the simpler
assumption (K).
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As usual, the bandwidth needs to tend to zero not too quick.

Assumption (B0).Whenn tends to the infinity,nhd → ∞, nh4+d → 0 and

nh3+d/2/(ln2 n)3/2 −→ ∞.

We have set ln2 n = ln(ln n). Assumption (B0) can be weakened easily by assuming (K)
with pK > 3 (see details in the proofs).
Moreover, a certain amount of regularity of� is necessary, for instance

Assumption (T0). �(u, �) and its first two derivatives with respect tou exist and are uni-
formly continuous onV(uk) × V(�0), for every vectorsuk, k = 1, . . . , m, denoting by
V(uk) (resp.V(�0)) an open neighborhood ofuk (resp.�0).

In the appendix, we prove:

Theorem 1. Under (K) with pK = 3, (B0) and (T 0), for every m and every vectors
u1, . . . ,um in ]0,1[d , such that�(uk) > 0 for every k, we have

(nhd)1/2((�n − �)(u1), . . . , (�n − �)(um))
law−→
n→∞ N (0,�),

where� is diagonal, and its k-th diagonal term is
∫
K2.�2(uk).

Now, imagine we want to build a procedure for a GOF test with some composite zero
assumption. UnderH0, the parametric family isC = {C�, � ∈ �}. Assume we have
estimated� consistently bŷ�, and

�̂ − �0 = OP (n
−1/2). (2.2)

We denote by�(·, �0) (or simpler�when there is no ambiguity) the “true” underlying copula
density. Clearly,�(u, �̂) − �(u, �0) tends to zero quicker than(�n − �)(u) under (T0) and
Eq. (2.2). Thus, a simple GOF test may be

S = nhd∫
K2

m∑
k=1

(�n(uk)− �(uk, �̂))2

�(uk, �̂)2
·

Corollary 2. Under the assumptions of Theorem1and Eq.(2.2),if �(u, �) is continuously
differentiable with respect to� in a neighborhood of�0 for everyu ∈]0,1[d , thenS tends in
law towards a m-dimensional chi-square distribution under the composite zero-assumption
H0.

We could replace� by the convolution ofK and� in Theorem 1 and Corollary 2. This
allows to remove the assumptionnh4+d −→ 0. Indeed, this assumption prevents us from
using the usual asymptotically optimal bandwidth that minimizes the asymptotic mean
squared error.
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The points(uk)k=1,...,m are chosen arbitrarily. They could be chosen in some particular
areas of thed-dimensional square, where the user seeks a good fit. For instance, for risk
management purposes, it would be fruitful to consider some dependencies in the tails. For
the particular copula familyC, it is necessary to specify these areas.
Clearly, the power of theS test depends strongly on the choice of the points(uk)k=1,...,m.

This is a bit the same drawback as the choice of cells in the usual GOF chi-square test.With-
outapriori, it is alwayspossible tochooseauniformgridof the type(i1/N, i2/N, . . . , id/N),
for every integersi1, . . . , id , 1� ik�N − 1. Nonetheless, the numbermwill become very
large when the dimensiond increases.
More seriously, the power of the test will not be very large surely. Actually, the adequacy

of the fit for a finite number of points is not a guarantee for a good adequacy of the whole
copula. That is why we propose another test statistics. This statistics will consider the whole
underlying distribution potentially, and not only of a finite number of points.

3. The main test

This test is basedon theproximity between the smoothed copula density and theestimated
parametric density. UnderH0, they will be near each other. To measure such a proximity,
we will invoke theL2 norm. To simplify, denote the estimated parametric�(·, �̂) density by
�̂. Consider the statistics

Jn =
∫
(�n −Kh ∗ �̂)2(u)�(u) du,

where� is a weight function, viz a measurable function from[0,1]d towardsR+. Note
that we consider the convolution between the kernelKh and�̂ instead of̂� itself. This trick
allows to remove a bias term in the limiting behavior ofJn (see Fan[13]). Note that the
expectation of�n(u) is different fromKh ∗ �(u), contrary to the usual i.i.d. density case.
This will complicate slightly the proof.
The minimization of the criterionJn is known to produce consistent estimates in nu-

merous situations. These ideas appear first in the seminal paper of Bickel and Rosenblatt
[5]. They are applied in the usual density case for i.i.d. observations. Rosenblatt [38] ex-
tended the results in a two-dimensional framework and discusses consistency with respect
to several alternatives. Fan [13] extended these works to deal with every choices of the
smoothing parameter. The comparison of some nonparametric statistics-especially non-
parametric regressions- and their model-dependent equivalents has been formalized in a lot
of papers in statistics and econometrics: Härdle and Mammen [26], Zheng [42], Fan and Li
[14], among others.
Similar results have been obtained for dependent processes more recently: Fan and Ullah

[15], Hjellvik et al. [25], Gouriéroux and Tenreiro [22], e.g. For instance, Aït-Sahalia [2]
applies these techniques to find a convenient specification for the dynamics of the short
interest rate. Recently, Gouriéroux and Gagliardini [23] use such a criterion to estimate
possibly infinite dimensional parameters of a copula function, for instance the univariate
function defining an archimedean copula. Instead of for inference purposes, we will useJn
as a test statistics, like in Fan [13].
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Let us assume that we have found a convenient estimator of�.

Assumption (E).There existŝ� ∈ Rq such that

�̂ − �0 = n−1A(�0)−1
n∑
i=1

B(�0,Yi )+ oP (rn), (3.1)

andrn tends to zero quicker thann−1/2(ln2 n)−1/2 whenn tends to the infinity. Here,A(�0)
denotes aq × q positive-definite matrix andB(�0,Y) is aq-dimensional random vector.
Moreover,E[B(�0,Yi )] = 0 andE[‖B(�0,Yi )‖2] < ∞.

Particularly, under (E),̂� − � = OP (n
−1/2). Typically, B(�, ·) is a score function. In

SectionD in Appendix A–D we prove these assumptions are satisfied particularly for the
usual semiparametric maximum likelihood estimator whose theoretical properties are de-
tailed in Genest et al. [20] and Chen and Fan [8]. But more general procedures can be used,
likeM-estimators.

Assumption (T).For some open neighborhoodV(�0) of �0,
• �(u, �) and its first two derivatives with respect to� exist and are uniformly continuous
on [0,1]d × V(�0), or

• �(u, �) and its first two derivatives with respect to� exist and are uniformly continuous
on[ε,1− ε]d ×V(�0), for someε > 0, and the support of� is included in[ε0,1− ε0]d ,
for someε0 > ε.

When� and its derivatives with respect of� are uniformly bounded on[0,1]d ×V(�0),�
can be chosen arbitrarily. Unfortunately, it is not always the case. For instance, by choosing
a bivariate gaussian copula density. To avoid technical troubles, we reduce the GOF test to
a strict subsample of[0,1]d , say�’s support.

Assumption (B).nhd −→ ∞ andnh4+d/2/ ln22 n −→
n→∞ ∞.

Actually, the latter conditioncouldbe relaxed. It is sufficient toexpandKup tohigherorder
terms. We had chosen the order 4 so that condition (B) is not too strong. But, it is possible
to exchange some degree of regularity ofK against less constraints on the bandwidth.

Theorem 3. Under assumptionsH0, (T), (E), (B) and(K) with pK = 4,we have

nhd/2
(
Jn − 1

nhd

∫
K2(t).(��)(u− ht) dt du

+ 1

nh

∫
�2�.

d∑
r=1

∫
K2
r

)
law−→
n→∞ N (0,2�2),

�2 =
∫

�2� ·
∫ {∫

K(u)K(u+ v) du
}2

dv.
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Thus, a test statistics may be

T = n2hd(Jn − (nhd)−1
∫
K2(t).(�̂�)(u− ht) dt du+ (nh)−1

∫
�̂2�.

∑d
r=1

∫
K2
r )

2

2
∫

�̂2� · ∫ {∫ K(u)K(u+ v) du}2 dv ·

Corollary 4. Under the assumptions of Theorem3, the previous statisticsT tends in law
towards a chi-square distribution.

See the proof in the appendix. Since the kernelK is even, we can replace the second term
of the previous numerator by the simpler expression−(nhd)−1

∫
K2.

∫
�̂�. Moreover, the

third term in the numerator can be replaced by

2

nh

∑
r

∫
K(t)Kr(tr )�̂(u− ht)�̂(u)�(u) dt du− 1

nh

∑
r

∫
�̂2� ·

∫
K2
r .

This expression is a consequence of the proof, and offers surely a better approximation,
even if it is a bit more complicated.
Moreover, under some additional regularity assumptions, we could replace�̂ by �n inside

T . Indeed, it can be proved the kernel estimator of the density�(u) converges uniformly
with respect tou on �’s support at a convenient rate. The proof requires to control the
uniform upper bound of the remainder termsRk(u), k = 1,2,3 that are defined in the proof
of Theorem1. This can be done by applying lemma B1 in Ai [1], e.g. The details are left to
the reader.
Note that our test statistics differs from similar GOF test statistics in an i.i.d. framework

with usual density functions (e.g. Fan [13]). Indeed, there is an additional term

(nh)−1
∫

�̂2�.
d∑
r=1

∫
K2
r ,

in T . This is the price to work with copulas, and to estimate the margins empirically.
Nonetheless, whend > 2, this additional term is negligible with respect to

(nhd)−1
∫
K2(t).(�̂�)(u− ht) dt du.

4. A short simulation study

To asses the power of our test statistics, we have led a simple analysis by simulation.We
generate some samples whose copula is the mixture of a bivariate frank’s copula and an
independent copula, viz

C�,�(u, v) = �uv − (1− �)
�

ln

(
1+ (exp(−�u)− 1)(exp(−�v)− 1)

exp(−�)− 1

)
,

� �= 0, � ∈ [0,1].
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More precisely, we generate iid uniform samples(Ui,1, Ui,2)i=1,...,200 on [0,1]2. For every
i = 1, . . . ,200, we get

Xi,1 = 	−1(Ui,1) andXi,2 = 	−1(Vi),

whereVi satisfies theequality�1C�,�(Ui,1, Vi) = Ui,2.Thus, the randomvectors(Xi,1, Xi,2)

have the desired copula.
We compute the test statisticsS andT with these data sets. The zero assumption is: “the

true underlying copula is Frank’s”. ConcerningS, we choose 81 points on the uniform grid
(i/10, j/10), i, j = 1, . . . ,9. We use the convolution betweenK and�̂ instead of̂� itself.
ConcerningS andT , the kernel is a sufficiently regular compactly supported kernel, say

K(u) =
(
15

16

)2 2∏
k=1

(1− u2k)
21(uk ∈ [0,1]).

The bandwidths are chosen by the usual Silverman’s rule[41]: ĥ =
√
(�21 + �22)/2n

−1/6,

denoting by�2k the empirical variance ofFn,k, k = 1,2. Note that these two variances are
the same in our case because they depend on the sample size only. The weight functionw
is chosen asw(u) = 1(u ∈ [0.01,0.99]). The parameters of the copulas are estimated by
the usual semiparametric maximum likelihood procedure (see Shi and Louis [40]).
For different values for� and�, we compute the two test statisticsS andT . We have

made 100 replications for 200 points samples: see Table 1. When� is zero, we check
the asymptotic level 0.05 is underestimated by all but one case (thus the test is a bit too
conservative). When� increases, the percentages of rejection grow, especially for theT
test. The latter seems to be more powerful thanS, even if this advantage weakens when
the copula is more and more far from the Frank’s copula (viz when the zero assumption is
more andmore false). Moreover, the reported powers are higher and higher when� is larger
and larger, because the corresponding Frank’s copula (and its mixture with the independent
copula) becomes far away from the independent one.
When� is near 1, note that the power is very weak. In such a case, the underlying copula

is “almost” the independent copula. Since the latter belongs to the boundary of the Frank’s
family (when leaving� to tend to zero), it is doubtful the estimator�̂ satisfies assumption
(E) (e.g. cf. Andrews [4]). Moreover, the estimation of an “almost discontinuous” function
� near the boundaries of[0,1]2 induces some non-standard limit laws, especially biases.
Even if we have restricted ourselves into the interior of the unit square by the functionw,
there may be a practical issue with the (small) samples we have considered. Thus, in such
a case, the results cannot be easily interpreted.
Globally, these partial results are very convincing. Particularly, with very small sample

sizes, the power of the testT is far from ridiculous evenwhen the proportion of perturbation
is weak. Our results seem to be better than those reported by the test 1 proposed by Chen et
al. [9]. In the latter case, the powers are near zero when the sample size is not greater than
500 for every level of perturbation (but with a different model). Nonetheless, our results
need to be completed by a more in depth simulation study.
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Table 1
Percentages of rejection at 5% level withn = 200 and 100 replications
% of noise Parameter % of rejection % of rejection
� � (testS) (testT )

5 0 2
10 0 0

0.0 15 0 1
20 0 1
25 0 8

5 0 0
10 0 0

0.1 15 0 7
20 0 22
25 0 60

5 1 1
10 1 5

0.2 15 3 36
20 17 80
25 31 95

5 3 3
10 13 21

0.3 15 18 67
20 57 95
25 84 100

5 7 12
10 19 33

0.5 15 58 71
20 89 98
25 95 100

5 2 1
10 3 0

0.9 15 6 0
20 2 2
25 37 3
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AppendixA.. Proof of Theorem 1

We will prove that the behavior of�n(u) is the same as the behavior of

�∗
n(u) = n−1

n∑
i=1

Kh(u− Yi ),
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for everyu. Indeed,

�n(u) = �∗
n(u)+ (−1)

nh

n∑
i=1

(dK)h(u− Yi ) · (Yni − Yi )

+ 1

2nh2

n∑
i=1

(d2K)h(u− Yi ) · (Yni − Yi )(2)

+ (−1)

6nh3

n∑
i=1

(d3K)h(u− Y∗
ni) · (Yni − Yi )(3)

= �∗
n(u)+ R1(u)+ R2(u)+ R3(u),

for some random vectorY∗
ni satisfying‖Y∗

n,i − Yi‖�‖Yn,i − Yi‖ a.e.
Let us first studyR1(u). Its expectation isO(n−1h−1). Moreover,

E[R2
1(u)] = 1

n2h2

∑
i,j

E[(dK)h(u− Yi ) · (Yni − Yi ) · (dK)h(u− Yj ) · (Ynj − Yj )]

= 1

n4h2

∑
i,j

∑
k,l

E[(dK)h(u− Yi ) · (1(Yk�Yi )− Yi )

·(dK)h(u− Yj ) · (1(Yl�Yj )− Yj )].
Wewill denote by1(y�u) ad-dimensional vector whosekth component is1(yk�uk). The
expectations of the summands are zero, except if there are some equalities involvingk and
l. For instance, assumek = l �= i �= j . Let us note that

E
[
(dK)h(u− Yj ) · (1(Yi�Yj )− Yj )|Yi = yi

]
=
∫
(dK)h(u− v) · (1(yi�v)− v)�(v) dv

=
d∑
r=1

∫
(�rK)(v) · (1(yi,r �ur − hvr)− ur + hvr)�(u− hv) dv

=
d∑
r=1

∫
(�rK)(v) · (1(vr �(ur − yi,r )/h)− ur + hvr){�(u)+ h
(u, v)} dv,

where
 is a bounded compactly supported function, forn sufficiently large. Since we
assumeK is the product of some univariate kernelsKr , r = 1, . . . , d, we get

E[(dK)h(u− Yj ) · (1(Yi�Yj )− Yj )|Yi = yi]

= �(u)
d∑
r=1

Kr

(
ur − yi,r

h

)
+O(h) · �(u), (A.1)

for every couple(i, j) with i �= j , where� is bounded, compactly supported and indepen-
dent ofyi . Thus, the corresponding term inE[R2

1(u)] is
1

nh2

∫ {
�(u)

∑
r

Kr

(
ur − yr

h

)
+O(h)�(u)

}
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×
{

�(u)
∑
s

Ks

(
us − ys

h

)
+O(h)�(u)

}
�(y1)�(y2) dy

= 1

nh2

∫
�2(u)



∑
r �=s

Kr

(
ur − yr

h

)
Ks

(
us − ys

h

)
dyr dys

+
∑
r

K2
r

(
ur − yr

h

)
dyr


+O(n−1h−1) = O(

1

nh
) = o(n−1h−d),

by some usual changes of variables with respect toyr andys . The other equalities between
i, j, k and l provide a similar conclusion. Thus, the variance ofR1(u) is o(n−1h−d), and
R1(u) = oP (1/

√
nhd).

The study ofR2(u) is similar. We get by the same methodE[R2(u)] = O(n−1h−2) and
E[R2

2(u)] = O(n−2h−4), henceR2(u) = oP (1/
√
nhd). Since,

‖Yn,i − Yi‖∞ = OP

((
ln2 n

n

)1/2)
, (A.2)

we deduce directlyR3(u) = OP (h
−3−dn−3/2. ln3/22 n), which is oP (n−1/2h−d/2) if

nh3+d/2/ ln3/22 n tends to the infinity whenn → ∞. Thus, under our assumptions,

�n(u) = �∗
n(u)+ oP

(
1√
nhd

)
.

Moreover, Bosq and Lecoutre’s[6] theoremVIII.2 provides the asymptotic normality of
the joint vector(nhd)1/2((�∗

n − �)(u1), . . . , (�∗
n − �)(um)). This concludes the proof.�

AppendixB.. Proof of Theorem 3

Clearly,

Jn =
∫
(�n −Kh ∗ �̂)2(u)�(u) du

=
∫
(�n − E�n)2� + 2

∫
(�n − E�n)(u) · (E�n −Kh ∗ �̂)(u)�(u) du

+
∫
(E�n −Kh ∗ �̂)2� ≡

∫
(�n − E�n)2� + 2JI + JII . (B.1)

The main term ofJn will be

J ∗
n =

∫
(�n − E�n)2� = 1

n

∫ (
n∑
i=1

Kh(u− Yn,i)− EKh(u− Yni)

)2

�(u) du

= 1

n2

n∑
i,j=1

∫ (
Kh(u− Yn,i)− EKh(u− Yn,i)

) · (Kh(u− Yn,j )

−EKh(u− Yn,j ))�(u) du
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Thus,

J ∗
n = 1

n2

n∑
i=1

∫
a2n,i� + 2

n2

∑
i<j

∫
an,ian,j� ≡ J ∗

n,1 + J ∗
n,2, (B.2)

where we have set

an,i(u) = Kh(u− Yn,i)− EKh(u− Yn,i).

Intuitively, an,i(u) is close toai(u) = Kh(u−Yi )−EKh(u−Yi ). For technical reasons,
we will need to expand the difference between the two latter terms up to the fourth order,
viz

an,i(u)− ai(u) = bn,i(u)+ cn,i(u)+ dn,i(u)+ en,i(u),

bn,i(u) = (−1)

h

[
(dK)h(u− Yi ) · (Yn,i − Yi )− E(dK)h(u− Yi ) · (Yn,i − Yi )

]
,

cn,i(u)

= 1

2h2

[
(d2K)h(u− Yi ) · (Yn,i − Yi )(2) − E(d2K)h(u− Yi ) · (Yn,i − Yi )(2)

]
,

dn,i(u)

= (−1)

6h3

[
(d3K)h(u− Yi ) · (Yn,i − Yi )(3) − E(d3K)h(u− Yi ) · (Yn,i − Yi )(3)

]
,

en,i(u)

= 1

24h4

[
(d4K)h(u− Y∗

n,i) · (Yn,i−Yi )(4)−E(d4K)h(u− Y∗
n,i) · (Yn,i−Yi )(4)

]
,

for someY∗
n,i that lies betweenYi andYn,i a.e. Most of the sums involving the previous

terms will be negligible with respect to 1/(nhd/2).

B.1. Study ofJ ∗
n,2

Now

J ∗
n,2 = 2

n2

∑
i<j

∫ [
ai + bn,i + cn,i + dn,i + en,i

] [
aj + bn,j + cn,j + dn,j + en,j

]
�

= 2

n2

∑
i<j

∫
aiaj� + 2

n2

∑
i<j

∫
(aibn,j + ajbn,i)� + · · · .
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From Hall[24], it is known that

nhd/2

2

1

n2

∑
i<j

∫
aiaj�

law−→ 1

2
√
2
N (0,�2), (B.3)

�2 =
∫

�2�
∫ [∫

K(u)K(u+ v) du
]2

dv.

Therefore, the main term ofJ ∗
n,2 seems to be of orderO(n−1h−d/2). We will check it by

studying the terms of the expansion ofJ ∗
n,2 successively.

B.1.1. Study ofT� ≡ 2n−2∑
i<j

∫
aibn,j�

Note that the expectation ofT� is not zero, because someYi appears insidebn,j , for every
j. For convenience, set

bn,j (u) = (−1)

nh

n∑
k=1

bn,j,k(u), with

bn,j,k(u) = (dK)h(u− Yj ) · (1(Yk�Yj )− Yj )
−E[(dK)h(u− Yj ) · (1(Yk�Yj )− Yj )].

Moreover,

T� =
( −2

n3h

)∑
i<j

n∑
k=1

∫
aibn,j,k�

=
( −2

n3h

)

∑
i<j

n∑
k �=i,k �=j

∫
aibn,j,k� +

∑
i<j

∫
aibn,j,i� +

∑
i<j

∫
aibn,j,j�




≡ T
(1)
� + T

(2)
� + T

(3)
� .

First, let us studyT (3)� . Its expectation is zero. Its variance is

E[(T (3)� )2]
= 4

n6h2

∑
i1<j1

∑
i2<j2

∫
E[ai1(u1)bn,j1,j1(u1)ai2(u2)bn,j2,j2(u2)]�(u1)�(u2) du1 du2

= 4

n6h2




∑
i1<j1,i2=i1,j2=j1

+
∑

i1<j1,i2=j1,j2=i1


 ≡ V

(3)
�,1 + V

(3)
�,2 .

The first of these terms is

V
(3)
�,1 = 4

n6h2

∑
i<j

∫ {
Kh(u1 − yi )−

∫
K(v)�(u1 − hv) dv

}

·
{
Kh(u2 − yi )−

∫
K(v)�(u2 − hv) dv

}
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· {(dK)h(u1 − yj ) · (1− yj )− E[(dK)h(u1 − Y) · (1− Y)]}
· {(dK)h(u2 − yj ) · (1− yj )
−E[(dK)h(u2 − Y) · (1− Y)]}�(yi )�(yj )�(u1)�(u2) du1 du2 dyi dyj .

The “hardest” term among the latter ones is

4

n6h2

∑
i<j

∫
Kh(u1 − yi )Kh(u2 − yi )(dK)h(u1 − yj ) · (1− yj ) · (dK)h(u2 − yj )

·(1− yj ) · �(yi )�(yj )�(u1)�(u2) dyi yj du1 du2
= 4

n6h2+d
∑
i<j

∫
K(ỹi )K(ũ2 + ỹi )(dK)(ỹj ) · (1− u1 + hỹj )

·(dK)(ũ2 + ỹj ) · (1− u1 + hỹj )�(u1 − hỹi )�(u1 − hỹj )
×�(u1)�(u1 + hũ2) d ỹi d ỹj du1 dũ2.

SinceK is compactly supported, clearly, we can assume every variable belongs to some
compact real subset. Thus, the latter term is of ordern−4h−2−d . It is o(n−2h−d) sincenh
tends to the infinity whenn is large. The seven other terms ofV (3)

�,1 can be dealt similarly.

Actually, they are even of a weaker order (we win an extra factorhd ). Moreover,

V
(3)
�,2 = 4

n6h2

∑
i<j

∫ {
Kh(u1 − yi )−

∫
K(v)�(u1 − hv) dv

}

·
{
Kh(u2 − yj )−

∫
K(v)�(u2 − hv) dv

}
· {(dK)h(u1 − yi ) · (1− yi )− E[(dK)h(u1 − Y) · (1− Y)]}
· {(dK)h(u2 − yj ) · (1− yj )
−E[(dK)h(u2 − Y) · (1− Y)]} �(yi )�(yj )�(u1)�(u2) du1 du2 dyi dyj .

Working exactly likeV (3)
�,1, we can showV

(3)
�,2 = O(n−4h−2−d). Thus, we have proved that

T
(3)
� = oP

(
1

nhd/2

)
.

Second, let us studyT (2)� . Recall that

T
(2)
� =

( −2

n3h

)∑
i<j

∫
ai(u)(dK)h(u− Yj ) · (1(Yi�Yj )− Yj )�(u) du.

The expectation of this term is not zero. By applying Eq. (A.1), we obtain

E[T (2)� ] = (−1)

nh

(
1− 1

n

)∫
E

[
(Kh(u− Y1)− E[Kh(u− Y)])

·
(

�(u)
d∑
r=1

Kr

(
ur − Y1,r

h

)
+O(h)�(u)

)]
�(u) du
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= (−1)

nh

(
1− 1

n

) d∑
r=1

{∫
(Kh(u− y)− E[Kh(u− Y)])Kr

(
ur − yr

h

)

· �(y)�(u)�(u) du dy+O(h)

}
= (−1)

nh

d∑
r=1

∫
K2
r ·
∫

�2� +O(n−1).

Note we have used the fact that the density ofYr is uniform on[0,1].
The order of the expectation ofT (2)� is then(nh)−1. Unfortunately, it is noto(1/nhd/2)

whend = 2. Nonetheless, its variance will be small enough so that we can consider this
term is reduced to its expectation. Indeed,

V ar(T
(2)
� )

= 4

n6h2

∑
i1<j1,i2<j2

∫
E[ai1(u1) · (dK)h(u1 − Yj1) · (1(Yi1�Yj1)− Yj1)

·ai2(u2) · (dK)h(u2 − Yj2) · (1(Yi2 �Yj2)− Yj2)
−E[ai1(u1)bn,j1,i1(u1)] · E[ai2(u2)bn,j2,i2(u2)]]
×�(u1)�(u2) du1 du2

= 4

n6h2




∑
i1<j1,i2<j2,i1=i2

+
∑

i1<j1,i2<j2,i1=j2
+

∑
i1<j1,i2<j2,j1=i2

+
∑

i1<j1,i2<j2,j1=j2




≡ V
(2)
�,1 + V

(2)
�,2 + V

(2)
�,3 + V

(2)
�,4 .

Let us study the first of the previous terms.

V
(2)
�,1 = 4

n6h2

∑
i1<j1,i1<j2

∫
{Kh(u1 − yi1)−

∫
K(t)�(u1 − ht) dt}

·
{
Kh(u2 − yi1)−

∫
K(t)�(u2 − ht) dt

}
· {(dK)(ỹj1) · (1(yi1�u1 − hỹj1)− (u1 − hỹj1))}
· {(dK)(ỹj2) · (1(yi1�u2 − hỹj2)− (u2 − hỹj2))}
×�(yi1)�(u1 − hỹj1)�(u2 − hỹj2)

· �(u1)�(u2) du1 du2 d ỹj1d ỹj2 +O

(
1

n6h2
· n

2

hd

)
.

The remainder term corresponds to the casei1 = i2, j1 = j2. The main previous term of
V
(2)
�,1 can be expressed as a sum of four terms. The first one involves the factorKh(u1 −

yi1).Kh(u2 − yi1). The second (resp. the third) one involves the factorKh(u1 − yi1) (resp.
Kh(u2 − yi1)) only. The last one has no such factor (viz no more denominatorsh−d ).
If necessary, we can set one or two changes of variables amongỹi1 = (u1 − yi1)/h,
ỹi1 = (u2 − yi1)/h or ũ2 = (u2 − u1)/h. It allows to clear all the factorsh−d . Thus we
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get easily,

V
(2)
�,1 = O

(
1

n6h2
· n3

)
+O

(
1

n4h2+d

)
= o

(
1

n2hd

)
, (B.4)

sincenh tends to the infinity. The three other termsV (2)
�,l , l = 2,3,4 can be dealt similarly,

because there exist always four free variables (u1,u2 and three ones amongi1, i2, j1, j2)
that can be used for some change of variables. Like previously, all the factorsh−d disappear.
To conclude,V (2)

� = O(1/(n3h2)+ 1/(n4h2+d)), and

T
(2)
� = ET

(2)
� + oP

(
1

nhd/2

)
= (−1)

nh

∫
�2� ·

d∑
r=1

∫
K2
r + oP

(
1

nhd/2

)
.

Now, let us deal withT (1)� . Recall that

T
(1)
� = (−2)

n3h

∑
i<j

∑
k,k �=i,k �=j

∫
aibnjk�.

Clearly,T (1)� is centered. Moreover, its variance is

E[
(
T
(1)
�

)2] = 4

n6h2

∑
i1<j1

∑
i2<j2

∑
k1 �=i1,j1

∑
k2 �=i2,j2

×E
∫ (

ai1bn,j1k1
)
(u1) · (ai2bn,j2k2)(u2)�(u1)�(u2) du1 du2.

A lot of the latter terms are zero. The only nonzero terms appear in the following cases:
(k1 = i2 andk2 = i1), (k1 = k2 andi1 = i2), (k1 = i2, k2 = j1 andi1 = j2), (k1 = j2,
k2 = i1 andi2 = j1), (k1 = j2, k2 = j1 andi1 = i2), (k1 = k2, i1 = j2 andi2 = j1).
Thus, the variance ofT (1)� is the sum of six terms, denoted byV (1)

�,l , l = 1, . . . ,6.
Assuming that there are no other equalities exceptk1 = i2 andk2 = i1, the first variance
term is

V
(1)
�,1 = 4

n4h2

∑
i1,i2,i1 �=i2

∫ {
Kh(u1 − yi1)−

∫
K(t)�(u1 − ht) dt

}

·
{
Kh(u2 − yi2)−

∫
K(t)�(u2 − ht) dt

}

·
{

�(u1)
d∑
r=1

Kr

(
u1r − yi2r

h

)
+O(h)�(u1)

}

·
{

�(u2)
d∑
s=1

Kr

(
u2s − yi1s

h

)
+O(h)�(u2)

}
�(yi2)�(yi1)

×�(u1)�(u2) dyi1 dyi2 du1 du2.

This sum can be split into 16 other terms. The main one is

4

n4h2

∑
r,s

∑
i1,i2

∫
Kh(u1 − yi1)Kh(u2 − yi2)�(u1)Kr

(
u1r − yi2r

h

)
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·�(u2)Kr

(
u2s − yi1s

h

)
�(yi2)�(yi1)�(u1)�(u2) dyi1 dyi2 du1 du2

= 4

n4h2

∑
r,s

∑
i1,i2

∫
K(ỹi1)K(ỹi2)�(u1)Kr

(
u1r − u2r + hỹi2r

h

)

·�(u2)Kr

(
u2s − u1s + hỹi1s

h

)
�(u2 − hỹi2)�(u1 − hỹi1)�(u1)

×�(u2) d ỹi1 d ỹi2 du1 du2
If r �= s, set the change of variablesũ1r = (u1r − u2r )/h andũ1s = (u1s − u2s)/h to get
an extra factorh2. If r = s, we obtain only one factorh. Thus, the previous variance term
isO(n−4h−2 · n2 · h) = O(n−2h−1). This iso(n−2h−d).
Imagine we have some other equalities between the indicesi1, i2, j1, j2, k1 andk2 in

V
(1)
� . For instancej1 = j2. This would not be a problem because we gain a factorn and

we can always remove the annoying factorh−d by some change of variables with respect
to u1, u2 and the variablesy. Thus, we get the orderO(n−6h−2 · n3) = o(n−2h−d).
The 15 other terms that are coming from the expansion ofV

(1)
�,1 can be dealt similarly.

Thus,V (1)
�,1 = o(n−2h−d).

Another critical term should be

V
(1)
�,2 = 4

n6h2

∑
i<j1

∑
i<j2

∑
k,k �=i,j1,j2

∫
E[(aibn,j1,k)(u1)(aibn,j2,k)(u2)]

×�(u1)�(u2) du1 du2.

Sincek is different from all other indices, this equals
4

n6h2

∑
i<j1

∑
i<j2

∑
k

∫
{
Kh(u1 − yi )−

∫
K(t)�(u1 − ht) dt

}
·
{
Kh(u2 − yi )−

∫
K(t)�(u2 − ht) dt

}
·(dK)h(u1 − yj1) · (1(yk�yj1)− yj1) · (dK)h(u2 − yj2) · (1(yk�yj2)− yj2)
·�(yi )�(yj2)�(yj1)�(yk)�(u1)�(u2) dyi dyj1 dyj2 dyk du1 du2

= 4

n4h2

∑
i

∑
k

∫ {
K(ỹi )− hd

∫
K(t)�(u1 − ht) dt

}

·
{
Kh(u2 − u1 + hỹi )−

∫
K(t)�(u2 − ht) dt

}

·
{

�(u1)
d∑
r=1

Kr

(
u1r − yk,r

h

)
+O(h)�(u1)

}

·
{

�(u2)
d∑
s=1

Ks

(
u2s − yk,s

h

)
+O(h)�(u2)

}

·�(u1 − hỹi )�(yk)�(u1)�(u2) d ỹi dyk du1 du2.

We have assumed there are no additional equalities betweeni, j1, j2. By settinghũ2 =
u2 − u1, we remove the factorh−d . Moreover, by settinghũ1r = u1r − ykr , we get an
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extra factorh. Thus, the term if of orderO(n−4h−2 · n2 · h) = o(n−2h−d). When there are
some other equalities between the other indicesi, j1 andj2, we gain a factorn even if we
lose eventually a factorhd . In every case, the order of these terms is lower thann−2h−d .
Therefore,V (1)

�,2 = o(n−2h−d).
All the other termsV (1)

�,l , l = 3, . . . ,6 are simpler. Indeed, with respect toV (1)
�,1, there is

an additional equality between the indices. At the opposite, it should be harder to remove
all the four termsh−d . Actually, it can be done at least three times over four, because there
are always two free variablesy (at least), and we haveu1 or u2 at our disposal too. Thus,
all these terms areO(n−6h−2 · n3h−d) = o(n−2h−d) sincenh2 tends to the infinity.
Therefore, the variance ofT (1)� is negligible with respect ton−2h−d andT (1)� = oP

(1/(nhd/2)). To conclude,

T� = (−1)

nh

∫
�2� ·

d∑
r=1

∫
K2
r + oP

(
1

nhd/2

)
. (B.5)

B.1.2. Study ofT� = 2n−2∑
i<j bn,ibn,j�

Note that

T� = 2

n4h2

∑
i<j

∑
k,k′

∫
{(dK)h(u− Yi ) · (1(Yk�Yi )− Yi )

−E[(dK)h(u− Yi ) · (1(Yk�Yi )− Yi )]}
· {(dK)h(u− Yj ) · (1(Yk′ �Yj )− Yj )− E[(dK)h(u− Yj )
· (1(Yk′ �Yj )− Yj )]}�(u) du.

The latter term needs to be considered with respect to the potential number of equalities
between the indicesi, j, k, k′.
No equalities betweeni, j, k, k′ : T (1)�

Thus, the expectation of the corresponding term is zero. Moreover, its variance is

4

n8h4

∑
i1<j1

∑
i2<j2

∑
k1 �=k′

1 �=i1,j1

∑
k2 �=k′

2 �=i2,j2
E

∫
(dK)h(u1 − Yi1) · (1(Yk1�Yi1)− Yi1)

·(dK)h(u1 − Yj1) · (1(Yk′
1
�Yj1)− Yj1) · (dK)h(u2 − Yi2) · (1(Yk2 �Yi2)− Yi2)

·(dK)h(u2 − Yj2) · (1(Yk′
2
�Yj2)− Yj2)�(u1)�(u2) du1 du2.

The expectations are zero, except if there are some equalities between our eight indices.
More precisely, the equalities have to concern all the indicesk1, k

′
1, k2, k

′
2, otherwise the

corresponding term is zero. This provides the following cases:
• k1 = k2 andk′

1 = k′
2,• k1 = k′

2 andk
′
1 = k2,

• k1 = i2, k2 = i1, k′
1 = k′

2, or their variations,• k1 = i2, k′
1 = j2, k2 = i1, k′

2 = j1, or their variations.
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The corresponding variances are calledV (1)
�,j , j = 1, . . . ,4. Let us deal with the first

configuration. It provides the “variance-type” term

4

n8h4

∑
i1<j1

∑
i2<j2

∑
k �=k′

E

∫
(dK)h(u1 − Yi1) · (1(Yk�Yi1)− Yi1)(dK)h(u1 − Yj1)

·(1(Yk′ �Yj1)− Yj1)(dK)h(u2 − Yi2) · (1(Yk�Yi2)− Yi2)
×(dK)h(u2 − Yj2) · (1(Yk′ �Yj2)− Yj2)�(u1)�(u2) du1 du2

= 4

n8h4

∑
i1<j1

∑
i2<j2

∑
k �=k′

E

∫ {
�(u1)

d∑
r=1

Kr

(
u1r − Ykr

h

)
+O(h)�(u1)

}

·
{

�(u1)
d∑

r ′=1

Kr ′
(
u1r ′ − Yk′r ′

h

)
+O(h)�(u1)

}

·
{

�(u2)
d∑
s=1

Ks

(
u2s − Yks

h

)
+O(h)�(u2)

}

·
{

�(u2)
d∑

s′=1

Ks′
(
u2s′ − Yk′s′

h

)
+O(h)�(u2)

}
�(u1)�(u2) du1 du2.

The main member of the previous expansion is

4

n8h4

∑
i1<j1

∑
i2<j2

∑
k �=k′

∑
r,r ′,s,s′

E

∫
�2(u1)Kr

(
u1r − Ykr

h

)
Kr ′

(
u1r ′ − Yk′r ′

h

)

·�2(u2)Ks

(
u2s − Yks

h

)
Ks′

(
u2s′ − Yk′s′

h

)
�(u1)�(u2) du1 du2.

The “worse” situation occurs whenr = s andr ′ = s′. In this case, we get

4

n8h4

∑
i1<j1

∑
i2<j2

∑
k �=k′

∫
�2(u1)Kr

(
u1r − ykr

h

)
Kr ′

(
u1r ′ − yk′r ′

h

)
�2(u2)

·Kr

(
u2r − ykr

h

)
Kr ′

(
u2r ′ − yk′r ′

h

)
�r (ykr )�r ′(yk′r ′)

×�(u1)�(u2) du1 du2 dykr dyk′r ′

= 4

n8h2

∑
i1<j1

∑
i2<j2

∑
k �=k′

∫
�2(u1)Kr(ỹkr )Kr ′(ỹk′r ′)�

2(u2)Kr

(
u2r − u1r + hỹkr

h

)

·Ks′
(
u2r ′ − u1r ′ + hỹk′r ′

h

)
�r (u1r − hỹkr )�r ′(u1r ′ − hỹk′r ′)

×�(u1)�(u2) du1 du2 dỹkr dỹk′r ′ .
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By settinghũ2r = u2r − u1r , we get an extra factorh. The previous variance term is then
O(n−8h−1 · n6) = o(n2h−d). Thus,V (1)

�,1 = o(n−2h−d).
The variance termV (1)

�,2 corresponding to the casek1 = k′
2 andk

′
1 = k2 can be dealt

exactly asV (1)
�,1. The third one,V

(1)
�,3, is

4

n8h4

∑
i1<j1

∑
i2<j2

∑
k

E

∫
(dK)h(u1 − Yi1) · (1(Yi2 �Yi1)− Yi1)(dK)h(u1 − Yj1)

·(1(Yk�Yj1)− Yj1)(dK)h(u2 − Yi2) · (1(Yi1�Yi2)− Yi2)
·(dK)h(u2 − Yj2) · (1(Yk�Yj2)− Yj2)�(u1)�(u2) du1 du2.

It can be bounded easily:V (1)
�,3 = O(1/(n8h4) · n5) = o(1/(n2hd)), sincenh2 tends to the

infinity whenn is large.
V
(1)
�,4 and the other variance terms that are obtained by adding some equalities between

the indices can be dealt similarly. All of them provide negligible terms. To conclude,

T
(1)
� = oP

(
1

nhd/2

)
.

Only the equalityk = k′: T (2)�

We get

T
(2)
� = 2

n4h2

∑
i<j

∑
k �=i,j

∫
(dK)h(u− Yi ) · (1(Yk�Yi )− Yi )(dK)h(u− Yj )

· (1(Yk�Yj )− Yj )�(u) du.

Its expectation is nonzero. More precisely,

ET
(2)
� = 2

n4h2

∑
i<j

∑
k �=i,j

E

∫ {
�(u)

d∑
r=1

Kr

(
ur − Ykr

h

)
+O(h)�(u)

}

·
{

�(u)
d∑
s=1

Ks

(
us − Yks

h

)
+O(h)�(u)

}
�(u) du

= 2

n4h2



∑
r �=s

∑
i<j

∑
k �=i,j

+
∑
r=s

∑
i<j

∑
k �=i,j


+O(n−2)

≡ E
(2)
�,1 + E

(2)
�,2 +O(n−2).

By settinghỹkr = ur − ykr andhỹks = us − yks , we get easily

E
(2)
�,1 = O

(
1

n4h2
· n3 · h2

)
= O(n−2).
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ConcerningE(2)
�,1, one change of variables only is possible. It provides

E
(2)
�,2 = 2

n4h2

∑
i<j

∑
k �=i,j

d∑
r=1

∫
�2(u)K2

r

(
ur − ykr

h

)
�(u)1(ykr ∈ [0,1]) du dykr

= 2

n4h
· n(n− 1)

2
· (n− 2)

{
d∑
r=1

∫
K2
r ·
∫

�2�

}

= 1

nh

∑
r

∫
K2
r

∫
�2� + o(

1

nh
),

for n sufficiently large. Therefore, the expectation ofT
(2)
� is noto(n−1h−d/2) (in the case

d = 2). Let us deal now with its variance. To lighten the notations, we set

e0(u) = E[(dK)h(u− Y1) · (1(Y3�Y1)− Y1)

· (dK)h(u− Y2) · (1(Y3�Y2)− Y2)].
Therefore,

V ar(T
(2)
� ) = 4

n8h4

∑
i1<j1,i2<j2

∑
k1 �=i1,j1

∑
k2 �=i2,j2

E

∫
{(dK)h(u1 − Yi1)

· (1(Yk1�Yi1)− Yi1)
· (dK)h(u1 − Yj1) · (1(Yk1�Yj1)− Yj1)− e0(u1)}
· {(dK)h(u2 − Yi2) · (1(Yk2 �Yi2)− Yi2)
· (dK)h(u2 − Yj2) · (1(Yk2 �Yj2)− Yj2)− e0(u2)})
×�(u1)�(u2) du1 du2.

When there are no equalities between the indicesi1, j1, k1, i2, j2, k2, the corresponding
expectation is zero. At the opposite, there could be one, two or three equalities between
them. In every case, it is always possible to make some changes of variables with respect
to yi1 andyj1. Moreover, it is possible to sethũ2 = u2 − u1, as previously. Thus, it is easy
to check that

V ar(T
(2)
� ) = O

(
1

n8h4
· (n5 + n4h−d)

)
= o(n−2h−d).

Thus,

T
(2)
� = 1

nh

∑
r

∫
K2
r

∫
�2� + oP (n

−1h−d/2).

Only the equalityk = i or j (or k′ = i or j): T (3)�

The expectation is zero and the variance can be dealt exactly as in the latter case.
Two equalities, or more, between the indices:T

(4)
�

To fix the ideas, imagine there are two equalities between our four indices. It means
i = k and j = k′, or the reverse. It is obvious to bound the expectation ofT

(4)
� by
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O(n−4h−2 · n2) = o(n−1h−d/2). Moreover, the variance is clearlyO(n−8h−4 · n4 · h−d),
by the same calculations as previously. Thus,T

(4)
� is negligible with respect ton−1h−d/2,

in probability.
To conclude,

T� = 1

nh

∑
r

∫
K2
r

∫
�2� + oP (n

−1h−d/2). (B.6)

B.1.3. Study of2n−2∑
i<j aicn,j� and2n−2∑

i<j aidn,j�
To deal with these two terms simultaneously, denote

T�,m = 2

n2+mhm
∑
i<j

∑
k1,...,km

∫
{Kh(u− Yi )− EKh(u− Yi )}

· {(dmK)h(u− Yj ) · (1(Yk1�Yj )− Yj ) · · · (1(Ykm �Yj )− Yj )
−E[(dmK)h(u− Yj ) · (1(Yk1�Yj )− Yj ) · · · (1(Ykm �Yj )]}�(u) du,

for m = 2,3. All the summands are centered, except when there are some equalities
involving all the indicesk1, . . . , km andi (at least). By splittingT�,m, we get several terms.
If all the previous indicesi, j, k1, . . . , km are different from each other, the expectation is
zero and the variance is

V
(1)
�,m = 4

n4+2mh2m

∑
i1<j1

∑
i2<j2

∑
k1,...,km

∑
k′
1,...,k

′
m

E

∫
{Kh(u1 − Yi1)− EKh(u1 − Yi1)} · {Kh(u2 − Yi2 − EKh(u2 − Yi2)}

·{(dmK)h(u1 − Yj1) · (1(Yk1�Yj1)− Yj1) . . . (1(Ykm �Yj1)− Yj1)}
·{(dmK)h(u2 − Yj2) · (1(Yk′

1
�Yj2)− Yj2) . . . (1(Yk′

m
�Yj2)− Yj2)}

×�(u1)�(u2) du1 du2.

The corresponding terms are zero except when there are some equalities involving all the
indicesk1, . . . , km, k′

1, . . . , k
′
m and i1, i2. There are at leastm + 1 equalities. Moreover,

there are always three “free” random variables at least, viz three integrations with respect
to somey are available. It is possible to gain another factorhd by the change of variables
hũ2 = u2 − u1. Thus, in every case,

V
(1)
�,m = O

(
1

n4+2mh2m
· n4+2m−(m+1)

)
= O

(
1

n1+mh2m

)
.

This quantity iso(n−2h−d) whenm = 2,3 sincenh2 tends to the infinity whenn → ∞.
Imagine now there are some identities between the indicesi, j, k1, . . . , km. The expec-

tation of the corresponding term is zero, except if these equalities involve alli, k1, . . . , km.
Whenm = 2 (resp.m = 3), two equalities at least are necessary. This implies the expec-
tation isO(n−2−mh−mnm) = O(n−2h−m) = o(n−1h−d/2). Moreover, its variance can be
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dealt exactly likeV (1)
�,m. Thus, we have proved that, whenm = 2,3,

T�,m = oP

(
1

nhd/2

)
.

B.1.4. Study of2n−2∑
i<j cn,icn,j�, 2n−2∑

i<j cn,ibn,j� and the other terms of the
same type.
To deal with these terms simultaneously, denote

T
,m,p

= 2

n2+m+phm+p
∑
i<j

∑
k1,...,km

∑
l1,...,lp

∫
{(dmK)h(u− Yi ) · (1(Yk1�Yi )− Yi )

· · · (1(Ykm �Yi )− Yi )− E[(dmK)h(u− Yi )
·(1(Yk1�Yi )− Yi ) . . . (1(Ykm �Yj )]}
·{(dpK)h(u− Yj ) · (1(Yl1�Yj )− Yj ) . . . (1(Ylp �Yj )− Yj )
−E[(dpK)h(u− Yj ) · (1(Yl1�Yj )− Yj ) . . . (1(Ylp �Yj )]}�(u) du,

for m and l = 1,2,3,m + p�3. All the summands are centered, except when there are
some equalities involving all the indicesk1, . . . , km andl1, . . . , lp (at least) .
Imagine we are dealing with all the terms of the previous sum corresponding to differ-

ent indices. Thus the expectation is zero and the variance is a sum over 4+ 2(m + p)

indices (denoted byi1, i2, j1, j2, k1, k′
1, . . . , km, k

′
m, l1, l

′
1, . . . , lp, l

′
p with obvious nota-

tions). Nonzero terms occurs when all thek, k′, l andl′ indices are matched. At least, this
providesm + p equalities. Moreover, there are always three opportunities to make some
usual changes of variables and to remove the factorshd . When this factor appears, it means
we have an additional equality involvingi or j indices. Thus, we win an extra factorn.
Therefore, the variance is

O

(
1

n4+2m+2phm+p · (n4+m+p + n3+m+ph−d)
)
.

In every case, this iso(n−2h−d).
Now, imagine there are someequalities betweeni, j, k1, . . . , km, l1, . . . , lp. The variance

of such a term can be dealt as previously. It is sufficient to verify that its expectation is
negligible. This expectation is a sum of terms that are nonzero only if there are some
equalities involvingk1, . . . , km, l1, . . . , lp. If m + p is even, there are at least(m + p)/2
equalities. Ifm+ p is odd, there are at least[(m+ p)/2] + 1 equalities. In every case, the
factorshd disappear by some changes of variables with respect toyi andyj . To summarize,
this expectation isO(n−(m+p)/2h−m−p) (resp.O(n−[(m+p)/2]−1h−m−p)) if m+ p is even
(resp. odd). These terms areo(n−1h−d/2) if nh3 → ∞.
Thus

T
,m,p = oP

(
1

nhd/2

)
.



J.-D. Fermanian / Journal of Multivariate Analysis 95 (2005) 119–152 143

B.1.5. Study of the remainder terms
These terms are like 2n−2 ∑

i<j

aien,j�. Actually, every term that involvesen,j is negligi-

ble. For instance,∣∣∣∣∣∣2n−2
∑
i<j

aien,j�

∣∣∣∣∣∣ � Cst

n2h4
· n

2

hd
· sup

j

‖Yn,j − Yj‖4∞ = OP

(
ln22 n

n2h4+d

)
.

This term isoP (n−1h−d/2) under (B). Thus, we have got

J ∗
n,2 =

√
2

nhd/2
Nn + 2T� + T� + oP

(
1

nhd/2

)

=
√
2

nhd/2
Nn + (−1)

nh

∫
�2�.

d∑
r=1

∫
K2
r + oP

(
1

nhd/2

)
, (B.7)

whereNn tends in law towards a gaussian r.v.N (0,�2).

B.2. Study ofJ ∗
n,1

With the previous notations

J ∗
n,1 = 1

n2

∑
i

∫
a2n,i� = 1

n2

∑
i

∫
[ai + bn,i + c∗n,i]2�

= 1

n2

∑
i

∫
[a2i + b2n,i + (c∗n,i)2 + 2aibn,i + 2bn,ic

∗
n,i + 2aic

∗
n,i]�,

where the expansion ofK has been stopped at the second order. We denote

c∗n,i(u) = 1

2h2
{(d2K)h(u− Y∗

n,i).(Yn,i − Yi )(2) − E[(d2K)h(u− Y∗
n,i)

· (Yn,i − Yi )(2)]}
= OP

(
1

hd+2 sup
i

‖Yn,i − Yi‖2
)

= OP

(
ln2 n

nhd+2

)
.

Therefore, it is easy to bound
∫
aic

∗
n,i�,

∫
bn,ic

∗
n,i�, and

∫
(c∗n,i)2�. All the corresponding

terms inJ ∗
n,1 are negligible if

ln2 n

n2hd+2 + ln3/22 n

n5/2hd+3
+ ln22 n

n3hd+4 � 1

nhd/2
·

This is satisfied under condition (B). The main term ofJ ∗
n,1 is provided by

∫
a2i �. Note that

E
1

n2

∑
i

∫
a2i � = 1

nhd

∫
K2(t)(��)(u− ht) dt +O(n−1)

= 1

nhd

∫
K2

∫
�� +O

(
h2

nhd

)
,
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sinceK is even. Moreover, the variance is

V ≡ 1

n4
E
∑
i,j

∫ [{
Kh(u1 − Yi )−

∫
K(t)�(u1 − ht) dt

}2

−E{Kh(u1 − Yi )−
∫
K(t)�(u1 − ht) dt}2

]

·
[{
Kh(u2 − Yj )−

∫
K(t)�(u2 − ht) dt

}2

− E

{
Kh(u2 − Yj )−

∫
K(t)�(u2 − ht) dt

}2]
�(u1)�(u2) du1 du2.

The nonzero terms are obtained wheni = j . By the change of variableshỹi = u1− yi and
hũ2 = u2− u1, it is easy to verify thatV = O(n−3 · h−2d). Thus, sincenhd → ∞, we get

1

n2

∑
i

∫
a2i � = 1

nhd

∫
K2(t)(��)(u− ht) dt + oP (n

−1h−d/2).

Let us consider nowT ≡ n−2∑
i

∫
aibn,i�. Its expectation is

E

[
n−2

∑
i

∫
aibn,i�

]
= n−1

∫
E[a1bn,1]�

= (−1)

n2h

∫ {
Kh(u− y)−

∫
K(t)�(u− ht) dt

}
·{(dK)h(u− y) · (1− y)− E[(dK)h(u− Y) · (1− Y)]}�(y)�(u) du dy

= (−1)

n2h1+d

∫
{K(v)−

∫
K(t)�(u− ht) dt} · (dK)(v) · (1− u− hv)

·�(u− hv)�(u) dv du+O(n−2h−1).

Thus, this expectation iso(n−1h−d/2). Moreover, its variance is

V ar(T ) = 1

n4
E
∑
i,j

∫
ai(u1)aj (u2)bn,i(u1)bn,j (u2)�(u1)�(u2) du1 du2 − E[T ]2

= 1

n3
E

∫
a1(u1)a1(u2)bn,1(u1)bn,1(u2)�(u1)�(u2) du1 du2 − E[T ]2

= 1

n3h2
E

∫
a1(u1)a1(u2)(dK)h(u1 − Y1) · (Yn,1 − Y1)

·(dK)h(u2 − Y1) · (Yn,1 − Y1)�(u1)�(u2) du1 du2 +O(n−4h−2−2d).
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Invoking an a.e. upper bound for the empirical process, we get

V ar(T )� 1

n3h2
E

∫
|a1(u1)a1(u2)| · ‖(dK)h‖2∞(u1 − Y1) · ‖(dK)h‖∞(u2 − Y1)

·‖Yn,1 − Y1‖∞�(u1)�(u2) du1 du2 +O

(
1

n4h2+2d

)
� Cst

n3h2
· 1

hd
· ln2 n

n
·

The latter upper bound iso(n−2h−d). Thus, we have provedT = oP (n
−1h−d/2).

It remains to deal withn−2∑
i

∫
b2n,i�. By a change of variable with respect tou, we

get directly the upper bound

n−2
∑
i

∫
b2n,i� = OP

(
1

nh2
· 1

hd
· ln2 n

n

)
= oP (n

−1h−d/2),

if nh2+d/2/ ln2 n → ∞. The latter condition could be relaxed by a more cautious analysis
of the latter term, as done previously. It is useless, facing the set of technical assumptions
we have already done. To conclude,

J ∗
n,1 = 1

nhd

∫
K2(t)(��)(u− ht) dt + oP

(
1

nhd/2

)
. (B.8)

B.3. Study ofJI

Recall that

JI =
∫
(�n − E�n) · (E�n −Kh ∗ �̂)�, and

�n(u)− E�n(u) = n−1
∑
i

∫
[ai(u)+ b∗

n,i(u)]�(u) du, with

b∗
n,i(u) = (−1)

nh

n∑
i=1

{(dK)h(u− Y∗
n,i) · (Yn,i − Yi )

−E[(dK)h(u− Y∗
n,i) · (Yn,i − Yi )]},

for some random variableY∗
n,i , ‖Y∗

n,i − Yi‖�‖Yn,i − Yi‖ a.e. Thus,

JI =
∫ {

1

n

∑
i

[ai(u)+ b∗
n,i(u)]

}
· {E�∗

n,i(u)−Kh ∗ (�̂ − �)(u)
}
�(u) du

= 1

n

∑
i

∫
ai(u)Kh ∗ (� − �̂)(u)�(u) du+ 1

n

∑
i

∫
ai(u)E�∗

n,i(u)�(u) du

+1

n

∑
i

∫
b∗
n,i(u)Kh ∗ (� − �̂)(u)�(u) du+ 1

n

∑
i

∫
b∗
n,i(u)E�∗

n,i(u)�(u) du

≡ J
(0)
I + J

(1)
I + J

(2)
I + J

(3)
I ,
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by denoting

�∗
n,i(u) = (−1)

h
(dK)h(u− Y∗

n,i) · (Yn,i − Yi ).

Clearly,

�̂(u)− �(u) = ���(u, �0) · (�̂ − �0)+ 2−1�2��(u, �̃)

· (�̂ − �0)(2), (B.9)

for some�̃, ‖�̃ − �0‖�‖�̂ − �0‖ a.e. Implicitly,�̃ depends onu.

B.3.1. Study ofJ (0)I
Note that

J
(0)
I = n−1

n∑
i=1

∫
ai(u)K(v)(� − �̂)(u− hv)�(u) du dv

= n−1
n∑
i=1

∫
ai(u)K(v)���(u− hv, �0) · (�̂ − �0)�(u) du dv

+(2n)−1
n∑
i=1

∫
ai(u)K(v)�

2
��(u− hv, �̃) · (�̂ − �0)(2)�(u) du dv ≡ J

(0)
I,1 + J

(0)
I,2 .

Actually, the latter random quantitỹ� depends onu−hv. The first previous termJ (0)I,1 can be

dealt exactly as in Fan[13]. This author has assumed�̂ is themaximum likelihood estimator
of �, which impliesB(�0,Yi ) is a score function. Actually, by reading carefully her proof,
we notice we need onlyB(�0,Yi ) is centered and belongs inL2, viz our assumption (E).
Thus,J (0)I,1 = OP (n

−1). Moreover, by some change of variables,

‖J (0)I,2 ‖� Cst

n

n∑
i=1

∫
|K|(ũ)|K|(v)‖�2��(Yi − hũ− hv, �̃)‖

�(Yi − hũ) dũ dv · ‖�̂ − �0‖2.
To bound the previous right hand side, we could assume

E

[
sup

{(u,v,�)‖‖u‖+‖v‖�2h,‖�−�0‖�ε}
‖�2��(Yi − u, �)‖ · |�|(Yi − v)

]
< ∞. (B.10)

This assumption is satisfied under the stronger condition (T), forn sufficiently large.
Thus, under (B.10), we getJ (0)I,2 = OP (‖�̂ − �0‖2) = OP (n

−1).

B.3.2. Study ofJ (1)I

J
(1)
I = (−1)

nh

∑
i

∫
ai(u)E[(dK)h(u− Y∗

i ) · (Yn,i − Yi )]�(u) du.
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Clearly, this term is centered. By a limited expansion ofK up to thepth order, we prove that

E[(dK)h(u− Y∗
i ) · (Yn,i − Yi )] = O

(
1

n
+ 1

hp+d ·
(
ln2 n

n

)(p+1)/2
)
. (B.11)

The latter upper bound is uniform with respect tou. Therefore, the variance ofJ (1)I is

E[(J (1)I )2] = 1

n2h2

∑
i

E

∫
ai(u1)ai(u2)E[(dK)h(u1 − Y∗

i ) · (Yn,i − Yi )]

·E[(dK)h(u2 − Y∗
i ) · (Yn,i − Yi )]�(u1)

×�(u2) du2 du1

= O

(
1

nh2
· 1

n2
+ 1

nh2
· 1

h2p+2d ·
(
ln2 n

n

)p+1
)

= o

(
1

n2hd

)
,

by a change of variables with respect toy andu2, and ifnph2+2p+d/(ln2 n)p+1 → ∞. The
latter condition is satisfied under our assumptions withp = 2.

B.3.3. Study ofJ (2)I
With obvious notations,

J
(2)
I = n−1

n∑
i=1

∫
b∗
n,i(u)K(v)(� − �̂)(u− hv)�(u) du dv

= n−1
n∑
i=1

∫
[bn,i + c∗n,i](u)K(v)[���(u− hv, �0) · (�̂ − �0)

+2−1�2��(u− hv, �̃) · (�̂ − �0)(2)]�(u) du dv
= n−1

n∑
i=1

∫
bn,i(u)K(v)[���(u− hv, �0) · (�̂ − �0)]�(u) du dv

+OP

(
ln2 n

n
· 1

h2n1/2
+ 1

h
·
(
ln2 n

n

)1/2
· 1
n

)
,

under the condition (B.10). The main term of the latter expansion is

T ≡ 1

n2

∑
i,j

∫
bn,i(u)K(v)���(u− hv, �0)A(�0)−1B(�0,Yj )�(u) du.

Thus, wheni �= j , the expectation of the summand isO(n−1), and

E[T ] = 1

n2

∑
i

E[bn,i(u)K(v)���(u− hv, �0)A(�0)−1B(�0,Yi )]�(u) du+O(n−1)

= O

(
1

nh
·
(
ln2 n

n

)1/2
+ 1

n

)
= o

(
1

nhd/2

)
.
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Moreover, by the same reasoning, its variance is

V ar(T ) = O

(
1

n2h2
·
(
ln2 n

n

))
= o(

1

n2hd
).

Note that one remainder term is

1

n

∑
i

∫
bn,i(u)K(v)���(u− hv, �0)�(u) du · oP (rn).

The latter term is negligible if
(
ln2 n
n

)1/2 · rn
h
<< 1

nhd/2
, viz if

rn = o

(
1√

n ln1/22 n
· 1

hd/2−1

)
·

B.3.4. Study ofJ (3)I
Clearly, under the previous assumptions,

J
(3)
I = OP

(
1

h
·
(
ln2 n

n

)1/2
· 1

nh

)
= oP

(
1

nhd/2

)
,

sincenh2/ ln2 n → ∞. To conclude,

JI = oP

(
1

nhd/2

)
. (B.12)

B.4. Study ofJII

With the previous notations,

JII =
∫
(E�n −Kh ∗ �̂)2�

=
∫

[Kh ∗ (�̂ − �)]2� +
∫

[E�∗
ni]2� − 2

∫
Kh ∗ (�̂ − �)E�∗

ni�.

Applying Eq. (B.11) withp = 2, we get

E�∗
ni(u) = O

(
1

n
+ 1

h4
·
(
ln2 n

n

)3/2)
,

uniformly with respect tou. Thus, it is straightforward that∫
[E�∗

ni]2� = o

(
1

nhd/2

)
.

Moreover, under assumption (T) and by a limited expansion with respect tou,∫
[Kh ∗ (�̂ − �)]2� = OP

(
1

n

)
.
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By applying Schwartz’s inequality, we obtain

JII = oP

(
1

nhd/2

)
. (B.13)

Theorem3 results from Eqs. (B.1), (B.2), (B.7), (B.8), (B.12) and (B.13).�

AppendixC.. Proof of Corollary 4

It is sufficient to prove that

1

nhd

∫
K2(t)((�̂ − �)�)(u− ht) dt du = oP

(
1

nhd/2

)
, and (C.1)

1

nh

∫
K2(t)(�̂2 − �2)� = oP

(
1

nhd/2

)
. (C.2)

Note that, under (T) and by a limited expansion with respect to�, we have

sup
u∈[ε,1−ε]d

‖�̂(u, �̂)− �(u, �0)‖ = OP (‖�̂ − �0‖) = OP (n
−1/2).

Thus, Eqs. (C.1) and (C.2) are clearly satisfied becausenhd tends to the infinity when
n → ∞, proving the result. �

AppendixD.. The semiparametric estimator

Consider the parametric familyC = {�(·, �), � ∈ �}. The semiparametric estimator of�
satisfies, by definition,̂� = argmax�∈�Qn(�), where

Qn(�) = n−1
n∑
i=1

ln �(Yni, �).

We prove that̂� satisfies condition (3.1). By a limited expansion, there exists some random
vector�∗ such that�2��Qn(�

∗) · (�̂ − �0) = −��Qn(�0), with ‖�∗ − �0‖�‖�̂ − �0‖ a.e.
First, with obvious notations,

��Qn(�0) = n−1
n∑
i=1

�� ln �(Yi , �0)+ n−1
n∑
i=1

�2y,� ln �(Yi , �0) · (Yn,i − Yi )

+ 1

2n

n∑
i=1

�3yy� ln �(Y∗
ni, �0) · (Yn,i − Yi )(2) ≡ S0 + S1 + S2.

We assume that

E[‖�� ln �(Y, �0)‖ + ‖�2�,y ln �(Y, �0)‖ + ‖�3�,y,y ln �(Y, �0)‖] < ∞. (D.1)
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Obviously,S0 is asymptotically normal. The expectation ofS1 isO(n−1) and its variance
isO(n−2). Thus,S1 isOP (n

−1). Moreover,

‖S2‖�Cte · 1
n

n∑
i=1

‖�3yy� ln �(Y∗
ni, �0)‖ · ‖Yni − Yi‖2. (D.2)

Assume the following conditions of regularity:
1. There exist some constants� et� such that, a.e.,

‖�3yy� ln �(Y∗
ni, �0)‖��‖�3yy� ln �(Yi , �0)‖ + �‖�3yy� ln �(Yni, �0)‖, and

2. For everyu ∈ (0,1)d , ‖�3yy� ln �(u, �0)‖�Cst.r(u1)
a1 . . . r(ud)

ad , whereak = (−1+

)/pk, 1/p1 + · · · + 1/pk = 1, 
 > 0, andr(t) = t (1− t).

The latter condition ensures the consistency of the empirical mean of‖�3yy� ln �(Yni, �0)‖
(see Genest et al.[20], Proposition A.1). Thus, we get‖S2‖ = OP (n

−1 ln2 n). We have
obtained

��Qn(�0) = n−1
n∑
i=1

�� ln �(Yi , �)+OP (ln2 n/n).

Moreover, with obvious notations,

�2�Qn(�
∗) = �2�Qn(�0)+ n−1

n∑
i=1

�3� ln �(Yni, �̃) · (�∗ − �0)

= lim
n∞ E[�2�Qn(�0)] +OP (n

−1/2),

if �2�Qn(�) is asymptotically normal, and if

n−1
n∑
i=1

sup
�∈V(�0)

‖�3� ln �(Yni, �)‖ < ∞ a.e. (D.3)

Here,V(�0) denotes a neighborhood of�0. Applying Proposition A.1 of Genest et al.[21],
these two conditions can be are ensured if:
1. For everyu ∈ (0,1)d ,M(u) ≡ ‖�2� ln �(u, �0)‖�Cst.r(u1)

b1 · · · r(ud)bd , wherebk =
(−0.5+ �)/qk, 1/q1 + . . .+ 1/qk = 1, � > 0. Moreover,M(u) has continuous partial

derivativesMk(u) = �M(u)/�uk, such thatMk(u)�Cst.r(u1)
d
(k)
1 . . . r(ud)

d
(k)
d , d

(k)
k =

bk, d
(k)
j = bj − 1 if j �= k.

2. For everyu ∈ (0,1)d , sup�∈V(�0) ‖�
3
� ln �(u, �)‖�Cst.r(u1)

c1 . . . r(ud)
cd , whereck =

(−1+ �)/p′
k, 1/p

′
1 + . . .+ 1/p′

k = 1, � > 0.
Condition (1) ensures the asymptotic normality of the empiricalmean ofM(Yni). Condition
(2) ensures condition (D.3).
It canbe checked that the previous conditions are satisfiedbya largenumber of commonly

used copula families. Particularly, it is the case for the gaussian copula.
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Thus, under the previous conditions, we get

√
n(�̂ − �0) = 1√

n
A(�0)−1 ·

n∑
i=1

�� ln �(Yi , �0)+OP

(
ln2 n

n

)
,

A(�0) = − lim
n∞ E

[
�2�Qn(�)

]
and (3.1) is satisfied. �
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