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Abstract

In this paper we discuss some statistical pitfalls that may occur in modeling cross-dependences

with copulas in financial applications. In particular we focus on issues arising in the esti-

mation and the empirical choice of copulas as well as in the design of time-dependent copulas.
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1 Introduction

In modern finance and insurance, the identification and modeling of dependence structures

between assets is one of the main challenges we are faced with. Dependence structures must

be unveiled for several purposes : control of risk clustering 2, pricing and hedging of credit

sensitive instruments, particularly n-th to default credit derivatives and Collateralized Debt

Obligations (CDO’s) 3, pricing and hedging of basket derivatives and structured products 4,

credit portfolio management 5, credit and market risk measurement 6. In that respect, copulas

have been recently recognized as key tools to analyze dependence structures in finance. They

are becoming more and more popular among academics and practitioners because it is well

known that the returns of financial assets are non-Gaussian and exhibit strong nonlinearities.

Clearly, multivariate Gaussian random variables do not provide suitable building blocks from

an empirical point of view, and copulas appear as a natural modeling device in a non-Gaussian

world 7.

The concept of “copulas” or “copula functions” as named by Sklar [58] originates in

the context of probabilistic metric spaces. The idea behind this concept is the following:

for multivariate distributions, the univariate margins and the dependence structure can be

separated and the latter may be represented by a copula. The word copula, resp. copulare,

is a latin noun, resp. verb, that means “bond”, resp. “to connect” or “to join”. The term

copula is used in grammar and logic to describe that part of a proposition which connects

the subject and predicate. In statistics, it now describes the function that “joins” one-

dimensional distribution functions to form multivariate ones, and may serve to characterize

several dependence concepts. The copula of a multivariate distribution can be considered
2see Denuit and Scaillet [15] for testing procedures of positive quadrant dependence, and Cebrian et al. [6]

for testing procedures of concordance ordering.
3see Li [45] for a Gaussian copula-based methodology to price first-to-default credit derivatives as well as

Laurent and Gregory [43] and the references therein.
4for instance, Rosenberg [51] estimates copulas for the valuation of options on DAX30 and S&P500 indices.

Cherubini and Luciano [9] calibrate Frank’s copula for the pricing of digital options and options that are based

on the minimum on some equity indices. Genest et al. [33] study the relation between multivariate option

prices and several parametric copulas, by assuming a GARCH type model for individual returns.
5see e.g. Frey and McNeil [29].
6see Schönbucher [55], Schönbucher and Schubert [56], among others.
7see Embrechts et al. [16], [17] and Bouyé et al. [4] for a survey of financial applications, Frees and Valdez [28]

for use in actuarial practice, Patton [46, 47] and Rockinger and Jondeau [50] for introducing copulas in the

modeling of conditional dependencies.
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as the part describing its dependence structure as a complement to the behavior of each of

its margins. Formally Sklar’s Theorem states that a d-dimensional cumulative distribution

function F evaluated at point x = (x1, ..., xd) can be represented as

F (x) = C(F1(x1), . . . , Fd(xd)), (1.1)

where C is the copula function and Fi, i = 1, ..d, are the margins. In most cases the latter

function is uniquely defined by (1.1).

One attractive property of copulas is their invariance under strictly increasing transfor-

mations of the margins 8. Actually, the use of copulas allows to solve a difficult problem,

namely to find a whole multivariate distribution, by performing two easier tasks. The first

task starts with modeling each univariate marginal distribution either parametrically or non-

parametrically. The second task consists of specifying a copula, which summarizes all the

dependencies between margins. However this second task is still in its infancy for most of

multivariate financial series, partly because of the presence of temporal dependencies (serial

autocorrelation, time varying heteroskedasticity,...) in returns of stock indices, credit spreads,

or interest rates of various maturities.

Without any doubt, copulas consist of a powerful tool to model dependence structures.

They are however subject to some statistical pitfalls if used without appropriate care in

financial applications. In this paper our aim is to discuss some of these pitfalls. In particular

we analyze issues arising in the estimation (Section 2) and the empirical choice of copulas

(Section 3) as well as in the design of time-dependent copulas (Section 4).

2 How to estimate copulas?

If the true copula is assumed to belong to a parametric family C = {Cθ, θ ∈ Θ}, consistent and

asymptotically normally distributed estimates of the parameter θ (assumed to live in some

parameter space Θ) can be obtained through maximum likelihood methods. There are mainly

two ways to achieve this : a fully parametric method and a semiparametric method. The

first method relies on the assumption of parametric univariate marginal distributions. Each

parametric margin is then plugged in the full likelihood and this full likelihood is maximized

with respect to the parameter θ. Alternatively and without any parametric assumptions

for margins, the univariate empirical cumulative distribution functions can be plugged in
8Recall that is is not true for the standard Pearson’s correlation coefficient.
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the likelihood to yield a semiparametric method. These two commonly used methods are

detailed in Genest et al. [32] and Shi and Louis [57]. At first glance, the task looks easy.

Nonetheless, the result of the first method depends on the right specification of all margins.

This may induce too severe constraints, and this aspect lessens the interest of working with

copulas. The semiparametric estimation procedure where margins are left unspecified does

not suffer from this inconvenient feature, but suffers from a loss of efficiency (see [31]). Note

further that there is no guarantee in both cases that the specified copula is indeed the true

one. If not the asymptotic variance should be modified adequately (see Cebrian et al. [6]

for inference under misspecified copulas). Besides standard inference for independent and

identically distributed (i.i.d.) data does not hold with time-dependent data (see Chen and

Fan [7] for inference with β-mixing processes). This means that test statistics delivered by

standard maximum likelihood routines under the usual assumption of i.i.d. data and/or the

assumption of a well specified modeling should be handled with care.

In Table 1 we gather the results of a small Monte Carlo study designed to assess the

potential impact of misspecified margins on the estimation of the copula parameter. The

assessment relies on measuring estimation performance in terms of Bias and Mean Square

Error (MSE). The number of Monte Carlo experiments is set equal to 1000, and the sample

size n equal to 200, 500 and 1000, respectively. The true model corresponds to a bivariate

Frank copula 9 and two Student margins. The parameter θ of the copula is set equal to one

(Kendall’s ρ = 0.1645, Kendall’s τ = 0.1100) and two (ρ = 0.3168, τ = 0.2139), while the

number ν of degrees of freedom on the Student is set equal to three for both margins. The

pseudo model for the margins is chosen to be Gaussian N(µ, σ). This means that we assume

the margins to be normal instead of Student to get the misspecified model. We compare

the results delivered by a full (one-step) ML procedure and a two-step ML procedure. In

the first case the likelihood is simultaneously maximized over the copula parameter and the

margin parameters. In the second case the margin parameters are estimated in a first step by

optimizing separately the two Gaussian marginal likelihoods. The second step consists then

of optimizing the concentrated likelihood over the copula parameter only. We also report the

results yielded by the semiparametric method which is by construction well specified. Finally

we run the full ML procedure on the true model (likelihood with Student margins) to get the

best theoretical benchmark, at least asymptotically.
9This copula is often used in actuarial and financial applications and permits quick simulations (Gen-

est [30]).
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The results of Table 1 show that the misspecification may lead to a severe bias. The bias

is positive and leads to an overestimation of the dependence in the data. This bias seems to

be more pronounced in the one step case. MSEs are also much higher when compared to the

two well-specified cases. Note further that MSEs of the semiparametric method are close to

the ones of the one-step parametric method when the model is true, and the efficiency loss is

small in large samples. This suggests that if one has any doubt about the correct modeling

of the margins, there is probably little to loose but lots to gain from shifting towards a

semiparametric approach.

TABLE 1: Bias and MSE of copula parameter estimators

Sample size: n = 200

θ = 1 one-step two-step semi true

Bias 0.7012 0.6094 -0.0206 -0.0164

MSE 1.5119 1.0591 0.1754 0.1797

θ = 2 one-step two-step semi true

Bias 1.1144 0.9292 -0.0202 -0.0124

MSE 2.2869 1.4851 0.1913 0.1928

Sample size: n = 500

θ = 1 one-step two-step semi true

Bias 0.7720 0.6931 -0.0081 -0.0067

MSE 1.1114 0.8184 0.0673 0.0684

θ = 2 one-step two-step semi true

Bias 1.2165 1.0354 -0.0067 -0.0045

MSE 2.0494 1.3977 0.0730 0.0729

Sample size: n = 1000

θ = 1 one-step two-step semi true

Bias 0.7904 0.7190 -0.0046 -0.0048

MSE 0.9647 0.7397 0.0360 0.0360

θ = 2 one-step two-step semi true

Bias 1.2553 1.0784 -0.0037 -0.0037

MSE 1.9702 1.3853 0.0387 0.0382
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3 How to choose copulas empirically?

One of the main issue with copulas is to choose the “best” one, namely the copula that

provides the best fit with the data set at hand. The choice among possible copula specifica-

tions can be done rigorously via so-called goodness-of-fit (GOF) tests 10. With the previous

notations, usually, a GOF test for multivariate distributions tries to distinguish between two

assumptions :

H0 : F = F0, against Ha : F 6= F0, when the null hypothesis is simple, or

H0 : F ∈ F , against Ha : F 6∈ F , when the null hypothesis is composite.

Here, F0 denotes some known cumulative distribution function, and F = {Fθ, θ ∈ Θ} is some

known parametric family of multivariate cumulative distribution functions.

Let us first work with d = 1. The problem is then relatively simple. By considering the

transformation of X1 by F1, the corresponding empirical process tends weakly to a uniform

Brownian bridge under the null hypothesis. Then, a lot of well-known distribution-free GOF

statistics are available : Kolmogorov-Smirnov, Anderson-Darling...

In a multidimensional framework, it is more difficult to build distribution-free GOF tests,

particularly because the previous transformation F (X) fails to work. More precisely, the

law of the transformed variable is no longer distribution-free. Thus, several authors have

proposed some more or less satisfying solutions, see e.g. Justel et al. [39], Saunders and

Laud [54], Foutz [27], Polonik [49], and Khmaladze ( [40, 41] and especially [42]).

Actually, the simplest way to build GOF composite tests for multivariate random vari-

ables is to consider multidimensional chi-square tests, as in D’Agostino and Stephens [10]

or Pollard [48]. To do this, it is necessary to choose some disjoint subsets A1, . . . , Ap in Rd

and to consider

χ2 = n
p∑

k=1

(Pn(X ∈ Ak)− P0(X ∈ Ak))2

P0(X ∈ Ak)
,

computed from a sample of size n. Under the null hypothesis, the test statistic χ2 tends in

law towards a chi-square distribution.
10An informal test can be done by examining whether the plot of the estimated parametric copula is not

too far from the plot of a copula function estimated nonparametrically via kernel methods, see Fermanian and

Scaillet [24] for suggestions. One may also rely on a strong a priori for the type of dependence structure one

wishes for the data or the application in mind, and choose the type of copulas accordingly.
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To deal with the corresponding composite assumption, it is necessary to consider some

estimates of θ in a first step. The simplest solution is to build the above chi-square test

statistic based on a cumulative distribution function with a parameter estimated by maximum

likelihood. Note that the limiting distribution remains chi-square only if the estimation is

performed over grouped data 11. When it is not the case, the limiting distribution of the test

statistic χ2 is bounded above by a chi-square distribution, which means that the use of the

latter distribution leads to reject too often the null hypothesis. Unfortunately this aspect is

often overlooked by empirical researchers.

A natural idea would be to handle the GOF problem for copulas in a similar way, say to

distinguish between two assumptions :

H0 : C = C0, against Ha : C 6= C0, when the null hypothesis is simple, or

H0 : C ∈ C, against Ha : C 6∈ C, when the null hypothesis is composite.

Here, C0 denotes some known copula, and C = {Cθ, θ ∈ Θ} is some known parametric

family of copulas. Since the copula is the cumulative distribution function of (u1, ..., ud) =

(F1(X1), . . . , Fd(Xd)), one may think of designing testing procedures as before with C substi-

tuted for F and u = (u1, ..., ud) substituted for X = (X1, ..., Xd). The difficulty comes from

the univariate cumulative distribution functions Fj being unknown. More specifically, the

chi-square testing procedure will not work anymore, after replacing the unknown marginal

cumulative distribution functions by their empirical counterparts. The limiting law of the

previous test statistic χ2 will not be a chi-square distribution, and thus any inference made

as if will be misleading. Actually, the limiting law is a lot more complex, and depends on C0

and its derivatives 12. Note that some authors use crude criteria like

Sp =
∫
|Cn − C0|p,

for some p > 0, where Cn denotes the so-called empirical copula function (see Deheuvels [11,

12, 13] for a definition). In general these statistics provide testing procedures with poor

statistical properties since they suffer from the same drawback as the one of the test statistic

χ2, namely their asymptotic laws are not distribution-free.
11which often necessitates some ad-hoc estimation procedures.
12The rigorous rationale lies in the difference between the behavior of standard empirical processes and

copula empirical processes, see Fermanian et al. [23] for details.
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For all these reasons, the general problem of GOF test for copulas has not yet been tackled

rigourously from an explicit asymptotic point of view. Some authors however suggest to use

the bootstrap procedure to gauge the limiting distribution of the test statistic (Andersen et

al. [2], e.g.). Genest and Rivest [31] solve the problem for the case of Archimedian copulas.

For this type of copulas the problem can be reduced to a univariate one 13, and some standard

methods are available. For instance, Frees and Valdez [28] use Q-Q plots to fit the “best”

Archimedian copula. None of these authors have dealt with the case of time-dependent

copulas 14. Recently, some authors have applied Rosenblatt’s transformation (cf [52]) to the

original multivariate series, like in Justel et al. [39], before testing the copula specification:

Breymann et al. [5], Chen et al. [8]. Nonetheless, the use of Rosenblatt’s transformation is

a tedious preliminary step, especially with high dimension variables, and this step is model

specific. Thus the test methodology cannot be really viewed as distribution-free.

Note that we could build testing procedures based on some estimates of the joint cumula-

tive distribution function by modeling the marginal distributions simultaneously. This seems

to be a good idea, because some “more or less” standard tests are available to check the GOF

of the cumulative distribution function itself. However, this does not directly suit our pur-

pose. Indeed, doing so produces tests for the whole specification - the copula and the margins

- but not for the dependence structure itself - the copula only-. A slightly different point of

view would be to test each marginal separately in a first step. If each marginal model is ac-

cepted, then a test of the whole multidimensional distribution can be implemented (through

the previously cited methodologies). Yet, such a procedure is heavy, and it is always necessary

to deal with a multidimensional GOF test. Moreover, it is interesting to study dependence in

depth first, independently of the modeling of the margins. For instance, imagine the copula

links the short term interest rate with some credit spreads. It should be useful to keep the

possibility to switch from one model of the short term interest rate to another one without

affecting the dependence structure vis-à-vis the credit spreads. Since this research area is

very active, new term structure models appear regularly, others are forgotten, and current

models are often improved. By choosing the copula independently of the marginal models,

such evolutions are clearly easier to incorporate, and modeling maintenance is facilitated.

There exists a simple direct way to circumvent the previous difficulties in testing a copula
13see the survey of de Matteis [14].
14with the exception of Patton [46, 47], but he tests the whole joint specification and not only the copula

itself.
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specification. This method exploits a smoothing of the empirical copula process, which

delivers an estimate of the copula density itself (see Gijbels and Mielniczuc [34]). By definition

the kernel estimator of a copula density τ at point u is

τn(u) =
1
hd

∫
K

(
u− v
h

)
Cn(dv) =

1
nhd

n∑
i=1

K

(
u− un,i

h

)
, (3.1)

where K is a d-dimensional kernel, h = h(n) is a bandwidth sequence and the transformed

data un,i, i = 1, ..., n, are obtained from applying the empirical margins to the original data

points Xi, i = 1, ..., n, component per component 15. More precisely, we take
∫
K = 1,

h(n) > 0, and h(n) → 0 when n → ∞. As usual, we denote Kh(·) = K(·/h)/hd. In

Fermanian [25], it is proved that:

Theorem 1. Under some conditions of regularity and H0, for every m and every vectors

u1, . . . ,um in ]0, 1[d, such that τ(uk) > 0 for every k, we have

(nhd)1/2 ((τn − τ)(u1), . . . , (τn − τ)(um)) law−→
T→∞

N (0,Σ),

where Σ is diagonal, and its k-th diagonal term is τ2(uk)
∫
K2.

Now, imagine we want to build a procedure for a GOF test with some composite null

hypothesis. Under H0, the parametric family is C = {Cθ, θ ∈ Θ}. Assume we have estimated

θ consistently by θ̂ at the usual parametric rate of convergence, namely

θ̂ − θ0 = OP (n−1/2). (3.2)

We denote by τ(·, θ0) (or τ in short, when there is no ambiguity) the “true” underlying copula

density. Clearly, τ(u, θ̂)− τ(u, θ0) tends to zero faster than (τn− τ)(u). Thus, a simple GOF

test could be

S =
nhd∫
K2

m∑
k=1

(τn(uk)− τ(uk, θ̂))2

τ(uk, θ̂)2
·

Corollary 2. Under some conditions of regularity, S tends in law towards a m-dimensional

chi-square distribution under the composite null hypothesis H0.

The points (uk)k=1,...,m are set arbitrarily. They could be chosen in some particular areas

of the d-dimensional unit square, where the user seeks a nice fit. For instance, for risk
15The vector un,i is in fact made of the stack of the ranks componentwise of the i-th observation Xi.
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management purposes, it is fruitful to focus on the dependencies in the tails 16. For the

particular copula family C, it is necessary to specify these areas.

It is possible to build another test that does not depend on any particular choice of points.

This test is based on the proximity between the smoothed copula density and the estimated

parametric density. Under H0, they will be near each other. To measure such a proximity,

we will invoke the L2-norm. To simplify, denote the estimated parametric τ(·, θ̂) density by

τ̂ . Consider the statistic

Jn =
∫

(τn −Kh ∗ τ̂)2(u)ω(u) du,

where ω is a weight function, viz a measurable function from [0, 1]d towards R+. Note that

we consider the convolution between the kernel Kh and τ̂ instead of τ̂ itself. This trick allows

to remove a bias term in the limiting behavior of Jn (see Fan [18]).

The minimization of the criterion Jn is known to produce consistent estimates in numerous

situations. These ideas appear first in the seminal paper of Bickel and Rosenblatt [3] for

the univariate density with i.i.d. observations. Rosenblatt [53] extends the results in a

two-dimensional framework and discusses consistency with respect to several alternatives.

Fan [18] deals with various choices of the smoothing parameter. The comparison of some

nonparametric estimates-especially estimates of nonparametric regression functions- and their

parameter-dependent equivalents has been formalized in a lot of papers in statistics and

econometrics : Härdle and Mammen [38], Zheng [59], Fan and Li [19] 17, to name a few.

More recently similar results have been obtained for dependent processes, see e.g. Fan

and Ullah [22], Hjellvik et al. [37], Gouriéroux and Tenreiro [35], and Fan and Li [20]. For

instance, Aı̈t-Sahalia [1] applies these techniques to find a convenient specification for the

dynamics of the short term interest rate. Besides, Gouriéroux and Gagliardini [36] use such a

criterion to estimate possibly infinite dimensional parameters of a copula function 18. Instead

of having inference purposes in mind, we will use Jn as a test statistic, like in Fan [18].

Let us assume that we have found θ̂, a convenient estimator of θ. When τ and its

derivatives with respect to θ are uniformly bounded on [0, 1]d × V(θ0), ω can be chosen

arbitrarily. Unfortunately, this is not always the case, a leading example being the bivariate
16Generally speaking, the tails are related to large values of each margin, so the uk should be chosen near

the boundaries. Nevertheless, some particular directions could also be of interest (the main diagonal, for

instance).
17see numerous references in Fan and Li [21]
18for instance, the univariate function defining an Archimedian copula
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Gaussian copula density. To avoid technical troubles, we reduce the GOF test to a strict

subsample of [0, 1]d, say ω’s support. In Fermanian [25], it is proved that:

Theorem 3. Under some technical assumptions and H0,

nhd/2

(
Jn −

1
nhd

∫
K2(t).(τω)(u− ht) dt du +

1
nh

∫
τ2ω.

d∑
r=1

∫
K2

r

)
law−→

n→∞
N (0, 2σ2),

σ2 =
∫
τ2ω ·

∫ {∫
K(u)K(u + v) du

}2

dv.

Thus, a test statistic could be

T =
n2hd

(
Jn − (nhd)−1

∫
K2(t).(τ̂ω)(u− ht) dt du + (nh)−1

∫
τ̂2ω.

∑d
r=1

∫
K2

r

)2

2
∫
τ̂2ω ·

∫
{
∫
K(u)K(u + v) du}2 dv

·

Corollary 4. Under the assumptions of Theorem 3, the test statistic T tends in law towards

a chi-square distribution.

In the next lines we develop a small Monte Carlo study, where we compare three informal,

but simple, methods to choose a parametric family of copulas by exploiting the aforemen-

tioned GOF criteria.

Let us consider Cj = {C(j)
θj
, θj ∈ Θj ⊂ Rqj}, j = 1, . . . ,m, where each θj is estimated

consistently by θ̂j .

The first “crude” rule is based on a choice of the family (and its associated parameter θ̂j)

such that ∫
|C(j)

θ̂j
− Cn|p

is minimal for some p > 0. Here, we take a quadratic distance: p = 2.

The second method is based on the “naive” statistics

S0(θ̂j) = n
p∑

k=1

(C(j)

θ̂j
− Cn)2(Ak)

Cn(Ak)

for some disjoint subsets A1, . . . , Ad ⊂ [0, 1]d. Again we use S0 as a comparative measure,

and we choose the family that provides the smallest S0. As already mentioned such statistics

do not tend to a chi-square distribution.

The third method relies on the two proper goodness-of-fit statistics S and T . As in the

two first methods, these statistics are used as comparative measures to discriminate between

the parametric families of copulas.
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TABLE 2: Percentage of choices for the three different families under the first

rule. (The true copula is a Student copula with parameters given in the first column.)
(ρ, ν) Student (in %) Gaussian (in %) Clayton (in %)

(0.2,3) 51 43 6

(0.2,8) 0 96 4

(0.2,13) 0 93 7

(0.5,3) 7 93 0

(0.5,8) 0 100 0

(0.5,13) 0 100 0

(0.8,3) 3 97 0

(0.8,8) 0 100 0

(0.8,13) 0 100 0

For this simulation study, we consider 100 samples of 1000 realizations of some bivariate

random variables. The true copula is a Student copula whose parameters are ν ∈ {3, 8, 13}
(degrees of freedom) and ρ ∈ {0.2, 0.5, 0.8} (correlation). The subsets Ak are of the type

[i/10, (i + 1)/10[×[j/10, (j + 1)/10[ for i, j = 0, . . . , 9. For S, we have chosen the points

(i/10, j/10), i, j = 1, . . . , 9.

We introduce two other alternative families of copulas: the Gaussian family and the

Clayton family. It has been noted that these three families provide similar prices for credit

derivatives (Laurent and Gregory [44]). However, their behavior in the tails are not the same,

and a similarity in terms of expectations does not guarantee a suitable identification over the

whole space [0, 1]2. Tables 2, 3 and 4 provide the frequency each family has been chosen by

the three rules when the true copula is the Student copula.

Clearly, the first “crude” rule is misleading. The Gaussian copula is almost always chosen,

even when the tail dependence is strong (small ν). The results under the second rule based on

a“naive”chi-square test statistics are less dramatic. In particular, it provides good predictions

for the smallest ν and/or strong correlations. However, the lowest the difference between the

true underlying Student copula and Gaussian copulas, the less relevant the diagnostics. On

the contrary, a classification based on S or T looks right for 3 cases over 4 in general. We

have checked that these results are robust for a wide range of parameter values, and this

strongly supports the use of these two statistics to discriminate between parametric families

12



TABLE 3: Percentage of choices for the three different families under the

second rule. (The true copula is a Student copula with parameters given in the first

column.)
(ρ, ν) Student (in %) Gaussian (in %) Clayton (in %)

(0.2,3) 100 0 0

(0.2,8) 12 76 12

(0.2,13) 7 82 11

(0.5,3) 100 0 0

(0.5,8) 35 65 0

(0.5,13) 10 90 0

(0.8,3) 100 0 0

(0.8,8) 68 32 0

(0.8,13) 27 73 0

TABLE 4: Percentage of choices for the three different families under the third

rule with S (resp. T ). (The true copula is a Student copula with parameters given in the

first column.)
(ρ, ν) Student (in %) Gaussian (in %) Clayton (in %)

(0.2,3) 92 (97) 0 (2) 8 (1)

(0.2,8) 75 (64) 0 (23) 25 (13)

(0.2,13) 73 (50) 0 (29) 27 (21)

(0.5,3) 96 (100) 0 (0) 4 (0)

(0.5,8) 88 (73) 0 (27) 12 (0)

(0.5,13) 78 (63) 0 (35) 22 (2)

(0.8,3) 97 (100) 0 (0) 3 (0)

(0.8,8) 89 (70) 0 (30) 11 (0)

(0.8,13) 89 (63) 0 (37) 11 (0)
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of copulas.

4 How to design time-dependent copulas?

To fix the ideas, consider a security whose payoff at some maturity date T depends on the

value ST = (S1,T , . . . , Sd,T ) of d underlying assets. Then, it is well-known that its price today

can be written as

P0 = e−rTEQ [ψ(ST )|S0] , (4.1)

where Q denotes the risk-neutral probability, ψ the payoff function and r the (assumed

constant) interest rate. To calculate this price, it is necessary to specify the distribution

of ST knowing S0 under Q. Since ST is d-dimensional, it seems to be natural to introduce

C0,T (·|S0), the copula associated with the latter multivariate distribution. Note that this

copula is time-dependent and is a function of the current value S0. Moreover, for market

and credit risk measures, it is often necessary to simulate the future values of a lot of market

factors, say S, at various dates t > 0. Knowing the spot value S0 today, some future

realizations of St knowing S0 have to be drawn (sometimes a large number of times). In that

respect, the dependence function C0,t(·|S0) needs to be specified. If we assume a stationary

process (St), the two previous issues can be subsumed by: how to define C0,t(·|S0) for every

t and S0?

First, let us fix the horizon t. A first attempt to formalize so-called conditional copulas

is due to Patton [46]. His definition is a direct extension of the usual Sklar’s Theorem:

Definition 5. For every sub-algebra A, the conditional copula with respect to A associated

with X is a random function C(·|A) : [0, 1]d −→ [0, 1] such that

F (x|A) = C(F1(x1|A), . . . , Fd(xd|A)|A), a.e.

for every x ∈ Rd. Such a function is unique on the product of the values taken by the

conditional marginal cumulative distribution functions Fj(·|A).

Even if this definition is useful it should be noticed that other concepts could be more

relevant from a practical point of view. Indeed, in practice, the marginal distributions are

usually defined with respect to past marginal values, for instance in the case of Markovian

processes (Sj,t) j = 1, ..., d. In other words, we work (often easily) with the conditional

distributions of Sj,t knowing Sj,0, but not the conditional distributions of Sj,t knowing the
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full vector S0. Actually, it is far simpler to model the future returns of the stock index S&P

500 knowing the past values of this index (by some ARCH, GARCH, stochastic volatility,

switching regimes models...) than knowing the past values of the S&P 500 and Nikkei indices

both. Since users often like to take their marginal models as inputs for multivariate models,

it appears to be preferable to define a notion of conditional pseudo-copula (Fermanian and

Wegkamp (2004)). To this goal, consider some sub-algebras A1, . . . ,Ad,B and denote A =

(A1, . . . ,Ad). These sub-algebras cannot be chosen arbitrarily:

Assumption S. Let x and x̃ be some d-vectors. For almost every ω ∈ Ω,IP(Xj ≤
xj |Aj)(ω) = IP(Xj ≤ x̃j |Aj)(ω) for every j = 1, . . . , d implies

IP(X ≤ x|B)(ω) = IP(X ≤ x̃|B)(ω).

We will assume condition (S) is satisfied. This is the case in particular when all conditional

cumulative distribution functions ofX1, . . . , Xd are strictly increasing. It is also satisfied when

A1 = . . . = Ad = B, as in Patton [46].

Definition 6. The conditional pseudo-copula with respect to these sub-algebras and associated

with X is a random function C(·|A,B) : [0, 1]d −→ [0, 1] such that

F (x|B) = C(F1(x1|A1), . . . , Fd(xd|Ad)|A,B), a.e.

for every x ∈ Rd. Such a function is unique on the product of the values taken by the

conditional marginal cumulative distribution functions Fj(·|Aj).

The (random) function C(·|A,B) is called a pseudo-copula because it satisfies all the

axioms yielding a copula, except for one: its margins are not uniform in general. This means

that the theoretical results and the statistical inference developed for standard copulas will

not apply per se to pseudo copulas in a straightforward manner. Some ad-hoc theories need

to be formalized.

To avoid such annoying conditioning procedures, there is another solution that seems to

be simpler. It suffices to increase the dimension of the underlying process and to use the

stationary marginal distributions F1, . . . , Fd instead of Fj(·|Aj). For instance, in a one-order

Markov process (St), we could consider the 2d-dimensional random vector (St, St−1). By

denoting its (true) copula by C, we have

P (St ≤ x, St−1 ≤ y) = C(F1(x1), . . . , Fd(xd), F1(y1), . . . , Fd(yd)),
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for every x and y. Thus, the knowledge of C and the univariate cumulative distribution

functions Fj , j = 1, .., d, is sufficient to describe the whole dynamics of the process (St).

However, such an approach is less rich than the previous one. Since the stationary marginal

distributions provide only a small piece of information, most of the specification is induced

by the 2d-dimensional copula. In this sense, this copula is akin to the joint distribution of

(St, St−1) itself.
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paramétrique d’indépendance. Acad. R. Belg., Bull. Cl. Sci., 5 Série 65 (1979) 274-292.

[12] P. Deheuvels, A Kolmogorov-Smirnov type test for independence and multivariate sam-

ples, Rev. Roum. Math. Pures et Appl., Tome XXVI, 2 (1981a) 213-226.

[13] P. Deheuvels, A Nonparametric Test of Independence, Publications de l’ISUP 26 (1981b)

29-50.

[14] R. de Matteis, Fitting copulas to data, Diploma thesis, Univ. Zurich (2001).

[15] M. Denuit and O. Scaillet, Nonparametric Tests for Positive Quadrant Dependence, DP

FAME (2003).

[16] P. Embrechts, A. McNeil A. and D. Straumann, Correlation and Dependency in Risk

Management: Properties and Pitfalls, in Risk Management: Value at Risk and Beyond,

eds Dempster M. and Moffatt H., Cambridge University Press, Cambridge (2000).

[17] P. Embrechts, F. Lindskog, and A. McNeil, Modelling dependence with copulas and

applications to risk management. Working paper ETHZ (2001).

[18] Y. Fan, Testing the goodness of fit of a parametric density function by kernel method.

Econometric Theory 10 (1994) 316− 356.

[19] Y. Fan and Q. Li, A general nonparametric model specification test, Manuscript, De-

partments of Economics, University of Windsor (1992).

[20] Y. Fan and Q. Li, Central limit theorem for degenerate U-statistics of absolutely regular

processes with applications to model specification testing, J. Nonparametric Stat. 10

(1999) 245− 271.

[21] Y. Fan and Q. Li, Consistent model specification tests, Econom. Theory 16 (2000) 1016−
1041.

[22] Y. Fan and A. Ullah, On goodness-of-fit tests for weakly dependent processes using

kernel method, J. Nonparametric Statist. 11 (1999) 337− 360.

[23] J-D. Fermanian, D. Radulovic, and M. Wegkamp, Weak convergence of empirical copula

process, forthcoming in Bernoulli.

17



[24] J-D. Fermanian and O. Scaillet, Nonparametric estimation of copulas for time series,

Journal of Risk 5, Vol 4 (2002) 25-54.

[25] J.-D. Fermanian, Goodness-of-fit tests for copulas. Working paper Crest (2003).

[26] J.-D. Fermanian, and M. Wegkamp, Time-dependent copulas, Mimeo (2004)..

[27] R. Foutz, A test for goodness-of-fit based on an empirical probability measure, Ann.

Statist., 8 (1980) 989− 1001.

[28] E. Frees and E. Valdez, Understanding Relationships Using Copulas, North American

Actuarial J., 2 (1998) 1− 25.

[29] R. Frey and A. McNeil, Modelling dependent defaults, working paper (2001).

[30] C. Genest, Frank’s family of bivariate distributions, Biometrika 74 (1987) 549− 555.

[31] C. Genest and C. Rivest, Statistical inference procedures for bivariate Archimedian cop-

ulas, J. Amer. Statist. Ass. 88 (1993) 1034− 1043.

[32] C. Genest, K. Ghoudi and C. Rivest, A semiparametric estimation procedure of depen-

dence parameters in multivariate families of distributions, Biometrika 82 (1995) 543−552.

[33] C. Genest, R.W.J. van den Goorbergh and B. Werker, Multivariate option pricing using

dynamic copula models, mimeo (2003).

[34] I. Gijbels and J. Mielniczuc, Estimating the density of a copula function, Comm. Stat.

Theory Methods 19 No 2 (1990) 445− 464.

[35] C. Gouriéroux and C. Tenreiro, Local power properties of kernel based goodness-of-fit

tests, J. Multivariate Anal. 78 (2000) 161− 190.

[36] C. Gouriéroux and P. Gagliardini, Constrained nonparametric copulas, Working paper

CREST (2002).

[37] V. Hjellvik, Q. Yao and V. Tjøstheim, Linearity testing using local polynomial approxi-

mation. J. Statist. Plann. Inf. 68(1998) 295− 321.
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