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Abstract

We study a test statistic based on the integrated squared difference between a kernel estimator of the copula
density and a kernel smoothed estimator of the parametric copula density. We show for fixed smoothing
parameters that the test is consistent and that the asymptotic properties are driven by a U -statistic of order 4
with degeneracy of order 1. For practical implementation we suggest to compute the critical values through
a semiparametric bootstrap. Monte Carlo results show that the bootstrap procedure performs well in small
samples. In particular, size and power are less sensitive to smoothing parameter choice than they are under
the asymptotic approximation obtained for a vanishing bandwidth.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Goodness-of-fit (gof) tests have a long history in statistics [4] while copula models find new
interesting applications in finance and insurance (see, e.g., [19,6]) beside their long acclaimed
applications in reliability and survival analysis. Nevertheless relatively little is known about prop-
erties of gof tests for copulas despite an obvious need for such tools in applied work; see however,
[15,3] for study of gof tests based on the integral probability transformation. The main reason
is the technical difficulty induced by the probabilistic behaviour of the empirical copula process
(see, e.g., [23,11]). In order to circumvent this difficulty, Fermanian [10] suggests to use a gof
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test based on the integrated weighted squared difference between a kernel estimator of the copula
density and a kernel smoothed estimator of the parametric copula density. In particular he shows
that the test statistic is asymptotically normally distributed when the bandwidth shrinks to zero.
Fan [7] has previously established similar results for bias-corrected gof tests of standard pdf via
kernel methods.

In this paper we study the asymptotic properties of the gof test introduced by Fermanian [10],
but holding the smoothing parameters fixed and the weight function equal to one as in [9]. We
start with recalling the form of the test statistic in Section 2. We derive its interpretation in terms
of a weighted integrated squared difference between the characteristic function of the empirical
copula process and the characteristic function of the estimated parametric copula of the null
hypothesis. A direct consequence of such an interpretation is test consistency for fixed smoothing
parameters. We show that the asymptotic properties are driven by a U-statistic of order 4 with
degeneracy of order 1. This is to be contrasted with the result for standard pdf obtained by Fan
[9], namely asymptotic properties driven by a U-statistic of order 2 with degeneracy of order
1. To work with copulas carries here a price in terms of analytical tractability of the asymptotic
distribution. Therefore for practical implementation we recommend to compute the critical values
through a semiparametric bootstrap. Monte Carlo results of Section 3 reveal that the bootstrap
based procedure performs well in small samples. In particular, size and power are less sensitive
to smoothing parameter choice than the same characteristics under the asymptotic approximation
obtained for a vanishing bandwidth.

2. Test statistic and asymptotic properties

We consider a setting made of i.i.d. observations {X; = (Xj1,..., Xig);i=1,...,n} of
a random vector taking values in R?. The distribution of X is denoted by F, and the mar-
gins are denoted by F;, j = 1,...,d. The copula function is denoted by C, and its density
by c.

Following [5], let us define the empirical copula function by

n

~ 1 ~ ~ / d
Cw ==3 WAXi<ur, ..., FaXi)<ua), w= (. ua) 10,117,
i=1

where F ; 1s the empirical cumulative distribution functions computed from {X;;;i =1, ..., n},
J =1,...,d.Observe that C is actually a function of the ranks of the observations since n F; (X; ;)
is the rank of X;; among X, ..., X,,;.

Nonparametric estimation procedures for the density of a copula function have been proposed
by Behnen et al. [2] and Gijbels and Mielniczuk [17]. They rely on a kernel smoothing directly

applied to the transformed sample {f’i = (Fl(Xil), R I:“d(Xid))/; i=1,..., n} The kernel
estimator of the copula density at point u is simply

1 o .
c(u) == " E Ky —Y;), (2.1)
i=1

where Kg(y) = K(H™ ly)/ det H, K is ad-dimensional kernel, and H is a nonsingular, symmetric
matrix of smoothing parameters.
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Fermanian [10] suggests to use the following gof test statistic for the parametric family C (u; 0)
with density c(u; 0) and 0 € ® C R?:

Fw) ::/[é(u)—KH*c(u; @)]2w(u)du,

where * denotes convolution, and w is a weight function.

The estimator § can be computed by a semiparametric maximum likelihood method as in
[14,22]. Let Oy be the true value of the parameter under the null hypothesis of well specification.
Then the semiparametric estimator 0 satisfies under the null hypothesis:

n
0 — 00 =n""A(00) Y B(Xi: ) +0,(n~ "),

i=1

where A (0p) is a p x p positive definite matrix and B(X;; 6p) is a p x 1 random vector, such that
E[B(X;; 0p)] = 0 and E[B(X;; 0o)'B(X;; 0p)] < oo.

The following lemma justifies the use of J even if the bandwidth is not assumed to shrink
to zero when the sample size grows to infinity. The kernel K is chosen so that it is symmetric
about zero, square integrable, and admits a Fourier transform which vanishes on a set of Lebesgue
measure Zero.

Lemma 2.1. Forw =1,

A A

Jo=Jia) = / \C(t) — C(t: 0)>K2(HY) dt,

where é(t) = fexp(it/u)é(du), Ct; 0) = [ exp(it'u)C (du; 0), and K () := (2m)~4/2 [exp
(ifu)K (u)du.

The lemma states that J reduces to the comparison of two empirical characteristic functions
when the weight function is equal to one (see [8] for use of empirical characteristic functions in gof

tests). The first term C (#) 1s the empirical characteristic function of the transformed sample, while
the second term is the estimated characteristic function under the parametric assumption. Decom-
posing the characteristic function C of the copula C in its real part Re C@t) = f cos(f'u)C (du)
and its imaginary part Im C () = f sin(?'u)C (du), and recognizing that the maps which assign
to each copula function C the real and imaginary parts are linear maps, we get from the delta

method [23, Section 3.9] that Re C ), Im C t), ReC(t; @), and Im C(t; @), are consistent and

jointly asymptotically normally distributed. Hence we deduce that C (¢) and C(¢; @) are consistent
and asymptotically normally distributed in the complex plane (see [12] for the results on the stan-
dard empirical characteristic function). Now recall that a copula function is a cdf on the unit cube,
and that there is a one-to-one correspondence between distribution functions and characteristic
functions. This gives that no matter the choice of the bandwidth matrix H, the limit J of J when
w = 1 is such that J >0 and J = 0 iff the copula function is well specified, provided that the
set {t € R? : K (f) = 0} has Lebesgue measure zero. Hence we may conclude as in [9] that a test
based on J is consistent when holding the smoothing parameters fixed and the weight function
equal to one.

The following proposition describes the asymptotic behaviour of J when the bandwidth matrix
does not vanish.
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Proposition 2.2. Under the null hypothesis of well specification the asymptotic behaviour of J
is that of a U-statistic of order 4 with degeneracy of order 1.

Contrary to the case of a nonvanishing bandwidth for standard pdf [9] the asymptotic behaviour
of the gof test statistic is not that of a U-statistic of order 2 but of order 4. From the degeneracy
of order 1 the rate of convergence is still n, and the exact form of the asymptotic distribution is
an infinite sum of weighted chi-square random variables. The weights can be computed in theory
from the eigenvalues of an integral equation (see [18, p. 80]). However the kernel of the U -statistic
of order 4 involves 24 terms (see the proof of the proposition), and the dimension of the integral
is 3. This casts doubt on the numerical accuracy of such a method in practice.

Hereafter we rely on a semiparametric bootstrap to compute the critical values of the test. First

we draw from the estimated copula C(u; @) in order to impose the dependence structure of the
null hypothesis, and then we use the ranks of these draws to build the bootstrap transformed
sample. This semiparametric bootstrap is already exploited in [15] since the distributions of their
test statistics depend on the unknown parameter value, even in the limit. Its validity for a broad
class of gof testing problems is shown in [16]. In particular in the context of gof tests for copulas
they show that the sequence associated with the empirical copula is regular for the parametric
copula family of the null hypothesis [16, Proposition 4.2]. They also show the regularity of the
parametric estimators we use in this paper [16, Example 4.4]. Since we work with linear maps
the consistency of the semiparametric bootstrap in our setting is a straightforward consequence
of their results.

3. Monte Carlo results

In this section we study the performance of kernel-based gof tests for copulas in small samples
when the weight function is kept equal to one. We compare the performance of rejection rules
based on (1) asymptotic sets of the chi-square test statistic derived in [10, Corollary 4] for a
vanishing bandwidth, (2) sets computed with a bootstrap procedure for the same test statistic, (3)
sets computed with a bootstrap procedure for the test statistic nd.

First we examine gof tests for the Frank copula. Table 1 gathers results concerning the size
of the different testing procedures, i.e., when the true copula is a Frank copula. This parametric
family is often used in actuarial and financial applications, and is easy to draw from; see, e.g.,
[13,20]. The chosen values of the parameter are 0 € {1, 2, 3}. They match low to moderate positive
dependences as exhibited by the corresponding true values of the Kendall tau, t € {.11, .21, .31}.

The sample sizes are fixed atn = 50 and 200. The first sample size can be thought as rather small
since we face a bivariate inference problem. For the sake of interpretation samples are generated
with both margins corresponding to an exponential distribution with a unit parameter. This can be
seen as mimicking the behaviour of claim or duration data. Note that the numerical results below
remain exactly the same if we use uniform margins or other margins with strictly monotonic
continuously differentiable cdf (such as Gaussian or Student margins to mimick financial returns)
and keep the same seeds in the pseudo-random generators. The reason is that the testing procedures
rely intrinsically on ranks.

The kernel estimator of the copula density is based on a bivariate quartic product kernel. Then
172
the Scott’s rule of thumb [21] to select the smoothing parameters gives H = 2.6073n~1/6% / ,

where 3 is the estimated covariance matrix of the transformed data. To gauge the impact of the
choice of the smoothing parameters we report sizes for multiples of this bandwidth matrix, namely
oH with 6 € {.1, .25, .5, 1, 1.5}. In our simulations the diagonal terms of the selected H are close
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Table 1
Impact of bandwidth choice on size

Size n =350 n = 200

0=".1 25 5 1 1.5 0=.1 25 5 1 1.5
F:0=1
Asym. A4 .00 .00 .00 .00 51 .06 .00 .00 .00
As. Boot. .05 03 04 03 .00 .06 .05 .06 .05 .05
Boot. 05 03 05 04 04 .06 .05 07 .05 06
F:0=2
Asym. 50 .00 .00 .00 .00 51 .06 01 .00 .00
As. Boot. .05 .06 05 02 .00 .06 .06 .06 .06 04
Boot. 05 07 05 .03 .03 .06 .06 .06 .06 06
F:0=3
Asym. 51 01 .00 .00 .00 48 04 01 .00 .00
As. Boot. .05 .06 05 03 03 03 03 .06 05 05
Boot. 05 .06 .06 04 .03 .03 .03 .06 .05 05

Rejection rates at 5% level with 200 replications. Pseudo copula: Frank, True copula: Frank.

to one-third. We use a bivariate Gauss—Legendre quadrature with 12 x 12 knots to compute
the test statistic, and the optimum routine of the Gauss statistical software with user-supplied
analytical gradient and Hessian to optimize the semiparametric loglikelihood. Since we use a
Gauss—Legendre quadrature with knots belonging to (0, 1)? the restriction that the support of w
should be strictly inside the unit square [10, Assumption T] for the asymptotic distribution to be
theoretically valid has no practical impact here. The number of bootstrap samples to approximate
the p-value is set equal to 500. For each case 200 Monte Carlo simulations are performed, and the
rejection rates are computed for each method w.r.t. the conventional significance level of o = .05.
Programs are available on request.

The results in Table 1 show that the asymptotic testing procedure is highly sensitive to the
bandwidth choice, and that the size distortion may be large. Both bootstrap methods do not
suffer from these inconvenient features when n = 200. However they tend to slightly underreject
when n = 50. From bootstrap theory on higher-order improvements, we know that the bootstrap is
expected to yield better results when applied to asymptotic pivots. However the difference between
both simulation-based methods is not striking in our finite sample experiments. We might thus
prefer to use the second bootstrap method, namely the one relying simply on nJ, in light of
its computational ease and speed. This second method does not require computing complicated
asymptotic bias and variance terms.

In Table 2, we gather some results about the power of the testing procedures. We consider a
case where 50% of the observed sample is substituted for data drawn from a Student copula with 4
degrees of freedom and a .95 correlation parameter. Again the results indicate that the asymptotic
testing procedure is much more affected by the bandwidth choice than both bootstrap procedures.
Note further that the smoothing parameters should not be chosen too large (oversmoothing) or too
small (undersmoothing) in order to improve on power. We may then conclude that, since the power
may be weak in some cases, it is even more crucial to get a well-controlled size via the bootstrap.

To get further insight on the behaviour of the testing procedure we have also considered a
nonArchimedean copula. Tables 3 and 4 correspond to Tables 1 and 2 but with the Gaussian
copula replacing the Frank copula. The semiparametric and nonparametric estimation methods



538

Table 2

Impact of bandwidth choice on power

O. Scaillet / Journal of Multivariate Analysis 98 (2007) 533 —543

Power n =150 n =200

o=.1 25 5 1 1.5 0=.1 25 5 1 1.5
F:0=1
Asym. 51 08 02 .00 .00 65 77 77 04 .00
As. Boot. 06 20 26 .09 .00 13 71 96 72 18
Boot. 06 19 26 18 17 .14 71 96 .69 26
F:0=2
Asym. 46 04 .00 .00 .00 58 67 52 01 .00
As. Boot. 07 11 22 .05 .00 12 58 .86 50 11
Boot. .06 12 21 12 13 12 57 .83 47 16
F:0=3
Asym. 49 .00 .00 .00 .00 64 54 26 .00 .00
As. Boot. 04 .10 15 04 .00 .09 .39 61 25 07
Boot. 04 10 13 10 .08 .10 39 .60 21 12

Rejection rates at 5% level with 200 replications.

Table 3

Impact of bandwidth choice on size

Pseudo copula: Frank, True copula: mixture of Frank and Student.

Size n=>50 n =200

0=.1 25 5 1 1.5 O=.1 25 5 1 1.5
F:0=.17
Asym. 46 .00 .00 .00 .00 48 .04 .00 .00 .00
As. Boot. 03 02 .06 .04 .00 03 08 .06 .06 04
Boot. .06 04 .06 .05 .06 05 08 07 .06 05
F:0=.32
Asym. 51 .00 .00 .00 .00 62 03 01 .00 .00
As. Boot. .04 02 04 02 02 07 05 .05 .05 04
Boot. 04 04 .04 04 .06 .09 07 08 05 05
F: 0= .47
Asym. .69 .00 .00 .00 .00 73 04 01 .00 .00
As. Boot. 02 03 .06 01 01 04 04 .06 .05 03
Boot. .06 05 .06 .06 .06 .06 05 07 .06 .06

Rejection rates at 5% level with 200 replications. Pseudo copula: Gaussian, True copula: Gaussian.

are kept the same. The chosen parameter values of the Gaussian copula are 0 € {.17, .32, .47} so
thatt € {.11, .21, .31}. Results are akin to those got for the Frank copula, and conclusions remain

unchanged.

Finally Table 5 allows for comparison with the Cramer—von Mises (CVM) and Kolmogorov—
Smirnov (KS) testing procedures of Genest, Quessy and Rémillard (GQR) [15]. Their procedures
are very easy to implement for parametric copula models admitting a distribution function of the
probability integral transformation in closed form. This is the case for Archimedean copulas, such
as the Frank copula. We can see that results on size are similar to those reported in Table 1, but
results on power seem to be better in Table 2 when 0 € {.25, .5, 1}. Of course these results are
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Table 4
Impact of bandwidth choice on power

Power n=2>50 n = 200

o=.1 25 5 1 1.5 o=.1 25 5 1 1.5
F:0=.17
Asym. 72 01 02 01 .00 64 49 85 35 .00
As. Boot. .06 01 38 07 01 02 39 1 1 72
Boot. 07 22 39 23 12 .16 92 1 1 .88
F:0=.32
Asym. 76 02 01 .00 .00 75 25 52 13 .00
As. Boot. .06 01 29 03 .00 01 .08 96 96 45
Boot. 07 20 34 18 .10 12 .80 99 97 .69
F: 0= 47
Asym. 81 .09 .00 .00 .00 83 05 21 03 .00
As. Boot. .03 .03 17 02 .00 03 01 72 77 21
Boot. .09 12 21 14 .09 .10 65 96 85 A48

Rejection rates at 5% level with 200 replications. Pseudo copula: Gaussian, True copula: mixture of Gaussian and
Student.

Table 5
Comparison with CVM and KS tests of GQR

Size n=>50 n =200

CVM KS CVM KS
F:0=1 05 .03 .06 .05
F:0=2 04 03 .06 .05
F:0=3 04 .03 06 .05
Power
F:0=1 .06 04 28 23
F: 0= .04 04 24 .19
F: 0= .05 04 22 .16

Rejection rates at 5% level with 200 replications. Size/power: Pseudo copula: Frank, True copula: Frank/mixture.

not extensive enough to have a definitive answer (if possible) about which gof test for copulas to
favour overall. Even if such an extensive Monte Carlo study is certainly of interest, this is beyond
the scope of this note.
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Appendix A. Proof of Lemma 2.1

The Fourier transform of ¢(u) — Kg * c(u; @) is given by

(2n)~4/? / exp(it'u) [é(u) — Ky *c(u; @)] du
= (2m)~4/? / exp(it'u) [ / Kg(u —v) [é(dv) — C(dv; é)}] du

- / exp(if'v) K (HY) {é(dv) — C(dv: @)}.

The stated result is then deduced from an application of Parseval’s identity to J and the last
equality.

Appendix B. Proof of Proposition 2.2

Let us introduce {Y,- = (F1(X;1),....FaXig);i=1,..., n} Obviously C is the cdf of Y.
We consider

n

2
. 1
sz{gza(u,x,-)} du, (B.1)

i=1

with
a(,X;)=Kgu—Y) + K w—Y) ¥ —Y)
- f Kp(u —v)C(dv; 00) — p@wA(00)B(X;: 0p),

where Kl(q]) denotes the first derivative of K, and pu(u) = [ Kg(u —v)0C(dv; 00)/00 .

Asin[9, Lemma 3.1], via simp1§ secgnd—order Taylor expansions of ¢(u) around Y;, and c(u; @)
around 0y, we may check that n(J — I) = 0,(1) under the null hypothesis and our assumptions

since \/n 0 —00) = 0 »(1) and /n ¥ —Y) =0 »(1). Indeed substituting the expansions into
J and collecting terms yield n(f .y )=n 21721 IA, with f, = f fi(u) du and

. NP o .
fwy=— 3" " | Kn@—Y) + K e ¥y & —¥))|
i=1 j=I
x [(f/j —Y)KPw-¥)X; - Yj)] ,

bw =15 3 S [0 YK w - vodi 1]

i=1 j=1
x| - YK @ -¥pd; -v)].
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Iyu) = f / [KH(u —v) (C(dv; 0o) + OC (dv; 00) /00 (0 — 90))]
x [KH(u — )0 — 00) 3> C(ds: 00) /0000 (D — 90)] ,
fiu) = i f / [KH(u —v)(D = 00) &> C(dv: 00) /0000’ (D — 90)]

x [KH(u — )0 — 00) 3> C(ds: 00)/0000 (D — 00)] ,

o) = — Y+ KDy @ -,
Isw) === 3" [ K =¥ + Kjj @ —Y) &) = ¥))]
i=1

x U Ka(u —v)(0 — 00)3*C(dv; 0p)/0000' (0 — 00)] \

fsw = — 3" [ vk @~ Yo di - v

i=1
X [/ Kgu —v) (C(dv; 0p) + 0C (dv; 90)/69’(@ — 90))] ,

b = —% S -y K @ - Yodi - Y|

x [ f Ka(u —v)(0 — 00) 8*C (dv; 0p) /0000’ (0 — 90)] .

Then since % Z?:l Kgu—-Y;)— f Kg(u —v)C(dv; 0p) converges to zero and the absolute
value of each of its elements is bounded for any u#, we can deduce that n(f 1+ f6) = 0,(1) and
n(lz + Is) = 0,(1), while nly = 0,(n~"),niy = 0,(n"), and nl; = 0, (n").

Now we can rewrite Eq. (B.1) as

n n n n
I= ni4 DY XY e(Xi X Xi X)), (B.2)

i=1 j=1 k=1 I=1
with

gXi. X, X, X)) = /{KHm —Y) + Ky = Y) U[X <X;]1—Y;)

~ [ K =i 0 - A @B;: 00)
X (K —Y)) + Ky @ —Y) A[X;<X;]1 - Y;)

- f Kg(u —v)C(dv; 0y) — m)A(0o)B(X; 0)} du,

with I[Xx <Xi] = ([ X1 < Xi1l, ., 1[Xka < Xial)'. X
By symmetrization of the kernel g [18, p. 7] we know that I shares the same asymptotic
behaviour as the V -statistic:

. 1 n n n n
V=202 ) VX X, Xe, X)),

i=1 j=1 k=1 I=1
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where  is a symmetric kernel given by
24 (X, X, Xie, Xp) = g(Xi, X, Xpe, Xp) + g¢(Xi, X, X, Xi) + g(Xi, Xpe, X7, X))
+g(Xi, Xk, X1, Xj) + g(Xi, X1, X, Xp) + g(Xi, X1, Xk, X)
+g(X;, Xi, Xi, Xi) + g(X;, Xi, Xi, Xi) + g(X, Xk, Xi, Xip)
+8(X;, Xk, X1, Xi) + g (X, Xi, Xi, Xi) + g(Xj, X1, Xk, Xi)
+8 (X, Xi, X, Xp) + g(Xk, Xi, X1, Xj) + g¢(Xi, X, Xi, Xi)
+g(Xk, X, X1, Xi) + g(Xk, Xp, Xi, Xj) + g(Xik, Xp, X7, Xi)
+g(Xi, Xi, X, Xi) + g(Xi, Xi, Xk, Xj) +g(X7, X, X, Xi)
+g(X1, X, Xk, Xi) + g(Xi, Xk, Xi, Xj) + g(X1, Xk, X, Xi).

Through the connection between a V-statistic V of order 4 and its associated U-statistics U |
oforder j = 1,...,4[18, p. 183] we can write

V=s® (n—1Dmn—-2)(n-3) ~ LS (n— lr)lgn —2) A

n—1
0, 0y 4520 =D

n3

U
n3

1 -

ey

+S,’—= U,
4 n31

where the Stirling numbers of the second kind are givenby S f) =18 f) =68 f) =738 il) =1
[1, p. 835]. Hence the asymptotic behaviour of [ is that of the leading U -statistic Uy of order 4,
whose kernel is equal to Y(X;, X, Xy, X).

To determine the degree of degeneracy when the null hypothesis holds true, we need to inves-
tigate the nullity of appropriate conditional expectations of s, namely

o1 = Var[y; (X))],
o5 = Var[, (X;, X )],
o3 = Varly3(X;, X}, Xp)],
where
V() = EWXi, X, Xk, X)1X; = x;],
Yo (xi, x)) = EWX;, X;, Xi, X)DIX; =x;, X; =x/],
3, xj, x) = ElWX;, X;, Xi, X)X =xi, Xj =xj, Xk = x¢].

We can see that ¥/;(x;) = 0 under the null hypothesis, so that O’% = 0. On the contrary
Yo (xi, ,x;) # Osince E[g(X;, X;, Xk, X))|X; =x;,X; =x;] # 0, for example, so that 0% > 0.
Hence the degree of degeneracy is 1, and nUs has a nondegenerate limit distribution [18, p. 90].
This yields the stated result.
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