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copula density and the estimated parametric
copula density.
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C.I. Pitfalls

One of the main 1ssue with copulas 1s to
choose the “best” one, namely the copula
that provides the best fit with the data set
at hand.

The choice among possible copula
specifications can be done rigorously via
so-called goodness-of-fit (GOF) tests.

Most tests developed 1n the standard case
of a cdf are based on some comparison
between the empirical cdf (or another
nonparametric estimate) and the estimated
parametric model.

Since the copula 1s the cumulative

distribution function of (Ul,.--,un), one
might think of designing testing
procedures with the empirical copula
substituted for the empirical cdf, and
applies the same testing procedure as in
the standard case.
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The difficulty comes from the fact that the
univariate cumulative distribution

functions (Fl youes I n) which are needed to

map the observations Y, =(Y119°"9Ynt)
towards the unit cube via

(F(Y},),.... F,(Y,,)) are unknown.

This means that we need to use estimates

(Fl,,ﬁn) of (F1,....,F,), and work

with the pseudo-observations

@y 5oy ) = (Fy (1) ses By (F,))

instead of the unavailable “observations”

(W1 eestlyy ) = (F1 () )5y 3, (X))
(T'xuy,,...,T x1,, ) are the ranks.

The wuse of the first step estimator

(Fl,,ﬁn) affects the distributional

properties, and destroys the asymptotic
properties of the standard test.

g frl O. SCAILLET swiss:finance:1institute
Geneva Finance Research Institute
-



C-4

Example:

multidimensional chi-square tests based on

some disjoint subsets (Ap---,Ap) in R”
and the test statistic

v (P(Yed,)-pP(Yed,))
2 P(re4d,)

tends 1 law towards a chi-square

distribution in the standard case (even if &
1s estimated) .

This chi-square testing procedure will not
work anymore, after replacing the
unknown marginal cumulative distribution
functions by their empirical counterparts,
and apply the test on the pseudo-
observations.
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C.I1. GOF tests

In order to get well-defined testing
procedures, we can use a GOF test based on
the integrated square difference between a
kernel estimate of the copula density and the
estimated parametric copula density.

Recall that the copula density ¢ of the
copula C is such that

J) =c(EY(0), By (D) f () f(12)

or equivalently

C(u19u2) = (92C(l/l1,1/l2)

The density 1s defined on the unit square.

It 1s often more informative to visualize the
copula density than the copula itself.
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Hormal copula

Logistic Gumbel copula

sraphique 1.6, Densité des copules Logistic Gumbel et Mormale

Normal copula

- g ——

H{T,1)

N{0,1}

Logistic Gumbel copula

[

1

H(-‘Jﬁ. 1)

N(0.1)

Graphique 1.7. Courbes de niveau des densités des copules Logistic Gumbel et Mormale
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In order to estimate the copula density we
can rely on a nonparametric approach based
on kernel smoothing of the pseudo-
observations :

@y 5oty ) = (B (Y ) £, (V).

The kernel estimator of the copula density at
point U = (Uy,....u,) is simply :

T
e(u) = lEK(ﬁt —u;h)
I3

where K(x;h)=HKj(xj/hj).
=1

We can then build a GOF test statistic for the
parametric family C(u;60) with density
C(u;ﬁ) based on the integrated square
difference between a kernel estimate of the

copula density and the estimated parametric
copula density.
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We get:

J(w) =f[é(u) -K* c(u;é)]zw(u)du,

where * denotes convolution and w 1s a
weight function.

The use of

K *c(u;0) = [K(y;h)e(u - y;0)dy

instead of c(u;60) itself allows reducing the
asymptotic bias of the test statistic.

When the bandwidth goes to zero it 1s
possible to show that the test statistic 1s
asymptotically normally distributed.

However the performance of the rejection

rules based on the asymptotic distribution
may be poor 1n several cases.
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When the bandwidth 1s kept fixed (1s not
assumed to vanish when the sample size goes
to 1nfinity) 1t 1s possible to show that the test
statistic still yields a consistent test when the
weight function 1s set equal to one.

This means that no matter the choice of the

bandwidth the limit of J (1) is such that

J =0 and J =0 if the copula function is
well-specified.

However the asymptotic distribution 1s not
available 1n a tractable way, and we need to
rely on simulation based methods to compute
the rejection sets (p-values).

These methods are known under the name of
resampling procedures since we resample

from the original data.

One of these methods 1s called the bootstrap.
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C.I11. Bootstrap procedures

Asymptotic properties of estimators are
valid when sample size is large,
i.e. when 1 — oo,

In small samples (finite distance),
asymptotic properties may provide poor
approximations of the real distribution of
estimators.

In particular confidence intervals based on
asymptotic normality may be too wide or
too narrow and exhibit a wrong coverage
probability.

We may use simulations to get a better
approximation when samples are small.

The 1dea 1s to draw from the original data
new observations in order to generate new
fictitious samples which mimic the
behavior of the original observed sample.
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Nonparametric bootstrap procedures:

1) start from initial data 1},..., Y7, and
compute the empirical cdf.

2) derive ST i1ndependent drawings by
sampling randomly 1n the initial data

with replacement Y',.... Y7, s =L...,§5,
cach sample 1s called a bootstrap sample

(draw ST realizations of a uniform |0,1]
variable, and invert the empirical cdf).

3) for each simulated sample s = 1,...,$ of

N

length T, compute the estimate @S, for
example the empirical mean

A 1 L
0 =m, =—3Y’
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4) the empirical distribution of the

estimates 6°, s =1,...S will constitute a
good approximation (consistent
estimator when the number § of
simulated sample goes to infinity) for the
true distribution of the estimator in small
sample

Pseudo random generators are available 1n
most softwares.

Since we draw new observations from the
empirical (nonparametric) cdf, this 1s
called a nonparametric bootstrap.

Parametric bootstrap procedures:

If we postulate a parametric model for the
data we may also draw from the parametric
distribution once its parameter has been

estimated.

This 1s called a parametric bootstrap.
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Example:

If we estimate the parameter £ of a
regression under the assumption of normal
error terms, we can generate a parametric
bootstrap sample as:

Y'=X,p+e, t=1..,T,

S
where the error terms €; are drawn from a

2 . . .
N(0,s7), with s? being the estimated
variance of the innovations.

Semiparametric bootstrap procedures:

The semiparametric bootstrap 1s a mixture of
the two previous procedures.

One part of the model 1s parametric, and the
other part 1s nonparametric.
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Example:

If we estimate the parameter £ of a
regression, we can generate a parametric
bootstrap sample as:

Y'=X,p+e, t=1..,T,

where the error terms ef are drawn with
replacement from the estimated residuals

e =Y -X,B t=1..T
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C.1V. Simulations from copula models

The problem we address here 1s the
simulations of a  random = vector

Y =(Y,....Y;), whose distribution is
characterized by

F(ylr"ayd) = C(Fi(yl)r"aFd(yd))

The problem consists :

first 1n simulating the random vector
U = (U 1,.-.,U d), whose distribution 1s the
copula C,

and then 1n using the transformation

XY = (Fl‘1 (U, ),...,1176171 U,))

We will thus concentrate 1n the following on

methods which allow simulating
U=U —— d) from the associated
copula.
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a) Distribution method:

This 1s the mirror method of the one
presented above.

We have
C(Uysentty) = F(F7 (u))yes By (1))

Hence if we can easily draw X from F', we
can apply the transformation

U=(F (X)),...F; (X))
Examples :

1. Normal copula with correlation matrix O

Using the  cholesky  decomposition
O = PP’, we can easily draw X = Pn
where 7] is the stack of random NV (0,1), and

compute U; = P(X,) where @ is the cdf
of a N(0,1).
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Remark: Box Muller method for normal

if U; and u, are independent random

variates from Ulo,1], then the variates

7 = (=2In(@w,))""* cos2m),

7, = (2In())"* sinQQ7, ),

are 1ndependent random variates from
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Graphique 6.1. Simulation de 4 distributions (générateur LCG)
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Graphique 6.3, Simulation de la copule Normale

2. Student copula with correlation matrix 0
and number V of degrees of freedom

X be

Let a

random vector

distribution is a multivariate .
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*

X
X:

Then we have : /)(2 Iy
1%

%k
with X a Gaussian vector with correlation

: 2 :
matrix 0 and X, a chi-square random
variable with number vV of degrees of
freedom.

From X, we can compute U, =¢,(X;)

where 7, is the cdf of a student with number
vV of degrees of freedom.

The student copula yields further dependence
in the tails, and does not correspond to the
independent copula even 1f the correlation 1s
Zero.
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Graphique 6.5. Simulation de 4 distributions avec une copule Student (p = 0.5, v = 1)

X o8

Graphique 6.4. Simulation de la copule Student (v = 1)

O. SCAILLET swiss:finance:1nstitute

o/ [{—



C-21

Hormeal Copella Hamal
g om0
1. (e ]
O O
A &
rH B4
o2 0.2
D.IJL i o
2 4 O 4.8 1.4 4.2 4 & a !
“l ui

Graphique 6.6, Comparaison des copules Normale et Student

b) Conditional method:

Let us consider the bivariate case. Let
U=U LU 2) be a random vector whose
distribution is C.

We know that

PlU, =u; ] = C(uy,l) = u,
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and that

=81C(u1,u2)=C2‘1(u1,u2)

Since C(Ul,l) and C2‘1(MI,U2) are two

uniform random variables, we get the
following algorithm:

a. Simulate two uniforms V; and V,.

b. Take u, =v.

—1
c. Take Uy = C2\1 (“19"2).
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Example :

Frank copula :

C(uy,u,;0) = —;111(1 N (6‘9“1 (;_lz(i_:)uz _ 1))

we have

-0
_ -1
Cop™ @13v2) = _;’ln(H vz((le ) )-Hul)

Remark:

C. ! ] : ]
When & (41,V2) is not available in
closed-form we may use a numerical method
to solve Czp(ulauz) = V).

This 1s the case for the Gumbel copula.
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Graphique 6.7. Simulation des copules Normale, Student, Frank et Gumbel {marges uniformes)
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Graphique 6.8. Simulation des copules Normale, Student, Frank et Gumbel (marges tg)
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C.V. Monte Carlo results

In order to implement a testing procedure
based on

J(1) = f[é(u) - K *c(u; é)]zdu
we can rely on a semiparametric bootstrap.

First we draw from the estimated copula

C (M,é) in order to impose the dependence
structure of the null hypothesis (well-
specified copula), and then we use the

/o

inverse of the empirical margins F j to get
the bootstrap sample.

The first step 1s parametric; the second step
1S nonparametric.
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Monte Carlo results:

200 MC simulations, 500 bootstrap samples,
50 and 200 observations.

Choice of bandwidth:
Oh with 0 =.1,.25,.5,,L1.5, and % given
by the rule of thumb.

Size (type I error):
True copula: Frank with parameter values:

6 =123 (r=.11,21,31

True margins: exponential

Power (type II error):

we contaminate the sample with 50% of the
observations (mixture) coming from a
student copula with 4 degrees of freedom
and a correlation parameter of 0.95.

Comparison  with  asymptotic  testing
procedures and bootstrap methods based on a
standardized test statistics (divide by the
standard deviation).
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TABLE I: Impact of bandwidth choice on size

n = 50 n = 200

F: =1 d 25 5 1 15F.1 25 5 1 1.5
Asym. 44 .00 .00 .00 .00 .51 .06 .00 .00 .00
As. Boot. | .00 .02 .04 .03 .00 .05 .04 .06 .05 .05
Boot. 00 02 .04 .04 03(.05 .04 .06 .05 .05
F:0=2 d 25 5 1 151.1 25 5 1 1.5
Asym. 50 .00 .00 .00 .00|.51 .06 .01 .00 .00
As. Boot. | .01 04 .04 .02 .00(.06 .05 .05 .05 .04
Boot. 01 04 05 .03 .03[.06 .05 .06 .05 .05
F:0=3 1 25 5 1 151.1 25 5 1 15
Asym. 51 .01 .00 .00 .00 .48 .04 .01 .00 .00
As. Boot. | .01 .02 .03 .02 .00(.05 .04 .05 .05 .05
Boot. 01 02 .04 .05 .02(.04 .03 .05 .05 .05

TABLE II: Impact of bandwidth choice on power

n = o0 n = 200
F:0=1 a1 25 5 1 151 .1 25 5 1 15
Asym. A1 .05 .02 .00 .00] .65 .81 .80 .03 .00
As. Boot. | .09 17 .27 .07 .06 (.13 .77 .95 .77 .19
Boot. A0 a8 .27 .21 20| .13 .77 .95 .73 .26
F:0=2 Q1 25 5 1 151 .1 25 5 1 15
Asym. Jd1 .01 .00 .00 .00] .48 .74 .56 .01 .00
As. Boot. | .00 .12 .17 .04 .03 (.21 .90 .90 .51 .11
Boot. 00 .10 .14 .16 .11).22 .90 .90 .49 .17
F:0=23 d 25 5 1 151 .1 25 5 1 15
Asym. 0 .01 .00 .00 .00 ] .54 .52 .27 .00 .00
As. Boot. | .00 .06 .11 .02 .00 (.13 .69 .75 .25 .06
Boot. 00 06 .11 .09 .08]|.13 .67 .72 .24 .13
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C.VI. Conclusions

When working with copulas, observations
are pseudo-observations since we transform
into the unit cube via the margins.

In fact we work with ranks of the
observations i1nstead of the observations
themselves.

Adaptation of standard testing procedures
should be conducted with care since
asymptotic distribution are affected by the
first step transformation.

Bootstrap procedures may alleviate the

burden caused by the complexity induced by
the use of pseudo-observations.
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