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C.III. Bootstrap procedures 
 
Nonparametric, parametric and  
semiparametric bootstrap procedures 
 
C.IV. Simulations from copula models 
 
C.V. Monte Carlo results 
 
C.VI. Conclusions 



C-2 

O. SCAILLET 

C.I. Pitfalls 
 
One of the main issue with copulas is to 
choose the “best” one, namely the copula 
that provides the best fit with the data set 
at hand.  
 
The choice among possible copula 
specifications can be done rigorously via 
so-called goodness-of-fit (GOF) tests. 
 
Most tests developed in the standard case 
of a cdf are based on some comparison 
between the empirical cdf (or another 
nonparametric estimate) and the estimated 
parametric model. 
 
Since the copula is the cumulative 
distribution function of ),...,( 1 nuu , one 
might think of designing testing 
procedures with the empirical copula 
substituted for the empirical cdf, and 
applies the same testing procedure as in 
the standard case. 
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The difficulty comes from the fact that the 
univariate cumulative distribution 
functions ),...,( 1 nFF  which are needed to 
map the observations ),...,( 1 nttt YYY =  
towards the unit cube via 

))(),...,(( 11 ntnt YFYF  are unknown. 
 
This means that we need to use estimates 

)ˆ,...,ˆ( 1 nFF  of ),...,( 1 nFF , and work 
with the pseudo-observations 

))(ˆ),...,(ˆ()ˆ,...,ˆ( 111 ntntntt YFYFuu =  
instead of the unavailable “observations” 

))(),...,((),...,( 111 ntntntt YFYFuu = . 
 

)ˆ,...,ˆ( 1 ntt uTuT ××  are the ranks. 
 
The use of the first step estimator 

)ˆ,...,ˆ( 1 nFF  affects the distributional 
properties, and destroys the asymptotic 
properties of the standard test. 
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Example:  
 
multidimensional chi-square tests based on 
some disjoint subsets ),...,( 1 pAA  in nℜ  
and the test statistic  
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tends in law towards a chi-square 
distribution in the standard case (even if θ  
is estimated) . 
 
This chi-square testing procedure will not 
work anymore, after replacing the 
unknown marginal cumulative distribution 
functions by their empirical counterparts, 
and apply the test on the pseudo-
observations. 
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C.II. GOF tests  
 
In order to get well-defined testing 
procedures, we can use a GOF test based on 
the integrated square difference between a 
kernel estimate of the copula density and the 
estimated parametric copula density. 
 
Recall that the copula density c  of the 
copula C  is such that 
 

)()())(),((),( 21221121 yfyfyFyFcyyf =
 
or equivalently  
 

),(),( 21
2

21 uuCuuc ∂=  
 
 
The density is defined on the unit square. 
 
It is often more informative to visualize the 
copula density than the copula itself. 
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In order to estimate the copula density we 
can rely on a nonparametric approach based 
on kernel smoothing of the pseudo-
observations : 
 

))(ˆ),...,(ˆ()ˆ,...,ˆ( 111 ntntntt YFYFuu = . 
 
The kernel estimator of the copula density at 
point ),...,( 1 nuuu =  is simply : 
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We can then build a GOF test statistic for the 
parametric family );( θuC  with density 

);( θuc  based on the integrated square 
difference between a kernel estimate of the 
copula density and the estimated parametric 
copula density. 
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We get: 
 

[ ] duuwucKucwJ )()ˆ;(*)(ˆ)(ˆ
2

∫ −= θ , 
 
where * denotes convolution and w is a 
weight function. 
 
The use of  
 

∫ −= dyyuchyKucK )ˆ;();()ˆ;(* θθ  
 
instead of )ˆ;( θuc  itself allows reducing the 
asymptotic bias of the test statistic. 
 
When the bandwidth goes to zero it is 
possible to show that the test statistic is 
asymptotically normally distributed. 
 
However the performance of the rejection 
rules based on the asymptotic distribution 
may be poor in several cases. 
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When the bandwidth is kept fixed (is not 
assumed to vanish when the sample size goes 
to infinity) it is possible to show that the test 
statistic still yields a consistent test when the 
weight function is set equal to one. 
 
This means that no matter the choice of the 
bandwidth the limit of )1(Ĵ  is such that 

0≥J  and 0=J  if the copula function is 
well-specified.  
 
However the asymptotic distribution is not 
available in a tractable way, and we need to 
rely on simulation based methods to compute 
the rejection sets (p-values).  
 
These methods are known under the name of 
resampling procedures since we resample 
from the original data.  
 
One of these methods is called the bootstrap.   
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C.III. Bootstrap procedures 
 
Asymptotic properties of estimators are 
valid when sample size is large,  

i.e. when ∞→T . 
 
In small samples (finite distance), 
asymptotic properties may provide  poor 
approximations of the real distribution of 
estimators. 
 
In particular confidence intervals based on 
asymptotic normality may be too wide or 
too narrow and exhibit a wrong coverage 
probability. 
 
We may use simulations to get a better 
approximation when samples are small. 
 
The idea is to draw from the original data 
new observations in order to generate new 
fictitious samples which mimic the 
behavior of the original observed sample. 
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Nonparametric bootstrap procedures: 
 
1) start from initial data TYY ,...,1 , and 

compute the empirical cdf. 
 
2) derive ST independent drawings by 

sampling randomly in the initial data 
with replacement s

T
s YY ,...,1 , Ss ,...,1= , 

each sample is called a bootstrap sample 
 
(draw ST realizations of a uniform [ ]1,0  
variable, and invert the empirical cdf). 
 
 

3) for each simulated sample Ss ,...,1=  of 

length T, compute the estimate  sθ̂ , for 
example the empirical mean  
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4) the empirical distribution of the 
estimates sθ̂ , Ss ,...,1=  will constitute a 
good approximation (consistent 
estimator when the number S of 
simulated sample goes to infinity) for the 
true distribution of the estimator in small 
sample 

 
Pseudo random generators are available in 
most softwares. 
 
Since we draw new observations from the 
empirical (nonparametric) cdf, this is 
called a nonparametric bootstrap. 
 
 

Parametric bootstrap procedures: 
 
If we postulate a parametric model for the 
data we may also draw from the parametric 
distribution once its parameter has been 
estimated. 
 
This is called a parametric bootstrap. 
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Example:  
 
If we estimate the parameter β  of a 
regression under the assumption of normal 
error terms, we can generate a parametric 
bootstrap sample as:  
 

,ˆ s
tt

s
t eXY += β    ,,...,1 Tt =  

 
where the error terms s

te  are drawn from a 
),0( 2sN , with 2s  being the estimated 

variance of the innovations. 
 
Semiparametric bootstrap procedures: 
 
The semiparametric bootstrap is a mixture of 
the two previous procedures. 
 
One part of the model is parametric, and the 
other part is nonparametric. 
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Example:  
 
If we estimate the parameter β  of a 
regression, we can generate a parametric 
bootstrap sample as:  
 

,ˆ s
tt

s
t eXY += β    ,,...,1 Tt =  

 
where the error terms s

te  are drawn with 
replacement from the estimated residuals 

β̂ttt XYe −= , Tt ,...,1= . 
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C.IV. Simulations from copula models 
 
The problem we address here is the 
simulations of a random vector 

),...,( 1 dYYY = , whose distribution is 
characterized by  
 

))(),...,((),...,( 111 ddd yFyFCyyF =  
 
The problem consists : 
 
first in simulating the random vector 

),...,( 1 dUUU = , whose distribution is the 
copula C ,  
 
and then in using the transformation  

))(),...,(( 1
1

1
1 dd UFUFX −−=   

 
We will thus concentrate in the following on 
methods which allow simulating 

),...,( 1 dUUU =  from the associated 
copula. 
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a) Distribution method: 
 
This is the mirror method of the one 
presented above.  
 
We have  
 

))(),...,((),...,( 1
1

1
11 ddd uFuFFuuC −−=  

 
Hence if we can easily draw X  from F , we 
can apply the transformation  
 

))(),...,(( 11 dd XFXFU = . 
 
Examples :  
 
1. Normal copula with correlation matrix ρ  
 
Using the cholesky decomposition 

PP ʹ′=ρ , we can easily draw ηPX =  
where η  is the stack of random )1,0(N , and 
compute )( ii XU Φ=  where Φ  is the cdf 
of a N(0,1). 
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Remark: Box Muller method for normal  
 
if 1u  and 2u  are independent random 
variates from [ ]1,0U , then the variates  
 

)2cos())ln(2( 2
2/1

11 uu πη −= ,     
 

)2sin())ln(2( 2
2/1

12 uu πη −= , 
 
are independent random variates from 

)1,0(N . 
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2. Student copula with correlation matrix ρ  
and number ν  of degrees of freedom 
 
 
Let X  be a random vector whose 
distribution is a multivariate νρ ,t . 
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Then we have :  νχν /
2

*XX =  

 
with *X  a Gaussian vector with correlation 
matrix ρ  and 2

νχ  a chi-square random 
variable with number ν  of degrees of 
freedom. 
 
 
From X , we can compute )( ii XtU ν=  
where νt  is the cdf of a student with number 
ν  of degrees of freedom. 
 
 
The student copula yields further dependence 
in the tails, and does not correspond to the 
independent copula even if the correlation is 
zero. 
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b) Conditional method: 
 
Let us consider the bivariate case. Let 

),( 21 UUU =  be a random vector whose 
distribution is C .  
 
We know that  
 

1111 )1,(][ uuCuUP ==≤  
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and that  
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Since )1,( 1UC  and ),( 2112 UuC  are two 
uniform random variables, we get the 
following algorithm: 
 

a. Simulate two uniforms 1v  and 2v . 
 
b. Take 11 vu = . 

 

c. Take ),( 21
1

122 vuCu −= . 
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Example : 
 
Frank copula : 
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we have 
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Remark: 

When ),( 21
1

12 vuC −
 is not available in 

closed-form we may use a numerical method 
to solve 22112 ),( vuuC = . 
 
This is the case for the Gumbel copula. 
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C.V. Monte Carlo results 
 
In order to implement a testing procedure 
based on  
 

[ ] duucKucJ ∫ −=
2
)ˆ;(*)(ˆ)1(ˆ θ  

 
we can rely on a semiparametric bootstrap.  
 
First we draw from the estimated copula 

)ˆ;( θuC  in order to impose the dependence 
structure of the null hypothesis (well-
specified copula), and then we use the 
inverse of the empirical margins jF̂  to get 
the bootstrap sample.  
 
The first step is parametric; the second step 
is nonparametric.  
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Monte Carlo results:  
 
200 MC simulations, 500 bootstrap samples, 
50 and 200 observations. 
 
Choice of bandwidth: 
hδ  with 5.1,1,5,.25,.1.=δ , and h  given 

by the rule of thumb. 
 
Size (type I error):  
True copula: Frank with parameter values: 

3,2,1=θ   ( 31,.21,.11.=τ ) 
True margins: exponential 
 
Power (type II error):  
we contaminate the sample with 50% of the 
observations (mixture) coming from a 
student copula with 4 degrees of freedom 
and a correlation parameter of 0.95.  
 
Comparison with asymptotic testing 
procedures and bootstrap methods based on a 
standardized test statistics (divide by the 
standard deviation). 
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C.VI. Conclusions 
 
When working with copulas, observations 
are pseudo-observations since we transform 
into the unit cube via the margins. 
 
In fact we work with ranks of the 
observations instead of the observations 
themselves. 
 
Adaptation of standard testing procedures 
should be conducted with care since 
asymptotic distribution are affected by the 
first step transformation. 
 
Bootstrap procedures may alleviate the 
burden caused by the complexity induced by 
the use of pseudo-observations. 


