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1 Introduction

Current research using jump-diffusion processes relies mostly on two classes of models: the

affine jump-diffusion (AJD) class in the sense of, e.g., Duffie and Kan (1996) and Duffie,

Pan, and Singleton (2000), and the quadratic Gaussian (QG) class in the sense of, e.g., Ahn,

Dittmar, and Gallant (2002) and Leippold and Wu (2002). The popularity of both classes

rests not only in their modeling flexibility, but also in their technical tractability in deriving

the standard transform2 of the state vector, defined in Duffie, Pan, and Singleton (2000),

for option and bond pricing. Filipovíc (2002) proves that the maximal consistent order of

a separable, polynomial model is two. Naturally, one would wonder whether the AJD and

the QG models exhaust the set of models with tractable solutions for the transform, or a

maximal flexible, polynomial model is yet to be found.

We find the existing AJD and QG classes, as they are currently specified, both belong to

a more general, quadratic framework, which will be established in this paper. Within this

framework, the state vector is constructed from a jump-diffusion vector, which is restricted

to linear form only, and a pure diffusion vector, which enters both the linear and the

quadratic forms. We detail the minimal sufficient conditions for an admissible state vector,

as well as the structural constraints for obtaining the standard transform as an exponential

quadratic function. We call this structure linear-quadratic (LQ) to reflect its construction,

and such a process linear-quadratic jump-diffusion (LQJD). By Filipovíc (2002), the LQJD

class is, in fact, the maximal flexible dynamic structure for a separable, quadratic model

with tractable transforms of the underlying process.

The LQJD framework, as a generalization of the AJD and QG classes, joins their model-

ing flexibility together. An AJD model, while capable of capturing jumps, is inherently lin-

ear and may not capture nonlinearity in the underlying process adequately. See Ait-Sahalia

(1996), Ahn and Gao (1999), and Dai and Singleton (2000) for evidence on nonlinearity in

interest rates and swap yield curves, respectively. Moreover, Dai and Singleton (2000) and

Backus, Foresi, Mozumda, and Wu (2001) point out that the fitting performance of an AJD

model can be significantly improved only at the cost of introducing negative correlations

among the state variables, and thus losing positivity of the underlying, e.g., interest rates.

The QG class seems to be a neat solution to these problems. Examples can be found in Ahn,

Dittmar, and Gallant (2002) and Leippold and Wu (2003) on the term structure of interest

rates, and Leippold and Wu (2006) on a multi-currency framework. However, a consistent

QG model does not permit jumps (Chen, Bayraktar, and Poor (2005)). An LQJD model, in

2Duffie, Pan, and Singletom (2000) also define the extended transform of the state vector. The solution
procedure, however, is the same as that of the standard transform, and will not be discussed in this paper.
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contrast, would accommodate these important features, i.e., nonlinearity, jumps, positivity

of the underlying process, under the same roof.

An additional, striking feature of the LQJD state vector, in comparison to the pure

AJD and QG state vectors, is its nonlinear specifications for the drift, the diffusion, and

the market price of risk. For example, let µP and µQ be the drift vectors under the two

equivalent probability measures P and Q. If the underlying process is either AJD or QG

under both measures, the quantity µP− µQ would only admit an affine specification. See

Dai and Singleton (2003). Under the LQJD framework, however, µP− µQ can be LQ in the

state vector. This is a marked improvement over the AJD and QG models. In particular, an

investigation of nonlinearity in the market price of risk as suggested by Pan (2002), which

is not possible in the AJD or QG framework, is now feasible.

Despite the additional modeling flexibility, the LQJD class is still as tractable as the

QG and the AJD classes. Like Duffie, Pan, and Singleton (2000), we derive the transforms

of the LQJD process up to a system of ordinary differential equations (ODE), which we

discover to be a system of non-symmetric Riccati differential equations (RDEs). Results

from the literature of RDEs (i.e., Radon’s lemma) suggest that the initial value problem for

a RDE system that we have to solve in the LQJD setting is (locally) equivalent to the one

for a linear system. Hence, there is a standard routine for solving the differential system.

A further finding, resulting from the solution scheme of the LQJD standard transform,

is the valuation equivalence between linear-quadratic and affine models. Intuitively, by a

simple change-of-variables technique, a quadratic form aX2 + bX + c in X can be replaced

by aZ + bX + c, which is now affine in an augmented, constrained vector (X,Z). We prove

that the system of ODEs obtained for a LQJD process is identical to that for its augmented

affine version, hence an LQJD model can in fact be rewritten as a constrained AJD model.

This, together with the fact that the AJD class is nested in the LQJD class, establishes

a one-to-one relationship between the two classes of models in terms of their transforms.

In other words, the set of LQJD models that is absolutely distinct from (augmented) AJD

models is empty when considering asset pricing by transform analysis.

However, while the augmented LQ model is affine in the sense of Duffie, Pan, and

Singleton (2000), it may not fit into the affine specifications of Dai and Singleton (2000).

We show, with an example, that the causes of the problem are the presence of the quadratic

factors and their deterministic relationship with the augmented factor. Therefore, the

equivalence between LQJD and AJD models stated here concerns the valuation side of

their transforms only.

The relationship between tractable affine and quadratic models has drawn little research

attention until recently. See, for example, Pan and Wu (2005) and Chen, Filipovíc, and
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Poor (2004), where special quadratic term structure models with affine equivalence are

given. See also Gouriéroux and Sufana (2003), who are aware of such equivalence in a study

of Wishart autoregressive processes in discrete time. However, without a unified ground on

which this problem can be examined, the affine and the quadratic classes are easily, and

indeed commonly taken as two separate sets. The LQJD framework provides such a unified

ground, and we consider our finding a valuable theoretical contribution to the debate of

affine versus quadratic classes.

The rewriting of an LQJD to its affine equivalence also permits analyses done previously

for the AJD class to be carried out for the LQJD class. One example is Collin-Dufresne,

Goldstein and Jones (2003), in which a three-factor maximal affine term structure model

with stochastic volatility is studied. Their technique of rotating latent state variables into

observables is similarly applicable in the LQJD setting. We can also conduct a specification

analysis for an LQJD model in a similar manner to that in Dai and Singleton (2000). In

particular, in the paper we give the sufficient conditions for an LQJD specification to be

admissible, and provide the maximal flexible specifications for three-factor LQJD models.

To the best of our knowledge, the first piece of work that coins the term LQJD is

Piazzesi (2001)3 in interest rate modeling. The paper initiates the issue of including jumps

with quadratic arrival intensity for pricing bonds in the quadratic class, and fulfils the task

by constructing the state vector from two parts: one being pure Gaussian-Markov without

jumps, and the other being square-root process with jumps. The drift and the covariance

matrices are still affine in the state vector. Clearly, the state vector in Piazzesi (2001) is an

AJD vector and a QG vector knitted together, and the possibility of integrating nonlinearity

in the drift of the linear vector is not dealt with. We believe that this specification of the

state vector is not rich enough to render the model an extension fully capable of integrating

the modeling strengths of both classes in one.

We are also aware that Liu (2006) proposes some state vector dynamics fairly akin to

ours. While Liu’s analysis is oriented toward solving optimal dynamic portfolio selection

problems, ours aims at pricing issues via transform analysis. Consequently, we are able

to prove that the AJD class is more general than conventionally thought, and is actually

equivalent to the LQJD class. In contrast, Liu (2006) still treats the affine class as a non-

trivial subset of the LQJD class. Furthermore, the specification of Liu (2006) (his equation

(11)) is not fully compatible with our LQJD setting. In particular, the third inequality of

his equation (11) does not allow for a proper solution for the transforms.

The rest of the paper is structured as follows. Section 2 describes the specification of

the LQJD framework and the structural constraints. Section 3 discusses the admissibility

3A published version of this paper is Piazzesi (2004), where the term LQJD is dropped.
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conditions and carries out a specification analysis of the LQJD model. Section 4 computes

the standard transform and shows the link and the equivalence between the LQJD and AJD

classes in terms of their transforms. A discussion of option pricing via transform analysis in

the LQJD setting is also included. Section 5 concludes. Technical details are collected in the

Appendices. Further details, explanations and references, as well as a numerical application

of LQJD modeling to stochastic volatility, can also be found in an extended version of this

paper, Cheng and Scaillet (2002).

2 The LQJD settings

In this section we provide a general definition of the LQJD state vector and its standard

transform. We write down the partial-integro differential equation (PIDE) that must be

satisfied by the standard transform, and discuss the structural constraints on the state

vector such that the PIDE can be solved up to the solution of a system of ODEs. It turns

out that a LQJD process admits a nonlinear drift and a nonlinear diffusion, which is a

marked improvement over the pure AJD and QG classes.

The complete solution to the standard transform, however, will be presented after a

discussion of admissibility conditions in Section 3.

2.1 The LQJD state vector and its standard transform

The n-dimension, càdlàg state vector Xt is drawn from some state space D, and follows the
stochastic differential equation (SDE):

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt + dJt, (2.1)

where:

(i) Wt is a standard n◦-dimension Brownian motion vector;

(ii) Jt is a pure jump process with independent increments dJt, whose size distributions

and arrival intensities are given by Π (dy, t) and λ (Xt, t), respectively;

(iii) (E ,F ,P) is the usual probability space with (W,J)-augmented filtration (Ft)t≥0,

meaning that:

— F0 contains all the P-null sets of F ;

— the filtration F is right-continuous.
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See, e.g., Protter (2004).

For identification, we require that n ≥ n◦. Moreover, we assume that µ, σ, Π, and λ

satisfy the regularity conditions that guarantee a unique solution to (2.1) for every X0.

In the LQJD setting, the drift matrix µ (Xt, t), the covariance matrix Ω (Xt, t) =

σ (Xt, t)σ (Xt, t)
>, and the jump arrival intensity λ (Xt, t) are all LQ in the state vector by

construction. That is, each entry of µ, Ω, and λ is of the following form:

κ (Xt, t) =
1

2
X>Λκ (t)Xt + bκ (t)

>Xt + cκ (t) , (2.2)

where the superscript > denotes matrix transpose, and the coefficient matrix Λκ is block

diagonal with the following representation:

Λκ =

Ã
Aκ 0

0 0

!
, (2.3)

with Aκ being symmetric. Note that the dimension of Aκ depends on the number of state

variables that enters the quadratic forms of µ, Ω, and λ. We can now partition the state

vector Xt and the coefficient vector bκ accordingly as:

X =

Ã
X̄t

X
¯ t

!
, bκ =

Ã
kκ

lκ

!
, (2.4)

and rewrite (2.2) as:

κ (X, t) = lκ (t)
>X
¯ t| {z }

(linear part)

+
1

2
X̄>t Aκ(t)X̄t + kκ (t)

> X̄t + cκ (t)| {z }
(quadratic part)

, (2.5)

hence the name ‘linear-quadratic’.

The standard transform of a state vector Xt is defined, in general, as:

φ (g;Xt, t, T ) = Et

∙
exp

µ
−
Z T

t
R (Xs, s) ds

¶
eg(XT ,T )

¸
, (2.6)

where Et [·] = E [ ·| Ft] is the expectation conditional on information up to t: Ft, t ≤ T <∞.
If the process Φ (Xt, t), defined as:

Φ (Xt, t) = exp

µ
−
Z t

0
R(Xs, s)ds

¶
eg(Xt,t), (2.7)

is a martingale, then the standard transform can be solved as:
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φ (g;Xt, t, T ) = eg(Xt,t)Et [Φ (XT , T )]

Φ (Xt, t)

= eg(Xt,t). (2.8)

This implies that g (Xt, t) satisfies the following PIDE:

Lemma 1 If the technical integrability conditions hold and the function g (x, t) satisfies the

following PIDE (the Cauchy problem):

R =
∂g

∂t
+ µ>

∂g

∂x
+
1

2
tr

"Ã
∂2g

∂x2
+

∂g

∂x

µ
∂g

∂x

¶>!
Ω

#
+ λ (θ − 1) , (2.9)

where θ =
R
D e

g(x+y,t)−g(x,t)Π (x, dy, t), then Φt is a martingale.

Proof. See Appendix A.

Given the result in Filipovíc (2002) that the maximal consistent order of a separable,

polynomial model is two, we take both g (Xt, t) and R (Xt, t) as LQ functions in Xt.

We use LQq
m (n) to denote an n-factor LQJD model where the first q members of the

state vector Xt appear at least once in a quadratic form (i.e., X̄t has dimension q), and

m members of X
¯ t
appear in either λ or Ω. Without loss of generality, we assume these m

factors are the first m members of X
¯ t
. Hence, for an LQq

m (n) model,

g (X, t) = l (t)>X
¯ t
+
1

2
X̄>t A(t)X̄t + k (t)> X̄t + c (t) ,

where A is symmetric with rank q. Clearly, the LQJD model reduces to a QG model when

q = n, and to an AJD model (such as the Am (n) model of Dai and Singleton (2000) with

jumps) when q = 0. By reference to these two classes, the variables X̄ and X
¯
are named

quadratic and affine vectors, respectively.

2.2 The structural constraints

For both g (Xt, t) and R (Xt, t) to be LQ in Xt, an LQq
m (n) model must satisfy the following

structural constraints (See Appendix B.1 for more details):

[SC1] The first q entries of the jump component J are zeros.

That is, jumps are restricted to the affine vector X
¯
only. This comes from λ, g and

R being all LQ function by definition, which, together with (2.9), implies that θ is in fact
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independent of x. The minimal constraint for this to hold true is that the first q entries of

the jump size distribution is zero.

[SC2] The drift matrix of Xt is:

µ (Xt, t) =

Ã
µ̄
¡
X̄t, t

¢
µ
¡
X̄t,X¯ t

, t
¢ !

n×1
. (2.10)

In particular:

(a) The drift matrix of the quadratic vector X̄, µ̄
¡
X̄t, t

¢
, is only an affine function

of X̄;

(b) The drift matrix of the affine vector X
¯
, µ
¡
X̄t,X¯ t

, t
¢
, is LQ in X (i.e., affine in X

¯
and quadratic in X̄).

The restriction that µ̄
¡
X̄t, t

¢
is an affine function of X̄ only could be justified heuristically

as follows. By definition, X
¯
should remain in linear terms only. If µ̄ were an affine function

of X
¯
as well, it would bring powers of X

¯
to two as the quadratic vector X̄ pass through

the quadratic terms. Constraint [SC2](a) looks quite restrictive, because it does not allow

linking members of X
¯
with X̄ through the drift of X̄. For instance, if X

¯
is the logarithm

of stock price and X̄ is the state vector describing the dynamics of stock price volatility, it

is indeed desirable to let the logarithm of the stock price X
¯
play a ‘feedback’ role on the

volatility state vector X̄. Constraint [SC2](a) rules out the possibility of having this type of

‘feedback’ effect through the drift of X̄ in the LQJD setting. However, we can still model

this effect through the correlation structure of X.

In comparison to an AJD process, the affine vector X
¯
in the LQJD framework has a

nonlinear component that is generated by a quadratic form of the quadratic vector X̄. As

already mentioned, we believe that the incorporated nonlinearity is a marked improvement

from the pure AJD and QG classes. In particular, the quantity µP− µQ, where P and Q
are two equivalent probability measures, is LQ in the state vector in the LQJD setting. In

contrast, as pointed out by Dai and Singleton (2003), both the AJD and QG classes admit

only affine specifications for µP− µQ. Apparently, such restriction prevents an investigation

of nonlinear specification, as suggested in Pan (2002).

[SC3] The covariance matrix of Xt is:

Ω (Xt, t) =

Ã
Ω̄ (t) Ω̃

¡
X̄t, t

¢
Ω̃
¡
X̄t, t

¢>
Ω
¡
X̄t,X¯ t

, t
¢ !

n×n
. (2.11)
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In particular:

(a) the covariance matrix of the quadratic vector X̄, Ω̄ (t), is deterministic in t;

(b) the covariance matrix of the affine vector X
¯
, Ω
¡
X̄t,X¯ t

, t
¢
, is LQ in X (i.e., affine

in X
¯
and quadratic in X̄);

(c) from (a) and (b), the covariance matrix between X
¯
and X̄, Ω̃

¡
X̄t, t

¢
, is affine in

X̄ only.

Constraint [SC3](b) differs from the usual practice in affine modeling, which restricts

σ to be square-root affine in the state vector. See, for example, Dai and Singleton (2000).

However, it is the covariance matrix Ω, not σ itself, that matters for solving the PIDE (2.9).

See Duffie, Pan and Singleton (2000). Moreover, restrictions on σ would in fact exclude an

important group of models, which distinguish themselves from the square-root affine models

by carrying sign information in σ.

Also note that option pricing models based on a quadratic specification for σ of the

stock price as in Rady (1997) are not embedded in the LQJD class. This is because the

logarithm of the stock price is usually a member of the affine vector X
¯
, and as such it is

excluded from any quadratic forms in the LQJD setting by construction.

There are only a small number of LQJD models existing in the current literature that

are distinct from the pure AJD or QG models. The more distant ones include Stein and

Stein (1991), which is LQ10 (2) with Ω̃ = 0 and λ = 0 (i.e., no jumps), and Schöbel and

Zhu (1999), which is an extension of Stein and Stein (1991) with Ω̃ 6= 0. The more recent
ones include Piazzesi (2001) and (2004), which are LQ11 (4) with µ being only affine in the

state vector. Santa-Clara and Yan (2005) propose an LQ20 (3) model for modeling stock
market index with stochastic volatility and jumps. It corresponds, in our notation, to

X̄t =
³
X1t X2t

´>
, which models the instantaneous volatility (Vt = X2

1t) and the jump

intensity (λt = X2
2t), together with X¯ t

= (X3t), which is the logarithm of the stock price.

The drift and the covariance matrices for this LQ20 (3) model are, respectively

µt =

⎛⎜⎝ kµ1X1t + cµ1
kµ2X2t + cµ2

1
2X̄

>
t Aµ3X̄t + cµ3

⎞⎟⎠ , Ωt =

⎛⎜⎝ c11 c12 k13X1t

. c22 k23X1t

. . X2
1t

⎞⎟⎠ , (2.12)

where k and c’s are constants, and Aµ3 is a constant, 2× 2 diagonal matrix.
We will use the Santa-Clara and Yan (2005) model as a running example, and show that

it is not the maximal flexible model in the LQ20 (3) class. In the next section, we will discuss
the LQJD admissibility conditions and the relevant specification analysis, which address

the issue of maximal flexible models.
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3 Admissibility conditions and specification analysis

In addition to the structural constraints which are necessary conditions for obtaining a

tractable transform, we also need admissibility conditions that guarantee a positive jump

intensity λ and a positive semi-definite covariance matrix Ω, such that a solution to SDE

(2.1) exists and is unique. The structural constraints and the admissibility conditions allows

us to extend the classification scheme and specification analysis of Dai and Singleton (2000)

to the LQJD setting. Specifically, an n-factor LQJD model with q quadratic factors can

be classified into n− q + 1 subfamilites (indexed by m), and the maximal flexible LQq
m (n)

model can be identified accordingly. We illustrate such analysis with three-factor LQJD

models.

In a pure affine diffusion setting, Gouriéroux and Sufana (2006) points out that the

analysis of Dai and Singleton (2000) provides sufficient but not necessary conditions, and

excludes some admissible, non-linear state space. Their analysis, however, involves the

study of the dynamics of Ω and its determinant on the boundary of the state space, which

will become extremely involved when the number of factors inceases. We will still follow

the receipe provided by Dai and Singleton (2000), and leave the Gouriéroux and Sufana

(2006) type of analysis for n-factor models in a jump-diffusion setting for future research.

However, our results on the equivalence relationship between LQJD and AJD classes, and in

particular the rewriting of an LQJD model as its AJD equivalence (see Section 4.2 below),

actually provides examples mentioned in Gouriéroux and Sufana (2006), which do not fit

into the standard Dai and Singleton (2000) classification.

3.1 Admissibility conditions

For an LQJD process to be admissible, its jump intensity λ should be positive and its

covariance matrix Ω should be positive semi-definite. When q = n, an LQq
m (n) model

reduces to a QG model and no admissibility conditions are needed. When q = 0, the

LQJD model becomes an AJD model, and the admissibility conditions, as well as the

corresponding specification analysis, have been detailed in Dai and Singleton (2000). For

an LQq
m (n) model with 0 < q < n, we have:

[AC1] Up to invariant transforms defined in Dai and Singleton (2000), the covariance matrix

of the first m factors of the affine vector X
¯ t
is diagonal, with the ith diagonal term

linear in Xq+i,t, the ith factor of X¯ t

The invariant transforms of Dai and Singleton (2000) are applicable to the firstm factors

of X
¯ t
, because they only appear in affine terms by definition, and their diffusions do not
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contain any quadratic terms. [AC1] ensures that when Xq+i,t, i ≤ m, reaches zero, its

diffusion also becomes zero and Xq+i,t is locally deterministic. In the presentation we have

applied the invariant transforms to get rid of the constant term in the diffusion of Xq+i,t, so

that we can discuss its drift separately. In effect, imposing [AC1] is equivalent to represent

Xq+i,t in a canonical form as discussed in Dai and Singleton (2000).

At zero boundary, Xq+i,t should have a positive drift. Recall that the drift of Xq+i,t can

have the following specification:

µq+i (X, t) = lµq+i (t)
>X
¯ t
+
1

2
X̄>t Aµq+i(t)X̄t + kµq+i (t)

> X̄t + cµq+i (t)| {z }
(quadratic part)

. (3.1)

To guarantee a positive µq+i when Xq+i,t is at its zero boundary, we must have:

[AC2] The jth entry of lµq+i is zero when j > m, and non-negative when j ≤ m and j 6= i.

[AC3] The quadratic part of (3.1) is non-negative, i.e.,

(a) Aµq+i is positive semi-definite;

(b) kµq+i belongs to the column space of Aµq+i ;

(c) cµq+i ≥
1
2k
>
µq+i

A+µq+ikµq+i , where the superscript
+ denotes the Moore-Penrose, or

generalized inverse of a matrix (e.g., when a matrixA is non-singular, A+ = A−1).

The admissibility conditions above closely resembles the ones of an AJD model. In

particular, [AC1] corresponds to conditions C2 and C3 in Dai and Singleton (2000), and
[AC2] and [AC3] to conditions C1, C4 and C5. See Appendix B of Dai and Singleton

(2000).

If Xq+i,t has a jump component, its jump size must be non-negative. Specifically:

[AC4] For all i ≤ m, the jump size distribution of Xq+i,t has support on R+ ∪ {0}.

Finally, we need the volatilities of the last n− q−m factors of X
¯ t
(i.e., Xq+m+i,t where

i ≤ n− q−m), as well as members of the jump intensity vector λ, to be non-negative. Let

ϑ denote either Ωq+m+i,q+m+i where i ≤ n− q −m, or a member of λ. Note that ϑ is LQ

in the state vector and can be represented as:

ϑ (X, t) = lϑ (t)
>X
¯ t
+
1

2
X̄>t Aϑ(t)X̄t + kϑ (t)

> X̄t + cϑ (t)| {z }
(quadratic part)

. (3.2)

We have:
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[AC5] The jth entry of lϑ is zero when j > m (by definition), and non-negative when j ≤ m.

[AC6] The quadratic part of (3.2) is non-negative.

There is no need to discuss the specifications of the off-diagonal terms of Ω, because

they can be constructed by applying structural constraint [SC3] and admissibility conditions

[AC5] - [AC6].

3.2 Specification analysis of three-factor LQJD models

The structural constraints and admissibility conditions allow us to carry out a specification

analysis of the LQJD models that identifies the maximal dynamic structure for a given

number of factors. We concentrate on the three-factor LQJD models, i.e., LQq
m (3). As

mentioned above, the cases of q = 0 and q = 3 have already been studied in the AJD and

QG literature, respectively. Hence, we will only consider q = 1 and q = 2.

From the previous subsection we know that an LQq
m (n) family can be further classified

into n− q + 1 subfamilies. For n = 3 and q = 1, 2, this results in five subfamilies of LQJD

models. For each subfamily, we consider the maximal flexible structure for the drift and

the covariance matrices. We will not discuss the structure of the jump intensity matrix, for

it very much resembles that of the drift matrix.

3.2.1 The maximal LQ1m (3) models

For an LQ1m (3) model, X̄t = (X1t) and X¯ t
=
³
X2t X3t

´>
. The maximal flexible struc-

ture for the drift of all LQ1m (3) models can be represented as:

µt =

⎛⎜⎝ µ1t
µ2t
µ3t

⎞⎟⎠ =

⎛⎜⎝ kµ1X1t + cµ1
l>µ2X¯ t

+ 1
2Aµ2X

2
1t + kµ2X1t + cµ2

l>µ3X¯ t
+ 1

2Aµ3X
2
1t + kµ3X1t + cµ3

⎞⎟⎠ .

If m = 1, then the admissibility conditions [AC2] and [AC3] are binding on µ2t, i.e., the

second entry of lµ2 is zero, and cµ2 ≥
1
2k
2
µ2
A−1µ2 . If m = 2, then the admissibility conditions

[AC2] and [AC3] are binding on both µ2t and µ3t.

The maximal flexible structure for the diffusion (covariance) matrices of LQ1m (3) models
are, respectively:

- LQ10 (3):



Linear-Quadratic Jump-Diffusion Modeling 13

There is no binding admissibility conditions on the diffusion of an LQ10 (3) model.
Hence, its diffusion may look like:

σt =

⎛⎜⎝ α11 α12 α13

β21X1t + α21 β22X1t + α22 β23X1t + α23

β31X1t + α31 β32X1t + α32 β33X1t + α33

⎞⎟⎠ .

The resulting covariance matrix of the LQ10 (3) would be:

Ωt =

⎛⎜⎝ c11 k12X1t + c12 k13X1t + c13

. 1
2A22X

2
1t + k22X1t + c22

1
2A23X

2
1t + k23X1t + c23

. . 1
2A33X

2
1t + k33X1t + c33

⎞⎟⎠ .

- LQ11 (3):

The admissibility conditions [AC5] and [AC6] are binding on the diffusion matrix of

an LQ11 (3) model. One possible specification is:

σt =

⎛⎜⎝ α11 0 0

0 σ22
√
X2t 0

β31X1t + α31 σ32
√
X2t

p
β33X2t + α33

⎞⎟⎠
The covariance matrix is, in general:

Ωt =

⎛⎜⎝ c11 0 k13X1t + c13

. l22X2t l23X2t

. . l33X2t +
1
2A33X

2
1t + k33X1t + c33

⎞⎟⎠ .

- LQ12 (3):

By [AC1], the covariance matrix can only be:

Ωt =

⎛⎜⎝ c11 0 0

. l22X2t 0

. . l33X3t

⎞⎟⎠ .

This corresponds to the diffusion matrix:

σt = ±

⎛⎜⎝ α11 0 0

0 σ22
√
X2t 0

0 0 σ33
√
X3t

⎞⎟⎠ .
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Note that regardless of the sign of σt, the covariance is identical, as well as the resulting

standard transform.

Similar to the AJD class, as more affine variables enter the specification of the diffusion

matrix, the structure of Ωt becomes increasingly restrictive.

3.2.2 The maximal LQ2m (3) models

For an LQ2m (3) model, X̄t =
³
X1t X2t

´>
and X

¯ t
= (X3t). The maximal flexible struc-

ture for the drift of all LQ2m (3) models can be represented as:

µt =

⎛⎜⎝ µ1t
µ2t
µ3t

⎞⎟⎠ =

⎛⎜⎝ k>µ1X̄t + cµ1
k>µ2X̄t + cµ2

lµ3X¯ t
+ 1

2X̄
>
t Aµ3X̄t + k>µ3X̄t + cµ3

⎞⎟⎠ .

If m = 1, the admissibility condition [AC3] is binding on µ3t, i.e., cµ3 ≥
1
2k
>
µ3
A+µ3kµ3 .

The maximal flexible structure for the diffusion (covariance) matrices of LQ2m (3) models
are, respectively:

- LQ20 (3):

There is no binding admissibility conditions on the diffusion of an LQ20 (3) model.
Hence, its diffusion may look like:

σt =

⎛⎜⎝ α11 α12 α13

α21 α22 α23

β>31X̄t + α31 β>32X̄t + α32 β>33X̄t + α33

⎞⎟⎠ .

The resulting covariance matrix of the LQ20 (3) would be:

Ωt =

⎛⎜⎝ c11 c12 k13X1t + c13

. c22 k23X1t + c23

. . 1
2X̄

>
t A33X̄t + k>33X̄t + c33

⎞⎟⎠ .

In Section 2 we presented the Santa-Clara and Yan (2005) model (Equation (2.12)),

which is an LQ20 (3). By comparing the drift and the covariance matrices with the
maximal flexible specifications of an LQ20 (3) model above, we see that the Santa-Clara
and Yan (2005) model is not maximal flexible, since it sets the second entry of kµ1 ,
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the first entry of kµ2 , kµ3 , c13, c23, c33, and k33 to zero, and:

Aµ3 =

Ã
1 0

0 1

!
, A33 =

Ã
1 0

0 0

!
.

- LQ21 (3):

The structure of LQ21 (3) is less flexible than that of LQ20 (3) in that the admissibility
condition [AC1] becomes binding. The maximal flexible diffusion of LQ21 (3) is:

σt = ±

⎛⎜⎝ α11 α12 0

α21 α22 0

σ33
√
X3t

⎞⎟⎠ ,

and the corresponding covariance matrix is:

Ωt =

⎛⎜⎝ c11 c12 0

. c22 0

. . k33X3t

⎞⎟⎠ .

4 The solution to the standard transform and the equiva-
lence between linear-quadratic and affine models

Provided that the structural constraints and the admissibility conditions are satisfied, we

can derive the solution of the standard transform as an exponential LQ function. A very

important result of this section is the equivalence relationship between the LQJD and

the AJD classes in terms of their transforms. That is, an LQJD process can actually

be reformulated as a constrained AJD process.

4.1 The solution to the standard transform

Recall that the solution to the standard transform is:

φ (g;Xt, t, T ) = eg(Xt,t),

provided that the LQ function g (x, t) satisfies the PIDE (2.9) in Lemma 1:

R =
∂g

∂t
+ µ>

∂g

∂x
+
1

2
tr

"Ã
∂2g

∂x2
+

∂g

∂x

µ
∂g

∂x

¶>!
Ω

#
+ λ (θ − 1) ,
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where θ (x, t) =
R
D e

g(x+y,t)−g(x,t)Π (x, dy, t), and R and λ are both LQ functions, i.e., for

κ = R and λ, κ (x, t) = 1
2x
>Λκ (t)x+ bκ (t)

> x+ cκ (t) . We may solve the PIDE up to a

system of ODEs using the method of undetermined coefficients. To achieve this, first note

that the drift µ (x, t) and the covariance matrix Ω (x, t) of the state vector can be written

as:

µ =
1

2

³
In ⊗ x>

´
Ax+ Bx+ C,

Ω =
1

2

³
In ⊗ x>

´
A (In ⊗ x) +B (In ⊗ x) + C,

where ⊗ is the Kronecker product operator, In is an n-dimensional identity matrix, and the
coefficient matrices

³
A B C

´
and

³
A B C

´
satisfy the structural and admissibil-

ity constraints. For example, µ and Ω of the Santa-Clara and Yan (2005) model can be

represented with:

A =

⎛⎜⎝ 03×3

03×3

Λµ3

⎞⎟⎠ , with Λµ3 =

Ã
Aµ3 02×1

01×2 0

!
;

A =

⎛⎜⎝ 03×3 03×3 03×3

03×3 03×3 03×3

03×3 03×3 Λ33

⎞⎟⎠ , with Λ33 =

⎛⎜⎝ 1 0 0

0 0 0

0 0 0

⎞⎟⎠ ;

B =

⎛⎜⎝ 01×3 01×3 B13

01×3 01×3 B23

B31 B32 01×3

⎞⎟⎠ , with Bij =
³
kij 0 0

´
;

and

B =

⎛⎜⎝ kµ1 0 0

0 kµ2 0

0 0 0

⎞⎟⎠ ; C =

⎛⎜⎝ cµ1
cµ2
cµ3

⎞⎟⎠ ; C =

⎛⎜⎝ c11 c12 0

c12 c22 0

0 0 0

⎞⎟⎠ .

We have the following proposition:

Proposition 1 Suppose that the technical integrability conditions hold, and that the LQ
function g (x, t) = 1

2x
>Λ (t)x + b (t)> x + c (t) with terminal condition g (x, T ) = g̊ (x),
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admits a unique solution through the following system of ODEs:

−db
dt

= bλ (θ − 1)− bR + bµ +
1

2
bΩ, (4.1)

−dΛ
dt

= Λλ (θ − 1)− ΛR + Λµ +
1

2
ΛΩ, (4.2)

−dc
dt

= cλ (θ − 1)− cR + cµ +
1

2
cΩ +

1

2
tr
£
AΩ̄
¤
, (4.3)

where

Λµ = A| (b⊗ In) + 2B>Λ,
bµ = ΛC + B>b, (4.4)

cµ = C>b,

and

ΛΩ = 2ΛCΛ+ 4ΛB (b⊗ In) +
³
b> ⊗ In

´
A (b⊗ In) ,

bΩ = 2ΛCb+
³
b> ⊗ In

´
B>b, (4.5)

cΩ = b|Cb.

Then the solution to the standard transform φ (g;Xt, t, T ), defined by (2.6), is:

φ (g;Xt, t, T ) = eg(Xt,t).

Proof. See Appendix B.2.

One may have observed that the ODEs (4.2) yield a system of non-symmetric matrix

Riccati differential equations (RDE), which takes the form:

d

dτ
' =M21 (τ) +M22 (τ)' −'M11 (τ)−'M12 (τ)'. (4.6)

Take the specifications of the Santa-Clara and Yan (2005) model as an example. The model

is LQ20 (3), so we only have to consider the ODE for the leading diagonal block, A, of Λ.
Moreover, AR = 0, θ is calculated from a log-normal distribution, and:

Aλ =

Ã
1 0

0 0

!
.
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Using the
³
A B C

´
and

³
A B C

´
matrices of the Santa-Clara and Yan (2005)

model presented above, we have:

d

dτ
A =M21 (τ) +M22 (τ)A−AM11 (τ)−AM12 (τ)A,

where:

M21 (τ) = Aλ (θ − 1) +Aµ3b3 +

Ã
b23 0

0 0

!
,

and

M22 (τ) = 2

Ã
kµ1 0

0 kµ2

!
, M11 (τ) = −2

Ã
k13b3 0

k23b3 0

!
, M12 (τ) = −

Ã
c11 c12

c12 c22

!
,

with b3 being the 3rd entry of b in ODE (4.1). In fact, the ODE of b can also be written in

the form of (4.6).

A standard solution procedure, called Radon’s lemma, exists for such systems:

Theorem 1 (Radon’s lemma)
Let:

M (τ) =

Ã
M11 (τ) M12 (τ)

M21 (τ) M22 (τ)

!
.

If Y (τ) =

Ã
Q (τ)

P (τ)

!
is, on some interval U ⊂ R, a solution of the linear system:

d

dτ
Y (τ) =M (τ)Y (τ) , (4.7)

such that detQ (τ) 6= 0 for τ ∈ U , then:

' (τ) = P (τ)Q (τ)−1

is a solution of (4.6); in particular, ' (τ0) = P (τ0)Q (τ0)
−1.

By Radon’s lemma, the initial problem for a matrix RDE system that we have to solve

in the LQJD setting is (locally) equivalent to an initial value problem for the linear system

defined in (4.7). Since standard procedures exist for solving linear systems of ODEs such as

(4.7), the added computational burden is limited. For instance, in solving for the standard

transform of the Santa-Clara and Yan (2005) model, one may apply Radon’s lemma to

obtain b and Λ. c is then obtained by integrating the right hand side of (4.3).
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We make no further efforts on the discussion about the existence and uniqueness of

the solutions of RDE systems. First, there does not exist a general theory on these issues

for matrix Riccati systems (see Freiling (2002)). This implies that such discussions must

be case specific. Second, all models for financial applications are simple enough to admit

unique solutions. For further details on RDE systems, see, for instance, Freiling (2002) and

the references therein.

Finally, we note that some authors tend to call all quadratic matrix differential equations

matrix RDEs. However, not all quadratic differential equations can be represented in a form

similar to (4.6). Previous studies on AJD and QG models have mentioned that the resulting

ODE systems are Riccati equations, but none of them has clarified their views on this point.

4.2 The equivalence between LQJD and AJD models

While it is straightforward to recognize AJD class as a subset of the LQJD class through the

definitions, it might come as a surprise that the LQJD class can in fact be accommodated in

the AJD class. Indeed, by introducing some pseudo-factors to replace the quadratic terms,

one may re-formulate an LQJD model as a constrained AJD model. This reformulation

leads to a one-to-one equivalence relationship between LQJD and AJD classes in terms of

their transforms.

To see this, first note that all quadratic terms are affine in elements of X̄X̄>. Therefore,

we introduce the vector Z of pseudo-factors, which is defined as:

Z = v
h
X̄X̄>

i
, (4.8)

where v is the vector-half operator. This operator, also denoted by vech, stacks the lower

elements of a square matrix into a vector. Hence, v
h
X̄X̄>

i
only collects the distinct elements

of the symmetric matrix X̄X̄>.

Note that the drift of the quadratic vector X̄ is affine in X̄, and the covariance matrix

is deterministic. Hence the drift of Z is affine in
³
Z> X̄>

´>
, and the covariance of Z is

affine in X̄. We can now rephrase the LQJD setting in terms of the augmented state vector:

Xa =

⎛⎜⎝ Z

X̄

X
¯

⎞⎟⎠ . (4.9)

Using notations from Duffie, Pan and Singleton (2000), we have:

dXa = µa (Xa
t ) dt+ σa (Xa

t ) dWt + dJat , (4.10)
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where:

µa = K1X
a +K0,

Ωa = H1 (IN+n ⊗Xa) +H0.

The above expressions show that all terms in the LQJD setting can be represented as affine

forms of Xa, which means that LQJD and AJD classes are in fact nested within each other.

We further have an equivalence relationship between the LQJD and AJD classes in terms

of their standard transforms:

Proposition 2 The standard transform of an n-factor LQJD model with an m-dimension,

quadratic vector X̄ is equal to the standard transform of a constrained, (N + n)-factor,

N = q (q + 1) /2, affine model of Duffie, Pan, and Singleton (2000), where the state vector

is augmented by an additional N×1 pseudo state vector Z = v
³
X̄X̄>

´
with Z0 = v

³
X̄0X̄

>
0

´
.

Proof. Applying the results from the LQJD setting and the results from the AJD

setting, respectively, to X and Xa and their transforms. This leads to two sets of ODEs,

which can be shown to be equivalent4.

The Santa-Clara and Yan (2005) model is again well suited as an example here. For

simplicity, we suppress the jump component, so that the model becomes LQ10 (2):

µt =

Ã
kµ1X1t + cµ1

1
2Aµ3X

2
1t + cµ3

!
, Ωt =

Ã
c11 k13X1t

. X2
1t

!
. (4.11)

We introduce the pseudo state vector, which consists of the instantaneous variance, Vt, of

the stock price logarithm st:

Zt = Vt = X2
1t.

Note that the augmented state vector is Xt =
³
Vt X1t st

´>
and Ωt is affine in both

Vt and X1t, corresponding to an A2 (3) model. We write the augmented drift µat and

covariance Ωat alongside the maximal flexible drift µ
A
t and covariance Ω

A
t of an A2 (3) model

4For a more detailed proof, please refer to the extended version of this paper, Cheng and Scaillet (2002).
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( Xt =
³
V At XA

1t XA
2t

´>
, where V At and XA

1t enter the diffusion term):

µat =

⎛⎜⎝ 2kµ1 2cµ1 0

0 kµ1 0
1
2Aµ3 0 0

⎞⎟⎠
⎛⎜⎝ Vt

X1t

st

⎞⎟⎠+
⎛⎜⎝ c11

cµ1
cµ3

⎞⎟⎠ ,

µAt =

⎛⎜⎝ k11 k12 0

k21 k22 0

k31 k32 k33

⎞⎟⎠
⎛⎜⎝ Vt

X1t

X2t

⎞⎟⎠+
⎛⎜⎝ θ1

θ2

θ3

⎞⎟⎠ ,

and:

Ωat =

⎛⎜⎝ 4c11Vt 2c11X1t 2k13Vt

. c11 k13X1t

. . Vt

⎞⎟⎠ , ΩAt =

⎛⎜⎝ β11V
A
t 0 β13V

A
t

. β22X
A
1t β23X

A
1t

. . β33V
A
t + β33X

A
1t + α33

⎞⎟⎠ .

The most obvious difference is that in the augmented LQ10 (2) model Vt = X2
1t, where

X1t follows a Gaussian process, but in the A2 (3) model V At and XA
1t are distinct square-root

processes. Moreover, the drift µAt has to satisfy the constraints:

k12 ≥ 0, θ1 ≥ 0, k21 ≥ 0, θ2 ≥ 0,

while µat satisfies a different set of constraints, equivalent to relaxing the constraints on³
k12 θ1 k21 θ2

´
, but imposing k21 = k32 = k33 = 0, which is unnecessary, and:

k11 = 2k22, k12 = 2θ2,

due to the deterministic relationship Vt = X2
1t.

The constraints imposed on ΩAt and Ω
a
t are also different. For Ω

A
t :

β11 > 0, β22 > 0, β33 > 0, β33 > 0, α33 > 0.

For Ωat , β22 = β33 = α33 = 0, which is unnecessary. However, it allows correlation between

Vt and X1t (the correlation is ±1, depending on the sign of X1t), while in ΩAt , V At and XA
1t

have zero correlation. It is also interesting to look at the (2, 3)th term of the covariance

matrices. In the reduced Santa-Clara and Yan (2005) model, this term is closely linked to

the correlation between the volatility factor X1t and the logarithm of the stock price st.

One may observe that in the LQJD model, the correlation actually depends on the sign of

X1t, while in the affine model A2 (3) the correlation is either positive or negative, but never
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shift signs.

In summary, while an LQ model can be re-written as an affine model by augmenting the

state vector, it may not fit into an affine class defined by Dai and Singleton (2000). This is

due to the presence of the Gaussian factors, e.g., X1t = ±
√
Vt, which are particular to the

quadratic models. The equivalence relationship stated here is, therefore, on the valuation

side. Put it differently, while an LQJD model can be solved using techniques normally

applied to AJD models, it extends the modeling flexibility of affine models to the non-linear

territory. This is conveniently evidenced by the discussion of the correlation terms above.

Proposition 2 is a strong result, for the quadratic class has always been taken to be

a separate group from the affine class in asset pricing methodology. We have just shown

that this perception is not valid. Indeed, the proposition above concerns a full valuation

equivalence, i.e., the numerical schemes necessary for computing the transforms will deliver

exactly the same results. A straightforward consequence of Proposition 2 is that the analysis

techniques of affine models also become applicable to LQJD models. An example is Collin-

Dufresne, Goldstein and Jones (2003), in which a three-factor maximal affine term structure

model with stochastic volatility is studied. Their technique of rotating latent state variables

into observables is similarly applicable in the LQJD setting. Moreover, the reformulation can

be done in an automatic way through matrix algebra manipulations and easily implemented

in a symbolic calculus package (see the extended version of this paper, Cheng and Scaillet

(2002), for a fully worked example).

Further note that the technique of change of variables, which we use to derive the

valuation equivalence between AJD and LQJD models, does not apply for general structures

of the state vector. This equivalence is really due to the presence of LQ structures at

every step of the identification procedure. For example, the change of variables technique

breaks down in the Hull and White (1987) model, where the instantaneous variance is the

exponential of the volatility factor.

4.3 The LQJD dynamics under the risk-neutral measure

It is well known that option prices are not derived from the data generating process under the

historical (objective) measure P, but from some risk-adjusted process under an equivalent

measure Q. Therefore, for pricing purpose, one needs to know the specification of the

state-price density, ξt, which is defined in the LQJD framework as:

ξ (Xt, t) = exp

µ
−
Z t

0
RP (Xs, s) ds

¶
egξ(Xt,t), (4.12)
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where

gξ (Xt, t) =
1

2
X>
t Λξ (t)Xt + b>ξ (t)Xt + cξ (t) ,

satisfies the PIDE (2.9). Without loss of generality, we assume ξ (X0, 0) = 1, which gives

the initial condition for the PIDE. By Lemma 1, ξ (Xt, t) is a positive P-martingale. Fur-
thermore, by restricting ξ (Xt, t) to be exponential LQ in Xt, we have ensured that the

structure of the state vector remains LQJD under the new measure Q.
The equivalent martingale measure Q is defined via:

dQ
dP

¯̄̄̄
t

=
ξ (XT , T )

ξ (Xt, t)
. (4.13)

Let:

WQ
t =WP

t −
Z t

0
σ (Xs, s)

> [Λξ (s)Xs + bξ (s)] ds. (4.14)

The following Lemma, which is similar to Lemma 2 in Appendix C of Duffie, Pan and

Singleton (2000), states that ξ (Xt, t)W
Q is a P local martingale. It then follows that WQ

is a standard Brownian Motion under Q.

Lemma 2 Provided that all technical integrability conditions are satisfied, ξ (Xt, t)W
Q is

a P-martingale.

Proof. See Appendix C.
Moreover, let N be the jump-counting process with intensity λP (Xt, t) under P and

λQ (Xt, t) under Q. Define:

MQ = NP
t −

Z t

0
θ (lξ)λ

P (Xs, s) ds. (4.15)

Since jumps are restricted to affine variables X
¯
only, results from Duffie, Pan and Singleton

(2000) concerning jumps are directly applicable in the LQJD setting. Specifically, by Lemma

3 in Appendix C of Duffie, Pan and Singleton (2000), and provided that the technical

integrability conditions are satisfied, ξ (Xt, t)M
Q is a P-martingale. It follows that MQ is

a compensated jump-counting process under Q.
The structure of the state vector under the measure Q is now:

dXt = µQ (Xt, t) dt+ σ (Xt, t) dW
Q
t + dJQt , (4.16)

with the drift being:

µQ (Xt, t) = µP (Xt, t) +Ω (Xt, t) [Λξ (t)Xt + bξ (t)] , (4.17)
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and the jump intensity being:

λQ (Xt, t) = θ (lξ)λ
P (Xt, t) . (4.18)

The diffusion part remains unchanged.

One may now easily infer from (4.16) the market price of risk relative to the Q drift

µQ (Xt, t). In particular, the quantity µQ − µP is LQ in the state vector Xt. In contrast,

Λξ (t) is zero in an AJD model, and Ω is independent of Xt in a QG model. Consequently,

µQ − µP is only affine in both latter cases.

Since the state-price density is obtained explicitly, one may estimate jointly the objective

and the risk-neutral measures in the LQJD settings and extract information content from

the option markets. An analysis of this kind can be found, for instance, in Chernov and

Ghysels (2000) and Pan (2002).

Given the dynamics of the state vector under the risk-neutral measure Q, option pricing
via transform analysis is then straightforward. See e.g. Duffie, Pan and Singleton (2000),

Carr and Madan (1999), and Lewis (2000).

5 Conclusion

We have generalized the transform analysis methods existing for the AJD and QG classes

to the LQJD case. We present in detail the characterization of the LQJD structure, derive

the structural restrictions and the admissibility conditions, and carry out a specification

analysis for the three-factor LQJD models. We solve the standard transform up to a system

of ODEs, which is identified as a system of non-symmetric Riccati differential equations

with standard solution routines. Finally, we prove that an LQJD model can be converted

to an AJD model by introducing a vector of pseudo factors. The notion is quite intuitive,

but has never been demonstrated in full generality before. This is a strong result, for

researchers have always taken affine and quadratic models as two separate classes, whereas

we show that the set of the quadratic models that is absolutely distinct from the affine ones

is actually empty in terms of asset pricing by transform analysis.

The LQJD model also provides the theoretical basis for future research on nonlinear

specifications of the market price of risk, as well as its estimation using joint observations

of prices and options. Such study with affine models has already been carried out by, for

instance, Chernov and Ghysels (2000) and Pan (2002). Since the LQJD framework is very

flexible, selecting an appropriate model is of great concern. We leave this issue for future

research.
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Appendix A. Proof of Lemma 1

By Ito’s lemma for semi-martingales, we have

Φt = Φ0 +

Z t

0
DΦsds+

Z t

0
ηsdWs + Jt, (A.1)

where the infinitesimal operator D is defined as:

Df (x, t) =
∂f

∂t
(x, t) + µ (x)>

∂f

∂x
(x, t) +

1

2
tr

∙
Ω (x)

∂2f

∂x2
(x, t)

¸
+λ (x, t)

Z
D
[f (x+ y, t)− f (x, t)]Π (x, dy, t) , (A.2)

and

ηt =

µ
∂Φt
∂x

¶>
σt,

Jt =
X

0<τ(i)≤t

¡
Φτ(i) − Φτ(i)−

¢
−
Z t

0
γsds,

with τ(i) denoting the ith jump time of X, and

γt = λ (x, t)

Z
D
[Φ (x+ y, t)− Φ (x, t)]Π (x, dy, t) .

Suppose the following technical integrability conditions hold:

(i) E0 [|ΦT |] <∞;

(ii) E0

∙³R T
0 ηsη

|
sds
´1/2¸

<∞;

(iii) E0

hR T
0 |γs|ds

i
<∞.

By integrability condition (ii),
R t
0 ηsdWs is a martingale. Furthermore, Jt is a martingale
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as well. This is because:

E0

⎡⎣ X
0<τ(i)≤t

¡
Φτ(i) − Φτ(i)−

¢⎤⎦ = E0

⎡⎣ X
0<τ(i)≤t

Eτ(i)−
£
Φτ(i) − Φτ(i)−

¤⎤⎦
= E0

⎡⎣ X
0<τ(i)≤t

Φτ(i)−
¡
θτ(i) − 1

¢⎤⎦
= E0

⎡⎣ X
0<τ(i)≤t

Z τ(i)

τ(i)−
Φu (θu − 1) dNu

⎤⎦
= E0

∙Z t

0
Φu (θu − 1) dNu

¸
= E0

∙Z t

0
Φu (θu − 1)λudu

¸
= E0

∙Z t

0
γudu

¸
,

where the last but one equality is due to the fact that the jump-counting process Nt has
intensity λt, and the last equality is by definition of γt. By integrability condition (iii), we
have:

E0 [Jt] = E0

⎡⎣ X
0<τ(i)≤t

¡
Φτ(i) − Φτ(i)−

¢
−
Z t

0
γudu

⎤⎦
= 0.

Hence Jt is a martingale.
The PIDE is obtained by computing DΦt, setting it to zero, and dividing through the

resulting equation by Φt (6= 0).

Appendix B. Identification restrictions and ODEs

Appendix B gives details about the derivation of the structural constraints underlying the
LQJD modeling, as well as the computations leading to the ODEs of Proposition 1. They
both rely on the PIDE of Lemma 1:

R =
∂g

∂t
+ µ>

∂g

∂x
+
1

2
tr

"Ã
∂2g

∂x2
+

∂g

∂x

µ
∂g

∂x

¶>!
Ω

#
+ λ (θ − 1) ,

where all terms should be LQ in x.
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B.1 Justification of the structural constraints

Structural constraint [SC1] on the jump components is justified as follows. Note that the
ODEs are identified by imposing DΦt ≡ 0. The last component in DΦt is:

λ (x, t)

Z
D
[Φ (x+ y, t)− Φ (x, t)]Π (x, dy, t)

= Φ (x, t)λ (x, t)

Z
D
exp

µ
1

2
x>Λ (t) y +

1

2
y>Λ (t)x+

1

2
y>Λ (t) y + b (t)> y

¶
Π (dy, t) .

Since Φ (x, t) can be cancelled throughout DΦ (x, t) = 0, and since we want the remaining
terms all be LQ functions for identification, it is necessary that the integral term in the
above equation be independent of x. Given the structure of Λ (t) imposed by Assumption
1, the minimal restriction on y is then [SC1], namely its first q entries are zeros.

For [SC2] and [SC3], note that the right hand side of the PIDE above contains the
following two quantities:

i) µ> ∂g
∂x ;

ii) tr

∙
∂g
∂x

³
∂g
∂x

´>
Ω

¸
, where g (x, t) = 1

2x
>Λ (t)x+ b (t)> x+ c (t) .

i) and ii) depend on µ and Ω, respectively, and must be LQ in x to permit the use of
the method of undetermined coefficients.

We start by making no assumptions on µ and Ω. First, we stack µ as:

µ =

⎛⎜⎝
1
2x
>Λµ1x+ b>µ1x+ cµ1

...
1
2x
>Λµnx+ b>µnx+ cµn

⎞⎟⎠
n×1

.

Let:

A =

⎛⎜⎝ Λµ1
...
Λµn

⎞⎟⎠
n2×n

, B =

⎛⎜⎝ b>µ1
...

b>µn

⎞⎟⎠
n×n

, C =

⎛⎜⎝ cµ1
...

cµn

⎞⎟⎠
n×1

,

then µ can be compactly written as:

µ =
1

2

³
In ⊗ x>

´
Ax+ Bx+ C.

Note that ∂g
∂x = Λx+ b. For µ> ∂g

∂x to be LQ in x, we must have:h³
In ⊗ x>

´
Ax
i>
Λx = 0,



28

which leads to Λµi ≡ 0, for all i = 1, 2, · · · ,m. This justifies [SC2].
Similarly, we can write Ω as:

Ω =
1

2

³
In ⊗ x>

´
A (In ⊗ x) +B (In ⊗ x) + C.

For tr
∙
∂g
∂x

³
∂g
∂x

´>
Ω

¸
to be LQ in x, first note that:

tr

"
∂g

∂x

µ
∂g

∂x

¶>
Ω

#
=

µ
∂g

∂x

¶>
Ω
∂g

∂x
.

Hence we need:

x>Λ>
³
In ⊗ x>

´
A (In ⊗ x)Λx = 0,

x>Λ>B (In ⊗ x)Λx = 0,

which yields [SC3].

B.2 Obtaining the ODEs

From above, we can compute:

µ>
∂g

∂x
=
1

2
x>Λµx+ b|µx+ cµ,

where
³
Λµ bµ cµ

´
are given by (4.4), and

tr

"
∂g

∂x

µ
∂g

∂x

¶>
Ω

#
=
1

2
x>ΛΩx+ b>Ωx+ cΩ,

where
³
ΛΩ bΩ cΩ

´
are given by (4.5).

Moreover,
∂2g

∂x2
= Λ =

Ã
Am×m 0

0 0

!
,

and by [SC3](a), the leading m×m block, Ω̄, of Ω is deterministic in t. Hence:

tr

∙
∂2g

∂x2
Ω

¸
= tr

£
AΩ̄
¤
,

and is deterministic in t as well.
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Knowing that both R and λ are LQ functions of x, i.e., for κ = R, λ,

κ (x, t) =
1

2
x>Λκ (t)x+ bκ (t)

> x+ cκ (t) ,

we can easily apply the method of undetermined coefficients and obtain the ODEs in Propo-
sition 1.

Appendix C. Proof of Lemma 2

By Ito’s formula, for 0 ≤ s ≤ t ≤ T ,

ξtW
Q
t = ξsW

Q
s +

Z t

s
WQ

u dξu +

Z t

s
ξu−dW

Q
u +

Z t

s
d
D
ξ,WQ

Ec
u

= ξsW
Q
s +

Z t

s
WQ

u dξu +

Z t

s
ξu−

³
dWP

u − σ (Xu, u)
> [Λξ (u)Xu + bξ (u)] du

´
+

Z t

s
ξuσ (Xu, u)

> [Λξ (u)Xu + bξ (u)] du

= ξsW
Q
s +

Z t

s
WQ

u dξu +

Z t

s
ξu−dW

P
u ,

where ξt stands for ξ (Xt, t), and
­
ξ,WQ®c denotes the continuous part of ­ξ,WQ®. Since

WP and ξ are both P-martingales,
R t
0 W

Q
u dξu and

R t
0 ξu−dW

P
u , t ≥ 0, are P-martingales as

well. Hence ξtW
Q
t is a P-martingale.
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