SUPPLEMENTARY MATERIALS
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These supplementary materials provide the derivation of Equations (9)-(12) (Appendix 3), the proofs of
technical lemmas used in the paper (Appendix 4), the link of our no-arbitrage pricing restrictions with Cham-
berlain and Rothschild (1983) results (Appendix 5), the check that the high-level assumptions in the paper
hold under block-dependence (Appendix 6), and the results of Monte-Carlo experiments that investigate the
finite-sample properties of the estimators and test statistics (Appendix 7). We also present empirical results
with long-only factors (Appendix 8), figures of estimated paths of 7 for the four-factor model estimated
by using individual stocks and the 25FF portfolios (Appendix 9). We also provide additional figures for
the 25FF portfolios (Appendix 10) and the industry portfolios (Appendix 11), the value-weighted estimates
of risk premia (Appendix 12), as well as an empirical analysis of estimated time-varying betas (Appendix
13). We investigate the effects of model misspecification on risk premia estimation and give estimates of
the pseudo-true values (Appendix 14). We also present the results of a preliminary analysis of idiosyncratic
risk (Appendix 15), and provide some robustness checks for the empirical analysis (Appendix 16). Finally,
we derive inference for the cost of equity and include some empirical results for Ford Motor, Disney Walt,

Motorola and Sony (Appendix 17).

Appendix 3 Derivation of Equations (9)-(12)

A.3.1 Derivation of Equations (9) and (10)

From Equation (8) and by using vec[ABC] = [C' ® A] vec[B] (MN Theorem 2, p. 35), we get
Zi \Bifi =vec|Z{_Bif;] = [/{ ® Z{_] vec |Bj] ,and Z{, \Cif; = [f{ ® Zi; 1] vec [C}] , which gives
Zi_1Bifi + Zz{,tflcz{ft = x’z,z‘,tﬁ%-

Let us now consider the first two terms in the RHS of Equation (8).



a) By definition of matrix X; in Section 3.1, we have

1
ZAB{(A=F)Ziy = 521 [BI(A=F)+ (A= F) B] Zis

1
— §vech [Xy)" vech [B] (A — F) + (A= F)' B;] .
By using the Moore-Penrose inverse of the duplication matrix D,,, we get

vech [Bi (A — F) 4+ (A — F)' B;] = D} [vec [Bj (A — F)] 4+ vec [(A — F) By ].

Finally, by the properties of the vec operator and the commutation matrix W, and the definition of matrix
N, we obtain

1 1

§D; [vec [Bj (A — F)] +vec [(A— F)' Bj]] = §D;(Ip2 + Wpy)vec [Bj (A — F)]

= N, [(A—F) ®I,] vec[Bj].
b) By the properties of the ¢r and vec operators, we have
ZL, \CL(A=F)Zi_y = tr|Z1Z,_1C}(A—F)] = vec [Ziy-1Z,_1) vec [Cl (A - F)]
= (Z1-1® Zig—1) [(A = F) ® I] vec [C]] .
By combining a) and b), we get Z, B.(A—F)Z,_1 + Z{ytfng (A-F)Z;—y = :r’u’tﬁl’l- and
/

Bri= ((Np [(A = FY &I vee[BY), ([(A = F) @ I] vec [c;])’) .
A.3.2 Derivation of Equation (11)

/

We use 31, = <(;D;j [vec [Bj (A — F)] 4+ vec [(A — F)/Bi“y , (vee [C] (A — F)])’) from Section

A.3.1. a) From the properties of the vec operator and the commutation matrix W, we get
vec [Bj (A = F)| +vec [(A = F) Bj] = (Wp + Lp)vec [(A — F) Bi] = (W, + L) (Bj ® I,) vec [A — F'] .
From v = vec [’ — F'] we obtain

55 [vee [BL(A — F)] +vee [(A— FY B | = 5DF (Ia + W,) (Bl© L) v = N, (Bl ) v.

b) From the properties of the vec operator and the commutation matrix W), ,, we get

vec [Cf (A — F)| = Wy qvec[(A — F)'C] = Wpq (Cf @ I) v.



A.3.3 Derivation of Equation (12)

We use vec [ﬁgz} = (vec[{N, (B} @ I,)}']" ,vec [{W4 (Ci @ Ip)}’]')/ from Equation (11).
a) By MN Theorem 2 p. 35 and Exercise 1 p. 56, and by writing I, = I ® I, we obtain

vec [Ny (Bi® Ip)] = (Ipk ® Np)vec B ® I
= (IpK ® Np) Ik ® {(Wp ® Ip) (Ip ® vec [Ipm} vec [B;]

= {Ixk® [(Ip ® Np) (Wp ® Ip) (Ip ® vec [Ip])]} vec [B;] .

Moreover, vec [{ Ny, (B; ® Ip)}'] = Wypi1) /2 prvec [Ny (B @ I,)].

b) Similarly, vec [Wpq (C;® 1,)] = {Ix ® [(Ip ® Wpq) Wpe ® I) (Ig @ vec [I,])]} vee [C]] and
vec [Whpq (C7 @ Ip) Y] = Wigprvec [Wyq (C7 @ 1)].

By combining a) and b) the conclusion follows.

Appendix 4 Proofs of statements and technical lemmas

A.4.1 Proof of Lemma 2

Let vector (21, ..., z,) be such that Z 22 = 1. From Equation (25), we have:

Zzzz E,I,n i,j%] = Zzzzzkzzljcov ( )] s[Gl_l(’Yj)”fO)7 (35)

where 2} ; = wy, (G} (71)]2:. Now, by the Cauchy-Schwarz inequality, we have:

D> gzt Cou(elGr ()], €[Gy ()] Fo) = Cov (Z 2 £1G ()] Zzlj () fo)
i J

12 1/2
<V<szz 72]“/_-.0) (Zzl] ’Y] ]:0)

1/2

1/2
(ZZzz,izz,jc*ov(e[(}k1(%)],6[%%%)1f@) (Zzzzizzjcov@[el1<%>Le{eﬁ<w>]f0>)



Moreover:

)

> >zt CovEl G ()] elG (p)IIF) < O (2 ) eigman(Ze1.n(Gr))
i ]
S ’U_)]zeigmax(zs,l,n(Gk))-

Thus, for any vector (z1, ..., z,) such that Z 22 = 1 we have:

Z Z Zi [Eé,l,n]i,jzj < Z Z wkwleigmax(zs,l,n(Gk))1/26igmax(Es,l,n(Gl))l/Q-
i i k l

Since the largest eigenvalue of a symmetric matrix is equal to the sup of the associated quadratic form w.r.t.

vectors with unit length, the conclusion follows.

A.4.2 Proof of Lemma 3 (iii)

We have w; — w; = 1Y ((diag[t;]) ™! — (diag[vi]) ™) + (1X — 1)(diag[v;] ') and (diag[;]) " — (diag[v:])
(diag[@l])*ldiag[ U; — ;] (diag [v;]) 1. Since || (diag[vz} )~ Y| is uniformly lower bounded from part (ii),

we have —Z [1; —wil| <C— Zl HUZH; _’L H +C— Z (1 — 1Y). The second term in the RHS is
(2 1

op(1) from Lemma 7. To prove that the first term is op(1), itis sufficient to show:
sup 1X]|0; — vi|| = op(1). (36)
K3

We use Equation (30). Since 7y — v = Op,(T~°), for some ¢ > 0 (by repeating the proof of Proposition 3
with known weights equal to 1), 12‘”@;1 | < CxiT, 1X7 1 < x2,1, ||Sii|| < M, and by using Assumption

B.5, the uniform bound in (36) follows if we prove:

sup 1Y)|Ss; — Sull = Op(T7°), (37)
3
sup 1X[|Q, 0 — QoI = Ou(T7°), (38)
1
sup 1 |mir —mi| = Op(T7°), (39)
1

for some ¢ > 0. To prove the uniform bound (37), we use Equation (32). As in the proof of Lemma 3 (i), we
1/2

have sup 7"~/ Yir|l = Op,log(T*”ﬂ) from Assumption B.1 c), and similarly sup 7"~
i i



Opylog(T*"/Q) and sup T_1/2HW371~7TH = OP(T_”/Z), from Assumptions B.1 ¢) and f), respectively. More-
i

A;j” < CxiT and 17, 7 < x2,7. Thus, from Assumption B.5, bound (37) fol-

Tt

lows. To prove (38), we use Equation (33) where W  is such that sup ||W; 7| = OpJog(T—??/?) from As-
i

1
T Z(Ii,t — E[Lv))|, 1¥rir < x21s
t

sumption B.1 b). Finally, (39) follows from |7, 7 — 7| < 7 77

1
7; < M, and by using sup T Z(Im — ELivi))| = OpJOg(T*Tl/?) from Assumption B.1 d).
7

t

A.4.3 Proof of Lemma 4
By applying MN Theorem 2 p.35, Theorem 10 p. 55, and using W,, 1 = I,,, we have
Ab=vec[Ab] = (V' ® A)vec[l,]

= wec[(V ® A) vec[I,)]]

= (vec [In]/ ® Im) vee [/ @ A

= (vec|lp)' @ Im) (In @ Wy,1 @ L) (vee [b] @ vec [A])
= (vec ) T2 ® I,) vec [vec [A] b’}
= (vec m) vec [vec ]



A.4.4 Proof of Lemma 6
A.4.4.1 Parti)

Let us write 131 as I131 = (Ig, ® Eb)I131 and:
fiy = IZTZT(w@[Qm(YzTY’ Sir) Qz1])
_ ﬁzj:ﬁj (i @ [Q} (Var¥ir = Sur) Q;1] )
+JHZT;{T (@i |(Qa} - @zt) (VirYir — Sur) Q21 )
+}Z (v [@: (¥l — ) (@51 - 0:21)))
+}Z (i (@52~ @52) (¥l - ) (02— @22)])

=: Iiz11 + Iiz12 + g0 + L1313

We control the terms separately.
1
Pl"OOf that 11311 = ﬁ Z Ti2 (wz & |:Qz ) (Y Y/ S” T) Q :|> + OPJOg(\/»/T)
i

= Op(1) 4+ Op 10g(v/1/T'). We use a decomposition similar to term I;1; in the proof of Lemma 5:
1
Lsn = —&= Zﬂ? (wi ® [sz (YirYir — Sir) Q;}D
NG ZT? (13 -1 (wz‘ ® [Qm (YirYiz — Sir) QZ}D
—l—f Z 1X(r, ( w; ® [Qx i YirY/r — Sur) Q;}D

Z 1Z T ( dzag[ﬁi]_l — diag[vi]_l) ® [Qm ; (YZ TY Sz-z-’T) Q;ﬂ)
=: —713111 + Iiz112 + 13113 + 113114-

To simplify the notation, let us treat x; ; as a scalar. We first prove /13111 = O,(1). We have:

E[—’13111|~7:T,{IT Vi), Vit = Zw,wj x?chov (Y2T7YJT|-7:T7—7T(%) Ir (7)), ’Yu%)

2 _21N—2—2
= T2 E : E : WiW;T; Ty m,iQxJCOU (51775151}752’5j7t35j7t4|‘7:27 7i>7j) Lty Lo Lo L s @ity b2 Tt Tty -
5,J l1,t2,l3,t4



From Assumptions B.3 b) and B.4, it follows E[I7;;,,] = O(1). Hence, I13111 = O,(1). We can prove
that I13112 = 0p(1) and I13113 = 0p(1) by using arguments similar to terms /1112 and I1113 in the proof of

Lemma 5. Finally, let us prove that I13114 = Op joq(y/n/T'). Similarly to 1114 in the proof of Lemma 5,

we use
o7t — ol =~ 2 (0 — i) + o Moy 2 (0 — wi)? (40)
and Equation (30). We focus on the term:
L4 = Z 1Y 220 Cy Qf (Szz - Sn’) Q Co, Q3 (Yir — Siir) s

the other contributions to /13114 can be controlled similarly. Now, we use Equation (32). We have:
1 _
Lz = _72% 2rd CIIQ;WUTQ ulQm ( X Siir)

mz 72 4 C/ Qx1W21TszCV1QggZ( 3, T _Sii,T)

+2 Z 1w 2 rrCh Qi Wi rQy 1 Yir @y i Co, Qr s (Yir — Sur)
1 _ _ N
- Z 1X ? 6 Cl Q:p 1Qx zQx,zl'Yvi,ZTQ l/l Qm ) ( T Sii,T)
= —C}, (311411 + Ni311412 + N13211413 + 11311414) Cy -
Let us focus on term 11311411 and prove that it is Oy, jo4(+/1/T). We have:
1 o274 2 1 o274 2
Iiz11411 = T ; 13 TQx i@ ZWLLT K ; 13y, TQgc i@ Wiz Siir
=: [D3114111 + [13114112-

Term 173114111 1S such that:

X X
|Ellsnam | Fr, {In(y), | < — 220 Z Z | B0t €itoEi,t5| T, il |5

2
\/>T i t1ta,t3
and
OX§ X5 1
Vihsia|Fr, {Ir(vi), v} < W tht OV (i 1 1,42t Mj 4t St [T Vi Vi)
1, U1,---5l6



From Assumptions B.2, B.3 f) and B.5, we get E[I13114111] = Olog(v/n/T) and V[I13114111] = o(1), which

implies I13114111 = Op1og(v/7/T). The other terms making I13114 can be controlled similarly, and we get

L3114 = Op 1og(v/1/T).

Proof that 11312 = op(1). We have:
Lz = f Z 1T, zT (dzag i)' ® [(Q;z - Q;,i) (Yi,TYiCT = Siir) Q:;,zl‘D

+— Z 11 zT < dzag[@i]—l _ diag[vl-]_l) ® [(Q;i _ Q;l) (Y Y Sii,T) Q;ﬂ)
=: 113121 + I13120.

We focus on term /13121, use Equation (33), and treat z; ; as a scalar to ease notation. We have:

Iiz121 = —721X ! 3TQ3:1WZTQ11( T SiiT) -
Then:
9 CX%,TXgT
E(| Lo |21 Fr, AT (), i3] < === > > Wizl Wizlllcov(Ein €ty €158 504 Frs v 1)l
nT i, t1,...,ta

By the Cauchy-Schwarz inequality, we get:

E[|[hzian[*{v}] < CX?,TXQ,TSI}PE[||W2'7T||4I%]1/2
1/2
nTQ Z Z |CO'U €i,t1€4,t2+ €5,t3€5, t4|]:T7%a'Yj)| ’%)'7]] :

1,5 t1,t2,t3,t4
From Assumptions B.1 b), B.3 b), B.4 a), and B.5, we deduce E|||I13121]|?] = o(1), which implies I1312; =
op(1). Similar arguments can be used to prove that the other terms making /1312 are op(1).

Proof that 11313 = o,(1). This step uses similar arguments as for I;312.

A.4.4.2 Part (ii)

Let us treat z;; as a scalar to ease notation. We have [130 = (Ig ® Eé)jlgg where

= 1 . A AL . . . .
Ii3p = \/77T E wiTZ%TQx } Wh,iT@, %, and W7 ; 7 is as in Equation (32). Write:
n - k) )
(]

= 1 o172 1 O R I R | 4—1
UEPES T z@: Lo Q) zWLz,TQm + 7= JnT z; 10 — v, )7irQy WhirQy i = Tizor + Tgzo.



Let us first consider I1321. We have:

1
E|[ Lo 1P| Fr, { Iz (vi), v} < CX?,Txé,TW >N leov(mie e | Fro v v9)l-

7,7 t1,t2

From Assumptions B.3 a) and B.5, it follows E[||I1321]|?] = O1oe(1/T), and thus I1321 = Oy 104(1/V/T).
Let us now consider term I1322. We use Equation (40), and plug in the decompositions (30) and (32).

We focus on term C’gl 113991 of the resulting expansion, where:
I _ 1 10274 O~ 42
13221 = _W Z iV TirQu i Wi
i
The other terms can be treated similarly. We have:

1
ElLzoon | Fr, {Ir(7i), 7} < CX?,TX;TW DY leov(edy, el | Fr v,

v t1,l2

and

1
V{lsa2 | Fr, {17 (i), vi}] < CX%?TXS,TW Z Z |Cov (Mt it s Mjts Mgt | s i 5) |-
4,5 t1,t2,t3,t4

From Assumptions B.3 a) and B.S5, it follows E[I13221] = Ojoq(y/n/T’). By Assumptions B.3 d) and B.5
we can prove that V'[I13201] = o(1), and it follows 13221 = Op(v/n/T).
A.4.4.3 Part (iii)
~ 2 N A
We have 133 = (Is, ® FEj)liz3, where Ii33= T T Z wiTETQx?WS,i,TYi,T
i
1 N A

+— Z winTQ;‘;leg Y;QT and W3, and leg are as in Equation (32) and we treat z;; as a scalar

\/ET - ) ) 3 ’ [l ’ ’

to ease notation. By similar arguments as in part (ii), we can prove that /;33 = Omog(\/ﬁ /T).

A.4.4.4 Part(iv)

The statement follows from Lemma 3 (ii)-(iii), 1X7; 7 < x2,7, 1 ||Q; 1 |<C X%,T’ bound (37),

Sil| <M

and Assumption B.5.



A.4.4.5 Part(v)

1 A ;oA
The statement follows from Equation (28), Lemma 3 (iv), 111 = Op(1), and — E wﬂfTQ;meg TQ;% =
n - b b b b
7

Op7l09(1)'

A.4.5 Proof of Lemma 7

We have P [1X =0] < P [t > xo,7] + P [C’N (Qm> > Xl,T} =: Pi o7 + P ,7. Let us first control

1 _
Py 7. We have Py ,r < P ZI” < Xo1 Ll<p T Et: (Izt ) < X2T M 1] , where we use
7; < M for all i (Assumption B.4 c)). Then, for 0 < § < M~!/2 and T large such that M~! —x, 1. > §, we
1 .
get the upper bound Pi,r <P T Zt: (Ilt ) >0 By using that
7'1.—1 = E[L|v], and P Et: >4 TZ it — E[Lit|v])| > 5|%” <

1 —
sup P ‘T Z (It(y) — E[It('y)])‘ > (5] , from Assumption B.1 d), it follows Py ,7 = O(T~?), for any
'_yG[O,l} :

b> 0.

Let us now consider P, ,,7. By using HQ“H < M (Assumption B.4 a)), we get ez’gmax(Qm) < M, and
thus CN (Qm) < MY? [eigmm(Qm,i)}_l/z. Hence P, < P [eigmm(Qz,i) < M/X%,T]‘ By using
that €igmin(Qu,i) > €igmin(Qui)—||Qui— T <P [HQx,i = Qzill = €igmin(Qa,i) — M/X%,T]'
Now, let & > 0 be such that eigy,in(Qq,i) — M/ X%,T > § uniformly in ¢ for large 7" (see Assumption B.4 d)).

1
T Z Liy(zipxis — Qui)| > Vi|+P [Ti,T > \/5] , we get
t

Then, by using P [ Qui — Qu,ill > 6] < P

1 T _
Py <P 7 Z Lit(xigwis — Qui)| > V| + O(T°). The first term in the RHS is O(T"~") by using

let 357, ALit — Qx z) > \[] < sup P T th(’)/)(xt(’”xt(’}/)/ - E[xt(’)/)xt(’)/)q)
v€[0,1] t

and Assumptlon B.1b). Then, P, ,,7 = O(T~ b), for any b > 0.

zﬁ]

10



A.4.6 Proof of Lemma 8

1
TZ(It(fy) — E[I(7)]) and rp := T~* for 0 < a < n/2. Since |Wp(y)| < 1 for all

¢
€ [0, 1], we have:

Let Wr(7) :=

1

1
sup E[|[Wr(v)|] = sup / P[|[Wr(v)| = 6]ds <rp+ sup [ P[[Wr(y)| = 6]dé

sup E[[Wr(1)["] <
v€[0,1] JO v€E[0,1] /7

’Ye[ovl} ’YE[O,].]
1 1
= 1
rr+ C1T/ exp { —Cod*T"} d§ + Cyexp { —C4T"} gda
T

IA

rT

< rp+ CiTexp {—CQT%T”} + Csexp {—C4T" } log(1/r7) = o(1),

from Assumption B.1 d).

A.4.7 Proof of Lemma 9

By definition of S’ij, we have

22
2V}

S {18, 2n} ~ S

i — Sij

2]

Sig |15, 2w} — SIS,z

Sij L8, 1=} — Sij

< 72\

= I3 + I3s.

By Assumption A.4,

1 7.1-G < 1-q a5
_[31 = E Z HSUH 1{HS7;j||<H} < mZaaXZ ”Sz]”q [4;1 q < [Ql qco (n) = Op (/{,1 an ) , (41)
1,7 J

where ¢o(n) = = max Z 1855117 = )

Let us now cons1der I39:

Iy = sllzwlssli<nt * 5 Z”Sw”1{|rsuu<nnsuu>~}
+= Z( i~ S5 || Lo )18, 2m 015012}
< max 385 | s s eny 08X SIS L, <o)
j J

l{HginZK,HSz‘jHZK} =: I33 + I34 + I35.

ij — Sij

+mzaxzj:‘5

11



From Assumption A.4, we have:

I35 < Hgé;X ‘ Sij — Sij IIlZaXZ HSZ]HQ k9= Op (wnTCO (n) K,iq) . 42)
’ J
Let us study Is3:
Iy < max 0 Sy = Sy 1oys, omis,tony +max D2 1S5 sy 1<n) = Lo + Ior
J J

By Assumption A.4,
I3; < k179 (n) . (43)

Now take v € (0,1). Let N; (¢) := Z 1{||§iij¢j||>e}’ for € > 0, then
J

I = max 3 S = Sul| Ly, omisgicon +max D[S = S| Lgs,  smoncisyion
j J
< max ‘ Sij — Sij|| max N; ((1 — v) &) 4+ max Sij — Sijll co (n) (k)71
1,] 7 2y}

Moreover, by the Chebyschev inequality, for any positive sequence R, we have:

2

P {mzax Nie) > RnT] < nP[Ni(e) > Rur] < RZTE[Ni(e)] < - max P H S — Sy = e} ,
which implies max Ni(e) = O, <n2 II%%XP H S’ij - Sijl| = e}) . Thus,
Iss = Op (Y Upr (1 — ) &) + thnreo (n) (vk) 7). (44)
Finally, we consider I34. We have
Ba < a3 (8= S|+ 5a]) L5 pentsiizg
J
< max ‘ Sij = Sig|| max D L, z) + HMAX D L(1s, 2n)
= Op (Ynrco (n) k™9 + Coj(n) K1) ] (45)

Combining (41)-(45) the result follows.

12



A.4.8 Proof of Lemma 10
o A A 1
Byusing &;; =€, — x;t (51‘ — /Bi) and S?j = TT] Zt: Iij,tefi,ﬂj,tfvz‘,ﬁ;,t’ we have:

N N 1 ~ 1
0 2 : / / } : / !
Sij = Sz‘j i Iij,tgi,tl'j’t <ﬁj — BJ> $i,t$j7t _ Iz'j,tfj,tl'm <ﬁ2 — ﬂl> xi,txj,t
jz’j n jz’j n

1 ) , A
+T7 Zjijﬂf (ﬁz - 61) l’i’tx;’t (ﬁ] _ 6]) xi,tl';'7t
ij

=: 5’0 — Aij — Bij + Cij,

v

~

Sij = Sij|| < ‘ + 1A | + 1 Bisll + 1G] We

GO .

where A;; = Bj;. Then, for any i, j, we have ‘

getforany £ > 0 :

War(©) < maxP |85 - 5 2 §] maxp {1451 > §] + maxr (10 > §
1,7 4 1,5 4 1,5 4
b [0 2§ = 90 (€/0) + 2P €0+ P €/0), 0
where W (&/0) = w395 2 ] P e/ = max flagh 2§ ana
2y 2¥)

Py (€/4) := max P [HC’M | > i] . Let us bound the three terms in the RHS of Inequality (46).
]
A 1
a) Bound of \I’QT (5/4) We use that SZO] — Sij = wa Zlij’t (Ei,tej,txi,tl';‘7t — SZ)
t

1
/ / .
=TT > Lije (eieejumipaly — B [eiiejemiea]li,v;]) and 7 < M. Then:
t

. 1
15 = Sl < M|\ Y Lije (eiasjewinaly — B [eieesamn v, vﬂ)H
t

1
+| 75T — Tij T Z Liju (5i,t5j,txi,tm;',t - B [Ei,tgj,tﬂfi,tx;',t’%a ’Yj] ) H .
t

13



We deduce:

or (€/4)

1
< Irl;%xP T ;Iz’j,t (€i,t5j,t$i,t$;7t - F [Ei,tgj,txi,t$;7t|’}/¢,’}’j}) > 8iM + n}gxP |Tij 0 — Tij| > \/é]

+max P lzjijt (gisejumindly — F [eip8j0mi 2 1vi, v5]) || = \/E

i,j T - ’ ’ ’ S0, ’ ’ U7, — 8

1 § §
< 92 PlIUZS os(eireimxira, —Ele:reiim: v ~: )| > P.._H>\/>
s H}%X th: ijt (&,té?g,ta:z,tﬂfj,t [gz,tfa,t%t%,t\%’YJD =~ 3M +H§2X 7o = 7ij| = ]

=: 2P3,7 + Pypr,
for small £&. We use

P37nT < sup P
7,7€[0,1]

%th(’Y)It(’NY) (et(V)ec(P)ze(v)xe(7) — E [€t(7)€t(’7)$t(7)3«"t(’?)/])H > 8]5\/[]

t

and Assumption B.1 e) to get Pz ,,7 < C1T exp {—C§§2T"} + C5¢ L exp {—C4T77} for some constants

Cl,Ci‘,C'f';,C4 > 0. To bound Py,7, we use 7;; < M and |71 — 7| < TijTi51|7;; Z] 7'731] <

0 Imir — 7 < 2M3|r “Hof |7k — 77 < MT'/2. Thus, we have Py, <

i1 | 71| ij Tij 1 ij, T ij = : > 4nT =
sz Tz]T Tij

i ’ K 2M?
from Assumption B.1 d) we get:

1 1
2max P ’TZ;,IT — 7 > \/é] , for small £&. By using TJIT =7 Zfij,t and 7'1»51 = ELij |7, 5],
t

s 1 \/Z . 1 e
T..7| > = < > >
Sl LR Ty ) I TZIt 1) = BILOROD| 2 3y 5
< CiTexp{—C5(T"} + C3¢™ 1/Qe><;p{—C'4T77}.
We deduce:
V01 (€/4) < CfT exp {—C3E*T"} + C5¢ L exp {—CuT} . 47)

b) Bound of Py, (§/4) . For some constant C', we have

-]

1
1As; || < Crijrmax | = Lijeeiai e ki 1% 0m
Elm |T -
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Let x3,7 = (logT')?, for a > 0. From a similar argument as in the proof of Lemma 7, and Assumption B.1

d), we have max P [1;;7 > x3.7] = O(T_B), for any b > 0. Thus,
17‘7

Py (€/4)
< HZIE;JXP szT?%}é le],tez tLit,kLit1Ljtm Hﬂ] ﬁjH > E
< P > P ! I > § d <
> H}%X [Tij,T = X3,T] +H%3.X inla%( T zt: i t€itTit kTit 1T t.m| = Iys7C and 7,7 S X3,T

—i—maXP H H and 7 1 <

B] Bj 4X3 TC i3, T = X3,T
< d3maxmax P lZI EitTit kTit.1T7 > §
> 13 Blm T . ig,teitit kit lLjtm| = 4X3,T0
HBJ - BjH = S and 7y < xar| +O(T), (48)
4x317C

By Assumption B.1 f),

> 3 < ClTexp{—ngT”}
4x37C X3,T

+C5, /X%T exp {~C4T} . (49)

max max P
i k,ilm

1
T E Iij 1€ 4% ¢ kT3t 1T t.m
t

Let us now focus on P HBJ — BjH > 4X3€TC and 757 < x3,7|. By using
A -1 ]. A 1
Hﬁj - 5;‘” <Xx3r HQW ’ T ij,tafj,té?j,t + X371 HQ‘W - T ij,txj,tgj,t
¢ t
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when 7; 7 < x3,7, we get

Pl e ]
1 1/ &

]

et a5 b _2\/4X3Tc i)
= TZIJ w3 2 16X§ c HQ ™
1/4
4P HQ (16X c) P th:l-,t:cj,tej,t _<16X£ c)
1 § 17t A—1 § v
< th:Ij,tﬂﬁj,té'j,t ZW/W‘QW’ + P HQx,J— zill = (16X3TC> , (50)

for small £&. From Assumption B.4 d), HQ;; H is bounded uniformly in j. Then, from Assumption B.1c),
the first probability in the RHS of Inequality (50) is such that:

| ¢ H | %13 . G
> Q. ‘ < CiTexp| — "% + C. :
16X§,TO 7 ' X%,T ’ £

To bound the second probability in the RHS of Inequality (50) we use the next Lemma.

1

_ E I‘tx HEit

T s 5J 75
t

(D

1
Lemma 13 For any two non-singular matrices A and B such that |A — B|| < 3 A7~ we have:
1B — A7 < 2| A7H?)|A - BI.

From Lemma 13, we get:

: 1/4 ) ) ¢ 1/4 L
lles-elz (whe) | < 2 llow-oul=3 (i) e
+ [ Qe - @ 2 102317
A 1 : 1/4
< 2P ||| Quy — Quil| 2 5 <W> Qe 51721 -
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for small £ > 0. From Assumptions B.1b) and B.1c),

1/4
HQM = Quj|| > % (16)(;0> 1Q.317%| < CiTexp {—CS Xg,:an}
3\ 1/4
+2C3 <X2T> exp {—CyT"} . (52)
Then, from (48)-(52) we get:
Cixyr . B
Pyor (€/4) < CiTexp {—C5€T" /X3 r} + \/g’ exp {~C4T7} + O(T7"), (53)

for small £ > 0 and some constants C7, C5,C3,Cy > 0.

¢) Bound of P 1 (€/4) . We have from Assumption B.4

HCin < ‘ — Bi HBJ BJH sup E Iljtxztkmjtlxl,t,mwj,t,p
k,l,m,p 13 7
< C‘Bz_ﬁi HBj_ﬁjH~
Thus, we have:
~ N &' 5 1/2
< — B; B> <
Poar (6/4) < nggxP[ Bi— 81 || - 5] _4}_213 _(40)

By the same arguments as above, we get:

v 3/2
3X3,T

3

Pyr (€/4) < CiTexp {—C3€T7 /x5 1} + exp {~C4T7}, (54)

for small £ > 0 and some constants C7, C5, C3, Cy > 0.
d) Conclusion. From inequalities (46), (47), (53) and (54), we deduce:

c3 . i
ur (§) < OfT exp {=C364T"} + 2 oxp {=CuT"} + O(T™),
T
where &7 := min{¢, , /§/X§?T}, for small £ > 0, and constants C}, C5,C5,Cy > 0. For § = (1 — v) k and

/1
k=M %,Wegeth = (1 — v) & for large T" and

n2 [T
n*U,r (1 —v)k) < CanTeXp{ CiM? (1 —v)? logn 1—53M exp{ CiT"}

+on* T =0(1),
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for b and M sufficiently large, when n, T — oo such that n = O (T"7) for 7 > 0.

1
Finally, let us prove that 1,7 = O, ( (;g;l) . Let e > 0. Then,
logn 9 A logn
Plgnr 2 \[=5re| < nPmaxP \Sij—sij >\ e

— 22U, (\/%i?e) < 20,7 (1 —v)k) = O (1),

for large €. The conclusion follows.

A.4.9 Proof of Lemma 11

Under the null hypothesis Hg, and by definition of the fitted residual é;, we have

& = Pri—Bziv+C (52 — 51')
= Bri— B+ (@ - 5¢> — B3 (0 —v) (55)

A~

= G (Bi=8) = B0 —v).
By definition of (). it follows
& = 2 Y (B 8) Coml (B - 5) 20 ) 2 Y sl (5 - )
o > 5 Bt (=) |
_. iz (5 - gi)’ CoiCh (B = Bi) = 2L + Tra.

Let us study the second term in the RHS:

1 ~ / 1 /oA o A—1 1 ~ I
In = ——=@—-v)—=)> 7 w0, CpQ Y =: v—v)lmn,
71 T ( ) NG ZZ: 0B i CyQy ; Yir \/ﬁ( ) 711
where I71; = O, (1) by the same arguments used to control term /;; in the proof of Proposition 4. We have
R 1 1 1 1
U—v=0plog <\/ﬁ + T> and Cy = O, (1) by Lemma 6 (v). Thus, I71 = Op joq <nT + T\/ﬁ) .
1

Let us now consider I72. From Lemma 3 (ii)-(iii) and Lemma 6 (v), we have I72 = O, 144 <T + TQ> .
n

The conclusion follows.
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A.4.10 Proof of Lemma 12

Under #;, and using Equation (55), we have é; = e; + C/, (Bz — /BZ) — [33,i (I — Vo) . By definition of Q.,

it follows:

Qe = Z e;wie; + 2% Z (BZ — Bi), pwie; — 2 (U — Voo Zﬁ3 W€
+ﬁ Z <3z - 51‘),0197«?%01/7 <3z - 51') —2(0 —vs) - Z B3 i C <5i - 52')

(0 — Vo) 253 WiB3i (U — Voo) =t Ig1 + I + Igg + Iga + Ig5 + Igs. (56)

1
From Equations (30) and (32) and similar arguments as in Section A.2.4 c), we have Ig; = — E wie?+
n =
1

1
Op.iog <> By similar arguments as for term [;; in the proof of Proposition 4, we have

VT
2 1 o 1 1 o 1 )
Igo = Wi ﬁ ; Ti, 1Y Q@ ; Cowiei | = Op 77 ) By using — Z B3 jwie; = ” ; B jwiei+

1 1 1 R 1
Op,log <\/T> =0p (\/ﬁ> + Op.iog (ﬁ) and U — Voo = Op 1og (\f T> we get

1 1 1 1
Is3 = Op 104 ( \/ﬁ \/jT3 . Similar as for Igp, we have Ig5 = O, 04 < Wi \/7> From
1

U —Vso = Opog ( NG T> we have Igg = Op jog <1 T2> . The conclusion follows.
A.4.11 Proof of Lemma 13
Write:
_ -1 -1 -1 -1 -1 -1 -1
—AT = A - A @=-B)) T AT = { T AT A= B T - A
and use that, for a square matrix C' such that ||C]| < 1, we have
I-C)y'=1+c+c*+C3+

and

I€]]

a-or =1 <ter+ier . <16
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Thus, we get:

A'(A-B
jat-an < L2
(AP A - B

= 1—[[ATJA-B]|
2||47° |4 - B,

IN

. Lo 1—
if A= Bl < S A7

Appendix 5 Link to Chamberlain and Rothschild (1983)

In this appendix, we establish the link between the no-arbitrage conditions and asset pricing restrictions in
CR on the one hand, and the asset pricing restriction (3) in the other hand. As in Appendix A.2.1, for any
sequence (v;) in I" let P, be the set of portfolios investing in the n assets 1, ¥2, ..., ¥, With Fy-measurable
shares. By assuming that the shares are finite P-a.s., we have F/ [pi[]—“o] < 00, P-a.s., and we can build on
the framework 0(12o Hansen and Richard (1987) with conditionally square integrable payoffs. Moreover, we
denote by P = U Py, the set of finite portfolios with conditionally square integrable payoff.

Let J* C 1??):: the set of countable collections of assets (;) such that Conditions (i) and (ii) hold for
any portfolio sequence (p,) € P, where Conditions (i) and (ii) are: (i) If V [p,,|Fo] %5 0 and C(p,) %3 0,
then E [p,|Fo] &3 0; (i) If V[p,|Fo] 23 0, C(pn) > 0, P-as., limsup |C(p,)| > € on a set of nonzero
measure, for a constant € > 0, and E[p,,|Fo] 28 5, for a constant éﬁ}in § > 0. Condition (i) means that,
if the conditional variability and cost vanish, so does the conditional expected return. Condition (ii) means
that, if the conditional variability vanishes and the cost is positive, the conditional expected return is positive.
They correspond to Conditions A.1 (i) and (ii) in CR written conditionally on J{ and for a given countable
collection of assets (;). Hence, the set [7* is the set permitting no asymptotic arbitrage opportunities in the
sense of CR in a conditional setting (see also Chamberlain (1983)). We use the convergence of conditional
expectations as in Hansen and Richard (1987), and focus on a.s. convergence as opposed to convergence
in probability (see Hansen and Richard (1987), footnote 5 on p. 594) since this helps when defining the

extension of the cost function C(-) to the completion of set P. Let J** C I' be the set of sequences (;)
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o0

such that inf [a(7;) — b(7;)'v]? < 0o, P-a.s. These sequences met the summability condition of CR

K
veR im1

in a conditional setting. In the proof of the following proposition, we assume that 3 is bounded on [0, 1] x
and E [f1|Fo] is bounded on €.

Proposition APR: Under Assumptions APR.I-APR.3, and (i) 7111;% €iGmin (Zetn) >0, P-as,
for a.e. () in T, (ii) €igmin (V [ft|Fi=1]) > 0, P-a.s., we have: either ir (J*) = pr(J*™) =1, or
ar (J*) = pr(J™) = 0. The former case occurs if, and only if, the asset pricing restriction (3) holds.

When we condition on Fy, the fact that the set of sequences such that inf Z a(yi) — b(y)'v)* < o0
veER

has pr-measure equal to either 1, or 0, is a consequence of the Kolmogorov zero one law (e.g., Billingsley
o0 e.9]
(1995)). Indeed, ian Z[a(%) — b(7:)'v]? < oo if, and only if, ian Z[a(%) — b(7;)'v]? < o0, for any

n € N. Thus, the zero-one law applies since the event inf Z a(7;) — b(v;)'v]* < oo belongs to the tail
veERK

sigma-field 7 = ﬂ o(vi,t =n,n+1,...), and the variables ~; are i.i.d. under measure up. Proposition
APR shows that tTlLlTsl zero-one measure property applies also for the set J**. Proposition APR shows that
the asset pricing (3) characterizes the functions 3 = (a, ')’ defined on [0, 1] x € that are compatible with
absence of asymptotic arbitrage opportunities in the continuum economy under the definitions of arbitrage
used in CR and in Hansen and Richard (1987). Moreover, Proposition APR also provides a reverse implica-
tion compared to Proposition 1: when the asset pricing restriction (3) does not hold, asymptotic arbitrage in
the sense of Assumption APR.4, or of Assumptions A.1 i) and ii) of CR, exists for fir-almost any countable
collection of assets.

Proof of Proposition APR: The proof involves four steps.

STEP 1: If the asset pricing restriction (3) holds, then i (J**) = 1. Indeed, if the asset pricing restriction
(3) holds for some Fy-measurable function v, we have for a.e. w € Q: a(vy,w) — b(v,w)'v(w) = 0 for a.e.

v € [0, 1]. Since functions a and b are jointly measurable on [0, 1] x €2, this implies that for a.e. v € [0, 1]:

a(y,w)=b(y,w) v(w) = 0fora.e. w € Q. Then, the set {(%) el: Z[a(%) —b(y)v]* =0, P-a.s.} =
i=1

ﬂ {(v) €T :a(yi,w) — b(yi, w) v(w) = 0,fora.e. w € O} has pp-measure 1. Since this set is a subset

of j** it follows ar (J**) = 1.
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STEP 2: If the asset pricing restriction (3) does not hold, then fir (J**) = 0. If the asset pricing restriction
(3) does not hold, the quantity § = iGI]gK / [a(y) — b(7)'v]2d is such that §(w) > § for all w € A, for a set
A€ Fywith P(A) > 0anda scala:Q > 0. To prove jir (J**) = 0, we show J1NT** = (), where 7, is the
set with yp-measure 1 defined in Lemma 1. Indeed, 73 N J** = () implies that 7** C J} is a negligible set

under measure yr, and thus has jip measure 0. The proof of 73 N J** = () is by contradiction. Let us assume
n

1
that sequence (v;) is in J1 N J**, and let &, := inf — Z[a(%) — b(v;)'v]?. Since (y;) € J1, from In-
veRK 1 =1

equality (19), we have {1 4nsx > 27141 Ans:» where the set S}, defined in the proof of Proposition 1 is such
that P(S;) — 1 asn — oc. This implies that E[¢2] > E[&2|1ans: = 1|P(ANSE) > (6*/4)P(AN S})
— (6%/4)P(A), and thus:

lim inf E[¢2] > 0. (57)

n—00
Since (v;) € J**, we have &, — 0, P-a.s.. Moreover, since function /3 is bounded, we have |¢,| < C,
P-a.s., for some constant C'. Then, by the Lebesgue dominated convergence theorem, it follows that
E[¢2] — 0. This is impossible, if (57) holds.

STEP 3: If the asset pricing restriction (3) holds, then fp(7*) = 1. If (3) holds, it follows that y,, = BpA,
P-as., for all n, for up-almost all sequences (7;), where A = v + E[f1|Fo]. Then, for any portfolio
sequence (py,), we get E[p,|Fo] = RoC(pn) +al, By \. From Assumption APR.2 (iv) and boundedness of
E [ f1]|Fo), it follows that A is bounded on €. Moreover, we

’ / / / 2
have: V [palFo] = (Bron)VIAiIFOl(Bran) + 0 Setntn 2 eignin(VIfilF0]) | Byan|| , where

€igmin(V'[f1|Fo]) > 0, P-a.s.. Then, Conditions (i) and (ii) in the definition of set J* follow, for pr-
almost any sequence (7;), that is, ur(J*) = ar(J*) = 1.

STEP 4: If the asset pricing restriction (3) does not hold, then fipr(J*) = 0. To prove that ip(J*) = 0,
we show that 7* N7 N J; = (), where J and J; are the sets with up-measure 1 defined in Assumption
APR.3 and in Lemma 1, respectively. The proof is by contradiction. Let us assume that sequence (;) is in

set J* N J N J1. By following the same arguments as in CR on p. 1292 and 1295, we have:

Sy e = sup  ElpnlFol?/VIpalFol, (58)
pnepn:c(pn):()
2;1 > eigmax(ze,l,n)il[fn - Bn(B;an)ilB;z]a (59)

P-a.s.. Let us prove that the RHS of (58) is upper bounded uniformly in n. We use Hilbert space methods
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as in Hansen and Richard (1987) applied to the conditional economy generated by the countable collection
of assets (7y;). Let (p, ¢) r, = E[pq|Fo] and ||p|| 7, = (p, p>;_-/02 be the conditional scalar product and norm
in the linear space of JFj-measurable random variables, which are square integrable conditionally to Fy.
Conditional convergence of (p,) to p is defined as ||p, — p||z, %3 0 for n — oo. Conditional Cauchy
sequences are defined similarly. Since (v;) € J*, Condition (ii) is satisfied for any portfolio sequence in
P. This implies that Condition (iii): If F[p?|Fo] “3 0, then C(p,) “3 0, holds for any portfolio sequence
(pn) in P. Indeed, suppose that (p,) is such that E[p2|Fy] 3 0 but C(p,) does not converge to 0 a.s..
Define the new portfolio sequence (p),), such that p/, = p,, if C(p,) > 0, and p,, = —p,, otherwise. Then,
portfolio sequence (p},) violates Condition (ii), which is impossible. Condition (iii) implies conditional
continuity of function C (-) at the zero payoff in P, and corresponds to Assumption 2.3 in Hansen and
Richard (1987). Now, by using Condition (iii), we can extend the cost function C'(-) to the linear space
P, that is the conditional completion of P w.r.t. the limits of conditional Cauchy sequences. Indeed, let
p € P, and let (p,,) be a conditional Cauchy sequence in P converging conditionally to p. Then, C(p,,) is
a Cauchy sequence in R, P-a.s.. By the completeness property of R, this Cauchy sequence converges to a
unique value, P-a.s., which we define as C(p). For any p € P, random variable C (p) is Fo-measurable
by Theorem 20.A in Halmos (1950). This extension of the function C(-) on P is conditionally linear and
conditionally continuous at the zero payoff. By Theorem 2.1 in Hansen and Richard (1987), there exists a
JFi-measurable random variable ¢ such that E[c?|Fo] < co and C(p) = E[cp|Fo], P-a.s., for any portfolio
p € P. This property is the conditional analogue of the Riesz Representation Theorem. Any portfolio
p € P can be written as p = my + m1c + P, where mg and 7| are Fy-measurable, and p is conditionally
orthogonal to 1 and ¢, namely, E[p|Fy| = E[cp|Fo] = 0. If the portfolio p has zero cost, i.e., C(p) = 0,
then p = 7o (1 — E[c|Fo]E[c®|Fo] 'c) + p =: mop* + p. The payoff p* is the residual of the conditional
projection of the constant payoff 1 on the payoff c. Since the component p contributes to the conditional
variance of portfolio p but not to its conditional mean, we deduce that for any portfolio p € P such that
C(p) =0, we get:

E[p|Fo?/V[plFo] < Elp*|Fo)? /V [p*|Fo] =: p* < o0, (60)

P-as. (see CR, Corollary 1, for a similar result in their unconditional framework). From (58), (59), and (60),

we get: p2eigmax(25717n) > ,LL;L (In — Bn(B;LBn)*lB;L) fp = min ||p, — Bn)\||2 =min ||4, — BnuH2 =
AERE vERK
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n n

1
' ) — b(7;)'v]?, forany n € N, P-a.s.. Hence, we deduce that £, = min — ) — b(vi)'v]?
93 [a(yi) = b(3:)'v] yn we deduce that &, = min -~ ;[a(%) ()'v]

is such that: £, < p2%eigmax(§]5,17n), for any n, P-a.s. Since (y;) € J, from Assumption APR.3, the RHS
converges in L? to 0. Then, we get E[¢2] — 0 as n — oo. However, since the asset pricing restriction (3)
does not hold and (;) € J1, we know from Inequality (57) that E[¢2] is bounded away from 0, and we get

a contradiction.

Appendix 6 Check of assumptions under block dependence

In this appendix, we verify that the eigenvalue condition in Assumption APR.3, and the cross-sectional/time-
series dependence and CLT conditions in Assumptions A.1-A.5, are satisfied under a block-dependence
structure in a time-invariant and serially i.i.d. framework. We start by providing the main result (Section

A.6.1), we prove it (Section A.6.2), and then prove two auxiliary lemmas (Sections A.6.3 and A.6.4).

A.6.1 Main result

Let us assume that:

BD.1 The errors £¢() are i.i.d. over time with E[e;(7)] = 0 and E[e;()?] = 0, for all y € [0, 1]. For any
n, there exists a partition of the interval [0, 1] into .J,, < n subintervals I, ..., I 7, , such that ;(-y) and
e(7') are independent if -y and 4 belong to different subintervals, and .J,, — 0o as n — oo.

JIn JIn
BD.2 The blocks are such that n Z B2 = 0(1),n%? Z B3 = o(1), where B,, = / dG (7).
m=1 Im

m=1
BD.3 The factors (f;) and the indicators (I(y)), v € [0, 1], are i.i.d. over time, mutually independent, and
independent of the errors (g.(7)), v € [0, 1].
BD.4 There exists a constant M such that ||f;|| < M, P-as.. Moreover, sup FE[ls(7)|%] < oo,
v€[0,1]
sup [|B(y)]] < ocand inf E[L(v)] > 0.
v€[0,1] v€[0,1]
The block-dependence structure as in Assumption BD.1 is satisfied for instance when there are unobserved
industry-specific factors independent among industries and over time, as in Ang, Liu, and Schwarz (2008).

In empirical applications, blocks can match industrial sectors. Then, the number J,, of blocks amounts to a
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couple of dozens, and the number of assets n amounts to a couple of thousands. There are approximately
nB,, assets in block m, when n is large. In the asymptotic analysis, Assumption BD.2 on block sizes
and block number requires that the largest block size shrinks with n and that there are not too many large
blocks, i.e., the partition in independent blocks is sufficiently fine grained asymptotically. Within blocks,

covariances do not need to vanish asymptotically.

Lemma 14 Let Assumptions BD.1-4 on block dependence and Assumptions SC.1-SC.2 on random sampling
hold. Then, Assumptions APR.3, A.1, A.2, A.3, A4 (with any ¢ € (0,1) and § € (1/2,1)) and A.5 are

satisfied.

The proof of Lemma 14 uses a result on almost sure convergence in Stout (1974), a large deviation
theorem based on the Hoeffding inequality in Bosq (1998), and CLTs for martingale difference arrays in
Davidson (1994) and White (2001).

Instead of a block structure, we can also assume that the covariance matrix is full, but with off-diagonal
elements vanishing asymptotically. We could also accommodate weak serial dependence and conditioning
information. In those settings, we can carry out similar checks, although at the cost of increased notational

complexity.

A.6.2 Proof of Lemma 14

A.6.2.1 Assumption APR.3

n

hax g |a; ;| for any matrix A = [aj;]; j=1,....n. Then, for any sequence (-y;)
=1.,n~
Jj=1

We use that €igmax(A4) <
(A

in [0, 1] we have:

yeeydm

n n
Cigmax(Ve1n) < max 3 |Covler(i) (3]l <€ max Y 1{y; € I} (61)
Tt =t B j=1

where C' := sup E[g4(v)?]. Define:
v€[0,1]

J= {(%) :millli}.{,JnTlLZl{% €ln}= 0(1)}.

=1
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Then Assumptlon APR.3 (11) holds if ur (J) = 1. From Theorem 2.1.1 in Stout (1974), it is enough to show

, ,Jn n m:]-v'"an

1
that Zup ( max - Z vy € I} > 5) < oo, for any e > 0. Now, since max B, =o(1),
i=1

n

1
~ > Ui € In} — Bu

=1

1 n
_ . <
we have ur (mn?axJ - E v € I} > 5) < pr (mmax

=1,e.dn i—1 =1,....,Jn

> 5/2), for

>€/2>,

for large n. To bound the probability in the RHS, we use |1{~; € I,,} — B,,| < 1 and the Hoeffding’s

large n. Thus, we get:

1 « 1 «
T (mmaxJ EZI{%-GIm} >6> < J, _max up (‘HZH%eIm}—Bm

:1,..., ]-7 7‘]
=1 " i=1

inequality (see Bosq (1998), Theorem 1.2) to get:

1 n
ur (‘nzl{% € Im} _Bm

i=1

> 5/2) < 2exp (—n52/8) .

Then, since J,, < n, we get:

o 1 n o
;HF (m:HllaXJn - Z Wy € Iy} > a) < QZnexp (—n62/8) < 00,

=1 n=1

and the conclusion follows.

A.6.2.2 Assumption A.1

Conditions a) and b) are clearly satisfied under BD.1, BD.3 and BD.4. Let us now consider condition c). We

have ;1 = Elet(vi)ee(v5) |74, 7j] =: 045 independent of ¢. Thus, E[Uz?j,th’ia 7].]1/2 = 0;;. By BD.1, BD.4

JIn JIn
and the Cauchy-Schwarz inequality o;; = Z i, vj € ImYEee(vi)ee(v5) v, v5] < C Z i, vj € Im}s
m=1 m=1
where C' = sup FEl[e;(7)?]. Hence, we get:
~v€[0,1]
1 JIn
LS bl 2| < 02 Y S Bt + 02 505 Bltfan € 1l
%, i m=1 z;ﬁ] m=1
JIn
= CZBerC(n—l)ZB <1+n232>
m=1 m=1

From BD.2, the RHS is O(1), and condition c) in Assumption A.1 follows.
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A.6.2.3 Assumption A.2

Let us consider condition a). In the time-invariant case under BD.1 and BD.3, we have S;; = 0;;Q), and

1 n
7n Z wiT;Y;r ® by = N(0, S),
i—1

vy = w;b;, where Q, = FE [azﬂ Then, Assumption A.2 a) is equivalent to

1 L

where Sy := lim E | — Z w;w -@Ji (Qz ®b;b’) | . This limit is finite (if it exists), since from BD.4

n—oo n — J Tij J J
7]

1 1
we have Zwlw] ™ UZ] (Qe @ bib) || < Cﬁ Z |oi |, and E - Z loi ;|| = O(1) from Assump-
Z?]
tion A.1. Moreover.

1 1 d
%ZwiTilfi,T(gbi = \/,T—ZZU)ZTZ zt xt®b Eit = Zgn,ty
i—1 =

t=1 i=1

where &, ¢ = Z w;Til; ¢ (¢ @ b;) €;4. The triangular array (&, ;) is a martingale difference sequence

1
v i=1

w.r.t. the sigma-field F,, s = {f:,€it, 7,4 = 1,...,n}. From a multivariate version of Corollary 5.26 in

White (2001), the CLT in condition a) follows if we show:

1 & ,
@ = ; El&nt&ni = b,

T

@) 73 (6~ Bléniti]) = 1),

t=1

(iii) sup E[H§n7t||2+6] = O(1), for some § > 0.

=1,...

Moreover, we prove the alternative characterization of the asymptotic variance-covariance matrix:

. o1 TiT; ,
@iv) S, = a.s.—nlggo - ; waJ?jJU(Qm ® b;bj).

Let us check these conditions. (i) Let G, = {v;,7 = 1, ...,n}. We have:

] = Z Z wzijsz |: i tht (SIJtCCt ® b;b. > 5i,t5j,t’7i7 7j:|
= ﬁ Z Z wiw;TiT; B L1 15| vi, ) (E[gjt:z;] ® bﬂ?}) Eleiejelvi, vl

- fzwzwj aw (@@ bity).
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By taking expectation on both sides, condition (i) follows.

1 .
T > Gkt — Eléntnénri)). where &y is
t

the k-th element of &, ;. Since E[(, 7] = 0, it is enough to show V[(, 7] = o(1), for any k,I. We show

Let us now consider condition (ii). Define (, 7 =

this for k£ = [, the proof for k # [ is similar. For expository purpose we omit the index k, and we write

2 — 2 .
xy ) = xi. We have:

Vicnr] = T2Z €nd + TQZCov (Eréns) (62)
t#s

where:

1
2 2 : 2
gn,t = 7??, wiijilei,tlj,twt bibjEi’tEj’t.
(2]

e Consider first the terms Cov(ff%t, 527 ¢) for t # s. By the variance decomposition formula:

Cov(&s 1, &ns) = B [Cov(& 1,65 (|Gn)] + Cov [E(&] 11Gn), B(E; (|Gn)] -

We have Cov(&} ;, €2 |Gn) = 0 from the i.i.d. assumption over time. Moreover:

JIn

1 TiT7 1
2
B[ 11Gn] = - Zwiwj#QzUijbz‘bj = > Zaijaijl{%',’}/j € In},
2y m=1 2y
where o;; = wzw] b b;Qz. Thus:
Tij
JIn
Cov [E(&] 41Gn), E(&5 41Gn)] = Z > Cov (aijo i, 75 € In}s amom {1 € I}) -
m,p=11,j5,k,l

In the above sum, the terms such that sets {7, j} and {k,[} do not have a common element, vanish.
Consider now the sum of the terms such that ¢ = k (terms such that¢ = [, or j = k, or j = [ are

symmetric). Therefore, let us focus on the sum

JIn
1
Sn = 5 D> Cov (o {yi, v € I}, cuoal{vi, 1 € I})
m,p=1 i,j,l

J,
1 n
= 2 E E Cov (a0 1{vi,vj € Im}, ciuoil{vi, v € Im})
m=1 14,5,0

Jn

1

) Z Z Eijoij1{vi,vj € Im}] E laaoal{vi,m € I,}].
m,p=1,m#p 4,5,
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Jn
1
From BD.4, we have a;; < C'and 0;; < C. Thus, we get S, = O s Z ZE[I{'yi,'yj,'yl el | +

m=1 4,5,
1 &
O(—5 > D Bl € lnl] EN{yiw € )] | Byusingthat )~ E[1{yi,7j,% € In}] =
m,p=1,m##p i,j,l 1,7,

O (nBm +n’B, +n°By)  and Y E[1{yi,7; € In}] E[{yi,% € I,}] = O (nBpBp+
i?j7l

I JIn In 2
n?(B},B, + BynBy) + n’ B} B2)), weget S, =0 | 1/n+ Y Bi+n ) B +n <Z Bi)

m=1 m=1 m=1

The RHS is o(1) from BD.2. Thus, we have shown that:
Cov(&ny: &) = o(1), (63)
uniformly in ¢ # s.
Consider now V[£%7t]. By the variance decomposition formula:
V[@%,t] =FE [V(fi,t’gn)] +V [E(fgﬁgn)] .

By similar arguments as above, we have V [E (&2 ;|G,)] = o(1) uniformly in . Consider now term
E [V(&2 :1Gn)]. We have:
. - bib;bib
V(EnilGn) = — > wiwjwpw T TETibibsbiby
i7j7k7l

2 2
-Cov (Lipljsxieise e, Doy Iy ewien el Vi, Vi Vs W) -

Moreover:

2 2
Cov (Iipljxiei e, Inplisaier el Vi, Vi Yoo 1)

= E [LipLje I oD yis v s 1) B [eigejecnpcrevis vis e ) Blat] — oijonry; 7" Elaf)?.

From the block dependence structure in BD.1, the expectation E [£i7t€j7t5k7tel,t]’yi, Yi> Vks v is dif-
ferent from zero only if a pair of indices are in a same block I,,, and the other pair is also in
a same block I, say, possibly with m = p. Similarly, o;;0y is different from zero only if ~;

and ~y; are in the same block and 7, and ~; are in the same block. From BD.4, we deduce that
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JIn
V(ﬁi’twn) C’ Z Z H{7i,vj € Im}1{vk, 1 € I}, where in the double sum the elements

i,3,k,l m,p=1
with m # p are not zero only if the pairs (-y;, ;) and (yx, ;) have no element in common. Thus:

Jn

0,4,k m=1
1 In

i,9,k,li#k £k L mp=1:m#p

JIn Jn
By using Z Z El1{vi,vjs Vs € Im}] = O (Z (nBp, +n*B2, +n®B3, + n4Bﬁl)> and

i,j,klm=1 m=1
Jn JIn
S El{viy € By m € LY =0 Y. (n*BnB,+n*BB, +n'B.,B}) | we
1,7k, 0 m,p=1 m,p=1

get:
JIn Jn
BV 6] = (1+n232 zBmun?zB:;).
m=1 m=1

By BD.2,n _ max B2 =0O(1), and we get E [V (§n7t]gn)] =0(1).

=1,...,n

Thus, we have shown:
V(&) = 0(1), (64)

n,t

uniformly in ¢.

From (62), (63) and (64), we get V[(,r] = o(1), and condition (ii) follows. From (64) and by using

[572”] = 0(1), condition (iii) follows for § = 2. Finally, condition (iv) follows from
1 1
— E amb by = (1 +NV[fN) 2= E — 74 b;b; and the next Lemma 15.
Tij n Tij 0ii0jj

1 1
Lemma 15 Under Assumptions BD.1-BD.4: — Z %
n <= Tij 0ii0jj

7]

bb/ — L, P-a.s., where:

1 1 1 I
L= lim E —Z— T p.y, _/ w(y)dy + lim nZ/ / w(v,7")dydy,
n—00 n Z Tij 0405 0 n—00 = I

with w(7,7') = BIL(0) L) g e b(1)b() and w(7) = w(v,7).

Then, we have proved part a). Part b) follows by a standard CLT.
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A.6.2.4 Assumption A.3

Assumption A.3 is satisfied since the errors are i.i.d. and have zero third moment (Assumption BD.1).

A.6.2.5 Assumption A.4

We have to show that maxz 155119 = Op(ng), for any ¢ € (0,1) and § > 1/2. From S;; = 04;Q, and
? .
an argument similar to (61):
n

maxz 1S9 < C max Z {y; € I;,} <Cn max B,+C max Z[l{w € In} — Bul|,
j m=1,...,dn m= m

L..Jn =1,...,Jn

Jj=1 J=1

for any ¢ > 0. Let us derive (probability) bounds for the two terms in the RHS. From BD.2:

1/2
nmn%x\Bm] §\/ﬁ<nZ]Bm|2> =0 (Vn).

Let &, := n%, with § > 1/2. Then:
n n

P| max Y [1{y; €In} = Bun)|>en| < Jo max P ||> [1{y; € In} — Bnl| > en

m=1,....Jpn

< 2J,exp(—e2/(2n)) = o(1),

from the Hoeffding’s inequality (see Bosq (1998), Theorem 1.2), and J,, < n. Thus, we have shown that

max Z[l{fyj €In} — Bpl| = op(ng), and the conclusion follows.

A.6.2.6 Assumption A.5

In the time-invariant 7.7.d. case we have Sy 17 = Uiinﬂ- and S;; = 0;jQ;. Then, Assumption A.5 boils

1 . ~ .
downto Y, := ﬁ Z wﬁf [Y;"T X sz',T — Sii,T =N (0, Q), asn,T — oo, where Sii,T = UZ'Z"UGC(QQM')
7

7272

1
and Q= lim E EZwiwj 2_2] afj Qe ® Qz + (Qr ® Qr) Wiy1].  Let us denote by
i7j

n—00 2.
v

H = o ((fe), Te(v)),vy € [0,1],7v,i = 1,2,...) the information in the factor path, the indicators paths and
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the individual random effects. The proof is in two steps.

STEP 1: We first show that conditional on H we have
Yor = N(0,Q), n,T— oo, (65)

P-as.. For this purpose, we apply the Lyapunov CLT for heterogenous independent arrays (see Davidson

(1994), Theorem 23.11). Write

Jn
Tor = \F Zz:mz:l Hvi € Im}wz [ T QYT — Sii,T} = \/%mz::lwmmT’

where
i _
Winnr =1/ f Z Wi € I ywir? [YL’,T QYT — Sz'z',T:| .
KA

Conditional on H, the variables W,,, ,7, form = 1, ..., J,, are independent, with zero mean. The conclusion

follows if we prove'

(1) lim Z V [Whnr|H] = Q, P-as, and

n,T—o0 J, n

Gi) lim S—MZE[HWm,nTWH]zo,P-a.s..

n,I'—o00 Jn

m
To show (1), we use:

VIWharlH] = =) wiwrfmiCov [Yir @ Yir, Yyr ® Yjr[H]

In
n
4,JE€Im
J,
= ;n Z wiijiQTjZ {E [(Yi,T ®Yir) (Yj,T QYT ) |H] Sii TS'j,T} )

where Z denotes double sum over all 7,j = 1,...,n such that ~;,v; € I,,. Now, we have by the
4,J€Im
independence property over time:

B |(Yir @ Yir) (Vi @ Yyr) [H]

1 ! !
= = Z > Z E [eieipeiscial (fr) > visvil Liiliplislig (fﬂtfﬁs ® f'?pxq)

s P

= F [ zt’fgt’%,% T2 letljt (mtl't ® xtxt) + Uzg T2 Z Zlij,tlij,p <$t$; ® xp$;:)
t  pFt

+0'“O'jj T2 ZZL tI]s (xt.%' & rx ) + JZ] T2 ZZIZJ tIm s <$t$ & xsxt)

t s#t
= E [ ltE]t’7277]] A].T +O-Z.]A2T +Uzz JJA3T +U A4T
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E Izgt
T? £ T,

A 1
fine Qg ij = T Z Iijvtxtxg, then
ij

Moreover, A1 = (:ztxt ® xtxt) = O (T;;/T?) = O(1/T), uniformly in H. Let us de-

1 ’ ’ 1 ~ ~
Aar = 73 > Tiielip (ivtxt ® xpxp) —Air = - (Qx,ij ® Qm’j) +01/T),
t p i,

/

Asp = % Z Z Ii 41 (xtazls ® xtx;> — Ay = vec (Qm> vec (Qx]> +0((1/T),
t S
and
Ay = % Z Z Lij 415 s (:Utff; ® ZL‘SSC;) — A7
t s
= % Z ZIij,tIij,s (2t @ x5) (x5 ® xt)/ — A7
t s

1 /
- T2 Z Z Lij i1 s (¢ @ x5) (24 @ x5) W1 — Arr
t S

1 R R
= 2 (Qx,ij ® Qx,ij) Wk +0(1/T).
TijT
Then, it follows that:
J 2 2
1% [Wm,nT‘H] = Fn Z WiW;j —5— 2 (Qx ij & Qz Jij + Qm 7 (029 Qz z]WK+1>
1,5€EILm Tij, T

Jn 1
2,2
T E wwy T T |

where the O term is uniform w.r.t. . Thus, we get:
2,2

B o TiTi o
72‘/ mnT’fH = niz:wzwj 2 i (Qw®Qx+Qz®QJ}WK+l)

ij

+EZ Z wiijfTJZUijaiquO Tﬁz Z ww;TETS |

m i,5€lm m i,5€ln

1 N N R A 1
where the a;;; = = <Qaz,ij ® Qgrij + Qzij ® Qa:,ijWK—i—l) =i (Qe ® Qz + Qz ® QWi 41)are o(1)

ij,T tj
2.2 2
. . . . ST _ _ TiTs (o . .
uniformly in 4,7, and wiwjl—zjafj = (1+)\’Ef1)\) 21—2]7”. Then, point i) follows from
Tij Tij Oii0jj
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2 2

1 T O . 1 TiT; Oij L. .

— E Z—;i — L, P-as., where L = lim F | — g =27 J_ | which is proved by similar ar-
n Tij 04033 n—00 n < 0430344

guments as Lemma 15.

2
g

Z?]

Let us now prove point ii). We have:

3
3
< # Z <Z ’LUiTi2> <sng {IIYi,T ® Yi,TH?’ \7—[] V3 + SLilp ’ §“TH>3

m i€Lm

Now,

BWireYirl' ] < B[l 4] = B | (virYir) ' 1]
1

— ﬁ Z Ii,t1-~-Ii,t6E [Ei,tl--fi,teh/i} (x%lea) ($23$t4) ($25$t6) .

t1,...,te

By the independence property, the non-zero terms E [€; ¢, ...€; 4| 7;] involve at most 3 different time indices,

which implies together with BD.4 that sup F [HY,T ® Yir|? \7—[] = 0(1), P-a.s. Similarly sup ‘ §”TH =0(1),
i i

P-as. Thus, we get:

In I 3
57 2 B [IWnsr 1] < O3 (z 1o € Im}> .
no m=l m=1 i

Then, point ii) follows from the next Lemma 16.

7. 3
1 n
Lemma 16 Under Assumptions BD.1-BD.4: 7 Z (Z 1{v; € Im}> — 0, P-a.s.

m=1 7

STEP 2: We show that (65) implies the asymptotic normality condition in Assumption A.4. Indeed,

from (65) we have:

. , < _ z
o P oy < 2[H) = @ <m)

for any o € R2(K+1) and for any z € R, and P-a.s. We now apply the Lebesgue dominated convergence the-
orem, by using that the sequence of random variables P [o/Y,,p < z|H] are such that P [o/ Y7 < z|H] <

1, uniformly in n and T'. We conclude that, for any o € R2(K H), z € R:

lim P[o/Thr <zl = lim E(P[a/Tyr <z|H]) =@ ( : > :

n,T—00 n,T—ro0 vVa'Qo
. ~ - . . .
since ¢ ( m) is independent of the information set H. The conclusion follows.
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A.6.3 Proof of Lemma 15

1 oy
Let us denote §; j = — —2—b;b; = . Weh = ;- By the LLN
we get — Z i = — w(v) — / v)d~y, P-a.s.. Let us now consider the double sum — Z &i,j- The
"
proof proceeds in three steps.
J
. 1 / AT =
STEP 1: We first prove that - me = L'+ 0p(1), where L' := nh_{glon Z /1 / w(y, v )dvydy'.
i#]
1 n 1
For this purpose, write - %: &= z:l X, where X, := - ; w(vi,vj)1{vi,vj € Im}, by using block-
1#£j m= 1F]

dependence. Then, we have:

ElXn] = *ZE Wi 1) Vi, v € Im}] = n—l// w(y, 7 )dydy =: (n — 1)@y,

i)
which implies:
1 In
R _ ~ l
EZ&,] —(n 1)Zwm—>L.
i#] m=1
Moreover:
ViXm] = — ZZE w(¥i, 73)w (Y, %) 1%, Vis Yoo 1 € Im}] — E[Xm]?
i#£j k#l
1 7y —_
= 3 [n(n —1)(n—2)(n— 3)w72n + O(n‘?‘Bgl) + O(n2Bfn)] —(n— 1)2%2“
= O(nBY)+0nB3)+0(B2),
and:
Cov(Xm, Xp) = e} ZZE w(¥is Y)WV ) {75,715 € Im Wk € I} — E[Xm] E[X)]

i) kAl
1
3 [n(n —1)(n —2)(n — 3)omwy) — (n — 1)*0nw, = O(anan,),
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for m # p, which implies:

J J,
1 n n
- Zgi,j = Y VIXul+ Y. Cov(Xp,X,) =o(1),
1#£] m=1 m,p=1,m=#p

from BD.2. Then, Step 1 follows.

STEP 2: There exists a random variable L such that l Z &g — I~/, P-a.s.. To show this statement, we
"
use that the event in which series ! Z &;; converges is a tail event for the i.i.d. sequence (y;). Indeed,
"
1 . 1 .
we have that - Z &i,j converges if, and only if, - Z &i,j converges, for any integer N. Then, by the
i#] i,j >N, i#]
Kolmogorov zero-one law, the event in which series 1 Z &i,j converges has probability either 1 or 0. The
ik

latter case however is excluded by Step 1. Therefore, the sequence % Z &i,j converges with probability 1,
and Step 2 follows. 7

- 1
STEP 3: We have L = L/, with probability 1. Indeed, by Steps 1 and 2 it follows — Z & — L =o0,(1)
"
and — Z & j — L = 0p(1). These equations imply that L — L’ = 0,(1), which holds if and only if L = L

Z#J
with probability 1 (since L and L’ are independent of n).

A.6.4 Proof of Lemma 16

The proof is similar to the one of Lemma 15 and we give only the main steps. First, we prove that

In &
1
n3/2 Z (Z 1{v € Im}) = 0p(1). Indeed, we have:
m=1 7
1 & ’
32 (Stren) | = ST rmeni=o(w2 35 o
m=1 7

m=11,k

7 3
1 n
from Assumption BD.2, and we can show V meYo] Z <Z IRETRS Im}> = o(1). Second, by us-
—
ing the monotone convergence theorem and the Kolmogorov zero-one law, we can show that sequence

3
3 /2 Z (Z H{vi € [m}> converges with probability 1. Third, we conclude that the limit is 0 with
n ,

probablhty 1.
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Appendix 7 Monte-Carlo experiments

In this appendix, we report the results of Monte Carlo experiments to investigate the finite sample behaviour
of our estimators and test statistics (Section A.7.1) and the accuracy of the CLT asymptotic approximations

underlying Assumption A.2a) (Section A.7.2).

A.7.1 Finite sample behaviour of estimators and test statistics

In this section, we perform simulation exercises on balanced and unbalanced panels in order to study the
properties of our estimation and testing approaches. We pay particular attention to the interaction between
panel dimensions n and T in finite samples since we face conditions like n = o(T?) for inference with
v, and n = o(T?) for inference with Q. and Q,, in the theoretical results. The simulation design mimics
the empirical features of our data. The balanced case serves as benchmark to understand when 7" is not
sufficiently large w.r.t. n to apply the theory. The unbalanced case shows that we can exploit the guidelines
found for the balanced case when we substitute the average of the sample sizes of the individual assets, i.e.,
a kind of operative sample size, for 7'. To summarize our Monte Carlo findings, we do not face any finite
sample distortions for the inference with 2 when n = 1,000 and 7' = 150, and with Qe and Qa when
n = 1,000 and T' = 350. In light of these results, we do not expect to face significant inference bias in our

empirical application.

A.7.1.1 Balanced panel

We simulate S datasets of excess returns from a time-invariant one-factor model (CAPM), we estimate the
parameter v, and compute the test statistics. A simulated dataset includes: a vector of intercepts a® € R",
a vector of factor loadings b° € R, and a variance-covariance matrix 2° € R™*"™. At each simulation
s=1,...,.5, we randomly draw n < 9,904 assets from the sample of our empirical analysis that comprises
9,904 individual stocks. The assets are listed by industrial sectors. We use the classification proposed by
Ferson and Harvey (1999). The vector b° is composed by the estimated factor loadings for the n randomly
chosen assets. At each simulation, we build a block diagonal matrix €2° with blocks matching industrial
sectors. The n elements of the main diagonal of €2° correspond to the variances of the estimated residuals

of the individual assets. The off-diagonal elements of {2° are covariances computed by fixing correlations
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within a block equal to the average correlation of the industrial sector computed from the 9,904 x 9,904
thresholded variance-covariance matrix of estimated residuals. Hence we get a setting in line with the block
dependence case developed in Appendix 6.

In order to study the size and power properties of our procedure, we set the values of the intercepts a

according to four data generating processes:
DGP1: The true parameter is vy = 0.00% and the af are generated under the null hypothesis Ho : a; = 0;

DGP2: The true parameter is the empirical estimate of v, vy = 2.57%, and the a; are generated under the

null hypothesis Ho : af = bjvp;

DGP3: The a are generated under the alternative hypothesis H, : a; = (0.5b] + 0.5) v, where 1y =
2.57%;

DGP4: The aj are generated under the three-factor alternative hypothesis: H, : aj = bi,(g)VO’(g) where
bj 3) € R and vy (3) = [2.92%, —0.63%, —9.96%]’ are estimates for the Fama-French model on the
CRSP dataset.

DGP1 and DGP2 match two different null hypotheses. The null hypothesis for DGP1 assumes that the factor
comes from a tradable asset, and for DGP2 that it does not. DGP3 and DGP4 match two different alternative
hypotheses as suggested by MacKinlay (1995). DGP3 is a “non risk-based alternative”. It represents a
deviation from CAPM, which is unrelated to risk: we take the one-factor model calibrated on the data with
intercepts deviating from the no arbitrage restriction. DGP4 is a “risk-based alternative”. It represents a
deviation from CAPM, which comes from missing risk factors: we take intercepts from a three-factor model
calibrated on the data, and then we estimate a one-factor model.

Let us define the simulated excess returns R;, of asset ¢ at time ¢ as follows
pe=a; + U fetely, fori=1,..,n,andt =1,...,T, (66)

where f; is the market excess return and €7, is the error term. The n x 1 error vectors €} are independent
across time and Gaussian with mean zero and variance-covariance matrix 2°. We apply our estimation
approach on every simulated dataset of excess returns. We estimate the parameter v and we compute the

statistics described in Section 3.5 of the paper. Since the panel is balanced, we do not need to fix x2.7.
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We only use x1,7 = 15. However, this trimming level does not affect the number of assets n in the simu-
lations. In order to compute the thresholded estimator of the variance-covariance matrix of 2, namely >,
(see Proposition 5 in the paper), and the thresholded variance estimator f]g (see Proposition 6) for the test
statistics, we fix the parameter M equal to 0.0780, that is used in the empirical application. We define the
parameter M using a cross-validation method as proposed in Bickel and Levina (2008). We build random
subsamples from the CRSP sample. For each subsample, we minimize a risk function that exploits the
difference between a thresholded variance-covariance matrix and a target variance-covariance matrix (see
Bickel and Levina (2008) for details).

In order to understand how our estimation approach works for different finite samples, we perform
exercises combining different values of the cross-sectional dimension n and the time dimension 7. Table
4 reports estimation results for estimator ©, and for the bias-adjusted estimator ¥, under DGP 1 and 2.
The results include the bias of both estimators, the variance and the Root Mean Square Error (RMSE) of
estimator g, and the coverage of the 95% confidence interval for parameter v based on Proposition 5. The
bias of estimator ¥ is decreasing in absolute value with time series size 7" and is rather stable w.r.t. cross-
sectional size n. The analytical bias correction is rather effective, and the bias of estimator 5 is small. For
instance, for sample sizes 7' = 150 and n = 1000, under DGP 2 the bias of estimator 7 is equal to —0.03,
which in absolute value is about 1% of the true value of the parameter v = 2.57. The variance of estimator
vp is decreasing w.r.t. both time-series and cross-sectional sample sizes 1" and n. These features reflect the
large sample distribution of the estimators derived in Proposition 4. The coverage of the confidence intervals
is close to the nominal level 95% across the considered designs and sample sizes.

In Table 5, we display the rejection rates for the test of the null hypothesis v = 0 (tradable factor). This
null hypothesis is satisfied in DGP 1, and the rejection rates are rather close to the nominal size 5% of the
test, with a slight overrejection. In DGP 2, parameter v is different from zero, and the test features a power
equal to 100%.

Tables 6 and 7 report the results for the tests of the null hypotheses Hy : a(y) = 0 and Hop : a(v) =
b ()" v, respectively. The test statistics are based on Q. and Q. as defined in Proposition 6. DGP 1 satisfies
the null hypothesis for both tests. For 7' = 150, we observe an oversize, that is increasing w.r.t. cross-

sectional size n. The time series dimension 7' = 150 is likely too small compared to cross-sectional size
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n = 1000 and this combination does not reflect the condition n = o(7?) for the validity of the asymptotic
Gaussian approximation of the statistics. For T' = 500 instead, the rejection rates of the tests are quite
close to the nominal size. DGP 2 satisfies the null hypothesis of the test based on Q.. but corresponds to an
alternative hypothesis for the test based on Q.. The former statistic features a similar behaviour as under
DGP 1, while the power of the latter statistic is increasing w.r.t. n. Finally, the power of both statistics under
the "non risk-based" and "risk-based" alternatives in DGP 3 and DGP 4 is very large, with rejection rates

close to 100% for all considered combinations of sample sizes n and T'.

Table 4: Estimation of v, balanced case

T =150 DGP1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Bias(?) -0.0742  -0.0567 -0.0585 -0.0586 | -0.1630 -0.1472 -0.1484 -0.1493
Bias(¥p) -0.0244  -0.0063 -0.0082 -0.0083 | -0.0319 -0.0156 -0.0169 -0.0178
Var(UB) 0.1167  0.0394  0.0179  0.0121 0.1140  0.0401  0.0189  0.0121
RMSE(9g) | 03423  0.1985 0.1340  0.1102 | 0.3390 0.2007 0.1383  0.1114

Coverage 0.9320 0.9290 0.9350 0.9370 | 0.9370  0.9290  0.9320  0.9360

T =500 DGP1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Bias (©) -0.0587 -0.0640 -0.0687 -0.0654 | -0.0847 -0.0926 -0.0972 -0.0937
Bias(0B) -0.0002  -0.0063 -0.0110 -0.0077 | -0.0025 -0.0074 -0.0120 -0.0085
Var(0p) 0.0343  0.0113  0.0060  0.0040 | 0.0341 0.0114  0.0061  0.0041

RMSE(?g) | 0.1851  0.1066  0.0781  0.0634 | 0.1846  0.1068  0.0788  0.0642

Coverage 0.9370  0.9340  0.9370  0.9390 | 0.9430 09370 0.9360  0.9320
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Table 5: Test of v = 0, balanced case

T =150 DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejection rate | 0.0680 0.0710 0.0650 0.0630 | 1.0000 1.0000 1.0000  1.0000
T = 500 DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejectionrate | 0.0630 0.0660 0.0630 0.0610 | 1.0000 1.0000 1.0000 1.0000

Table 6: Test of the null hypothesis #, :

a () = 0, balanced case

T =150 DGP1 DGP 2 DGP 3 DGP 4
n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500
Size/Power | 0.1180 0.1400 0.1500 | 0.3850 0.5720 0.7170 | 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000

T =500 DGP1 DGP 2 DGP 3 DGP 4
n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500
Size/Power | 0.0730 0.0610 0.0740 | 0.9240 0.9920 0.9970 | 0.9990 1.0000 1.0000 | 0.9990 1.0000 1.0000

Table 7: Test of the null hypothesis H( : a (v) = b(v) v, balanced case

T =150 DGP1 DGP 2 DGP 3 DGP 4
n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500
Size/Power | 0.1110 0.1340 0.1460 | 0.1070 0.1360 0.1420 | 0.9970 1.0000 1.0000 | 1.0000 1.0000 1.0000

T =500 DGP1 DGP 2 DGP 3 DGP 4
n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500
Size/Power | 0.0710 0.0570 0.0730 | 0.0730 0.0690 0.0750 | 0.9990 1.0000 1.0000 | 0.9990 1.0000 1.0000
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A.7.1.2 Unbalanced panel

Let us repeat similar exercises as in the previous section, but with unbalanced characteristics for the simu-
lated datasets. We introduce these characteristics through a matrix of observability indicators I¢ € R"*T"
The matrix gathers the indicator vectors for the n randomly chosen assets. We fix the maximal sample size
T" = 546 as in the empirical application. In the unbalanced setting, the excess returns R7, of asset ¢ at time

tis:

pe=a; +b fitely, if ;=1 fori=1,...,n, andt =1,...,T, (67)

where I}, is the observability indicator of asset ¢ at time ¢ in simulation s.

In Tables 8 and 9, we provide the operative cross-sectional and time-series sample sizes in the Monte-
Carlo repetitions for trimming x 1,7 = 15 and four different levels of trimming x2 7. More precisely, in Table
8 we report the average number 72X of retained assets across simulations, as well as the minimum min(nX)
and the maximum max(nX) across simulations (rounded). For the lowest level of trimming x2 7 = 7'/12,
all assets are kept in all simulations, while for the level of trimming 27 = 7'/60 on average we keep
about two thirds of the assets. In Table 9, we report the average across assets of the 7}, that are the average
time-series size 7; for asset i across simulations, as well as the min and the max of the 7;. Since the
distribution of 7; for an asset 7 is right-skewed, we also report the average across assets of the median 7.
For trimming level x2 7 = T'/60, the average mean time-series size is about 180 months, while the average
median time-series size is 140 months.

In Table 10, we display the results for estimators © and 5. The bias adjustment reduces substantially
the bias for estimation of parameter v. For trimming level xo 7 = 7'/60, the coverage of the confidence
interval is close to the nominal size 95% for all considered cross-sectional sizes, while for y2 7 = 7'/12 the
coverage deteriorates with increasing cross-sectional size. In comparison with Table 4, the bias and variance
of estimator g are larger than the ones obtained in the balanced case with time-series size T' = 500.
However, for trimming level xo 7 = T'/60, the results are similar to the ones with 7' = 150 in Table 5. In
fact, this time-series size of the balanced panel reflects the operative sample sizes for that trimming level
observed in Table 9. Similar comments apply for Table 11, where we report the results for the test of the

hypothesis » = 0. For trimming level x2 7 = 7'/60, the size of the test is close to the nominal level 5%
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under DGP 1, and the the power is 100% under DGP 2.

In Tables 12 and 13, we display the results for the tests based on Qa and Qe, respectively. For trimming
level xo 7 = T/120, we observe an oversize, that increases with the cross-sectional dimension. We get a
similar behaviour with more severe oversize with lower trimming levels (not reported). We expect these
findings from the results in the previous section. Indeed, for trimming level xo 7 = 7'/120, the operative
time-series sample size in Table 9 is around 200 months, and in Tables 6 and 7, for a balanced panel with
T = 150, the statistics are oversized. For trimming level xo 7 = T'/240 with operative size of about 350
months, the oversize of the statistics is moderate. Finally, the power of the statistics is very large also in the

unbalanced case, and close to 100%.

Table 8: Operative cross-sectional sample size

trimming level X2, T = 1T—2 X2, 7 = 6%
n 1,000 3,000 6,000 9,000 [ 1,000 3,000 6,000 9,000
nx 1,000 3,000 6,000 9,000 | 660 2,000 4,000 6,000

min (nX) 1,000 3,000 6,000 9,000 | 600 1,900 3,900 5,900

max (nX) 1,000 3,000 6,000 9,000 | 700 2,100 4,100 6,100

trimming level X2.T = 1a5 X2.T = o5
n 1,000 3,000 6,000 9,000 | 1,000 3,000 6,000 9,000
X 400 1,250 2,400 3,600 140 430 850 1,250
min (nX) 350 1,100 2,300 3,500 100 370 800 1,200

max (n*X) 440 1,300 2,500 3,650 170 470 900 1,300
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Table 9: Operative time-series sample size

T

trimming level X2,T = 15 X2T = g5 X2.T = T30 X2T = 349
mean (T;) 130 180 240 360
min (T;) 110 160 210 350
max (T;) 140 190 260 380

mean(median (73)) 90 140 197 330

Table 10: Estimation of », unbalanced case

trimming level: 2,7 = 12

2

DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias(?) -0.3059  -0.3119 -0.3047 -0.3021 | -0.4211 -0.4324 -0.4202 -0.4201
Bias(0p) -0.0893  -0.0954 -0.0880 -0.0854 | -0.1127 -0.1233 -0.1113  -0.1113
Var(0B) 0.1207  0.0409 0.0214 0.0124 | 0.1222  0.0405 0.0218  0.0124
RMSE(¢g) | 0.3586  0.2235  0.1706  0.1402 | 0.3671  0.2360  0.1848  0.1574
Coverage 0.9230 09010 0.8740 0.8750 | 0.9180  0.8880  0.8410  0.8320
trimming level: 2,7 = olo
DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias(?) -0.1703  -0.1738  -0.1675 -0.1596 | -0.2454 -0.2478 -0.0411 -0.2329
Bias(0p) -0.0349  -0.0381 -0.0318 -0.0238 | -0.0453 -0.0474 -0.0411 -0.0325
Var(0B) 0.1294  0.0436  0.0231  0.0141 | 0.1281 0.0438  0.0232  0.0144
RMSE(sp) | 03613 02122  0.1551 0.1212 | 0.3606  0.2145 0.1578  0.1241
Coverage 09360 09310 09240 09350 | 0.9430 0.9310  0.9200  0.9300
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Table 11: Test of v = 0, unbalanced case

trimming level: x2,r = 135

T

DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejectionrate | 0.0770  0.0990 0.1260 0.1250 | 1.0000 1.0000  1.0000  1.0000
trimming level: 2,7 = %
DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejectionrate | 0.0640 0.0690 0.0760 0.0650 | 1.0000 1.0000 1.0000 1.0000

Table 12: Test of the null hypothesis 7 : a (y) = 0, unbalanced case

trimming level: x2, 7 = 1—721)
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.1180 0.1710 0.2420 0.3030 | 0.6010 0.9410 0.9980  1.000
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 1.0000 1.0000 1.0000 1.0000 | 0.9990 1.0000 1.0000 1.0000
trimming level: x2, 7 = KTO
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.0880 0.0860 0.1020 0.1310 | 0.5320 0.8730 0.9920 1.0000
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 1.0000 1.0000 1.0000 1.0000 | 0.9740 1.0000 1.0000 1.0000
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Table 13: Test of the null hypothesis # :

a () = b(vy) v, unbalanced case

trimming level: x2,7 = 1—721)
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.1130 0.1670 0.2370 0.3010 | 0.0940 0.2190 0.2590 0.3740
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 1.0000 1.0000 1.0000 1.0000 | 0.9990 1.0000 1.0000 1.0000
trimming level: x2, 7 = ITO
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.0800 0.0790 0.1000 0.1290 | 0.0790 0.0870 0.1080 0.1440
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.9990 1.0000 1.0000 1.0000 | 0.9690 1.0000 1.0000 1.0000

A.7.2 The CLT in Assumption A.2a)

In this section, we provide simulation exercises to assess the empirical validity of the CLT in Assumption
A.2a). We simulate .S datasets of error terms ¢; ; from a time-invariant one-factor model (CAPM). At each
simulation s = 1,..., S, we randomly draw n < 9,904 assets from the sample of our empirical analysis,
and we build a block diagonal matrix €2° as described in the previous section. For each s, the n x 1 er-
ror vectors €7 are independent across time and Gaussian with mean zero and variance-covariance matrix
Q°. We perform the exercise for the unbalanced case. We fix the maximal sample size T = 546 as in

the empirical application. In the time-invariant one-factor framework, the statistic in Assumption A.2a)

T
reduces to —= ZwmQ“Y; rb; with asymptotic variance S,, = hm E szwj 1.S0.i;bib;

f Tij
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At each simulation, we compute the 2 x 1 vector U* = (S5 ) / N waTf (Qs4)  Yirbi with
i

S

1 1 TS _
Yip = — g I7,z67, and S) = — g w;wj L56.;05b%, where scalars wf, 77,75, b7, matrices
K T t k) ) n — 7— ’
/l?-]

s YA XY
ij

s

AP S?Qﬂ. ;»and indicator processes (Iit> for draw s are those estimated for assets ¢ and j in the empirical

analysis.

Figures 3 and 4 compare the univariate distributions of the two components of simulated vectors U® =
(U3, \I'S]/ € R?, s = 1,...,1,000, with the standard normal distribution through Q-Q plots. The cross-
sectional size is n = 1,000 in Figure 3, and n = 3,000 in Figure 4. Figures 3 and 4 show that the finite
sample distributions are well approximated by the asymptotic Gaussian distributions already for n = 1, 000.
This finding suggests that the possible heavy tails in the cross sectional distribution of asset characteristics

should not affect the validity of our CLT assumptions.

Figure 3: Q-Q plots of the simulated components of ¥ for n = 1, 000
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The figure compares the finite-sample distributions of the two components of vector W (right panel and left
panel) with the standard normal distribution. We estimate the finite-sample distributions with an unbalanced

panel of n = 1,000 individual stocks in the Monte-Carlo exercise.
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Figure 4: Q-Q plots of the simulated components of ¥ for n» = 3, 000
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The figure compares the finite-sample distributions of the two components of vector W (right panel and left
panel) with the standard normal distribution. We estimate the finite-sample distributions with an unbalanced

panel of n = 3, 000 individual stocks in the Monte-Carlo exercise.

Appendix 8 Long-only factors

In this section, we estimate a time-invariant model with long-only factors derived from the FF methodology.
We use the market factor (denoted by m) available on Ken French’s website, then we build the long-only
factors from the six FF research portfolios available on Ken French’s website. The “Small” factor (denoted
by s) is the average excess return of the three small portfolios, and the “Value” factor (denoted by h) is
the average excess return of the two value portfolios. The long-only factors should be more immune to
market imperfections (e.g., transaction costs). We estimate the time-invariant three-factor model using the
individual stocks, the 25 FF and the 44 Indu. portfolios as base assets. The annualized estimates of the risk
premia and the components of v are reported in Table 14. The estimated risk premium for the market factor

is positive across the three universes of assets, albeit not statistically significant at the 5% level for the 25 FF
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portfolios. The small long-only factor is positively and significantly remunerated for the individual stocks
(9.24%) and the 25 FF portfolios (9.12%). It is not significantly remunerated for the 44 Indu. portfolios.
The risk premium on the value factor is positive and not significant for the individual stocks and the 44 Indu.
portfolios. We observe that the estimates of risk premia for the 25 FF portfolios are less accurate than the
estimates that we get in Table 1. Moreover, we get close to zero estimates for the components of vector v
when we use the 25 FF portfolios as base assets. On the contrary, we get non-zero estimates when we use
the individual stocks and the 44 Indu. portfolios. In particular, these datasets yield negative and significant
estimates of vy, (—4.06% and —4.37%). Thus, the estimates of the time-invariant risk premia are close to
the average of the factors only for the 25 FF portfolios. Market imperfections due to rebalancing and short
selling are probably not the key drivers in the explanation of why we get non-zero estimated v in Section

4.2.
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Appendix 9 Paths of v, for the four-factor model estimated from individual

stocks and the 25 FF portfolios

In this appendix, we provide the time-varying paths of 7 in Figures 5 and 6 for the four factor model,
estimated from individual stocks and the 25 FF portfolios. On Figure 6, we see that the path for the mo-
mentum factor is not centered around zero and is very imprecisely estimated on the 25 FF portfolios. A first
explanation might be the misspecification induced by the ad hoc portfolio aggregation based on size and
value sorting and the time-varying specification for the momentum factor sensitivity (see also the theory in
A.14.1). A second explanation of the statistical inaccuracy might be the tight factor structure observed by
Lewellen, Nagel, and Shanken (2010). The paths for the other combinations of models and base assets move

also a lot and are not centered on zero as in Figure 5.
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Appendix 10 Additional figures for the 25 FF portfolios

In this appendix, we provide the time-varying paths of A and 7y in Figures 7 and 8 for the Fama-French
model, estimated from the 25 FF portfolios. The paths of risk premia in the Fama-French model look similar
to the corresponding estimates for the four-factor model in Figure 2. In Figure 8, we get paths of 7y close
to zero for the market, size and value factors. The estimates are almost constant and centered on zero,
consistent with a time-invariant model and tradable factors, as revealed by the parametric test results in

Section 4 of the paper.
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Figure 7: Path of estimated annualized risk premia with n = 25 in the Fama-French model
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The figure plots the path of estimated annualized risk premia S\mﬂg, Xsmb’t, and Xhml’t and their pointwise
confidence intervals at 95% probability level in the Fama-French model. We use the returns of the 25 FF
portfolios. We also report the time-invariant (dashed horizontal line) and the average conditional estimate
(solid horizontal line). The vertical shaded areas denote recessions determined by the National Bureau of

Economic Research (NBER).



Figure 8: Path of estimated annualized v; with n = 25 in the Fama-French model
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The figure plots the path of estimated annualized risk premia 2y, ¢, Vgmp, and Dy, ¢ and their pointwise
confidence intervals at 95% probability level in the Fama-French model. We use the returns of the 25 FF
portfolios. We also report the time-invariant (dashed horizontal line) and the average conditional estimate
(solid horizontal line). The vertical shaded areas denote recessions determined by the National Bureau of

Economic Research (NBER).



Appendix 11 Additional figures for the industry portfolios

In this appendix, we provide the time-varying paths of M and 2 in Figures 9-12 for the four-factor model,
and the Fama-French model, estimated from the 44 Indu. portfolios. The factors are as in Section 4 of
the paper. The paths look very similar for the market, size and value factors between the two asset pricing
models. In Figures 9 and 10, the risk premia for the market, size and value factors feature a counter-cyclical
pattern, and they are similar to the paths of risk premia obtained using the individual stocks as base assets
(see Figures 1, 5, 46, and 49). The risk premium for the momentum factor is pro-cyclical and similar to
that obtained from the individual stocks. In Figures 11 and 12, we get paths of 2; close to zero only for
the market factor. The time-varying results with the 44 Indu. portfolios differ from those with the 25 FF
portfolios (see Figures 2, 7, 8, and 6). This finding is similar to the estimation results for time-invariant

specifications in Section 4.2.

57



“y3non oy} Je pue pue [IAd ssauIsnq e Jo yead oY) Je 1Ie)s SuoIssadAI oYL, "(YHIN) YoIeasay Jruouody Jo neaing [euoneN ay3 £q
POUIWLISIP SUOISSAIAI JJOUIP SBAIB PApeYS [EONISA 9y, "sorjojiiod mpuy Ff 9y ISPISU0d 9p\ “(SUI[ [BIUOZLIOY PI[OS) SJBWIIS [BUOT]
-1pu0d 93eI9AE AU} pue (SUI[ [BIUOZLIOY PAYSEp) JUBLIBAUI-OWI) 9y} 110daI OS[e oA\ ‘[opOoU J0)0BJ-IN0J AU} Ul [oAd] ANfiqeqoid 9,66 1e

S[RAISIUT QOUIPYUOD dsTMIUIOd J19Y) pup #Wotly pug ¥ 1wy <1'quisy 'ty pruaard Ysi pazijenuue pajewnsd Jjo yred oy s1o1d amsy oy,

0T S0 00 G6 06 a8 08 GL 0L 59 01 S0 00 g6 06 a8 08 SL 0L 99

H:SE/W E::?w

T ONI r T T T T T ‘. [ | T ONI

p.i:m,«

k.::w

[Opou 10)9€J-1n0J 3Y) Ul i = © YIM eruwdad NSLI pazijenuue pajewnsd Jo yjed :6 23y

0¢

oy

58



Figure 10: Path of estimated annualized risk premia with n = 44 in the Fama-French model
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The figure plots the path of estimated annualized risk premia S\mﬂg, Xsmb,t, and Xhml’t and their pointwise
confidence intervals at 95% probability level in the Fama-French model. We use the returns of the 44 Indu.
portfolios. We also report the time-invariant (dashed horizontal line) and the average conditional estimate
(solid horizontal line). The vertical shaded areas denote recessions determined by the National Bureau of

Economic Research (NBER).
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Figure 12: Path of estimated annualized v, with n = 44 in the Fama-French model
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The figure plots the path of estimated annualized 7y, ¢, Vgmp,¢ and ©p,,;+ and their pointwise confidence in-
tervals at 95% probability level in the Fama-French model. We use the returns of the 44 Indu. portfolios. We
also report the time-invariant (dashed horizontal line) and the average conditional estimate (solid horizontal
line). The vertical shaded areas denote recessions determined by the National Bureau of Economic Research

(NBER).



Appendix 12 Value-weighted estimation of time-invariant and time-varying

specifications

In this appendix, we show that the weights for the WLS estimator of v defined in Equation (13) are increasing
w.r.t. the size of asset i.. We also report some results for value-weighted estimation of time-invariant and
time-varying specifications. Here the weights directly account for the size characteristic of the assets through
their time-average market capitalisation. These results provide robustness checks that our results are not
entirely driven by small stocks. We start the section by an empirical analysis of the weights w;. Then, we
describe the two-pass methodology for value-weighted estimators before examining the empirical results
and comparing them with WLS and OLS outputs. In this appendix, mc; ; denotes the market capitalisation

of firm ¢ at month ¢.

A.12.1 Empirical analysis of the weights w;

Figure 13 plots the averages over time of size, MC; = %zt: I; ymc; 4, versus weights w; = 1?@; ! for
the time-invariant four-factor model estimated on the nX = 9, 902 stocks. Figure 14 plots the averages over
time of size, M C;, versus T'r [@0;], where @; = 1Y (diag [6;])"" is estimated by assuming a time-varying
four-factor model on the nX = 3,900 individual stocks. In Figures 13 and 14, we also report the estimated
linear quantile regressions for probability levels 90%, 75%, 50%, 25%, and 10%. All results show that the
weights w; are positively related with size. Thus, larger stocks receive larger weights in the second pass of
the procedure to get the WLS estimator of . We find a similar positive association between the second-pass

weights and the average size for the 25 FF and the 44 Indu. portfolios.
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Figure 13: M C; vs w; for the time-invariant four-factor model

The left panel plots the averages over time of the market capitalisation M C; w.r.t. the estimated weights 0;
defined in Section 3.2 and computed on the time-invariant four-factor model for the nX = 9,902 individual
stocks. The right panel is a zoom for the average market capitalisation below 1 x 105. We report the

estimated linear quantile regressions for probability levels 90%, 75%, 50%, 25%, and 10%.

Figure 14: MC; vs Tr [i;] for the time-varying four-factor model

The left panel plots the averages over time of the market capitalisation MC; w.r.t. Tr [1;], where 1; are
the estimated weights defined in Section 3.2 and computed on the time-varying four-factor model for the
nX = 3,900 individual stocks. The right panel is a zoom for the average market capitalisation below 1 x 106.

We report the estimated linear quantile regressions for probability levels 90%, 75%, 50%, 25%, and 10%.
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A.12.2 Value-weighted estimators

We consider the two-pass approach introduced in Section 3.2, but with a value-weighted version of the risk
premia estimator thanks to a different estimator for v. The first pass of the estimation approach and the
trimming device remain unchanged. The second pass consists in computing a cross-sectional estimator of v
using a multivariate WLS approach. There, the weights account for the size characteristic of asset ¢, through

. o = 1 ) . .
its time-average market capitalisation, M C; = T E I; ymc; ;. The value-weighted (VW) estimator is
i
t

) 1 -
byw = Qgglﬁ > wiBy B, (68)
i
A 1 PN MC; . . )
where g, = - Z w; 53’i Bs,i and w; = T_C The weight w; is a scalar and does not require a first-
i i

i
step estimator because it involves observable data only. The final estimator of the risk premia corresponds
to the estimator )\, introduced in Section 3.2 replacing Equation (13) with Equation (68). The asymptotic
properties of risk premia and cross-sectional estimators remain unchanged w.r.t. the asymptotic results in

Section 3.3 up to replacement of the weights in the bias correction terms and asymptotic variances.

A.12.3 Estimation results for time-invariant specifications

Tables 15 and 16 present the time-invariant risk premia estimates with the value-weighted estimator and the
corresponding estimates of the components of v obtained with the cross-sectional estimator 2y in Equation
(68). For comparison purposes, we also present the time-invariant estimates obtained with the equally-
weighted (OLS) estimator of risk premia, 5\1 =D+ % Z ft, with the cross-sectional OLS estimator ;.
We consider the n = 9,936 individual stocks. The VWtresults in Tables 15 and 16 are similar to those
obtained with the WLS estimator in Table 1. Moreover, the signs of the value-weighted risk premia estimates
are the same as those of the OLS estimates. In particular, the estimate of the VW market risk premium
(11.84%) is a bit larger than the estimate obtained with the WLS estimator. The OLS estimated market
risk premium (2.91%) is smaller than the VW estimated one, and is not statistically significant. The VW
estimated value risk premium is negative (—8.99%), and statistically significant. The OLS estimate of the

value risk premium is negative as well, albeit not statistically significant. We find a statistically significant
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negative estimate of vp,,,; (—13.77%) for the VW estimator in line with the estimate obtained from the
WLS estimator (—9.38%), and the OLS estimator (—6.01%). The confidence intervals for the VW and OLS
estimators of the components of v are wider than the confidence intervals for the WLS estimators. This
finding is not surprising, given that the weights used in the WLS estimator are optimal at least under cross-
sectional independence of the error terms. The block-dependence structure with small correlation within
blocks that we find in the data after thresholding the estimated covariance matrix of residuals is not too far

from such an exact factor structure.

A.12.4 Estimation results for time-varying specifications

Figures 15 and 16 plot the value-weighted (VW) and equally-weighted (OLS) estimated time-varying paths
of risk premia for individual stocks (nX = 3,900). The VW estimated risk premium for the market features
a counter-cyclical pattern, and is more volatile than the OLS estimates. The paths of ¢ for the size factor
look similar in Figures 15 and 16, but their pro-cyclical pattern differs from the WLS estimate (see Figure
1). The VW estimates of the value risk premium are negative and more stable over time than the WLS
and OLS estimates (see Figures 1 and 16). The confidence intervals for the VW and OLS estimators are
wider than the confidence intervals for the WLS estimators. Figures 17 and 18 plot the value-weighted and
equally-weighted estimated paths of ;. The paths are away from zero over time, especially for the OLS
estimates. We report the value-weighted and equally-weighted estimates of the components of vector v
in Table 17. The estimates of v differ from the WLS estimates of Table 2. This explains the differences
between the VW and OLS estimated paths shown in Figures 15-18 compared to the WLS estimated paths.
For instance, the large negative VW and OLS estimates for the impact of default spread on the size factor
coefficient (-7.3882 and -7.5468) imply the pro-cyclical pattern observed in Figures 15 and 16. However,
the confidence intervals for the VW and OLS estimates of the components of v are large and in particular
much larger than the confidence intervals of the WLS estimates of Table 2. Thus, the observed differences
between the estimates obtained with the different weighting schemes may be due to the statistical inaccuracy

of the VW and OLS estimates.
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Table 15: Value-weighted and equally-weighted estimates of annualized risk premia for the time-

invariant models

Stocks (n = 9,936)

Value-weighted estimate (VW) Equally-weighted estimate (OLS)

bias corrected estimate (%)  95% conf. interval  bias corrected estimate (%)  95% conf. interval

Four-factor model

(nX =9,902)

Am 11.84 (6.96, 16.72) 291 (-1.98,7.79)
Asmb 3.51 (0.16, 6.87) 4.03 (0.67,7.38)
Ahmi -8.99 (-12.45,-5.53) -1.23 (-4.69, 2.24)
Amom 13.25 (8.65, 17.85) 5.99 (1.39, 10.59)

Fama-French model
(nX =9,904)

Am 10.86 (5.98, 15.30) 292 (-1.96, 7.80)
Asmb 3.36 (0.01, 6.72) 3.90 (0.54,7.25)
Ahmi -8.96 (-12.42, -5.49) -1.20 (-4.67,2.26)

CAPM
(n* =19,904)
Am 12.62 (7.74, 17.50) 3.76 (-1.12, 8.64)

The table contains the value-weighted and equally-weighted estimates of annualized risk premia for the
market (\,), size (Agmp), book-to-market (Appni), and momentum (A0 ) factors. We report the bias
corrected estimates \ p of X for individual stocks (n = 9, 936). In order to build the confidence intervals for

n = 9,936, we use the HAC estimator 3  defined in Section 3.4.
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Table 16: Value-weighted and equally-weighted estimates of annualized v for the time-invariant

models
Stocks (n = 9,936)
Value-weighted estimate (VW) Equally-weighted estimate (OLS)
bias corrected estimate (%)  95% conf. interval  bias corrected estimate (%)  95% conf. interval
Four-factor model
(nX =9,902)

Vm 6.99 (5.55,8.43) -1.95 (-3.85,-0.05)
Vemb 0.24 (-2.33,2.81) 0.76 (-1.06, 2.57)
Vhml -13.77 (-16.26, -11.29) -6.01 (-7.88,-4.15)
Vmom 4.62 (-0.30,9.53) -2.64 (-5.91,0.64)

Fama-French model
(nX =9,904)

Vm 6.01 (4.71,7.30) -1.93 (-4.18,-0.31)
Vsmb 0.09 (-1.88, 2.06) 0.63 (-1.04, 2.29)
Vhml -13.74 (-15.91, -11.57) -5.99 (-8.00, -3.97)

CAPM
(n* =19,904)
Vm 7.717 (6.14, 9.40) -1.10 (-3.95, 1.77)

The table contains the value-weighted and equally-weighted annualized estimates of the components of
vector v for the market (v,), size (Vgmp), book-to-market (vp,,;), and momentum (Vo) factors. We
report the bias corrected estimates g of v for individual stocks (n = 9, 936). In order to build the confidence

intervals, we compute f),, in Proposition 5 for n = 9, 936.
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Table 17: Estimated annualized components of v~ for the time-varying four-factor model

value-weighted estimate (VW) of v equally-weighted estimate (OLS) of v

5.2206 1.9634
const
(3.2894, 7.1517) (0.5951, 3.3316)
1.3546 —3.8687
m dsi_1
(—2.3692, 5.0784) (—8.5946, 0.8573)
—5.1721 —1.2790
tst—1
(—6.8086, —3.5356) (—3.2226, 0.6647)
—1.9799 1.1089
const
(—0.6870, 4.6468) (—0.1936, 2.4113)
—7.3882 —7.5468
smb dsi 1
(—11.2165, —3.6162) (—12.2291, —2.8645)
0.1753 —0.3858
tst—1
(—2.0315, 2.3820) (—1.2706, 2.0422)
—11.2165 —5.6595
const
(—14.0983, —8.3347) (—7.2660, —4.0529)
1.6581 3.3613
hml dsi_1
(—2.1038, 5.4199) (—3.4080, 10.1305)
—0.2633 —5.6149
tst—1
(—2.4270, 1.9004) (—7.4538, —3.7760)
—0.5102 —6.6244
const
(—3.6884, 2.6680) (—8.8359, —4.4129)
1.9627 24.0970
mom  dsi_1
(—3.8599, 7.7852) (16.6218, 31.5721)
—1.7040 —3.3855
tse—1
(—4.3746, 0.9666) (—6.1543, —0.6167)

The table contains the value-weighted and equally-weighted estimated annualized components of vector
v, and their confidence intervals at 95% probability level for the individual stocks (n = 9,936 and nX =
3,900). We report the bias corrected estimates g of v. In order to build the confidence intervals for v,
we use the thresholded variance-covariance matrix of Proposition 5. The default spread ds;_; and the term

spread ts;_1 are centered and standardized.
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Appendix 13 Empirical analysis of estimated time-varying betas

In this appendix, we provide an empirical comparison between the estimated time-varying betas for the
portfolios and the individual stocks. The aim is to show that individual stock betas and Indu. portfolio
betas move over time substantially while the FF portfolio betas are much more stable. This means that the
time-invariant models for the individual stocks and Indu. portfolios in Section 4.2 are likely misspecified
as discussed theoretically in Section A.14.1. The first subsection A.13.1 looks at the distributional char-
acteristics of the estimated time-varying betas. The second subsection A.13.2 presents test results for time
invariance of betas similar to the ones developed for \; and v, in Section 4.3. The third subsection A.13.3

gives examples of estimated paths of factor sensitivities.

A.13.1 Distribution of variability of estimated time-varying betas

The time-varying factor loadings are b;; = Q;¢f2,, with Q;; = (IK ®Z{_1,Ix ® Z{yt_1> e RExdz,
from the functional specification in Assumption FS.1. In this section, we compute the estimates IA)M =
QLtBQJ' if I;; = 1, and we study their stability over time. Table 18 reports the cross-sectional summary

statistics of three measures of dispersion over time of the lA)iyt: (i) the standard deviation std (31“) =
. ) . 1 - - - 1 - .

Y [bea] with v ] = T zt: Lt (b — B ) and by = T zt: Lisbpig for k = 1,..., K (ii) the

std (ZA)]M')

coefficient of variation cv (Bkz) = ‘5 ‘ ;
ki

SN Q3 (51“) -1 <bkz)
o) Q2 (b

upper quartiles of the I;kﬂ-’t over time. Figures 19-21 plot the cross-sectional distributions of the three mea-

(iii) the quartile coefficient of dispersion

, where ()1 (lA);”) , Qo (lA);”) ,and Q3 <l;kz) are the lower, median, and

sures of time variation of betas for individual stocks and portfolios.

The individual stocks have the most pronounced time variation in the sensitivities of the four factors.
For instance, the median standard deviation of betas is about 10 times larger for the individual stocks than
for the 25 FF portfolios uniformly across factors. A similar comment applies for the other measures of time
variability of betas. The cross-sectional distributions of the time variability measures for individual stocks

are strongly right skewed, and the largest values fall outside the support [0, 15] displayed in Figures 20 and
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21. In Table 18, the median quartile coefficient of dispersion of the momentum betas is almost equal for the
individual stocks and the 25 FF portfolios, and the mean value is larger for the 25 FF portfolios. However this
result is driven by the large quartile coefficients of dispersion of two portfolios. Excluding those portfolios,
the mean coefficient of dispersion of the momentum beta for the remaining 23 FF portfolios is 2.2074, an

order of magnitude smaller than for individual stocks.
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Table 18: Summary statistics of std (f)kz) 5 CU (Bkl> and qc (Bkz) for the four-factor model

n=9,936 n=25 n=44 | n=9,936 n =25 n =44 n =9,936 n =25 n =44
bm std cv qc
Min 0.0029 0.0041  0.0365 0.0013 0.0038 0.0354 0.0021 0.0055 0.0395
Median 0.3858 0.0311  0.1089 0.4000 0.0298 0.1031 0.5493 0.0430 0.1319
Mean 0.5235 0.0390  0.1077 1.0494 0.0376 0.1076 1.6491 0.0473 0.1355
Max 5.2495 0.1105  0.1964 208.2981 0.1045 0.2924 505.5851 0.0995 0.3250
Std 0.4821 0.0252  0.0417 5.0411 0.0233 0.0503 11.3116 0.0280 0.0647
bsmb std cv qc
Min 0.0078 0.0182  0.0115 0.0000 0.0484 0.0983 0.0000 0.0472 0.1409
Median 0.5764 0.0701  0.1916 0.8000 0.1005 0.6089 1.0000 0.1402 0.7833
Mean 0.7979 0.0713  0.1861 3.6000 0.1903 0.8565 3.7000 0.2402 1.2567
Max 10.3200 0.1285  0.4968 2,131.0000  0.5966 4.8580 2,392.0000 0.8739 8.0974
Std 0.7686 0.0278  0.0975 393.0000 0.1528 0.8496 41.40000 0.2110 1.5337
brmi std cv qc
Min 0.0128 0.0366  0.0532 0.0000 0.0486 0.2898 0.0000 0.0496 0.2879
Median 0.6275 0.1031  0.2247 1.3000 0.2810 0.8727 1.7000 0.4048 1.0380
Mean 0.8562 0.1176  0.2436 8.7000 0.4316 1.3741 14.3000 0.6345 1.7489
Max 16.8142 0.2373  0.4649 7,117.8000 1.5348 4.8387 8,355.80 2.3510 9.5961
Std 0.8416 0.0561  0.0945 13.9600 0.4286 1.1810 19.2100 0.6470 1.8855
bmom std cv qc
Min 0.0120 0.0075  0.0164 0.0000 0.0813 0.2191 0.0000 0.6997 0.3196
Median 0.4231 0.0462  0.1019 2.0000 1.5244 1.6877 2.0000 1.9840 2.0369
Mean 0.6002 0.0521  0.1212 12.0000 2.7166 2.8861 17.0000 141.7774 10.8291
Max 9.5135 0.1352  0.2831 | 11,885.0000 21.0727  28.0131 | 10,847.0000 3,343.4000  300.2741
Std 0.6339 0.0276  0.0721 214.0000 4.1031 4.4284 270.0000 667.6600 45.4179

The table contains the descriptive statistics (cross-sectional minimum, median, mean, maximum and stan-

dard deviation) of the standard deviation (std), the coefficient of variation (cv) and the quartile coefficient

of dispersion (qc) over time of the time-varying estimated loadings for the market (b,,), size (bgp), book-

to-market (bp;,;) and momentum (by,,,;) factors. We report the results for individual stocks (n = 9,936,

nX = 3,900), for the 25 FF (n = 25) and 44 Indu. (n = 44) portfolios.
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A.13.2 Test results for time invariance of betas

Time variation of factor loadings b; ; goes through the coefficients of parameter 3 ; which load on the

. A 0
instruments. For each asset ¢, the null hypothesis is Hg“ : AB2; = 0, where the matrix A = !
0 A
o 0 . .
with diagonal blocks A1 = Ix ® and Ay = I ® I, selects the instrument coefficients when
0 01

p = 3 as in our empirical specification. We build the standard chi-square statistic with K (p — 1 + q)
degrees of freedom by using

vT (/321 - ﬂz,z‘) = VTE; (@L - /Bi) =11 EQ, 1 Yir. (69)
Standard results on OLS imply that the estimator BZ is asymptotically normal, /T (Bz — 52‘) =
N <0, TiQ;}SiiQ;%)'

We compute the statistic for the four-factor model, the Fama-French model, and the CAPM. For indi-
vidual stocks, we plot the histogram of the p-values of nX = 3,900 statistics in Figure 22. We estimate
the proportion of assets with time-invariant betas, denoted 7o, as in Barras, Scaillet and Wermers (2010)
(see also Bajgrowicz and Scaillet (2012)). We fix the threshold of their approach at A* = 0.6, and we get
7o = 11.67% for the four-factor model. We get 7p = 19.69% for the Fama-French model, and 79 = 56.51%
for the CAPM. For the 25 FF and 44 Indu. portfolios, we show the p-values of the statistics in Figures 23
and 24, respectively. Moreover, for the 25 FF portfolios, we compute the K (p — 1 + q) t-statistics of com-
ponents of vector Afs ;. We perform this exercise assuming the four-factor model, the Fama-French model,
and the CAPM. Tables 19-21 report the p-values of the ¢-statistics for each portfolio. The null hypothesis of
time-invariant betas in the four-factor model is not rejected at the 5% level for 2 out of the 25 FF portfolios,
and for 6 out of the 44 Indu. portfolios. For both the individual stocks and the portfolios, the propor-
tion of assets, for which the time-invariance hypothesis is not rejected, increases when we switch from the
four-factor model to the Fama-French model and the CAPM. The misspecification due to omitted factors
can mask the time variation in betas. Moreover, the number of constraints from time-invariance of betas
increases with the number of factors. Overall, the findings in Tables 19-21 and Figures 19-24 suggest that
(1) there is statistical evidence to reject the hypothesis of time-invariant betas for the majority of individual

stocks and portfolios, but (ii) time variation in betas is much more pronounced for the individual stocks than
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for portfolios.
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Figure 22: Distribution of p-values of statistics for the null hypothesis HUB >' on individual stocks

Panel A

0.7 08 0.9 1

Panel B

Panel C

Panel A represents the p-value histogram of the nX = 3, 900 statistics for testing the null hypothesis H,*" on
individual stocks computed by assuming a four-factor model. Panel B plots the distribution of nX = 4, 545
p-values using the Fama-French model. Panel C plots the p-values histogram for the nX = 5,225 stocks
computed by assuming the CAPM. We also display the threshold A* (dashed vertical line) and the estimated

proportion of assets with time-invariant betas, 7 (solid horizontal line).



Figure 23: p-values of statistics for the null hypothesis 7—[52”" on the 25 FF portfolios

Panel A
1

0.81
0.61
0.4

0.21

Panel B

0.8
0.61 +

0.4

0 10 1 20 25

Panel C

0.81 +

0.21 +

The figure represents the p-values of the n = 25 statistics for testing the null hypothesis ?—[52”" computed
on the 25 FF portfolios. Panel A, B, and C represent the p-values computed by using the four-factor model,
the Fama-French model, and the CAPM, respectively. We also plot the probability level at 5% (dashed red

line).



Figure 24: p-values of statistics for the null hypothesis 7—[052”" on the 44 Indu. portfolios
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The figure represents the p-values of the n = 44 statistics for testing the null hypothesis ’Hg >* computed on

the 44 Indu. portfolios. Panel A, B, and C represent the p-values computed by using the four-factor model,

the Fama-French model, and the CAPM, respectively. We also plot the probability level at 5% (dashed red

line).



Table 19: p-values of the ¢-statistics for the components of ABZZ- for the 25 FF portfolios and the

four-factor model

Portfolio 1 2 3 4 5 6 7 8 9 10 11 12 13

dst—1 0.4599  0.6185 04356  0.4548  0.4432  0.1831 0.1135 05233  0.7541 05114  0.7382  0.0647  0.8481
m tsy_1 0.6584  0.6517  0.6834  0.7228  0.2680  0.3131 0.7852  0.1950  0.1156  0.0005 0.8073  0.1768  0.0071

bm;s—1  0.0976  0.0055 0.3975  0.1640  0.1038  0.0007 0.4470 02099  0.4447  0.0151 02022  0.2644  0.4862

dst—1 0.1223  0.0859  0.0064 02465 04586  0.1683  0.2447  0.8990 0.0395  0.0289 0.9005  0.4365  0.5095
smb tsi—1 0.0189 0.1501 0.0938  0.2820 0.0171 0.6009  0.0732  0.8610  0.0408 0.0557  0.0077 0.6464  0.0706

bm;—1  0.0514 02139 0.0173 02119  0.0451 0.0252  0.0000  0.0000  0.0015 0.8296  0.0037  0.0000  0.0000

dsi—1 09678 04848 04141  0.1766  0.5357 02775  0.9541 0.1474 02168  0.0556 03575  0.7250 0.0168
hml tsi—1 0.3009 02786  0.2627  0.0251 0.2717  0.0194 0.7075 09352  0.0519 0.8536  0.2403  0.5425 0.5304

bm;s—1 02019  0.1397  0.5248  0.8637 03888  0.2263  0.3365  0.9560  0.9280  0.0006 0.8066  0.4886  0.0910

dst—1 0.6860  0.9257  0.6865  0.5461  0.0100  0.0301 0.2530  0.6400  0.1534 09856 03619 0.3835 0.5017
mom tsy—1 0.3482  0.5326  0.4638  0.8555  0.4688  0.1311 0.1423  0.0036  0.3800  0.4977  0.1016  0.0395 0.433

bm;g—1 00962 04054  0.1342 04952  0.6964  0.0035  0.0272 0.8324  0.1495 05121  0.0134 0.1114  0.6725

p-values for ngl 0.0009  0.0000  0.0017 0.1117 ~ 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0037  0.0003  0.0000

Portfolio 14 15 16 17 18 19 20 21 22 23 24 25

dsi—1 0.1303  0.0013  0.9973 0.400 0.2704  0.6714  0.1186  0.0459 02473  0.1775  0.5812  0.0037
m tsi—1 0.6402  0.0025 0.8609  0.2055 0.0189 0.2668  0.6195  0.0454 0.6947  0.1387  0.0353  0.1105

bm;s—1 07233 0.4948  0.2548  0.1706  0.1649  0.1101 0.1108  0.0000 0.2302  0.0503  0.6767  0.7626

dst—1 0.0898  0.1962  0.1013  0.0107 0.1603  0.1882  0.1090  0.1470  0.5581 0.1293  0.6939  0.4463
smb tsy_1 0.0000 0.8924  0.8245 0.0000  0.0002  0.0044 0.2585  0.0024  0.0417  0.0083 0.7002  0.0091

bm; 1 0.0007 0.2947  0.6232  0.0001  0.0000  0.0001 0.0312  0.2663  0.0289  0.0219  0.0000  0.4522

dst—1 0.8898  0.0023  0.7911  0.2648  0.0125 0.3582  0.2970  0.7678  0.0490 0.6217  0.0755  0.5504
hml tsi—1 0.1770 05773  0.8343  0.6240  0.2653  0.8440  0.2591 0.2443  0.7116 03477  0.1381  0.0004

bm;¢—1  0.7110  0.0337  0.8939  0.1758  0.3545  0.4109  0.0074 0.0081 0.7634  0.0376 0.9627  0.0415

dsi—1 0.7466  0.0209  0.4460 0.4506 09760  0.3856  0.6150  0.6161 0.2053  0.5055  0.6394  0.7532
mom tsi—1 0.7259  0.4885 0.1521  0.5367  0.8791  0.0034 0.9300 0.0220  0.0044 0.8331 0.8990  0.0101

bm;—1 05076  0.5047  0.7720  0.1908  0.1468  0.0453 0.6284  0.0005 0.1625  0.0004 0.1031  0.9169

p-values for HgQ’i 0.0000  0.0000  0.5360 0.0000  0.0000  0.0000 0.0189  0.0000  0.0000  0.0009 0.0005  0.0000

The table reports the p-values of the ¢-statistics computed on each component of vector Aﬁg}i, estimated
on the 25 FF portfolios by assuming the four-factor model. For comparison purposes, we also report the

p-values for the joint null hypothesis HgQ’i (see Figure 23, Panel A).



Table 20: p-values of the ¢-statistics for the components of ABZZ- for the 25 FF portfolios and the

Fama-French model

Portfolio 1 2 3 4 5 6 7 8 9 10 11 12 13

ds¢—1 0.0733  0.1738 03635 03456  0.5784  0.7323 03457 02645 05706 03156  0.7191 0.1367  0.6048
m tsi—1 0.4409  0.6374  0.7057  0.6129  0.2835  0.2048 09056  0.2105  0.1070  0.0005  0.8593  0.1847  0.0108

bm; 1 0.1324  0.0081 0.5098  0.1878  0.0429  0.0021 02179  0.1962  0.4834  0.0168 03305 0.1914  0.3862

ds¢_1 0.1459  0.0861 0.0123 02738 03186 03676  0.5540  0.8204  0.0490  0.0440  0.7496  0.5272  0.7128
smb tsi—1 0.0248  0.3091 0.1622 03762  0.0071 0.4027  0.0883 04520 0.0023 02589  0.0171 0.8453  0.0095

bmi 11 0.0158  0.1726  0.0187  0.1428  0.0455  0.1364  0.0000  0.0000  0.0012  0.9687  0.0085  0.0000  0.0000

dsi—1 0.0523  0.0499  0.4741 0.7366 04097  0.0334  0.7426 09243  0.7577  0.0004  0.7209  0.3340  0.0633
hml tsi—1 0.3982  0.7438 09607  0.4064  0.0082  0.0199 03157 05476 03598  0.8374 05712 03042  0.4313

bmi i1 0.4678  0.5325  0.7249  0.7649  0.6699  0.0671 0.0904  0.0067  0.3447  0.4400  0.1479  0.0353  0.4496

p-values for ’;‘-Lg 2% 0.0417  0.0000 0.0028  0.2055 0.0000  0.0025  0.0000  0.0000  0.0000  0.0000 0.0419  0.0000  0.0000
Portfolio 14 15 16 17 18 19 20 21 22 23 24 25

dsg_1 0.3016 ~ 0.0000  0.8815  0.3852  0.9783 05598  0.4009 0.0120  0.0596  0.1627  0.3556  0.0218

m tsi—1 0.7432  0.0012  0.8280  0.2201 0.0172  0.2321  0.4984  0.0824  0.5970  0.1949  0.0855  0.0753
bmi 11 05189 03695 02622 0.0778  0.0672  0.2529  0.0447  0.0000  0.2093  0.0418  0.8899  0.5907

dsi_1 0.1529  0.0377  0.1048  0.0295 02915 03308  0.0633  0.1957 0.6493  0.1268  0.9920  0.4404

smb tsi—1 0.0000  0.2151 0.9222  0.0000  0.0231 0.0226  0.7312  0.0043  0.0045 0.0277 0.3240  0.0103
bmi 11 0.0008  0.4977  0.5754  0.0001 0.0000  0.0000  0.0400 0.8390 0.0716  0.1191 0.0002  0.7700

dsi_1 0.9560  0.0161 0.8782  0.0970  0.1201 0.4852  0.0161 0.0214  0.8588  0.0774  0.6542  0.0219

hml tsi—1 09727  0.0133 03853 05180 0.8978  0.1470  0.3894  0.1204  0.0757  0.4976  0.5606  0.6095

bm; i1 0.7079  0.4841 0.1070  0.4380  0.4987  0.0030 0.7976 ~ 0.1272  0.0038  0.5805  0.6000  0.0174

p-values for 7—[52’7" 0.0000  0.0000 0.6013  0.0000  0.0000  0.0000 0.0200  0.0000  0.0000 0.0835  0.0067  0.0010

The table reports the p-values of the ¢-statistics computed on each component of vector Aﬁg,i, estimated
on the 25 FF portfolios by assuming the Fama-French model. For comparison purposes, we also report the

p-values for the joint null hypothesis H,>" (see Figure 23, Panel B).
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Table 21: p-values of the ¢-statistics for the components of Aj,; for the 25 FF portfolios and the

CAPM
Portfolio 1 2 3 4 5 6 7 8 9 10 11 12 13
dst—1 0.2822 04219  0.8277 0.776 0.1996  0.0034 03452  0.7554  0.3288  0.2308  0.0032  0.5610  0.4998
m tsi—1 0.1260  0.6239  0.8390  0.7438  0.9200 0.9148  0.6101 0.8916  0.8077  0.2202  0.2291 0.7162  0.7482
bmg 1 04183 04919  0.9931 0.8983 0.756 0.5648  0.7754 09376 09035 03168  0.2999  0.9809  0.6946
p-values for ’Hg“ 0.1004  0.5365 0.9955 0.9843  0.5672  0.0155 0.8056 09758  0.6962  0.0773  0.0043  0.9486  0.8396
Portfolio 14 15 16 17 18 19 20 21 22 23 24 25
dsi—1 0.6779  0.5691 0.0007  0.7009  0.2842  0.1467  0.0618  0.0673  0.0643  0.0254  0.0002  0.7756
m tsi—1 0.0800  0.0819  0.2468  0.1490  0.1606  0.1712  0.1964 09456  0.0056  0.1262  0.2399  0.0064
bmg 1 0.7112  0.0795  0.3907  0.8753  0.7991 0.7391  0.1331 0.3524  0.1547 05142 0.8446  0.5030
p-values for H§2’i 0.1694  0.0240  0.0008  0.3907 0.1792  0.0526  0.0090  0.2838  0.0240  0.0043  0.0000  0.0512

The table reports the p-values of the ¢-statistics computed on each component of vector Aﬁg,i, estimated on
the 25 FF portfolios by assuming the CAPM. For comparison purposes, we also report the p-values for the

joint null hypothesis ’Hg“ (see Figure 23, Panel C).

A.13.3 Examples of estimated beta paths

In this section, we plot the estimated path of time-varying betas for some of the 25 FF and 44 Indu. port-
folios. In order to build confidence intervals for IA)M = Qi,tﬁg,i, we use Equation (69) and deduce that
VT (Bi,t — bi,t) = N (O, TiQ@tEéQ;}SZ‘Z‘Q;;EQQQIS). The examples of estimated paths show that the
betas for the 25 FF portfolios are more stable than for the 44 Indu. portfolios. As expected, portfolios of
small firms have overall a large value of beta w.r.t the smb factor, and portfolios of value firms have a large
beta w.r.t. the hml factor (see Figures 25 and 26). We observe both cyclical and countercyclical variation in
the FF portfolios betas. Some Indu. portfolios, such as those of the Agriculture, Fabricated Products, and
Petroleum and Natural Gas sectors, show substantial countercyclical variation in their beta w.r.t. the value

factor (see Figures 28 and 29).
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Figure 25: Paths of the components of IA)M with n = 25

Panel A: ¢ = 1 (Small size, Low value)
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Panel B: 7 = 5 (Small Size, High value)
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The figure plots the path of estimated time-varying betas [;mﬂg, Bsmb,t, mal,t and l;mom,t and their pointwise
confidence intervals at 95% probability level for two small size FF portfolios. We also report the time-

invariant (dashed horizontal line) and the average conditional estimate (solid horizontal line).



Figure 26: Paths of the components of IA)M with n = 25

Panel A: ¢ = 16 (Size 4, Low value)
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The figure plots the path of estimated time-varying betas [;mﬂg, Bsmb,t, mal,t and l;mom,t and their pointwise
confidence intervals at 95% probability level for two FF portfolios in the fourth size quintile. We also report

the time-invariant (dashed horizontal line) and the average conditional estimate (solid horizontal line).



Figure 27: Paths of the components of IA)M with n = 25

Panel A: 7 = 21 (Big Size, Low value)
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Panel B: © = 25 (Big size, High value)
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The figure plots the path of estimated time-varying betas IA)mﬂg, Bsmb’t, mal,t and Bmomvt and their pointwise
confidence intervals at 95% probability level for two big size FF portfolios. We also report the time-invariant

(dashed horizontal line) and the average conditional estimate (solid horizontal line).



Figure 28: Paths of the components of IA)M with n = 44

Panel A: 7 = 1 (Agriculture)
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The figure plots the path of estimated time-varying betas [;mﬂg, Bsmb,t, mal,t and l;mom,t and their pointwise
confidence intervals at 95% probability level for two Indu. portfolios. We also report the time-invariant

(dashed horizontal line) and the average conditional estimate (solid horizontal line).



Figure 29: Paths of the components of IA)M with n = 44

Panel A: i = 30 (Petroleum and Natural Gas)
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The figure plots the path of estimated time-varying betas [;mﬂg, Bsmb,t, mal,t and l;mom,t and their pointwise
confidence intervals at 95% probability level for two Indu. portfolios. We also report the time-invariant

(dashed horizontal line) and the average conditional estimate (solid horizontal line).



Appendix 14 Misspecification analysis

In this appendix, we first present theoretical results on the role of misspecification and aggregation (Sec-
tion A.14.1) and we derive the pseudo-true value of the risk premia parameter when we estimate a poten-
tially misspecified time-invariant model using either individual assets (Section A.14.2) or portfolios (Section

A.14.3). Then, we estimate these pseudo-true values using our dataset (Section A.14.4).

A.14.1 The role of misspecification and aggregation

A potential explanation of the differences between the results on individual stocks and portfolios, as well
as between sets of portfolios, is the uneven degree of misspecification of a given model across universes of
assets. Using mimicking portfolio returns as observable factors and aggregating assets into portfolios may
induce misspecification in the functional form of the beta dynamics. Risk premia estimated by the two-pass
methodology from misspecified models converge to pseudo-true values. Estimation from individual stocks
and portfolios may yield different pseudo-true values. In this section, we present theoretical and empirical
arguments to support the plausibility of these claims for explaining the findings in Sections 4.2 and 4.3 of
the paper.

Suppose that the Data Generating Process (DGP) for the excess returns in the continuum economy is:

Ri(v) = ci(7) + de(7) by + 0 (v), (70)

where hy is a r x 1 vector of “structural”, or “economic", unknown factors with time-varying loadings d; ().
The intercepts are ¢;(y) = d¢(~y)’ 1t for some stochastic vector p; because of the no-arbitrage restriction. We
have p; = 0 for tradable factors. In applying the two pass methodology, we approximate the unobservable
factors by the excess returns of some mimicking portfolios. The market, Fama-French, and momentum
factors are standard examples.

Let us formalize the concept of mimicking portfolio construction. Take a weighting function w(~y, w),
which is Fy-measurable w.r.t. w € 2 for a.e. v € [0,1], and Lebesgue measurable w.r.t. v € [0,1] for
a.e. w € €, such that /w(%w)dw =1 for ae. w € €. Quantities wy(y,w) = wly, S*(w)], for 7

varying, yield the portfolio weights w;(7;)/ny’ at time t, where ny’ = Z wy(y;) is the weighted number

)
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of the n sampled assets included in the portfolio w at time t. The excess return of the portfolio w is

1
Ry = e Z wy(7y;) Re(:). From Equation (70), we have:
by

R} = (di)'(he + pe) + €1 (71

with factor sensitivities d}’ = nli” Z we(yi)de(7yi) and an error term €}’ = nli” Z we(yi)ee(y:). We have
that €}’ is close to zero for large n Zif the error terms of the individual assets feazure weak cross-sectional
dependence and the portfolio is sufficiently diversified. Thus, the k£ x 1 vector f; of excess returns from
k diversified portfolios is close to Dy(h; + p¢), for some k x r matrix D, which is measurable w.r.t. the
information F;_1. To focus this section on specification analysis (see the next Appendix 15 for discussion
on missing factor impact), we assume k£ = r, namely that the number of observable factors corresponds to

the number of unknown factors, and we neglect approximation errors. Then, we have:
hi + pe = D; ' fi. (72)

for non redundant observable factors. Replacing Equation (72) into model (70) shows that the asset returns
satisfy model (1) with factors f; and sensitivities b;(y) = (D;*)'d;(v). By construction, we get v; = 0
because the factors f; are returns of tradable portfolios. Thus, model (1) is correctly specified as long as we
set the correct number of factors, even if the observable factors f; do not correspond to the unknown factors
h:. Indeed, the vector f; dynamically spans the true factor space. However, a constrained parametric model
for the economic factor sensitivities, instead of a generic unconstrained d;(~y), does not necessarily transmit
to the observable factor sensitivities. For instance, if the economic factor sensitivities are linear functions of
some instruments, the observable factor sensitivities are not necessarily linear functions of these instruments.
Choosing mimicking portfolio returns as observable factors jointly with a constrained parametrization can
lead to a first source of misspecification.

A second potential source of misspecification comes from the aggregation of assets into portfolios. Let
w for j = 1, ..., m be a set of portfolios. We use the index j and the cardinality m for portfolios in order
to distinguish them from the corresponding ¢ and n for the fundamental assets. Under model (1) for the

individual assets, the asset pricing restrictions yield the portfolio returns:
R} = al + (b)) fi + €], (73)
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with factor sensitivities:

. 1 .
bl = — 2wl ()be(n), (74)
t 4

J
T

same factors as the original model for the individual assets, and time-varying alphas and betas. Hence, as

A A | ,
intercepts a] = (b])'vt, and error terms €] = — Z w] (vi)er(vi). Model (73) is a factor model with the
i

observed in Section 2.2 for repackaging, we have robustness w.r.t. portfolio aggregation. However, if we
choose a constrained parametric specification for the coefficients of a time-varying model, that parametric
choice does not transmit easily under portfolio aggregation. First, the dynamics of the portfolio betas result
from a combination of the dynamics of the individual stock betas and of the portfolio weights. Second,
even with time-invariant portfolio weights, the aggregation of the asset specific instruments is complex,
and results in models with portfolio specific instruments which involve unknown model parameters. For
instance, let us consider the linear beta specification b; s = B;Z;_1 + C;Z; ;1 with a scalar stock specific
instrument estimated in our empirical analysis, and equally-weighted portfolios, i.e. w! = 1/|AJ| for
v E AJ, and 0 otherwise, for all 7 and t, where Al C [0, 1] is a measurable set with non-zero measure
|A7]. Then, from (74), the portfolio betas are b{ = BiZ, 1+ CI Zg_l, where the portfolio coefficients
Bl = niﬂ Z B; and CJ = i Z C; are averages of the individual coefficients, n; is the number

_ nJ _
1y, EAI 1y, EAI

of indices 7 with 7; € A7, and the portfolio specific instrument th_l = Z CiZit—1 Z Cjisa
i3'Yi€Aj ’L'I’YZ'EAj
weighted average of the assets specific instruments, with weights involving the unknown coefficients C;. If

we use an ad-hoc aggregation scheme to define the portfolio specific instruments, the resulting model is in
general misspecified. If we try to replace the unknown C; with estimates to get a proxy for the Zg_l, we
need first to estimate the model for the individual assets and face an EIV problem. For the FF portfolios,
misspecification of the beta dynamics may result from the time-varying portfolio weights and the ad-hoc
aggregation scheme used to construct the portfolio specific instrument, namely the book-to-market equity
of the portfolio as in Section 4.3 of the paper.

Under misspecification, the two-pass methodology may yield different pseudo-true values for the risk
premia depending on the selected universe of assets. Let us assume that the DGP for the individual stock

returns is given by model (1)-(3), with possibly time-varying betas and risk premia, but the researcher
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estimates a time-invariant model. For expository purposes, we focus on the OLS estimator in the second

pass. We show in Section A.14.2 that the pseudo true value of parameter v using individual stock returns
-1

isv' = (/ b*(v)b* (’y)’dG(y)) /b*(’y)a*(y)dG(’y), where the pseudo-true values of sensitivities and

intercepts are:

b*(v) = [Ix + VIl 'Cov(fi, )] E[b(v)] + E [&(be(v) — E[by(v)])]
a*(v) = B[y~ Cov(v, f)VIFIT ] Blbe()] — E [1;(be () — E[be(1)])]

and the matrix and vector processes & and 7 are defined by & = V[fi] " (f: — E[f:])(vs + f;)" and
n = (E[f)'V[f) ' (fi — B[f)]) — 1) (vt + f¢). Expectations, variances, and covariances are w.r.t. the
DGP. The pseudo-true value v* is equal to the unconditional expectation E[v] if the individual betas are
uncorrelated with the conditional expectations of f; and v, given F;_1, and process v, is uncorrelated with
fi- Then the pseudo-true risk premia vector is \* = v* + E[f;] = E[\]. Here, even if the model is mis-
specified, there is no effect on the time-averaged risk premia. However, in general, time-variation distorts
risk premia estimates. Even if the factors f; are tradable, i.e., v, = 0, we may have v* # 0. The factors may
appear as nontradable because of a misspecified time-invariant model as it is likely in Section 4.2.

If we estimate the time-invariant model using the returns on m portfolios w’, with j = 1,...,m, the

pseudo-true value of v becomes v** = Z b3 b;‘-’ Z bjaj, where (see Section A.14.3)

/E /C’ov (1), wi(y )) dG (),

and

@ _/E (7)dG (+ /Cov mbe (), wl ( )) dG (7).

The pseudo-true portfolio loadings b;'f are the sum of two components. The first one is an aggregate of
the pseudo-true individual loadings b* () weighted by the time-averaged portfolio weights E [wi (7)]. The
second component is induced by the time-variation of the portfolio weights and its interaction with f3, 14,
and factor sensitivities. A similar comment applies to the pseudo-true portfolio intercepts a;. If the portfolio
weights are time-invariant, building portfolios corresponds to aggregating the individual pseudo-true alphas

and betas. The portfolio aggregation effect is more complex if portfolio weights are time-varying. In general,
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the pseudo-true value v** depends on the number m of chosen portfolios and the weights wg (y) they are
built on, and we expect the pseudo-true values v** and v* not to be equal as the different estimated © in
Table 1 Panel B may indicate. Besides, even if we observe that the portfolio betas are more stable over
time, this does not imply that ** will be closer to zero than v*, when v, = (0. We give a simple estimation
exercise (see Section A.14.4) to check whether the numerical values for these pseudo-true values and their
differences are compatible with the order of magnitude observed in Table 1 Panel B, including values close
to zero in some cases. For the value factor, time variation in the portfolio weights can explain the large
discrepancy between the pseudo-true values computed on the 25 FF portfolios and the individual stocks.
The above discussion concentrates on the impact of misspecification when the econometrician estimates
a time-invariant model. Similar computations and remarks apply for estimation of misspecified time-varying

models.

A.14.2 Pseudo-true value using individual assets

The pseudo true values of the regression coefficients are 5*(7) = (a*(7),b(7)*) = Q;'E[z:Ri(7)],
for all v € [0,1], where the expectation is w.r.t. the DGP. Let 5 = [*(v;). If the OLS estimator is
used in the second pass, and matrix E[bb}’] is positive definite, the pseudo-true value of parameter v is
Vi = E[bib}'] 7' E[b}a}]. The pseudo-true weights are w} = (v})~! with v} = TiCys Q,'5;5Q5 cyr, where

St = E[(e},)*xxe|vi] and €F, = R, — x}3F. If the WLS estimator is used in the second pass, and matrix

Ew}bb}’] is positive definite, the pseudo-true value of parameter v is

vt = ElwibibY | Elw]bal). (75)

) [ Rat?

Then, the pseudo-true value of the risk premia vector is A\* = v* + E|[fy].
Let © be the estimator defined in Equation (14) of the paper, using the first-pass estimators BZ and the
weights w; for the second pass. The next lemma states that the estimators converge to the corresponding

pseudo-true values and is proved at the end of this subsection.

Lemma 17 Suppose Assumptions A.1b), SC.I1-SC.2, B.l1, B.4, B.5 hold Moreover, et
sup P

1
=Y Li(y)xees (v
o th: () zeEr (v)

and T € N, where cf(y) = Ri(y) — x}8*(7) is the pseudo-true error. Then, as n,T — oo such that

> 5] satisfy the large deviation bound in Assumption B.1, for any § > 0
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- A 1
n = O(17) for ¥ > 0, we have: (i) sup 1X(18; — B7 || = op(1); (i) EZ |w; — wi|| = op(1); (iii)
v=v"+o0py(1).

Let us now derive more explicit expressions for the components a*(y) and b*(vy) of the pseudo-true

coefficients vector. We have:

b*(y) = VIfi) 7 Cov(fe, Re(v)),  a*(7) = B[Re(7)] = BLfi]'b* (%), (76)

for all v € [0, 1]. From Ry(y) = (ft + v4)'be(y) + €:(7y), we have:

E[R(v)] = E[(fi+wv)bi(7)]
= E] Ebi()] + E[fi] E[b:(v)] + E[(fi + vt) (b:(v) = E[b:(7)])],

and:

Cov(ft, Ri(v)) = Cov(fy, (fe + ) be(7))
= (VI[fi] + Cov(ft,vr)) E[be()] + Cov(ft, (fi + ve) (b:(v) — E[be(7)]))

) Elby
= (VIfil + Cov(ft, 1)) E[be(7)] + E[(fe — E[fe])(fe + 1) (b:(v) — E[bs(7))])]-

Then, by replacing into (76) and rearranging terms, we get:
b*(v) = [k +VIfi] ' Cov(fi,vh)] E[b:(7)] + E [(be(v) — E[b:(1)])] (77
a’(y) = E [Vt - COU(Vtaft)V[ft]_lft}/E[bt(V)] —FE [Ué(bt(’Y) - E[bt(V)])] ) (78)
forally € [0,1], where & = V[fi] " (fe — E[fi])(ve + fo)' and e = (B[S V] (fe — E[f]) = 1) (v + fo).

Proof of Lemma 17: We have BZ - B = TQx } T

ments as in the proof of Lemma 3 (i) for a well- spemﬁed time-invariant model. The proof of part (ii) is

Z I; yv17 ;. Then part (i) follows by similar argu-

similar to the proof of Lemma 3 (iii) and is omitted. Finally, using parts (i)-(ii) of this lemma, Assumption

SC.2 and the LLN, we have:

1 AT *7 %k 7k K K7k
Ezwlblb; sz bzbz,+0p ) [ zbzbz/] +0p(1)7
i
1 AT Kk ok Kk
and —Zwib‘ai = Zwlbzal +0,(1) = Elw;bja;] + op(1).
Since matrix E{w;b!b}'] is 1nvert1ble part (111) follows.
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A.14.3 Pseudo-true value using portfolios

Let us now assume that we estimate the time-invariant model on a set of m portfolios wl, withj =1,...,m.

If the portfolios are well diversified, and the number of underlying assets n tends to infinity, the idiosyncratic

error terms 7 vanish in Equation (73). Then, the portfolio returns are R = (b))’ (fi-+1;), where the portfolio

sensitivities are:
b = / w] (7)be(7)dG(7). (79)

Then, the pseudo-true values of the regression coefficients are obtained along the lines of Section A.14.2

replacing Ry () with R/, and b,() with b}. We get 3 = (a*/, (b*7)') where:

b7 = Ik +VI[fi]'Cov(fi,n)] Eb]] + E [ft(b{ - E[b{])} ; (80)
@ = B v~ Covlw, SOVIFIT 1) EW] — B [n(v] - BB @81)
for all 5 = 1,...,m. Then, when the OLS estimator is used in the second pass, the pseudo-true value of
-1
parameter v is v = Z b I (b*7Y Z b*7a*7. When the WLS estimator is used, the pseudo-true value
J J
-1
of parameter v is v* = Z(v*j )M (b4 Z(U*j )"'b*a*!, where the reciprocal of the pseudo-
J J

true weights are v*/ = c,'/f Q;lS*nglc,,f, with $* = E[(e/)2xx;) and e = R} — 254

Let us now derive the expressions of the pseudo-true regression coefficients given in Section A.14.1.

From (79), we have:

Bt = [ Bl ()EBMGH) + [ Cov (b, wi() d6),

and:

b - Ebl] = / Elwl ()] (h(7) — Elbi(7)]) dG(7)

+ [ (wl) = Blwl())) 5(1)d60) = [ Coo (i), wi() dGiy).
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By replacing into (80), we get:

v = [ Bl ()a60)
+ [T+ VI Cout i) = Elr)] [ Cov (). wi() dG(3)
+ [ Cov (). ul()) d6o).

Since E[&] = Ik + V] ft]_lCov( ft, 1), the second term in the RHS vanishes, and we get the expres-

sion of b*J given in Section A.14.1. The proof of the expression of a*/ is similar, by using E[;] =

—E [vy — Cov(v, f)V[fi] L fi]-

A.14.4 Empirical pseudo-true values

In Table 22, we report the estimates of the pseudo-true values of parameter vector v in a time-invariant four-
factor model obtained with the individual stocks, the 25 FF portfolios, and the 44 Indu. portfolios. We get
the estimates by replacing the expectations in Equations (75), (77)-(78), and (80)-(81) with sample averages.
To assess the contributions of misspecifications along different directions, we consider several alternative
assumptions on the DGP for process v; and factor sensitivities b;(7) of the individual stocks. Specifically,
we assume that the vector 14 is either (i) time-invariant and equal to zero, or (ii) time-invariant and equal to
the time-average 7 = [1.3772, —0.2122, —6.1630, —2.5507]/ of the estimates ; obtained with the time-
varying model applied on individual stocks in Section 4.3, or (iii) time-varying and equal to the estimates
V. Furthermore, we assume that the betas of the nX = 3,900 individual stocks after trimming are either (a)
time-invariant and equal to the time averages of the estimates Bi,t obtained with the time-varying model in
Section 4.3, or (b) time-varying and equal to the estimates Igi’t. The combination of (i)-(iii) and (a)-(b) yields
six alternative (empirical) DGPs. We compute the portfolio betas by aggregating the betas of the 3,900
individual stocks using weights ﬁ)ft These weights are obtained by following the methodology underlying
the FF and Indu. portfolios applied to the 3, 900 assets of our trimmed sample. To assess the contribution
of time-varying portfolio weights, we also compute the pseudo-true values using the returns of 25 and 44
portfolios with time-invariant weights equal to the time-averages of the corresponding weights ﬁ)ft Thus,

the pseudo-true values are computed for five different universes of assets.
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For the DGPs with time constant b; ; and v, the time-invariant model is correctly specified on individual
stocks. This explains why the (pseudo-)true values of v with individual stocks, and with time constant
portfolio weights, coincide in the first and third subpanels. Moreover, Equations (77)-(78) and (80)-(81)
imply that these pseudo-true values of v coincide also when v is time-varying but the individual stocks betas
are constant, as observed in the fifth subpanel. Instead, the pseudo-true values with time-varying portfolio
weights differ from the pseudo-true values with individual stocks for all DGPs. The largest differences
across universes of assets are observed for the value and momentum factors. We get a substantial difference
between v}, = —6.1636 on the individual stocks and v}, = —3.0085 on the 25 FF portfolios (with
time-varying weights) already for the DGP with constant vy = © and constant b; ;. The five pseudo-true
values for v,,,; do not change a lot when we move to DGPs with time-variation in 4 and/or b; ;. Moreover,
the estimate of vp,,; on the 25FF portfolios with time-varying weights are asymptotically larger than the
estimates with constant weights. These findings suggest that, for the value factor, the difference between
the results with the individual stocks and the FF portfolios is due mainly to time variation in the portfolio
weights. For the momentum factor, the largest discrepancies between individual stocks and FF portfolios
are observed for the DGPs with time-varying betas and weights. The pseudo-true values for the 44 Indu.

portfolios are more similar to the the pseudo-true values for individual stocks.
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Table 22: Estimated pseudo-true values of parameter v for the four-factor model

n=9,936 n =25 n =44
Cw TVW CwW TVW

v 0.0000 0.0000 -0.3427 0.0000 -0.0801

vt 0.0000 0.0000 0.6167 0.0000 0.1843
vy = 0, b; + constant
Vhol 0.0000 0.0000  1.1304 0.0000 -0.4866

U om 0.0000 0.0000  0.8850  0.0000 -2.3739

vy -0.0251 1.5815 -0.0349 0.5738 -0.3040
viob 0.6486 0.7998 0.8877 0.6075 1.2729

vy = 0, b; ¢ time-varying

Vil -1.1835 -4.9452  0.6012 -0.6365 -0.8209
U om -4.5639 -1.0871 -1.4821 -3.3692 -5.5221

v 1.3772 1.3772  0.4453 1.3772 1.0312
¥ -0.2122 -0.2122 04779 -0.2122  0.0657

vy = U, b; ; constant
| -6.1636 -6.1636  -3.0085 -6.1636 -5.8395

v om -2.5507 -2.5507 -0.7216  -2.5507 -4.5657
vy, 1.3406 2.6374 0.6123  1.6079  0.9199
viob 0.1490 0.1940 0.7492 0.1824  0.8432

vy = U, b; ; time-varying
Vi -6.5468 -9.8461 -3.4016 -6.1935 -6.4573

vy -6.6899 -3.5831 -2.6132 -5.4675 -8.0675

vy 1.3788 1.3788  0.8521 1.3788  1.0816

v -0.2158 -0.2158 0.4970 -0.2158 0.1172
vy = Uy, by, constant
2 -6.1291 -6.1291 -3.9565 -6.1291 -5.9395

vy -2.4741 -24741  -0.9824 -2.4741 -4.2506

mom

vy 1.0201 1.5269 -0.0080 1.4433  0.6526
v 0.1678 0.1870  0.8511 -0.3721 0.6996

smb
vy = Uy, b;  time-varying o
Vil -6.0848 -8.1776  -2.6871 -6.6668 -6.5043

v -4.8815 -3.9304 -1.6555 -6.0449 -7.4999

mom

The table contains the annualized estimates of the pseudo-true values of parameter v for the market (v;,),

size (V% ), book-to-market (v, ;) and momentum (v

* om,) factors. We report the estimates v* for individ-

ual stocks (n = 9,936, nX = 3,900), the 25 FF and 44 Indu. portfolios as base assets for several DGPs.
For portfolios, we report both the estimates with time-varying portfolio weights (TVW) and the estimates

obtained assuming time constant weights (CW).



Appendix 15 Empirical analysis of idiosyncratic risks

In this appendix, we compare the cross-sectional distributions of B{Z Bu, the idiosyncratic risk (square root
of residual variance), and the estimated time-series coefficient of determination ﬁ? (ratio of explained vari-
ance and total variance) for the time-varying specifications assuming the four-factor model for the excess
returns. We can view those estimates as measures of limits-to-arbitrage and missing factor impact. We
relate these measures to stock characteristics such as size, book-to-market, and sample size. For each asset
(either stock, or portfolio) ¢, we compute four measures: (i) the estimated time-series coefficient of deter-

ESS; N ~\2 A A = 1 N
mination 57 = — ==, where ESS; =Y Ly (Ri,t - Rz-) with Rig = B and Ry = = 3 LR,
¢ t ot

_ _ 1
and TSS; =Y Iig (Riy — R;)*, with R; = - > IRy (i) the estimated adjusted R? defined by
t vt

. (T; — 1) . . . ) RSS; . R
pgd,i =1- (T:i—d) (1- p?); (iii) the idiosyncratic risk IdiVol; = T with RSS; = ;I@tsit;
ESS;
(iv) the systematic risk SysRisk; = TZ
i

Figures 30 and 31 compare the cross-sectional distributions of the four measures (i)-(iv) computed on
the time-invariant and time-varying four-factor models using the individual stocks, 25 FF and 44 Indu.
portfolios as base assets. For comparison purposes, the cross-sectional distributions for individual stocks in
both figures refer to the nX = 3,900 stocks used in the estimation of the time-varying specification after
trimming. The time-series (adjusted) pf of the 25 FF portfolios are all larger than 0.80. The estimates ﬁ? of
the individual stocks are typically much smaller, with a median below 0.30. As expected, the excess returns
of individual stocks also have larger idiosyncratic volatilities. The time-series adjusted ﬁ? of individual
stocks tend to be a bit larger in the time-varying model than in the time-invariant one, as a result of the
explanatory power that we gain by allowing for beta dynamics. Figures 30 and 31 show that the use of the
FF portfolios also shrinks the dispersion of ,5?, 1diV ol;, and SysRisk;, by alarge amount. The distributions
for the individual stocks and the 44 Indu. portfolios are comparable and share a wide support. Figure 32 plots
the cross-sectional distributions of Biz BALZ‘ for the three universes of assets. We observe a huge heterogeneity
in Biz By for the individual stocks in Figure 32, similar to the one observed on IdiV ol; in Figure 31. We
may face the presence of limits-to-arbitrage and missing factors in that case. On the contrary, the estimates

511311 are concentrated close to zero for the 25 FF and 44 Indu. portfolios.
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Figures 33-35 plot the idiosyncratic risks IdiV ol; and systematic risks SysRisk; versus the estimated
SysRisk?
S’ysRisk:Z-2 + IdiVoliQ'

- 1
Figures 36-44 plot the averages over time of size, MC; = T E I;ymc;, and book-to-market
i
t

coefficients of determination p?. These three quantities are related by [)22 =

_ 1 IR
BM,; = T ZIi,tbmi,ta versus /322, IdiVol; and ﬁizﬂl,i. Figure 45 plots the relation between the in-
K]
i

verse standardized time-series dimension 7; 7 = ;:z and the idiosyncratic and systematic risks /d:V ol; and
SysRisk;, the estimated coefficients of determination pf, the estimated ,5’{1311, and the time averaged
size and book-to-market M C; and BM,. For the individual stocks, we report the estimated linear quantile
regressions for probability levels 90%, 75%, 50%, 25%, and 10% on Figures 33, 36, 39, 42 and 45. Figures
34-35, 37-38, 40-41, 43-44 do not seem to deliver a clear relationship between ( ﬁ?, 1 diVoli) , ([)ZQ, S ysRiski) ,
(MCi, 32), (BM;, 32) , (MCi, IdiVol;) , (BM, IdiVoli), (MCy, B 1By:) ,and (BM;, B 8y.:) when
we examine the 25 FF and 44 Indu. portfolios, except perhaps a negative association between p? and IdiV ol;
for the 44 Indu. portfolios. This lack of conclusive evidence is probably due to the small number of points
and aggregation effects. On the contrary, for the individual stocks, the linear quantile regressions show

a positive relationship for (7, SysRisk;), (MCj,p7), and a negative relationship for (p7, IdiVol;)
(M i, 1 diVoll-) , and (M C;, 5115’11) Moreover, the linear quantile regressions at 50% or higher show

a negative relationship for (BMi, 1 dz'VolZ-) and (BMi, 511311) in Figures 39 and 42. In Figure 45, we
observe a positive relationship for (7; 7, IdiVol;), (1; 7, SysRisk;), (T@T, BLBM) , and a negative rela-
tionship for (Ti’T, M C’i) . Our preliminary results based on linear quantile regressions reveal that stocks with
small size tend to yield large Bizﬁlz’ large idiosyncratic risks, and small estimated /312. We also find that
firms with short observation periods (i.e., large 7; 7) tend to be associated with large values of both idiosyn-
cratic and systematic risks (with a larger proportion of systematic risk to total risk), large Bilﬁu, as well as
small market capitalisation. The results observed for /diV ol; and Biz BM are similar as expected from their
interpretation as measures of limits-to-arbitrage and missing factor impact. Measuring and understanding

limits-to-arbitrage and missing factor impact on individual stocks certainly awaits more work.
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Figure 30: Cross-sectional distributions of /322, ﬁzdi, 1diVol;, and SysRisk; for the time-invariant

four-factor model
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The figure displays the cross-sectional distributions of (i) the estimated coefficients of determination ﬁ?, (ii)
the estimated adjusted coefficients of determination ﬁg d,iv (iii) the idiosyncratic risks IdiV ol;, and (iv) the
systematic risks SysRisk; for the individual stocks (box-plots), the 25 FF portfolios (red triangles) and the
44 Indu. portfolios (blue stars). Estimates are for the time-invariant four-factor model. For comparison
purposes, the cross-sectional distribution for individual stocks refers to the nX = 3,900 stocks that are used

in the estimation of the time-varying model after trimming.
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Figure 31: Cross-sectional distributions of p?, ,63 440 1diVol;, and SysRisk; for the time-varying four-

factor model
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The figure displays the cross-sectional distributions of (i) the estimated coefficients of determination ﬁ?,
(ii) the estimated adjusted coefficients of determination ﬁg i (iii) the idiosyncratic risks I'diV ol;, and (iv)
the systematic risks SysRisk; for the nX = 3,900 individual stocks (box-plots), the 25 FF portfolios (red

triangles) and the 44 Indu. portfolios (blue stars). Estimates are for the time-varying four-factor model.
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Figure 32: Cross-sectional distributions of Bil Bl,i for the time-varying four-factor model
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The figure plots the cross-sectional distributions of BLBIZ for the nX = 3,900 individual stocks (box-
plot), the 25 FF portfolios (red triangles) and the 44 Indu. portfolios (blue stars). Estimated Bl,i are for the

time-varying four-factor model.

Figure 33: ﬁ? vs 1diV ol; and SysRisk; for the nX = 3,900 stocks

Panel A Panel B
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The figure plots the estimated coefficients of determination p? w.r.t. the idiosyncratic risks IdiV ol; (Panel
A) and the systematic risks SysRisk; (Panel B) computed on the time-varying four-factor model using the
nX = 3,900 individual stocks. We report the estimated linear quantile regressions for probability levels

90%, 75%, 50%, 25%, and 10%.



Figure 34: ,6? vs IdiVol; and SysRisk; for the 25 FF portfolios

Panel A Panel B
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The figure plots the estimated coefficients of determination ﬁ% w.r.t. the idiosyncratic risks IdiV ol; (Panel

A) and the systematic risks SysRisk; (Panel B) computed on the time-varying four-factor model for the 25

FF portfolios.
Figure 35: /3@2 vs IdiVol; and SysRisk; for the 44 Indu. portfolios
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The figure plots the
the systematic risks

portfolios.

coefficients of determination p? w.r.t. the idiosyncratic risks IdiVol; (Panel A) and

SysRisk; (Panel B) computed on the time-varying four-factor model for the 44 Indu.



Figure 36: M C; and BM; vs j? for the nX = 3,900 individual stocks
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The figure plots the averages over time of the market capitalisation A/ C; (Panel A) and the book-to-market
BM,; (Panel B) w.r.t. the estimated coefficients of determination 57 computed on the time-varying four-
factor model for the nX = 3,900 individual stocks. We report the estimated linear quantile regressions for

probability levels 90%, 75%, 50%, 25%, and 10%.

Figure 37: MC; and BM; vs j? for the 25 FF portfolios
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The figure plots the averages over time of the market capitalisation M C; (Panel A) and the book-to-market
BM; (Panel B) w.r.t. the estimated coefficients of determination ﬁ? computed on the time-varying four-

factor model for the 25 FF portfolios.



Figure 38: M C; and BM; vs j? for the 44 Indu. portfolios
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The figure plots the averages over time of the market capitalisation A/ C; (Panel A) and the book-to-market
BM, (Panel B) w.r.t. the estimated coefficients of determination 57 computed on the time-varying four-

factor model for the 44 Indu. portfolios.

Figure 39: M C; and BM; vs IdiV ol; for the nX = 3, 900 individual stocks
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The figure plots the averages over time of the market capitalisation M C; (Panel A) and the book-to-market
BM,; (Panel B) w.r.t. the idiosyncratic risks IdiV ol; computed on the time-varying four-factor model for
the nX = 3,900 individual stocks. We report the estimated linear quantile regressions for probability levels

90%, 75%, 50%, 25%, and 10%.
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Figure 40: M C; and BM; vs 1diV ol; for the 25 FF portfolios
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The figure plots the averages over time of the market capitalisation M C; (Panel A) and the book-to-market

BM ; (Panel B) w.r.t the idiosyncratic risks IdiV ol; computed on the time-varying four-factor model for the

25 FF portfolios.
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Figure 41: M C; and BM; vs IdiV ol; for the 44 Indu. portfolios
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The figure plots the averages over time of the market capitalisation M/ C; (Panel A) and the book-to-market

BM ; (Panel B) w.r.t. the idiosyncratic risks IdiV ol; computed on the time-varying four-factor model for

the 44 Indu. portfolios.



Figure 42: M C; and BM; vs Biz $31.i for the nX = 3,900 individual stocks
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The figure plots the averages over time of the market capitalisation M C; (Panel A) and the book-to-market
BM ; (Panel B) w.r.t. the Biz 31, Estimated Bl,i are for the time-varying four-factor model using the nX =
3,900 individual stocks as base assets. We report the estimated linear quantile regressions for probability

levels 90%, 75%, 50%, 25%, and 10%.

Figure 43: M C; and BM, vs Bil $31.; for the 25 FF portfolios
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The figure plots the averages over time of the market capitalisation M C; (Panel A) and the book-to-market
BM ; (Panel B) w.r.t the ﬁil BU Estimated BAM are for the time-varying four-factor model using the 25 FF

portfolios as base assets.



Figure 44: M C; and BM,; vs Biz (31 ; for the 44 Indu. portfolios
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The figure plots the averages over time of the market capitalisation M C; (Panel A) and the book-to-market
BM  (Panel B) w.r.t. Biz BU Estimated BM are for the time-varying four-factor model using the 44 Indu.

portfolios as base assets.



Figure 45: 7, 7 vs p7, 1diVol;, MC; and B:,[z/éll for the nX = 3, 900 individual stocks
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The figure plots the inverse standardized sample size 7; 7 w.r.t. the idiosyncratic risks IdiVol; (panel
A), the systematic risks SysRisk; (panel B), the estimated coefficients of determination ﬁ? (panel C),
the B{l Bl,i (panel D), the averages over time of the market capitalisation M C; (Panel E), and the aver-
ages over time of book-to-market BM; (Panel F), computed on the time-varying four-factor model for the

nX = 3,900 individual stocks. We report the estimated linear quantile regressions for probability levels
90%, 75%, 50%, 25%, and 10%.
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Appendix 16 Robustness checks on the beta specification for individual stocks

In this section, we perform several checks to evaluate the robustness of the empirical results reported in the
paper. In particular, we estimate the paths of the time-varying risk premia and we compute the test statistics

by:
a. Assuming several asset pricing models as baseline specification;
b. Using several sets of asset-specific instruments Z; ;_1;
c. Using several sets of common instruments Z;_1;

d. Assuming that the time-varying betas b; ; depend only on the asset-specific instruments.

In Table 23, we provide the details of the conditional specifications for the four exercises. We use the fol-
lowing abbreviations. For common instruments, we denote by ts; the term spread, ds; the default spread,
and divY’; the dividend yield. The dividend yield is provided by CRSP. For asset-specific instruments, we
denote by mc; ; the market capitalisation, bmn; ; the book-to-market, and ind; ; the return of the correspond-
ing industry portfolio. For each exercise, when not explicitly indicated in Table 23, the specification is the
four-factor model, the vector of common instruments is Z;_1 = [1, ts;_1, dst,l]/ and the asset-specific
instrument is the scalar Z; ;_1 = bm; ;1. Table 23 reports the operative trimmed population of individual
stocks and the number of regressors in the first-pass time series regression for each exercise that we imple-
ment. Indeed, the population of individual stocks changes depending on the asset pricing model (Exercise a)
as an effect of the trimming conditions: the number of assets decreases as the number K of factors increases.
Moreover, by using the four-factor model as baseline and modifying the sets of instruments, the number of
assets decreases as the number of regressors in the first pass increases (see Exercise c) .

We first present conditional estimates of risk premia by using several asset pricing models as baseline
(Exercise a). Panel A of Figure 46 compares the estimated time-varying paths of market risk premia when
we assume the four-factor model (shown in Section 4) and the CAPM. Panel B compares the estimates

Am,¢ for the four-factor model and the Fama-French model. The paths look very similar. Figure 47 plots the
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estimated time-varying paths of risk premia for the size and value factors computed on the four-factor model
and on the Fama-French model. The risk premium for the size factor is very similar for the two models. The
value risk premium for the Fama-French model takes slightly smaller values than that for the four-factor
model and it exhibits a counter-cyclical path. Figures 48 and 49 compares the paths of estimated annualized
. The paths look similar through the asset pricing models. The discrepancy between the estimates of the
CAPM and the four-factor model is explained by the three factors (size, value and momentum factor) that
we introduce in the four-factor model. Overall, the conditional estimates of the risk premia and coefficients
vector v are stable with respect to the asset pricing model that is assumed for the excess returns.

Figures 50 and 51 plot the estimates of the risk premia by adopting several sets of asset-specific instru-
ments Z; ;1 (Exercise b). We do not modify the set of common instruments Z;_; compared to Section 4 of
the paper. In Figure 50, we get the estimates by setting the scalar Z; ;1 equal to the market capitalisation of
firm 4. In Figure 51, we set Z; ;1 equal to the monthly returns of the industry portfolio for the industry asset
1 belongs to. We use the 48 Fama-French industry portfolios. The risk premia paths look very similar to the
results in Section 4. The results for the tests of the asset pricing restrictions for the conditional specifications
in Exercise b are reported in Table 24, upper panel. The test statistics reject the null hypotheses at 5% level.

The time-varying paths of the risk premia showed in Figures 52 and 53 are computed by modifying
the set of common instruments Z;_1 = [1, z! 1}’ (Exercise c¢). In Figure 52, Z; is a bivariate vector
that includes the default spread and the dividend yield. The paths of the risk premia for market, value
and momentum factors look similar to the results in Section 4. However, the risk premium for the size
factor features a very stable pattern that does not correspond to the unconditional estimate. In Figure 53,
vector Z; includes the term spread, the default spread, and the dividend yield. The paths of the risk premia
look similar to the results in Section 4. Introducing the dividend yield increases the discrepancy between
the unconditional estimates and the average over time of conditional estimates for the size and momentum
factors w.r.t. the results shown in Figure 1. On the contrary, this discrepancy is smaller for the value
premium. Moreover, the risk premium of the momentum factor takes larger values than that in Figure 1. We
also notice that including the dividend yield among the common instruments decreases the number of stocks
after trimming as an effect of the large number of parameters to estimate in the first pass. The confidence

bands in Figure 53 are wider than in Figure 1. The test statistics reject the null hypothesis at 5% level (see
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Table 24), middle panel.

Finally, we consider conditional specifications in which the time-varying betas are linear functions of
asset specific instruments Z; ;1 only (Exercise d). The risk premia are modeled via common instruments
Zi—1 = [1, tsg—1, dst_l]' as usual. In Figure 54, Z;; 1 is a bivariate vector that includes the constant
and the book-to-market equity of firm ¢. In Figure 55, vector Z; ;1 includes the constant and the return
of the industry portfolio as asset-specific instrument. When b; ; does not depend on Z;_1, the vector Z; ;1
contains the element 1 to include the constant in the beta specification. The paths of the risk premia for the
four factors in Figure 54 look more volatile w.r.t. the paths in Figure 1. The risk premia for market, size
and value factors in Figure 55 look similar to the results in Section 4. The risk premium for the momentum
factor features a less stable pattern, albeit its confidence intervals look similar to that in Figure 1. In Table
24, lower panel, the test statistic does not reject the asset pricing restriction Hg : (1 () = 83 (7) v for the

conditional specification with time-varying betas depending on book-to-market equity.

Table 23: Operative cross-sectional sample size (nX), number of factors (/X) and instruments (p and

q) and first-pass regressors (d) in the four exercises of robustness checks

nX K p q d nX K p q d
Exercise a. Exercise c.
CAPM 5225 1 3 1 13| Z;_1= [Ldst,l,dith,l]/ 1,107 4 3 1 25

Fama-Frenchmodel 4,545 3 3 1 21 Zt_l:[1,dst_1,tst_1,dith_1]' 667 4 4 1 34

Exercise b. Exercise d.
Zi,tfl = McC;t—1 3,835 4 3 1 25 Zi,tfl = [1,bmi,t,1]/ 6,135 4 3 2 14
Zi,tfl = indm,l 4,816 4 3 1 25 Zi,tfl = [1,indi7t,1]/ 6,515 4 3 2 14
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Figure 46: Path of estimated annualized risk premia for the market factor
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Panel A plots the paths of estimated annualized market risk premia S\m’t computed by using the four-factor
model (thin red line) and the CAPM (thick blue line). Panel B plots the paths of market risk premia S\m,t es-
timated by assuming the four-factor model (thin red line) and the Fama-French model (thick blue line). The
pointwise confidence intervals at 95% level are also displayed. The vertical shaded areas denote recessions

determined by the National Bureau of Economic Research (NBER).
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Figure 47: Path of estimated annualized risk premia for the size and value factors
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The figure plots the paths of estimated annualized risk premia ;\5mb7t (Panel A) and Xhml’t (Panel B) com-
puted by using the four-factor model (thin red line) and the Fama-French model (thick blue line). The
pointwise confidence intervals at 95% level are also displayed. The vertical shaded areas denote recessions

determined by the National Bureau of Economic Research (NBER).
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Figure 48: Path of estimated annualized 1, for the market factor
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Panel A plots the paths of estimated annualized 7, ; computed by using the four-factor model (thin red
line) and the CAPM (thick blue line). Panel B plots the paths of 7, ; estimated by assuming the four-factor
model (thin red line) and the Fama-French model (thick blue line). The pointwise confidence intervals
at 95% level are also displayed. The vertical shaded areas denote recessions determined by the National

Bureau of Economic Research (NBER).
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Figure 49: Path of estimated annualized v, for the size and value factors
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The figure plots the paths of estimated annualized U, ¢ (Panel A) and 7y, ¢+ (Panel B) computed by using
the four-factor model (thin red line) and the Fama-French model (thick blue line). The pointwise confidence
intervals at 95% level are also displayed. The vertical shaded areas denote recessions determined by the

National Bureau of Economic Research (NBER).

121



‘(JALIN) yoIeasoy JIouod Jo neaing [BUOLBN Y} AQ PAUTWLIAISP SUOISSIOI
9JOUap SBAIR Papeys [BONIAA UL, (GER‘C = XU PUB LG ‘6 = U) SIOSSB 9SBQ SB SYI0IS [[B JOPISU0D A\ “(SUI] [BIUOZLIOY PI[OS) djewl
-1}S9 [BUONIPUOD JFBIDAE U} pue (SUI| [BJUOZLIOY PIYSEP) SJEWNSd JueLieAur-awn ayy Aefdsip osje op -~ [T7sp ‘1787 ‘1]
SI SJUQWINIISUI UOWIWIOD JO JOJOA 9U], “JUSWNISUI OY1oads-josse se pasn s1 uonesieinded JosIewWl UaYM [9AJ] 9G6 1B S[BAIdIUL

Qoudpyuod asmuiod IRy pue FwWoly pue Py rqusy wy prpard s pazipenuue pajewnss jo yed o) sjofd am3y oyf,

v v

00 S6 06 S8 08 SL 0L <9 0T S0 00 S6 06 S8 08 SL

Hoe -0¢€
Joy -ov
7 So:}m ¥ ?::M\
S0 00 S6 06 S8 08 SL 0L S9 0T S0 00 S6 06 S8 08 SL S9
T T T T T T 7 n0Z¢— r T T T T T T 1 n0Z—

Fqusy rury

I=#%w = 1=z uisn paynduwiod erwdixd YSLI PIZI[Enuue pajewnsd Jo Yied (s In3i

122



‘(JALIN) yoIeasoy dIuouod Jo neaing [eUOBN Y} AQ PAUTWLIANSP SUOISSIII
JJouap seare papeys [eonIoA YL, (198 ‘F = xU PUB QLG ‘G = U) SIASSE Iseq S SYJ0IS [[B JOPISU0D A\ (SUI] [BIUOZLIOY PIOS)
9)EWINSI [EUONIPUOD SFBISAL AU} PUE (SUI [EJUOZLIOY PIYSEP) SJBLWINS JUBLIBAUT-OWN 3y} Ke[dSIp os[e opy * [T7sp ‘T7Isp ‘1] = 171y
SI SJUQUWINIISUI UOUIWOD JO JOJO9A QUJ, JUWNISUl oyroads-1asse se pasn a1e sorjojiiod Ansnpur Jo SUINQI oY) USYM [9AJ] 9%G6 18

S[RAISIUT QOUSPLUOD dsTMIuTod IIoy) pue # Wty pue ¥ 1UYy < qusy Wy pruraxd YSU pazijenuue parewnsa Jjo yied o) s101d am3y oy,

0T S0 00 S6 06 S8 08 SL 0L <9 0T S0 00 S6 06 S8 08 SL 0L <9

Hoe -0¢€
Joy -ov
7 So:}m ¥ ?::M\
0T S0 00 S6 06 S8 08 SL 0L <9 0T S0 00 S6 06 S8 08 SL 0L <9
T T n0c— I T T T T T T . n0Z—

Fqusy rury

I=%*pug = =%z Guisn payndwiod erwdxd YSLI pazijenuue pIajewnsad Jo YIeJ IS dIndrg

123



‘(JAAN) YoIeasay d1uouod Jo neaing [euoneN Yl Aq pouruIa)ep
SUOISSQ09I QJOUP Seare PIpeys [eoNIaA oYL, "(LOT ‘T = XU PUB LG ‘6 = U) SIOSSE ASeq SB SYJ0IS [[B JOPISUOD AN "(SUI] [BIUOZLIOY
PI[OS) SJBWIISO [EUONIPUOD 9FBISAE ) PUe (SUI[ [BIUOZIIOY PAYSEP) SILWIISS JUBLIBAUI-IWT) 9y} Ae[dSIp OS[e app "A1nbas joyIew-o}
-00q SI JUAUWINNSUI OY1dads YO03IS Y], ‘SIUSWNISUI UOWUIOD SB PIsn e P[AIA PUSPIAIP pue peaids J[Nejop uaym [9AJ] 966 Ie

S[RAIOIUT QOUSPLUOD dsTmIuTod IIoy) pue #Wowhy pue ¥ 1UWyy < qusy 1wy pruraxd YSU pazijenuue parewnsa Jjo yied o) s1o1d omsy oy,

0T S0 00 S6 06 S8 08 SL 0L <9 0T S0 00 S6 06 S8 08 SL 0L <9

fwow
! X

0T S0 00 S6 06 S8 08 SL 0L

S9

r T T T T T T — T

B L Y P
i

ﬁeEm/\

[T Rap ‘Tisp ‘1] = 177 3uisn pajndwiod erwdad ySI PIZI[enuue pajewnss Jjo yed

ov

0¢-

ov

sy

S N3y

~=0T

0¢

og

124



‘(JAAN) YoIeasay d1uouod Jo neaing [euoneN Yl Aq pouruIa)ep
SUOISSQ09I 9JOUP SBAIR PIPBYS [BONIA oY, (199 = XU PUB 9EG ‘G = U) SIOSSE ISeq SB S00]S [[B JOPISUOD A “(QUI] [BIUOZLIOY PIOS)
9JBWII)SO [RUOIIIPUOD 9TBISAE 9} PUE (SUI[ [BIUOZIIOY PAYSEP) 9JBWISI JUBLIBAUI-aWT) Ay} Ae[dSIp OS[e 9p "A)nba joyIeW-03-)00q ST
juawnsul Oyroads }00)s 9y, ‘SIUSWINIISUI UOWWOD S8 PIASn 918 P[AIA PUSPIAIp pue peaids wiie) ‘peaids Jnejop uaym [9Ad] 966 18

S[RAIOIUT QOUSPLUOD dsTmIuTod IIoy) pue #Wowhy pue ¥ 1UWyy < qusy 1wy pruraxd YSU pazijenuue parewnsa Jjo yied o) s1o1d omsy oy,

N;:QEK :E:M\

0T S0 00 S6 06 S8 08 SL 0L <9 0T S0 00 S6 06 S8 08 SL 0L S9
I T T T T T T | T ON| I ) T T T T T T | T ON|

EE@/\ Py

JTRaap Toisy 1isp ‘] = 117 Guisn panduwiod erudad YSLI pazienuue pajewnsd Jo yied :¢s dan3iy

125



‘(MAGN) YoI8asay JIOU0dH JO neaing [BUONEBN Y} AQ POUTULIAIOP SUOISSIOII 9JOUP SBAIB

POPRYS [BONIJA Y], "SIOSSB 3seq Sk (RO ‘9 = XU PUR Q€6 ‘6 = U) SYD0IS [[B JOPISUOD A\ “(SUI[ [BJUOZLIOY PI[OS) AJBWIISI [BUONIPUOD
. — (T— 4 N -

a3eI10A® Q) pue (SUI] [BIUOZIIOY PAYSEP) IBWIISS JUBLIBAUI-OW Y} 110da1 OS[e 9p \T tsp ‘T71sy ‘1] = T~z sjuowINISUl UOWIUIOD

) SOA[OAUL 103094 BIUIId YSII 9 ], "AJUO JUSWINIISUI JO}IBWI-0)-3[00q Y} JO SUOLIOUNJ JBAUI] AIB S€I9q SUIAIBA-OWI]} UM [IAJ] %G6 I8

S[BAIOIUI Q0USPYUOD IsTmIuTod I10y) pue ¥ Wothy pug #1WHy <1'quisy 1wy prinaid Ysu pazifenuue pajewnsd Jjo yred oy s1o1d 213y oy,

0T S0 00 S6 06 S8 08 SL 0L S9 0T S0 00 S6 06 S8 08 SL 0L S9

—0¢ —-0¢
—0€ -0€
-0y -ov
Fuoury, Frany
0T S0 00 S6 06 S8 08 S 0L S9 0T S0 00 S6 06 S8 08 SL 0L 59
T T T T T T T T m0C- T T T T T T T T m0Z—
—0T- 01—

N, a W
W

1:11 o {/.e,\ =y
—0T
—02
—0€ -0€
-ov oy
Fqussy ruy

\T\EE@ ‘7] = =7 1A poppout sejaq SurdIe-own yPIm erurdad YSLI pazijenuue pajewnsd Jo yied §S dInsiy

126



‘(MAGN) YoI8asay JTouodq Jo neaing [BUOLBN 9y} AQ POUTILIOJOP SUOISSIIAI 9JOUIP
SBATR POpRYS [BOI1I0A Y], "SIOSSe aseq St ()€ ‘9 = yU PUB 96 ‘6 = U) SYO0IS [[€ IOPISU0D dAN "(SUI] [BIUOZLIOY PI[OS) JBWNSI [EUOT]
-Ipuod 93eIoA® U} pue (SUI[ [BIUOZLIOY PAYSEP) AJLWIIS JUBLIBAUI-dWI] Ay} }10dar OS[e op .\TL% ‘T=%s7 ‘1] = T~z sjuownnsur
UOUWIWOD A} SIA[OAUL J0309A erwaxd YSLI oy ], ‘suInjal orjojpiod A1jsnpur Jo suonouny Jeaur| oIe sejoq SUIAIBA-OWI) UAYM [9A] %66 I8

S[BAIOIUI Q0USPYUOD IsTmIuTod I10y) pue ¥ Wothy pug #1WHy <1'quisy 1wy prinaid Ysu pazifenuue pajewnsd Jjo yred oy s1o1d 213y oy,

ot 50 00 6 06 8 08 . oL 59 ot 50 00 56 06 58 08 . oL 59

T T T T T T T T T ON‘ T T T T T T T T T ON‘
Jot-

; xii\fi Al T
b(w.‘v} ?&.}
T TN LY f\\ ]
Jot
oz oz
e Joe
Joy Jov
— —_—

ot 50 00 6 06 8 08 . oL 59 ot 50 00 6 06 58 08 . oL 59

T T T T T T T T T ON‘ T T T T T T T T T ON‘
Jot- Jo1-
=) B

e v : \}/\s\ g

—02 —0¢

—0€ -0€

-ov oy
Fqussy ruy

;TE@E ‘T] = 1-*'7 1A pappout sejaq SurdreA-awn YPIm erudad JSLI pazijenuue pajemnsd Jo yied :5s dInSLy

127



Appendix 17 Cost of equity

We can use the results in Section 3 for estimation and inference on the cost of equity in conditional factor
models. We can estimate the time-varying cost of equity CE;; = rf; + b;’t)\t of firm 7 with CFE;; =

Tre+ 6g7tﬁ\t, where 7 ; is the risk-free rate. We have (see Appendix A.17.1)

VT (EEt - CEM) — Y EWT (B — Bi)
+ (Z,g_1 ® b;’t) WpﬁK\/Tvec [f\' — A’} +o0p (1), (82)
!/ ~
where ¢; ; = <)\£ ® Z]_1, N, ® Z;t_l) . Standard results on OLS imply that estimator (3; is asymptotically

normal, /T (Bi — 67;) = N ((), TZ‘Q;;SZ‘Z‘Q;;), and independent of estimator A. Then, from Proposition
4, we deduce that v/T' (C/'Ezt — C’Ei,t> =N (0, ECEi,t), conditionally on Z;_, where

Yom, = Tiwg,tEéQ;%SiiQ;}EQwi,t + (Z{_ @ b)) Wy kEaWkp (Z1-1 @ biy) .

Figure 56 plots the path of the estimated annualized costs of equity for Ford Motor, Disney, Motorola and
Sony. We use the time-varying four-factor model estimated on individual stocks (n = 9,936, nX = 3,900).

The cost of equity has risen tremendously during the recent subprime crisis.

A.17.1 Proof of Equation (82)
We have:
B A = tr [zt_lz;,lfégfq i [zt_lz;,t,lé;A} = (Z|_, ® Z|_,) vec [B;A] +(Z)_ ® Z},_,) vec [@A} .
Thus, we get:
VT (@t - CEM)
= (Z @ Zl) VT (vee [BIA] = vee [BIA]) + (211 @ Z}y1) VT (vec |

= (Z_1®Z_y) [([\’ ® Ip> VTuece [Bl' - B{] + (I, ® B)) VTvec [A — A”

+(Zi_1® Zi; 1) [(A' ® Iq) VTovec [C‘l’ — CZ’} + (I, ® C}) VTvec [A — A” .

A~

Z'/AX} — vec [C’{A])

By using that A = A + 0,(1) and vec [A - A} = W, kvec [A' - A’} , Equation (82) follows.
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