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These supplementary materials provide the derivation of Equations (9)-(12) (Appendix 3), the proofs of

technical lemmas used in the paper (Appendix 4), the link of our no-arbitrage pricing restrictions with Cham-

berlain and Rothschild (1983) results (Appendix 5), the check that the high-level assumptions in the paper

hold under block-dependence (Appendix 6), and the results of Monte-Carlo experiments that investigate the

finite-sample properties of the estimators and test statistics (Appendix 7). We also present empirical results

with long-only factors (Appendix 8), figures of estimated paths of ν̂t for the four-factor model estimated

by using individual stocks and the 25FF portfolios (Appendix 9). We also provide additional figures for

the 25FF portfolios (Appendix 10) and the industry portfolios (Appendix 11), the value-weighted estimates

of risk premia (Appendix 12), as well as an empirical analysis of estimated time-varying betas (Appendix

13). We investigate the effects of model misspecification on risk premia estimation and give estimates of

the pseudo-true values (Appendix 14). We also present the results of a preliminary analysis of idiosyncratic

risk (Appendix 15), and provide some robustness checks for the empirical analysis (Appendix 16). Finally,

we derive inference for the cost of equity and include some empirical results for Ford Motor, Disney Walt,

Motorola and Sony (Appendix 17).

Appendix 3 Derivation of Equations (9)-(12)

A.3.1 Derivation of Equations (9) and (10)

From Equation (8) and by using vec [ABC] =
[
C ′ ⊗A

]
vec [B] (MN Theorem 2, p. 35), we get

Z ′t−1B
′
ift = vec

[
Z ′t−1B

′
ift
]

=
[
f ′t ⊗ Z ′t−1

]
vec

[
B′i
]
, andZ ′i,t−1C

′
ift =

[
f ′t ⊗ Z ′i,t−1

]
vec

[
C ′i
]
,which gives

Z ′t−1B
′
ift + Z ′i,t−1C

′
ift = x′2,i,tβ2,i.

Let us now consider the first two terms in the RHS of Equation (8).
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a) By definition of matrix Xt in Section 3.1, we have

Z ′t−1B
′
i (Λ− F )Zt−1 =

1

2
Z ′t−1

[
B′i (Λ− F ) + (Λ− F )′Bi

]
Zt−1

=
1

2
vech [Xt]

′ vech
[
B′i (Λ− F ) + (Λ− F )′Bi

]
.

By using the Moore-Penrose inverse of the duplication matrix Dp, we get

vech
[
B′i (Λ− F ) + (Λ− F )′Bi

]
= D+

p

[
vec

[
B′i (Λ− F )

]
+ vec

[
(Λ− F )′Bi

]]
.

Finally, by the properties of the vec operator and the commutation matrix Wp, and the definition of matrix

Np, we obtain

1

2
D+
p

[
vec

[
B′i (Λ− F )

]
+ vec

[
(Λ− F )′Bi

]]
=

1

2
D+
p (Ip2 +Wp)vec

[
B′i (Λ− F )

]
= Np

[
(Λ− F )′ ⊗ Ip

]
vec

[
B′i
]
.

b) By the properties of the tr and vec operators, we have

Z ′i,t−1C
′
i (Λ− F )Zt−1 = tr

[
Zt−1Z

′
i,t−1C

′
i (Λ− F )

]
= vec

[
Zi,t−1Z

′
t−1

]′
vec

[
C ′i (Λ− F )

]
= (Zt−1 ⊗ Zi,t−1)′

[
(Λ− F )′ ⊗ Iq

]
vec

[
C ′i
]
.

By combining a) and b), we get Z ′t−1B
′
i (Λ− F )Zt−1 + Z ′i,t−1C

′
i (Λ− F )Zt−1 = x′1,i,tβ1,i and

β1,i =
((
Np

[
(Λ− F )′ ⊗ Ip

]
vec [B′i]

)′
,
([

(Λ− F )′ ⊗ Iq
]
vec [C ′i]

)′)′.
A.3.2 Derivation of Equation (11)

We use β1,i =

((
1

2
D+
p

[
vec

[
B′i (Λ− F )

]
+ vec

[
(Λ− F )′Bi

]])′
,
(
vec

[
C ′i (Λ− F )

])′)′ from Section

A.3.1. a) From the properties of the vec operator and the commutation matrix Wp, we get

vec
[
B′i (Λ− F )

]
+ vec

[
(Λ− F )′Bi

]
= (Wp + Ip2)vec

[
(Λ− F )′Bi

]
= (Wp + Ip2)

(
B′i ⊗ Ip

)
vec

[
Λ′ − F ′

]
.

From ν = vec
[
Λ′ − F ′

]
we obtain

1

2
D+
p

[
vec

[
B′i (Λ− F )

]
+ vec

[
(Λ− F )′Bi

]]
=

1

2
D+
p (Ip2 +Wp)

(
B′i ⊗ Ip

)
ν = Np

(
B′i ⊗ Ip

)
ν.

b) From the properties of the vec operator and the commutation matrix Wp,q, we get

vec
[
C ′i (Λ− F )

]
= Wp,qvec[(Λ− F )′Ci] = Wp,q

(
C ′i ⊗ Ip

)
ν.
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A.3.3 Derivation of Equation (12)

We use vec
[
β′3,i

]
=
(
vec [{Np (B′i ⊗ Ip)}′]

′ , vec [{Wp,q (C ′i ⊗ Ip)}′]
′)′ from Equation (11).

a) By MN Theorem 2 p. 35 and Exercise 1 p. 56, and by writing IpK = IK ⊗ Ip, we obtain

vec
[
Np

(
B′i ⊗ Ip

)]
= (IpK ⊗Np) vec

[
B′i ⊗ Ip

]
= (IpK ⊗Np) {IK ⊗ [(Wp ⊗ Ip) (Ip ⊗ vec [Ip])]} vec

[
B′i
]

= {IK ⊗ [(Ip ⊗Np) (Wp ⊗ Ip) (Ip ⊗ vec [Ip])]} vec
[
B′i
]
.

Moreover, vec [{Np (B′i ⊗ Ip)}′] = Wp(p+1)/2,pKvec [Np (B′i ⊗ Ip)].

b) Similarly, vec
[
Wp,q

(
C ′i ⊗ Ip

)]
= {IK ⊗ [(Ip ⊗Wp,q) (Wp,q ⊗ Ip) (Iq ⊗ vec [Ip])]} vec

[
C ′i
]

and

vec [{Wp,q (C ′i ⊗ Ip)}′] = Wpq,pKvec [Wp,q (C ′i ⊗ Ip)].

By combining a) and b) the conclusion follows.

Appendix 4 Proofs of statements and technical lemmas

A.4.1 Proof of Lemma 2

Let vector (z1, ..., zn) be such that
∑
i

z2
i = 1. From Equation (25), we have:

∑
i

∑
j

zi[Σε̃,1,n]i,jzj =
∑
k

∑
l

∑
i

∑
j

z∗k,iz
∗
l,jCov(ε[G−1

k (γi)], ε[G
−1
l (γj)]|F0), (35)

where z∗k,i = wk[G
−1
k (γi)]zi. Now, by the Cauchy-Schwarz inequality, we have:

∑
i

∑
j

z∗k,iz
∗
l,jCov(ε[G−1

k (γi)], ε[G
−1
l (γj)]|F0) = Cov

∑
i

z∗k,iε[G
−1
k (γi)],

∑
j

z∗l,jε[G
−1
l (γj)]|F0


≤ V

(∑
i

z∗k,iε[G
−1
k (γi)]|F0

)1/2

V

∑
j

z∗l,jε[G
−1
l (γj)]|F0

1/2

=

∑
i

∑
j

z∗k,iz
∗
k,jCov(ε[G−1

k (γi)], ε[G
−1
k (γj)]|F0)

1/2∑
i

∑
j

z∗l,iz
∗
l,jCov(ε[G−1

l (γi)], ε[G
−1
l (γj)]|F0)

1/2

.
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Moreover:

∑
i

∑
j

z∗k,iz
∗
k,jCov(ε[G−1

k (γi)], ε[G
−1
k (γj)]|F0) ≤ (

∑
i

(z∗k,i)
2)eigmax(Σε,1,n(Gk))

≤ w̄2
keigmax(Σε,1,n(Gk)).

Thus, for any vector (z1, ..., zn) such that
∑
i

z2
i = 1 we have:

∑
i

∑
j

zi[Σε̃,1,n]i,jzj ≤
∑
k

∑
l

w̄kw̄leigmax(Σε,1,n(Gk))
1/2eigmax(Σε,1,n(Gl))

1/2.

Since the largest eigenvalue of a symmetric matrix is equal to the sup of the associated quadratic form w.r.t.

vectors with unit length, the conclusion follows.

A.4.2 Proof of Lemma 3 (iii)

We have ŵi − wi = 1χi
(
(diag[v̂i])

−1 − (diag[vi])
−1
)

+ (1χi − 1)(diag[vi]
−1) and (diag[v̂i])

−1 − (diag[vi])
−1

= −(diag[v̂i])
−1diag[v̂i−vi](diag[vi])

−1. Since ‖(diag[vi])
−1‖ is uniformly lower bounded from part (ii),

we have
1

n

∑
i

‖ŵi − wi‖ ≤ C
1

n

∑
i

1χi
‖v̂i − vi‖

C − ‖v̂i − vi‖
+ C

1

n

∑
i

(1− 1χi ). The second term in the RHS is

op(1) from Lemma 7. To prove that the first term is op(1), it is sufficient to show:

sup
i

1χi ‖v̂i − vi‖ = op(1). (36)

We use Equation (30). Since ν̂1 − ν = Op(T
−c), for some c > 0 (by repeating the proof of Proposition 3

with known weights equal to 1), 1χi ‖Q̂
−1
x,i‖ ≤ Cχ

2
1,T , 1χi τi,T ≤ χ2,T , ‖Sii‖ ≤M , and by using Assumption

B.5, the uniform bound in (36) follows if we prove:

sup
i

1χi ‖Ŝii − Sii‖ = Op(T
−c), (37)

sup
i

1χi ‖Q̂
−1
x,i −Q

−1
x,i‖ = Op(T

−c), (38)

sup
i

1χi |τi,T − τi| = Op(T
−c), (39)

for some c > 0. To prove the uniform bound (37), we use Equation (32). As in the proof of Lemma 3 (i), we

have sup
i
T−1/2‖Yi,T ‖ = Op,log(T

−η/2) from Assumption B.1 c), and similarly sup
i
T−1/2‖W1,i,T +W2,i,T ‖ =
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Op,log(T
−η/2) and sup

i
T−1/2‖W3,i,T ‖ = Op(T

−η/2), from Assumptions B.1 e) and f), respectively. More-

over, ‖Q̂(4)
x,i‖ ≤M , 1χi ‖Q̂

−1
x,i‖ ≤ Cχ

2
1,T and 1χi τi,T ≤ χ2,T . Thus, from Assumption B.5, bound (37) fol-

lows. To prove (38), we use Equation (33) where Wi,T is such that sup
i
‖Wi,T ‖ = Op,log(T

−η/2) from As-

sumption B.1 b). Finally, (39) follows from |τi,T − τi| ≤ τi,T τi

∣∣∣∣∣ 1

T

∑
t

(Ii,t − E[Ii,t|γi])

∣∣∣∣∣, 1χi τi,T ≤ χ2,T ,

τi ≤M , and by using sup
i

∣∣∣∣∣ 1

T

∑
t

(Ii,t − E[Ii,t|γi])

∣∣∣∣∣ = Op,log(T
−η/2) from Assumption B.1 d).

A.4.3 Proof of Lemma 4

By applying MN Theorem 2 p.35, Theorem 10 p. 55, and using Wn,1 = In, we have

Ab = vec [Ab] =
(
b′ ⊗A

)
vec [In]

= vec
[(
b′ ⊗A

)
vec [In]

]
=

(
vec [In]′ ⊗ Im

)
vec

[
b′ ⊗A

]
=

(
vec [In]′ ⊗ Im

)
(In ⊗Wn,1 ⊗ Im)

(
vec

[
b′
]
⊗ vec [A]

)
=

(
vec [In]′ ⊗ Im

)
(In2 ⊗ Im) vec

[
vec [A] b′

]
=

(
vec [In]′ ⊗ Im

)
vec

[
vec [A] b′

]
.
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A.4.4 Proof of Lemma 6

A.4.4.1 Part i)

Let us write I131 as I131 = (Id1 ⊗ E′2)Ĩ131 and:

Ĩ131 =
1√
n

∑
i

τ2
i,T

(
ŵi ⊗

[
Q̂−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q̂−1
x,i

])
=

1√
n

∑
i

τ2
i,T

(
ŵi ⊗

[
Q−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1
x,i

])
+

1√
n

∑
i

τ2
i,T

(
ŵi ⊗

[(
Q̂−1
x,i −Q

−1
x,i

) (
Yi,TY

′
i,T − Sii,T

)
Q−1
x,i

])
+

1√
n

∑
i

τ2
i,T

(
ŵi ⊗

[
Q−1
x,i

(
Yi,TY

′
i,T − Sii,T

) (
Q̂−1
x,i −Q

−1
x,i

)])
+

1√
n

∑
i

τ2
i,T

(
ŵi ⊗

[(
Q̂−1
x,i −Q

−1
x,i

) (
Yi,TY

′
i,T − Sii,T

) (
Q̂−1
x,i −Q

−1
x,i

)])
=: I1311 + I1312 + I ′1312 + I1313.

We control the terms separately.

Proof that I1311 =
1√
n

∑
i

τ2
i

(
wi ⊗

[
Q−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1
x,i

])
+Op,log(

√
n/T )

= Op(1) +Op,log(
√
n/T ). We use a decomposition similar to term I111 in the proof of Lemma 5:

I1311 =
1√
n

∑
i

τ2
i

(
wi ⊗

[
Q−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1
x,i

])
+

1√
n

∑
i

τ2
i (1χi − 1)

(
wi ⊗

[
Q−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1
x,i

])
+

1√
n

∑
i

1χi (τ2
i,T − τ2

i )
(
wi ⊗

[
Q−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1
x,i

])
+

1√
n

∑
i

1χi τ
2
i,T

(
(diag[v̂i]

−1 − diag[vi]
−1)⊗

[
Q−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1
x,i

])
=: I13111 + I13112 + I13113 + I13114.

To simplify the notation, let us treat xi,t as a scalar. We first prove I13111 = Op(1). We have:

E[I2
13111|FT , {IT (γi), γi}] =

1

n

∑
i,j

wiwjτ
2
i τ

2
jQ
−2
x,iQ

−2
x,jcov

(
Y 2
i,T , Y

2
j,T |FT , IT (γi), IT (γj), γi, γj

)
=

1

nT 2

∑
i,j

∑
t1,t2,t3,t4

wiwjτ
2
i τ

2
jQ
−2
x,iQ

−2
x,jcov

(
εi,t1εi,t2 , εj,t3εj,t4 |FT , γi, γj

)
Ii,t1Ii,t2Ij,t3Ij,t4xi,t1xi,t2xj,t3xj,t4 .

6



From Assumptions B.3 b) and B.4, it follows E[I2
13111] = O(1). Hence, I13111 = Op(1). We can prove

that I13112 = op(1) and I13113 = op(1) by using arguments similar to terms I1112 and I1113 in the proof of

Lemma 5. Finally, let us prove that I13114 = Op,log(
√
n/T ). Similarly to I1114 in the proof of Lemma 5,

we use

v̂−1
i − v

−1
i = −v−2

i (v̂i − vi) + v̂−1
i v−2

i (v̂i − vi)2 , (40)

and Equation (30). We focus on the term:

I131141 = − 1√
n

∑
i

1χi v
−2
i τ3

i,TC
′
ν̂1Q̂

−1
x,i

(
Ŝii − Sii

)
Q̂−1
x,iCν̂1Q

−2
x,i

(
Y 2
i,T − Sii,T

)
,

the other contributions to I13114 can be controlled similarly. Now, we use Equation (32). We have:

I131141 = − 1√
nT

∑
i

1χi v
−2
i τ4

i,TC
′
ν̂1Q̂

−1
x,iW1,i,T Q̂

−1
x,iCν̂1Q

−2
x,i

(
Y 2
i,T − Sii,T

)
− 1√

nT

∑
i

1χi v
−2
i τ4

i,TC
′
ν̂1Q̂

−1
x,iW2,i,T Q̂

−1
x,iCν̂1Q

−2
x,i

(
Y 2
i,T − Sii,T

)
+2

1√
nT

∑
i

1χi v
−2
i τ5

i,TC
′
ν̂1Q̂

−1
x,iW3,i,T Q̂

−1
x,iYi,T Q̂

−1
x,iCν̂1Q

−2
x,i

(
Y 2
i,T − Sii,T

)
− 1√

nT

∑
i

1χi v
−2
i τ6

i,TC
′
ν̂1Q̂

−1
x,i Q̂

(4)
x,i Q̂

−1
x,iY

2
i,T Q̂

−2
x,iCν̂1Q

−2
x,i

(
Y 2
i,T − Sii,T

)
=: −C ′ν̂1(I1311411 + I1311412 + I13211413 + I1311414)Cν̂1 .

Let us focus on term I1311411 and prove that it is Op,log(
√
n/T ). We have:

I1311411 =
1√
nT

∑
i

1χi v
−2
i τ4

i,T Q̂
−2
x,iQ

−2
x,iW1,i,TY

2
i,T −

1√
nT

∑
i

1χi v
−2
i τ4

i,T Q̂
−2
x,iQ

−2
x,iW1,i,TSii,T

=: I13114111 + I13114112.

Term I13114111 is such that:

|E[I13114111|FT , {IT (γi), γi}]| ≤
Cχ4

1,Tχ
4
2,T√

nT 2

∑
i

∑
t1,t2,t3

|E[ηi,t1εi,t2εi,t3 |FT , γi]|,

and

V [I13114111|FT , {IT (γi), γi}] ≤
Cχ8

1,Tχ
8
2,T

nT 4

∑
i,j

∑
t1,...,t6

|cov(ηi,t1εi,t2εi,t3 , ηj,t4εj,t5εj,t6 |FT , γi, γj)|.
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From Assumptions B.2, B.3 f) and B.5, we getE[I13114111] = Olog(
√
n/T ) and V [I13114111] = o(1), which

implies I13114111 = Op,log(
√
n/T ). The other terms making I13114 can be controlled similarly, and we get

I13114 = Op,log(
√
n/T ).

Proof that I1312 = op(1). We have:

I1312 =
1√
n

∑
i

1χi τ
2
i,T

(
diag[vi]

−1 ⊗
[(
Q̂−1
x,i − Q̂

−1
x,i

) (
Yi,TY

′
i,T − Sii,T

)
Q−1
x,i

])
+

1√
n

∑
i

1χi τ
2
i,T

(
(diag[v̂i]

−1 − diag[vi]
−1)⊗

[(
Q̂−1
x,i − Q̂

−1
x,i

) (
Yi,TY

′
i,T − Sii,T

)
Q−1
x,i

])
=: I13121 + I13122.

We focus on term I13121, use Equation (33), and treat xi,t as a scalar to ease notation. We have:

I13121 = − 1√
n

∑
i

1χi v
−1
i τ3

i,T Q̂
−1
x,iWi,TQ

−2
x,i

(
Y 2
i,T − Sii,T

)
.

Then:

E[‖I13121‖2|FT , {IT (γi), γi}] ≤
Cχ4

1,Tχ
6
2,T

nT 2

∑
i,j

∑
t1,...,t4

‖Wi,T ‖‖Wj,T ‖|cov(εi,t1εi,t2 , εj,t3εj,t4 |FT , γi, γj)|.

By the Cauchy-Schwarz inequality, we get:

E[‖I13121‖2|{γi}] ≤ Cχ4
1,Tχ

6
2,T sup

i
E[‖Wi,T ‖4|γi]1/2

1

nT 2

∑
i,j

∑
t1,t2,t3,t4

E
[
|cov(εi,t1εi,t2 , εj,t3εj,t4 |FT , γi, γj)|2|γi, γj

]1/2
.

From Assumptions B.1 b), B.3 b), B.4 a), and B.5, we deduce E[‖I13121‖2] = o(1), which implies I13121 =

op(1). Similar arguments can be used to prove that the other terms making I1312 are op(1).

Proof that I1313 = op(1). This step uses similar arguments as for I1312.

A.4.4.2 Part (ii)

Let us treat xi,t as a scalar to ease notation. We have I132 = (Id1 ⊗ E′2)Ĩ132 where

Ĩ132 =
1√
nT

∑
i

ŵiτ
2
i,T Q̂

−1
x,iW1,i,T Q̂

−1
x,i , and W1,i,T is as in Equation (32). Write:

Ĩ132 =
1√
nT

∑
i

1χi v
−1
i τ2

i,T Q̂
−1
x,iW1,i,T Q̂

−1
x,i +

1√
nT

∑
i

1χi (v̂−1
i − v

−1
i )τ2

i,T Q̂
−1
x,iW1,i,T Q̂

−1
x,i =: I1321 + I1322.
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Let us first consider I1321. We have:

E[‖I1321‖2|FT , {IT (γi), γi}] ≤ Cχ8
1,Tχ

4
2,T

1

nT 2

∑
i,j

∑
t1,t2

|cov(ηi,t1 , ηj,t2 |FT , γi, γj)|.

From Assumptions B.3 a) and B.5, it follows E[‖I1321‖2] = Olog(1/T ), and thus I1321 = Op,log(1/
√
T ).

Let us now consider term I1322. We use Equation (40), and plug in the decompositions (30) and (32).

We focus on term C2
ν̂1I13221 of the resulting expansion, where:

I13221 = − 1√
nT

∑
i

1χi v
−2
i τ4

i,T Q̂
−4
x,iW

2
1,i,T .

The other terms can be treated similarly. We have:

E[I13221|FT , {IT (γi), γi}] ≤ Cχ8
1,Tχ

4
2,T

1√
nT 2

∑
i

∑
t1,t2

|cov(ε2
i,t1 , ε

2
i,t2 |FT , γi)|,

and

V [I13221|FT , {IT (γi), γi}] ≤ Cχ16
1,Tχ

8
2,T

1

nT 4

∑
i,j

∑
t1,t2,t3,t4

|cov(ηi,t1ηi,t2 , ηj,t3ηj,t4 |FT , γi, γj)|.

From Assumptions B.3 a) and B.5, it follows E[I13221] = Olog(
√
n/T ). By Assumptions B.3 d) and B.5

we can prove that V [I13221] = o(1), and it follows I13221 = Op(
√
n/T ).

A.4.4.3 Part (iii)

We have I133 = (Id1 ⊗ E′2)Ĩ133, where I133 = − 2√
nT

∑
i

ŵiτ
3
i,T Q̂

−3
x,iW3,i,TYi,T

+
1√
nT

∑
i

ŵiτ
4
i,T Q̂

−4
x,i Q̂

(4)
x,iY

2
i,T and W3,i,T and Q̂(4)

x,i are as in Equation (32) and we treat xi,t as a scalar

to ease notation. By similar arguments as in part (ii), we can prove that I133 = Op,log(
√
n/T ).

A.4.4.4 Part (iv)

The statement follows from Lemma 3 (ii)-(iii), 1χi τi,T ≤ χ2,T , 1χi ‖Q̂
−1
x,i‖ ≤ Cχ2

1,T , bound (37), ‖Sii‖ ≤M

and Assumption B.5.

9



A.4.4.5 Part (v)

The statement follows from Equation (28), Lemma 3 (iv), I11 = Op(1), and
1

n

∑
i

ŵiτ
2
i,T Q̂

−1
x,iYi,TY

′
i,T Q̂

−1
x,i =

Op,log(1).

A.4.5 Proof of Lemma 7

We have P [1χi = 0] ≤ P [τi,T ≥ χ2,T ] + P
[
CN

(
Q̂x,i

)
≥ χ1,T

]
=: P1,nT + P2,nT . Let us first control

P1,nT . We have P1,nT ≤ P

[
1

T

∑
t

Ii,t ≤ χ−1
2,T

]
≤ P

[
1

T

∑
t

(
Ii,t − τ−1

i

)
≤ χ−1

2,T −M
−1

]
, where we use

τi ≤M for all i (Assumption B.4 c)). Then, for 0 < δ < M−1/2 and T large such thatM−1−χ−1
2,T > δ, we

get the upper bound P1,nT ≤ P

[∣∣∣∣∣ 1

T

∑
t

(
Ii,t − τ−1

i

)∣∣∣∣∣ ≥ δ
]
. By using that

τ−1
i = E[Ii,t|γi], and P

[∣∣∣∣∣ 1

T

∑
t

(
Ii,t − τ−1

i

)∣∣∣∣∣ ≥ δ
]

= E

[
P

[∣∣∣∣∣ 1

T

∑
t

(Ii,t − E[Ii,t|γi])

∣∣∣∣∣ ≥ δ|γi
]]
≤

sup
γ∈[0,1]

P

[∣∣∣∣∣ 1

T

∑
t

(It(γ)− E[It(γ)])

∣∣∣∣∣ ≥ δ
]

, from Assumption B.1 d), it follows P1,nT = O(T−b̄), for any

b̄ > 0.

Let us now consider P2,nT . By using ‖Q̂x,i‖ ≤M (Assumption B.4 a)), we get eigmax(Q̂x,i) ≤M , and

thus CN
(
Q̂x,i

)
≤ M1/2

[
eigmin(Q̂x,i)

]−1/2
. Hence P2,nT ≤ P

[
eigmin(Q̂x,i) ≤M/χ2

1,T

]
. By using

that eigmin(Q̂x,i) ≥ eigmin(Qx,i)−‖Q̂x,i−Qx,i‖, we getP2,nT ≤P
[
‖Q̂x,i −Qx,i‖ ≥ eigmin(Qx,i)−M/χ2

1,T

]
.

Now, let δ > 0 be such that eigmin(Qx,i)−M/χ2
1,T > δ uniformly in i for large T (see Assumption B.4 d)).

Then, by using P
[
‖Q̂x,i −Qx,i‖ ≥ δ

]
≤ P

[∣∣∣∣∣ 1

T

∑
t

Ii,t(xi,txi,t −Qx,i)

∣∣∣∣∣ ≥ √δ
]

+P
[
τi,T ≥

√
δ
]
, we get

P2,nT ≤ P

[∣∣∣∣∣ 1

T

∑
t

Ii,t(xi,txi,t −Qx,i)

∣∣∣∣∣ ≥ √δ
]

+O(T−b̄). The first term in the RHS is O(T−b̄) by using

P

[∣∣∣∣∣ 1

T

∑
t

Ii,t(xi,txi,t −Qx,i)

∣∣∣∣∣ ≥ √δ
]
≤ sup

γ∈[0,1]
P

[∣∣∣∣∣ 1

T

∑
t

It(γ)(xt(γ)xt(γ)′ − E[xt(γ)xt(γ)′])

∣∣∣∣∣ ≥ √δ
]

and Assumption B.1 b). Then, P2,nT = O(T−b̄), for any b̄ > 0.
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A.4.6 Proof of Lemma 8

Let WT (γ) :=
1

T

∑
t

(It(γ)− E[It(γ)]) and rT := T−a for 0 < a < η/2. Since |WT (γ)| ≤ 1 for all

γ ∈ [0, 1], we have:

sup
γ∈[0,1]

E[|WT (γ)|4] ≤ sup
γ∈[0,1]

E[|WT (γ)|] = sup
γ∈[0,1]

ˆ 1

0
P [|WT (γ)| ≥ δ]dδ ≤ rT + sup

γ∈[0,1]

ˆ 1

rT

P [|WT (γ)| ≥ δ]dδ

≤ rT + C1T

ˆ 1

rT

exp
{
−C2δ

2T η
}
dδ + C3 exp

{
−C4T

η̄
}ˆ 1

rT

1

δ
dδ

≤ rT + C1T exp
{
−C2r

2
TT

η
}

+ C3 exp
{
−C4T

η̄
}

log(1/rT ) = o(1),

from Assumption B.1 d).

A.4.7 Proof of Lemma 9

By definition of S̃ij , we have

1

n

∑
i,j

∥∥∥S̃ij − Sij∥∥∥ =
1

n

∑
i,j

∥∥∥Ŝij1{‖Ŝij‖≥κ} − Sij∥∥∥
≤ 1

n

∑
i,j

∥∥∥Sij1{‖Sij‖≥κ} − Sij∥∥∥+
1

n

∑
i,j

∥∥∥Ŝij1{‖Ŝij‖≥κ} − Sij1{‖Sij‖≥κ}∥∥∥
=: I31 + I32.

By Assumption A.4,

I31 =
1

n

∑
i,j

‖Sij‖1{‖Sij‖<κ} ≤ max
i

∑
j

‖Sij‖q̄ κ1−q̄ ≤ κ1−q̄c0 (n) = Op

(
κ1−q̄nδ̄

)
, (41)

where c0(n) := max
i

∑
j

‖Sij‖q̄ = Op(n
δ̄).

Let us now consider I32:

I32 =
1

n

∑
i,j

∥∥∥Ŝij∥∥∥1{‖Ŝij‖≥κ,‖Sij‖<κ} +
1

n

∑
i,j

‖Sij‖1{‖Ŝij‖<κ,‖Sij‖≥κ}

+
1

n

∑
i,j

∥∥∥Ŝij − Sij∥∥∥1{‖Ŝij‖≥κ,‖Sij‖≥κ}
≤ max

i

∑
j

∥∥∥Ŝij∥∥∥1{‖Ŝij‖≥κ,‖Sij‖<κ} + max
i

∑
j

‖Sij‖1{‖Ŝij‖<κ,‖Sij‖≥κ}

+ max
i

∑
j

∥∥∥Ŝij − Sij∥∥∥1{‖Ŝij‖≥κ,‖Sij‖≥κ} =: I33 + I34 + I35.
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From Assumption A.4, we have:

I35 ≤ max
i,j

∥∥∥Ŝij − Sij∥∥∥max
i

∑
j

‖Sij‖q̄ κ−q̄ = Op
(
ψnT c0 (n)κ−q̄

)
. (42)

Let us study I33:

I33 ≤ max
i

∑
j

∥∥∥Ŝij − Sij∥∥∥1{‖Ŝij‖≥κ,‖Sij‖<κ} + max
i

∑
j

‖Sij‖1{‖Sij‖<κ} =: I36 + I37.

By Assumption A.4,

I37 ≤ κ1−q̄c0 (n) . (43)

Now take v ∈ (0, 1) . Let Ni (ε) :=
∑
j

1{‖Ŝij−Sij‖>ε}, for ε > 0, then

I36 = max
i

∑
j

∥∥∥Ŝij − Sij∥∥∥1{‖Ŝij‖≥κ,‖Sij‖≤vκ} + max
i

∑
j

∥∥∥Ŝij − Sij∥∥∥1{‖Ŝij‖≥κ,vκ<‖Sij‖<κ}
≤ max

i,j

∥∥∥Ŝij − Sij∥∥∥max
i
Ni ((1− v)κ) + max

i,j

∥∥∥Ŝij − Sij∥∥∥ c0 (n) (vκ)−q̄ .

Moreover, by the Chebyschev inequality, for any positive sequence RnT we have:

P

[
max
i
Ni(ε) ≥ RnT

]
≤ nP [Ni(ε) ≥ RnT ] ≤ n

RnT
E[Ni(ε)] ≤

n2

RnT
max
i,j

P
[∥∥∥Ŝij − Sij∥∥∥ ≥ ε] ,

which implies max
i
Ni (ε) = Op

(
n2 max

i,j
P
[∥∥∥Ŝij − Sij∥∥∥ ≥ ε]) . Thus,

I36 = Op
(
ψnTn

2ΨnT ((1− v)κ) + ψnT c0 (n) (vκ)−q̄
)
. (44)

Finally, we consider I34. We have

I34 ≤ max
i

∑
j

(∥∥∥Ŝij − Sij∥∥∥+
∥∥∥Ŝij∥∥∥)1{‖Ŝij‖<κ,‖Sij‖≥κ}

≤ max
i,j

∥∥∥Ŝij − Sij∥∥∥max
i

∑
j

1{‖Sij‖≥κ} + κmax
i

∑
j

1{‖Sij‖≥κ}

= Op
(
ψnT c0 (n)κ−q̄ + c0 (n)κ1−q̄) . (45)

Combining (41)-(45) the result follows.
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A.4.8 Proof of Lemma 10

By using ε̂i,t = εi,t − x′i,t
(
β̂i − βi

)
and Ŝ0

ij =
1

Tij

∑
t

Iij,tεi,tεj,txi,tx
′
j,t, we have:

Ŝij = Ŝ0
ij −

1

Tij

∑
t

Iij,tεi,tx
′
j,t

(
β̂j − βj

)
xi,tx

′
j,t −

1

Tij

∑
t

Iij,tεj,tx
′
i,t

(
β̂i − βi

)
xi,tx

′
j,t

+
1

Tij

∑
t

Iij,t

(
β̂i − βi

)′
xi,tx

′
j,t

(
β̂j − βj

)
xi,tx

′
j,t

=: Ŝ0
ij −Aij −Bij + Cij ,

where Aij = Bji. Then, for any i, j, we have
∥∥∥Ŝij − Sij∥∥∥ ≤ ∥∥∥Ŝ0

ij − Sij
∥∥∥ + ‖Aij‖ + ‖Bij‖ + ‖Cij‖. We

get for any ξ ≥ 0 :

ΨnT (ξ) ≤ max
i,j

P

[∥∥∥Ŝ0
ij − Sij

∥∥∥ ≥ ξ

4

]
+ max

i,j
P

[
‖Aij‖ ≥

ξ

4

]
+ max

i,j
P

[
‖Bij‖ ≥

ξ

4

]
+ max

i,j
P

[
‖Cij‖ ≥

ξ

4

]
= Ψ0

nT (ξ/4) + 2P1,nT (ξ/4) + P2,nT (ξ/4) , (46)

where Ψ0
nT (ξ/4) := max

i,j
P

[∥∥∥Ŝ0
ij − Sij

∥∥∥ ≥ ξ

4

]
, P1,nT (ξ/4) := max

i,j
P

[
‖Aij‖ ≥

ξ

4

]
, and

P2,nT (ξ/4) := max
i,j

P

[
‖Cij‖ ≥

ξ

4

]
. Let us bound the three terms in the RHS of Inequality (46).

a) Bound of Ψ0
nT (ξ/4). We use that Ŝ0

ij − Sij =
1

Tij

∑
t

Iij,t
(
εi,tεj,txi,tx

′
j,t − Sij

)
= τij,T

1

T

∑
t

Iij,t
(
εi,tεj,txi,tx

′
j,t − E

[
εi,tεj,txi,tx

′
j,t|γi, γj

])
and τij ≤M . Then:

‖Ŝ0
ij − Sij‖ ≤ M

∥∥∥∥∥ 1

T

∑
t

Iij,t
(
εi,tεj,txi,tx

′
j,t − E

[
εi,tεj,txi,tx

′
j,t|γi, γj

])∥∥∥∥∥
+|τij,T − τij |

∥∥∥∥∥ 1

T

∑
t

Iij,t
(
εi,tεj,txi,tx

′
j,t − E

[
εi,tεj,txi,tx

′
j,t|γi, γj

])∥∥∥∥∥ .
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We deduce:

Ψ0
nT (ξ/4)

≤ max
i,j

P

[∥∥∥∥∥ 1

T

∑
t

Iij,t
(
εi,tεj,txi,tx

′
j,t − E

[
εi,tεj,txi,tx

′
j,t|γi, γj

])∥∥∥∥∥ ≥ ξ

8M

]
+ max

i,j
P

[
|τij,T − τij | ≥

√
ξ

8

]

+ max
i,j

P

[∥∥∥∥∥ 1

T

∑
t

Iij,t
(
εi,tεj,txi,tx

′
j,t − E

[
εi,tεj,txi,tx

′
j,t|γi, γj

])∥∥∥∥∥ ≥
√
ξ

8

]

≤ 2 max
i,j

P

[∥∥∥∥∥ 1

T

∑
t

Iij,t
(
εi,tεj,txi,tx

′
j,t − E

[
εi,tεj,txi,tx

′
j,t|γi, γj

])∥∥∥∥∥ ≥ ξ

8M

]
+ max

i,j
P

[
|τij,T − τij | ≥

√
ξ

8

]
=: 2P3,nT + P4,nT ,

for small ξ. We use

P3,nT ≤ sup
γ,γ̃∈[0,1]

P

[∥∥∥∥∥ 1

T

∑
t

It(γ)It(γ̃)
(
εt(γ)εt(γ̃)xt(γ)xt(γ̃)′ − E

[
εt(γ)εt(γ̃)xt(γ)xt(γ̃)′

])∥∥∥∥∥ ≥ ξ

8M

]

and Assumption B.1 e) to get P3,nT ≤ C1T exp
{
−C∗2ξ2T η

}
+ C∗3ξ

−1 exp
{
−C4T

η̄
}

, for some constants

C1, C
∗
2 , C

∗
3 , C4 > 0. To bound P4,nT , we use τij ≤M and |τij,T − τij | ≤ τijτij,T |τ−1

ij,T − τ
−1
ij | ≤

τij
|τ−1
ij,T − τ

−1
ij |

τ−1
ij − |τ

−1
ij,T − τ

−1
ij |
≤ 2M2|τ−1

ij,T − τ
−1
ij |, if |τ−1

ij,T − τ−1
ij | ≤ M−1/2. Thus, we have P4,nT ≤

2max
i,j

P

[
|τ−1
ij,T − τ

−1
ij | ≥

1

2M2

√
ξ

8

]
, for small ξ. By using τ−1

ij,T =
1

T

∑
t

Iij,t and τ−1
ij = E[Iij,t|γi, γj ],

from Assumption B.1 d) we get:

max
i,j

P

[
|τ−1
ij,T − τ

−1
ij | ≥

1

2M2

√
ξ

8

]
≤ sup

γ,γ̃∈[0,1]
P

[∣∣∣∣∣ 1

T

∑
t

(It(γ)It(γ̃)− E[It(γ)It(γ̃)])

∣∣∣∣∣ ≥ 1

2M2

√
ξ

8

]
≤ C1T exp {−C∗2ξT η}+ C∗3ξ

−1/2 exp
{
−C4T

η̄
}
.

We deduce:

Ψ0
nT (ξ/4) ≤ C∗1T exp

{
−C∗2ξ2T η

}
+ C∗3ξ

−1 exp
{
−C4T

η̄
}
. (47)

b) Bound of P1,nT (ξ/4) . For some constant C, we have

‖Aij‖ ≤ Cτij,T max
k,l,m

∣∣∣∣∣ 1

T

∑
t

Iij,tεi,txi,t,kxi,t,lxj,t,m

∣∣∣∣∣ ∥∥∥β̂j − βj∥∥∥ .
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Let χ3,T = (log T )a, for a > 0. From a similar argument as in the proof of Lemma 7, and Assumption B.1

d), we have max
i,j

P [τij,T ≥ χ3,T ] = O(T−b̄), for any b̄ > 0. Thus,

P1,nT (ξ/4)

≤ max
i,j

P

[
τij,T max

k,l,m

∣∣∣∣∣ 1

T

∑
t

Iij,tεi,txi,t,kxi,t,lxj,t,m

∣∣∣∣∣ ∥∥∥β̂j − βj∥∥∥ ≥ ξ

4C

]

≤ max
i,j

P [τij,T ≥ χ3,T ] + max
i,j

P

[
max
k,l,m

∣∣∣∣∣ 1

T

∑
t

Iij,tεi,txi,t,kxi,t,lxj,t,m

∣∣∣∣∣ ≥
√

ξ

4χ3,TC
and τij,T ≤ χ3,T

]

+ max
i,j

P

[∥∥∥β̂j − βj∥∥∥ ≥
√

ξ

4χ3,TC
and τij,T ≤ χ3,T

]

≤ d3 max
i,j

max
k,l,m

P

[∣∣∣∣∣ 1

T

∑
t

Iij,tεi,txi,t,kxi,t,lxj,t,m

∣∣∣∣∣ ≥
√

ξ

4χ3,TC

]

+P

[∥∥∥β̂j − βj∥∥∥ ≥
√

ξ

4χ3,TC
and τj,T ≤ χ3,T

]
+O(T−b̄). (48)

By Assumption B.1 f),

max
i,j

max
k,l,m

P

[∣∣∣∣∣ 1

T

∑
t

Iij,tεi,txi,t,kxi,t,lxj,t,m

∣∣∣∣∣ ≥
√

ξ

4χ3,TC

]
≤ C1T exp

{
−C

∗
2ξ

χ3,T
T η
}

+C∗3

√
χ3,T

ξ
exp

{
−C4T

η̄
}
. (49)

Let us now focus on P

[∥∥∥β̂j − βj∥∥∥ ≥
√

ξ

4χ3,TC
and τj,T ≤ χ3,T

]
. By using

∥∥∥β̂j − βj∥∥∥ ≤ χ3,T

∥∥∥Q−1
x,j

∥∥∥∥∥∥∥∥ 1

T

∑
t

Ij,txj,tεj,t

∥∥∥∥∥+ χ3,T

∥∥∥Q̂−1
x,j −Q

−1
x,j

∥∥∥∥∥∥∥∥ 1

T

∑
t

Ij,txj,tεj,t

∥∥∥∥∥
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when τj,T ≤ χ3,T , we get

P

[∥∥∥β̂j − βj∥∥∥ ≥
√

ξ

4χ3,TC
and τj,T ≤ χ3,T

]

≤ P

[∥∥∥∥∥ 1

T

∑
t

Ij,txj,tεj,t

∥∥∥∥∥ ≥ 1

2

√
ξ

4χ3,TC
χ−1

3,T

∥∥∥Q−1
x,j

∥∥∥−1
]

+P

[∥∥∥Q̂−1
x,j −Q

−1
x,j

∥∥∥∥∥∥∥∥ 1

T

∑
t

Ij,txj,tεj,t

∥∥∥∥∥ ≥ 1

2

√
ξ

4χ3,TC
χ−1

3,T

]

≤ P

[∥∥∥∥∥ 1

T

∑
t

Ij,txj,tεj,t

∥∥∥∥∥ ≥
√

ξ

16χ3
3,TC

∥∥∥Q−1
x,j

∥∥∥−1
]

+P

∥∥∥Q̂−1
x,j −Q

−1
x,j

∥∥∥ ≥ ( ξ

16χ3
3,TC

)1/4
+ P

∥∥∥∥∥ 1

T

∑
t

Ij,txj,tεj,t

∥∥∥∥∥ ≥
(

ξ

16χ3
3,TC

)1/4


≤ 2P

[∥∥∥∥∥ 1

T

∑
t

Ij,txj,tεj,t

∥∥∥∥∥ ≥
√

ξ

16χ3
3,TC

∥∥∥Q−1
x,j

∥∥∥−1
]

+ P

∥∥∥Q̂−1
x,j −Q

−1
x,j

∥∥∥ ≥ ( ξ

16χ3
3,TC

)1/4
 , (50)

for small ξ. From Assumption B.4 d),
∥∥∥Q−1

x,j

∥∥∥ is bounded uniformly in j. Then, from Assumption B.1c),

the first probability in the RHS of Inequality (50) is such that:

P

[∥∥∥∥∥ 1

T

∑
t

Ij,tx,jtεj,t

∥∥∥∥∥ ≥
√

ξ

16χ3
3,TC

∥∥∥Q−1
x,j

∥∥∥−1
]
≤ C1T exp

{
−C

∗
2ξ

χ3
3,T

T η

}
+ C∗3

√
χ3

3,T

ξ
exp

{
−C4T

η̄
}
.

(51)

To bound the second probability in the RHS of Inequality (50) we use the next Lemma.

Lemma 13 For any two non-singular matrices A and B such that ‖A−B‖ < 1

2
‖A−1‖−1 we have:

‖B−1 −A−1‖ ≤ 2‖A−1‖2‖A−B‖.

From Lemma 13, we get:

P

∥∥∥Q̂−1
x,j −Q

−1
x,j

∥∥∥ ≥ ( ξ

16χ3
3,TC

)1/4
 ≤ P

∥∥∥Q̂x,j −Qx,j∥∥∥ ≥ 1

2

(
ξ

16χ3
3,TC

)1/4

‖Q−1
x,j‖

−2


+P

[∥∥∥Q̂x,j −Qx,j∥∥∥ ≥ 1

2
‖Q−1

x,j‖
−1

]

≤ 2P

∥∥∥Q̂x,j −Qx,j∥∥∥ ≥ 1

2

(
ξ

16χ3
3,TC

)1/4

‖Q−1
x,j‖

−2

 ,
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for small ξ > 0. From Assumptions B.1b) and B.1c),

P

∥∥∥Q̂x,j −Qx,j∥∥∥ ≥ 1

2

(
ξ

16χ3
3,TC

)1/4

‖Q−1
x,j‖

−2

 ≤ C1T exp

{
−C∗2

√
ξ

χ3
3,T

T η

}

+2C∗3

(
χ3

3,T

ξ

)1/4

exp
{
−C4T

η̄
}
. (52)

Then, from (48)-(52) we get:

P1,nT (ξ/4) ≤ C∗1T exp
{
−C∗2ξT η/χ3

3,T

}
+
C∗3χ

3/2
3,T√
ξ

exp
{
−C4T

η̄
}

+O(T−b̄), (53)

for small ξ > 0 and some constants C∗1 , C
∗
2 , C

∗
3 , C4 > 0.

c) Bound of P2,nT (ξ/4) . We have from Assumption B.4

‖Cij‖ ≤
∥∥∥β̂i − βi∥∥∥∥∥∥β̂j − βj∥∥∥ sup

k,l,m,p

∣∣∣∣∣ 1

Tij

∑
t

Iij,txi,t,kxj,t,lxi,t,mxj,t,p

∣∣∣∣∣
≤ C

∥∥∥β̂i − βi∥∥∥∥∥∥β̂j − βj∥∥∥ .
Thus, we have:

P2,nT (ξ/4) ≤ max
i,j

P

[
C
∥∥∥β̂i − βi∥∥∥∥∥∥β̂j − βj∥∥∥ ≥ ξ

4

]
≤ 2P

[∥∥∥β̂i − βi∥∥∥ ≥ ( ξ

4C

)1/2
]
.

By the same arguments as above, we get:

P2,nT (ξ/4) ≤ C∗1T exp
{
−C∗2ξT η/χ3

3,T

}
+
C∗3χ

3/2
3,T√
ξ

exp
{
−C4T

η̄
}
, (54)

for small ξ > 0 and some constants C∗1 , C
∗
2 , C

∗
3 , C4 > 0.

d) Conclusion. From inequalities (46), (47), (53) and (54), we deduce:

ΨnT (ξ) ≤ C∗1T exp
{
−C∗2ξ2

TT
η
}

+
C∗3
ξT

exp
{
−C4T

η̄
}

+O(T−b̄),

where ξT := min{ξ,
√
ξ/χ3

3,T }, for small ξ > 0, and constants C∗1 , C
∗
2 , C

∗
3 , C4 > 0. For ξ = (1− v)κ and

κ = M

√
log n

T η
, we get ξT = (1− ν)κ for large T and

n2ΨnT ((1− v)κ) ≤ C∗1n
2T exp

{
−C∗2M2 (1− v)2 log n

}
+

n2C∗3
(1− v)M

√
T η

log n
exp

{
−C∗4T η̄

}
+O(n2T−b̄) = O (1) ,
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for b̄ and M sufficiently large, when n, T →∞ such that n = O (T γ̄) for γ̄ > 0.

Finally, let us prove that ψnT = Op

(√
log n

T η

)
. Let ε > 0. Then,

P

[
ψnT ≥

√
log n

T η
ε

]
≤ n2 max

i,j
P

[∥∥∥Ŝij − Sij∥∥∥ ≥√ log n

T η
ε

]

= n2ΨnT

(√
log n

T η
ε

)
≤ n2ΨnT ((1− v)κ) = O (1) ,

for large ε. The conclusion follows.

A.4.9 Proof of Lemma 11

Under the null hypothesisH0, and by definition of the fitted residual êi, we have

êi = β1,i − β3,iν̂ + C ′ν̂

(
β̂i − βi

)
= β1,i − β3,iν + C ′ν̂

(
β̂i − βi

)
− β3,i (ν̂ − ν) (55)

= C ′ν̂

(
β̂i − βi

)
− β3,i (ν̂ − ν) .

By definition of Q̂e, it follows

Q̂e =
1

n

∑
i

(
β̂i − βi

)′
Cν̂ŵiC

′
ν̂

(
β̂i − βi

)
− 2 (ν̂ − ν)′

1

n

∑
i

β′3,iŵiC
′
ν̂

(
β̂i − βi

)
+ (ν̂ − ν)′

1

n

∑
i

β′3,iŵiβ3,i (ν̂ − ν)

=:
1

n

∑
i

(
β̂i − βi

)′
Cν̂ŵiC

′
ν̂

(
β̂i − βi

)
− 2I71 + I72.

Let us study the second term in the RHS:

I71 =
1√
nT

(ν̂ − ν)′
1√
n

∑
i

τi,Tβ
′
3,iŵiC

′
ν̂Q̂
−1
x,iYi,T =:

1√
nT

(ν̂ − ν)′I711,

where I711 = Op(1) by the same arguments used to control term I11 in the proof of Proposition 4. We have

ν̂ − ν = Op,log

(
1√
nT

+
1

T

)
and Cν̂ = Op (1) by Lemma 6 (v). Thus, I71 = Op,log

(
1

nT
+

1

T
√
nT

)
.

Let us now consider I72. From Lemma 3 (ii)-(iii) and Lemma 6 (v), we have I72 = Op,log

(
1

nT
+

1

T 2

)
.

The conclusion follows.
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A.4.10 Proof of Lemma 12

UnderH1, and using Equation (55), we have êi = ei +C ′ν̂

(
β̂i − βi

)
−β3,i (ν̂ − ν∞) . By definition of Q̂e,

it follows:

Q̂e =
1

n

∑
i

e′iŵiei + 2
1

n

∑
i

(
β̂i − βi

)′
Cν̂ŵiei − 2 (ν̂ − ν∞)′

1

n

∑
i

β′3,iŵiei

+
1

n

∑
i

(
β̂i − βi

)′
Cν̂ŵiC

′
ν̂

(
β̂i − βi

)
− 2 (ν̂ − ν∞)′

1

n

∑
i

β′3,iŵiC
′
ν̂

(
β̂i − βi

)
+ (ν̂ − ν∞)′

1

n

∑
i

β′3,iŵiβ3,i (ν̂ − ν∞) =: I81 + I82 + I83 + I84 + I85 + I86. (56)

From Equations (30) and (32) and similar arguments as in Section A.2.4 c), we have I81 =
1

n

∑
i

wie
2
i+

Op,log

(
1√
T

)
. By similar arguments as for term I11 in the proof of Proposition 4, we have

I82 =
2√
nT

(
1√
n

∑
i

τi,TY
′
i,T Q̂

−1
x,iCν̂ŵiei

)
= Op

(
1√
nT

)
. By using

1

n

∑
i

β′3,iŵiei =
1

n

∑
i

β′3,iwiei+

Op,log

(
1√
T

)
= Op

(
1√
n

)
+Op,log

(
1√
T

)
and ν̂ − ν∞ = Op,log

(
1√
n

+
1

T

)
, we get

I83 = Op,log

(
1

n
+

1√
nT

+
1√
T 3

)
. Similar as for I82, we have I85 = Op,log

(
1

n
√
T

+
1√
nT 3

)
. From

ν̂ − ν∞ = Op,log

(
1√
n

+
1

T

)
, we have I86 = Op,log

(
1

n
+

1

T 2

)
. The conclusion follows.

A.4.11 Proof of Lemma 13

Write:

B−1 −A−1 =
[
A
(
I −A−1 (A−B)

)]−1 −A−1 =
{[
I −A−1 (A−B)

]−1 − I
}
A−1,

and use that, for a square matrix C such that ‖C‖ < 1, we have

(I − C)−1 = I + C + C2 + C3 + ...

and ∥∥∥(I − C)−1 − I
∥∥∥ ≤ ‖C‖+ ‖C‖2 + ... ≤ ‖C‖

1− ‖C‖
.
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Thus, we get:

∥∥B−1 −A−1
∥∥ ≤

∥∥A−1 (A−B)
∥∥

1− ‖A−1 (A−B)‖
∥∥A−1

∥∥
≤

∥∥A−1
∥∥2 ‖A−B‖

1− ‖A−1‖ ‖A−B‖
≤ 2

∥∥A−1
∥∥2 ‖A−B‖ ,

if ‖A−B‖ < 1

2
‖A−1‖−1.

Appendix 5 Link to Chamberlain and Rothschild (1983)

In this appendix, we establish the link between the no-arbitrage conditions and asset pricing restrictions in

CR on the one hand, and the asset pricing restriction (3) in the other hand. As in Appendix A.2.1, for any

sequence (γi) in Γ let Pn be the set of portfolios investing in the n assets γ1, γ2, ..., γn with F0-measurable

shares. By assuming that the shares are finite P -a.s., we have E
[
p2
n|F0

]
<∞, P -a.s., and we can build on

the framework of Hansen and Richard (1987) with conditionally square integrable payoffs. Moreover, we

denote by P =

∞⋃
n=1

Pn the set of finite portfolios with conditionally square integrable payoff.

Let J ∗ ⊂ Γ be the set of countable collections of assets (γi) such that Conditions (i) and (ii) hold for

any portfolio sequence (pn) ∈ P , where Conditions (i) and (ii) are: (i) If V [pn|F0]
a.s→ 0 and C(pn)

a.s→ 0,

then E [pn|F0]
a.s→ 0; (ii) If V [pn|F0]

a.s→ 0, C(pn) ≥ 0, P -a.s., lim sup
n→∞

|C(pn)| ≥ ε on a set of nonzero

measure, for a constant ε > 0, and E[pn|F0]
a.s→ δ̄, for a constant δ̄, then δ̄ > 0. Condition (i) means that,

if the conditional variability and cost vanish, so does the conditional expected return. Condition (ii) means

that, if the conditional variability vanishes and the cost is positive, the conditional expected return is positive.

They correspond to Conditions A.1 (i) and (ii) in CR written conditionally on F0 and for a given countable

collection of assets (γi). Hence, the set J ∗ is the set permitting no asymptotic arbitrage opportunities in the

sense of CR in a conditional setting (see also Chamberlain (1983)). We use the convergence of conditional

expectations as in Hansen and Richard (1987), and focus on a.s. convergence as opposed to convergence

in probability (see Hansen and Richard (1987), footnote 5 on p. 594) since this helps when defining the

extension of the cost function C(·) to the completion of set P . Let J ∗∗ ⊂ Γ be the set of sequences (γi)
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such that inf
ν∈RK

∞∑
i=1

[a(γi)− b(γi)′ν]2 <∞, P -a.s. These sequences met the summability condition of CR

in a conditional setting. In the proof of the following proposition, we assume that β is bounded on [0, 1]×Ω

and E [f1|F0] is bounded on Ω.

Proposition APR: Under Assumptions APR.1-APR.3, and (i) inf
n≥1

eigmin (Σε,t,n) > 0, P -a.s.,

for a.e. (γi) in Γ, (ii) eigmin (V [ft|Ft−1]) > 0, P -a.s., we have: either µ̄Γ (J ∗) = µ̄Γ(J ∗∗) = 1, or

µ̄Γ (J ∗) = µ̄Γ(J ∗∗) = 0. The former case occurs if, and only if, the asset pricing restriction (3) holds.

When we condition on F0, the fact that the set of sequences such that inf
ν∈RK

∞∑
i=1

[a(γi)− b(γi)′ν]2 <∞

has µΓ-measure equal to either 1, or 0, is a consequence of the Kolmogorov zero-one law (e.g., Billingsley

(1995)). Indeed, inf
ν∈RK

∞∑
i=1

[a(γi)− b(γi)′ν]2 <∞ if, and only if, inf
ν∈RK

∞∑
i=n

[a(γi)− b(γi)′ν]2 <∞, for any

n ∈ N. Thus, the zero-one law applies since the event inf
ν∈RK

∞∑
i=1

[a(γi)− b(γi)′ν]2 <∞ belongs to the tail

sigma-field T =
∞⋂
n=1

σ(γi, i = n, n+ 1, ...), and the variables γi are i.i.d. under measure µΓ. Proposition

APR shows that this zero-one measure property applies also for the set J ∗∗. Proposition APR shows that

the asset pricing (3) characterizes the functions β = (a, b′)′ defined on [0, 1] × Ω that are compatible with

absence of asymptotic arbitrage opportunities in the continuum economy under the definitions of arbitrage

used in CR and in Hansen and Richard (1987). Moreover, Proposition APR also provides a reverse implica-

tion compared to Proposition 1: when the asset pricing restriction (3) does not hold, asymptotic arbitrage in

the sense of Assumption APR.4, or of Assumptions A.1 i) and ii) of CR, exists for µ̄Γ-almost any countable

collection of assets.

Proof of Proposition APR: The proof involves four steps.

STEP 1: If the asset pricing restriction (3) holds, then µ̄Γ (J ∗∗) = 1. Indeed, if the asset pricing restriction

(3) holds for some F0-measurable function ν, we have for a.e. ω ∈ Ω: a(γ, ω)− b(γ, ω)′ν(ω) = 0 for a.e.

γ ∈ [0, 1]. Since functions a and b are jointly measurable on [0, 1]× Ω, this implies that for a.e. γ ∈ [0, 1]:

a(γ, ω)−b(γ, ω)′ν(ω) = 0 for a.e. ω ∈ Ω. Then, the set

{
(γi) ∈ Γ :

∞∑
i=1

[a(γi)− b(γi)′ν]2 = 0, P -a.s.

}
=

∞⋂
i=1

{
(γi) ∈ Γ : a(γi, ω)− b(γi, ω)′ν(ω) = 0, for a.e. ω ∈ Ω

}
has µΓ-measure 1. Since this set is a subset

of J ∗∗, it follows µ̄Γ (J ∗∗) = 1.
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STEP 2: If the asset pricing restriction (3) does not hold, then µ̄Γ (J ∗∗) = 0. If the asset pricing restriction

(3) does not hold, the quantity δ = inf
ν∈RK

ˆ
[a(γ)− b(γ)′ν]2dγ is such that δ(ω) ≥ δ for all ω ∈ A, for a set

A ∈ F0 with P (A) > 0 and a scalar δ > 0. To prove µ̄Γ (J ∗∗) = 0, we show J1∩J ∗∗ = ∅, where J1 is the

set with µΓ-measure 1 defined in Lemma 1. Indeed, J1 ∩ J ∗∗ = ∅ implies that J ∗∗ ⊂ J c1 is a negligible set

under measure µΓ, and thus has µ̄Γ measure 0. The proof of J1∩J ∗∗ = ∅ is by contradiction. Let us assume

that sequence (γi) is in J1 ∩ J ∗∗, and let ξn := inf
ν∈RK

1

n

n∑
i=1

[a(γi)− b(γi)′ν]2. Since (γi) ∈ J1, from In-

equality (19), we have ξn1A∩S∗n ≥ 2−1δ1A∩S∗n , where the set S∗n defined in the proof of Proposition 1 is such

that P (S∗n) → 1 as n → ∞. This implies that E[ξ2
n] ≥ E[ξ2

n|1A∩S∗n = 1]P (A ∩ S∗n) ≥ (δ2/4)P (A ∩ S∗n)

→ (δ2/4)P (A), and thus:

lim inf
n→∞

E[ξ2
n] > 0. (57)

Since (γi) ∈ J ∗∗, we have ξn → 0, P -a.s.. Moreover, since function β is bounded, we have |ξn| ≤ C,

P -a.s., for some constant C. Then, by the Lebesgue dominated convergence theorem, it follows that

E[ξ2
n]→ 0. This is impossible, if (57) holds.

STEP 3: If the asset pricing restriction (3) holds, then µ̄Γ(J ∗) = 1. If (3) holds, it follows that µn = Bnλ,

P -a.s., for all n, for µΓ-almost all sequences (γi), where λ = ν + E [f1|F0]. Then, for any portfolio

sequence (pn), we get E[pn|F0] = R0C(pn) +α′nBnλ. From Assumption APR.2 (iv) and boundedness of

E [f1|F0], it follows that λ is bounded on Ω. Moreover, we

have: V [pn|F0] = (B
′
nαn)′V [f1|F0](B

′
nαn) + α

′
nΣε,1,nαn ≥ eigmin(V [f1|F0])

∥∥∥B′nαn∥∥∥2
, where

eigmin(V [f1|F0]) > 0, P -a.s.. Then, Conditions (i) and (ii) in the definition of set J ∗ follow, for µΓ-

almost any sequence (γi), that is, µΓ(J ∗) = µ̄Γ(J ∗) = 1.

STEP 4: If the asset pricing restriction (3) does not hold, then µ̄Γ(J ∗) = 0. To prove that µ̄Γ(J ∗) = 0,

we show that J ∗ ∩ J ∩ J1 = ∅, where J and J1 are the sets with µΓ-measure 1 defined in Assumption

APR.3 and in Lemma 1, respectively. The proof is by contradiction. Let us assume that sequence (γi) is in

set J ∗ ∩ J ∩ J1. By following the same arguments as in CR on p. 1292 and 1295, we have:

µ′nΣ−1
n µn = sup

pn∈Pn:C(pn)=0
E[pn|F0]2/V [pn|F0], (58)

Σ−1
n ≥ eigmax(Σε,1,n)−1[In −Bn(B′nBn)−1B′n], (59)

P -a.s.. Let us prove that the RHS of (58) is upper bounded uniformly in n. We use Hilbert space methods
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as in Hansen and Richard (1987) applied to the conditional economy generated by the countable collection

of assets (γi). Let 〈p, q〉F0 = E[pq|F0] and ‖p‖F0 = 〈p, p〉1/2F0
be the conditional scalar product and norm

in the linear space of F1-measurable random variables, which are square integrable conditionally to F0.

Conditional convergence of (pn) to p is defined as ‖pn − p‖F0

a.s.→ 0 for n → ∞. Conditional Cauchy

sequences are defined similarly. Since (γi) ∈ J ∗, Condition (ii) is satisfied for any portfolio sequence in

P . This implies that Condition (iii): If E[p2
n|F0]

a.s.→ 0, then C(pn)
a.s.→ 0, holds for any portfolio sequence

(pn) in P . Indeed, suppose that (pn) is such that E[p2
n|F0]

a.s.→ 0 but C(pn) does not converge to 0 a.s..

Define the new portfolio sequence (p′n), such that p′n = pn if C(pn) ≥ 0, and p′n = −pn otherwise. Then,

portfolio sequence (p′n) violates Condition (ii), which is impossible. Condition (iii) implies conditional

continuity of function C (·) at the zero payoff in P , and corresponds to Assumption 2.3 in Hansen and

Richard (1987). Now, by using Condition (iii), we can extend the cost function C(·) to the linear space

P̄ , that is the conditional completion of P w.r.t. the limits of conditional Cauchy sequences. Indeed, let

p ∈ P̄ , and let (pn) be a conditional Cauchy sequence in P converging conditionally to p. Then, C(pn) is

a Cauchy sequence in R, P -a.s.. By the completeness property of R, this Cauchy sequence converges to a

unique value, P -a.s., which we define as C(p). For any p ∈ P̄ , random variable C (p) is F0-measurable

by Theorem 20.A in Halmos (1950). This extension of the function C(·) on P̄ is conditionally linear and

conditionally continuous at the zero payoff. By Theorem 2.1 in Hansen and Richard (1987), there exists a

F1-measurable random variable c such that E[c2|F0] < ∞ and C(p) = E[cp|F0], P -a.s., for any portfolio

p ∈ P̄ . This property is the conditional analogue of the Riesz Representation Theorem. Any portfolio

p ∈ P̄ can be written as p = π0 + π1c + p̃, where π0 and π1 are F0-measurable, and p̃ is conditionally

orthogonal to 1 and c, namely, E[p̃|F0] = E[cp̃|F0] = 0. If the portfolio p has zero cost, i.e., C(p) = 0,

then p = π0

(
1− E[c|F0]E[c2|F0]−1c

)
+ p̃ =: π0p

∗ + p̃. The payoff p∗ is the residual of the conditional

projection of the constant payoff 1 on the payoff c. Since the component p̃ contributes to the conditional

variance of portfolio p but not to its conditional mean, we deduce that for any portfolio p ∈ P̄ such that

C(p) = 0, we get:

E[p|F0]2/V [p|F0] ≤ E[p∗|F0]2/V [p∗|F0] =: ρ2 <∞, (60)

P -a.s. (see CR, Corollary 1, for a similar result in their unconditional framework). From (58), (59), and (60),

we get: ρ2eigmax(Σε,1,n) ≥ µ′n
(
In −Bn(B′nBn)−1B′n

)
µn = min

λ∈RK
‖µn −Bnλ‖2 = min

ν∈RK
‖An −Bnν‖2 =
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min
ν∈RK

n∑
i=1

[a(γi)− b(γi)′ν]2, for any n ∈ N, P -a.s.. Hence, we deduce that ξn = min
ν∈RK

1

n

n∑
i=1

[a(γi)− b(γi)′ν]2

is such that: ξn ≤ ρ2 1
neigmax(Σε,1,n), for any n, P -a.s. Since (γi) ∈ J , from Assumption APR.3, the RHS

converges in L2 to 0. Then, we get E[ξ2
n] → 0 as n → ∞. However, since the asset pricing restriction (3)

does not hold and (γi) ∈ J1, we know from Inequality (57) that E[ξ2
n] is bounded away from 0, and we get

a contradiction.

Appendix 6 Check of assumptions under block dependence

In this appendix, we verify that the eigenvalue condition in Assumption APR.3, and the cross-sectional/time-

series dependence and CLT conditions in Assumptions A.1-A.5, are satisfied under a block-dependence

structure in a time-invariant and serially i.i.d. framework. We start by providing the main result (Section

A.6.1), we prove it (Section A.6.2), and then prove two auxiliary lemmas (Sections A.6.3 and A.6.4).

A.6.1 Main result

Let us assume that:

BD.1 The errors εt(γ) are i.i.d. over time with E[εt(γ)] = 0 and E[εt(γ)3] = 0, for all γ ∈ [0, 1]. For any

n, there exists a partition of the interval [0, 1] into Jn ≤ n subintervals I1, ..., IJn , such that εt(γ) and

εt(γ
′) are independent if γ and γ′ belong to different subintervals, and Jn →∞ as n→∞.

BD.2 The blocks are such that n
Jn∑
m=1

B2
m = O(1), n3/2

Jn∑
m=1

B3
m = o(1), where Bm =

ˆ
Im

dG(γ).

BD.3 The factors (ft) and the indicators (It(γ)), γ ∈ [0, 1], are i.i.d. over time, mutually independent, and

independent of the errors (εt(γ)), γ ∈ [0, 1].

BD.4 There exists a constant M such that ‖ft‖ ≤ M , P -a.s.. Moreover, sup
γ∈[0,1]

E[|εt(γ)|6] <∞,

sup
γ∈[0,1]

‖β(γ)‖ <∞ and inf
γ∈[0,1]

E[It(γ)] > 0.

The block-dependence structure as in Assumption BD.1 is satisfied for instance when there are unobserved

industry-specific factors independent among industries and over time, as in Ang, Liu, and Schwarz (2008).

In empirical applications, blocks can match industrial sectors. Then, the number Jn of blocks amounts to a

24



couple of dozens, and the number of assets n amounts to a couple of thousands. There are approximately

nBm assets in block m, when n is large. In the asymptotic analysis, Assumption BD.2 on block sizes

and block number requires that the largest block size shrinks with n and that there are not too many large

blocks, i.e., the partition in independent blocks is sufficiently fine grained asymptotically. Within blocks,

covariances do not need to vanish asymptotically.

Lemma 14 Let Assumptions BD.1-4 on block dependence and Assumptions SC.1-SC.2 on random sampling

hold. Then, Assumptions APR.3, A.1, A.2, A.3, A.4 (with any q̄ ∈ (0, 1) and δ̄ ∈ (1/2, 1)) and A.5 are

satisfied.

The proof of Lemma 14 uses a result on almost sure convergence in Stout (1974), a large deviation

theorem based on the Hoeffding inequality in Bosq (1998), and CLTs for martingale difference arrays in

Davidson (1994) and White (2001).

Instead of a block structure, we can also assume that the covariance matrix is full, but with off-diagonal

elements vanishing asymptotically. We could also accommodate weak serial dependence and conditioning

information. In those settings, we can carry out similar checks, although at the cost of increased notational

complexity.

A.6.2 Proof of Lemma 14

A.6.2.1 Assumption APR.3

We use that eigmax(A) ≤ max
i=1,...,n

n∑
j=1

|ai,j | for any matrix A = [aij ]i,j=1,...,n. Then, for any sequence (γi)

in [0, 1] we have:

eigmax(Σε,1,n) ≤ max
i=1,...,n

n∑
j=1

|Cov[εt(γi), εt(γj)]| ≤ C max
m=1,...,Jn

n∑
j=1

1{γj ∈ Im} (61)

where C := sup
γ∈[0,1]

E[εt(γ)2]. Define:

J =

{
(γi) : max

m=1,...,Jn

1

n

n∑
i=1

1{γi ∈ Im} = o(1)

}
.
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Then Assumption APR.3 (ii) holds if µΓ (J ) = 1. From Theorem 2.1.1 in Stout (1974), it is enough to show

that
∞∑
n=1

µΓ

(
max

m=1,...,Jn

1

n

n∑
i=1

1{γi ∈ Im} > ε

)
<∞, for any ε > 0. Now, since max

m=1,...,Jn
Bm = o(1),

we have µΓ

(
max

m=1,...,Jn

1

n

n∑
i=1

1{γi ∈ Im} > ε

)
≤ µΓ

(
max

m=1,...,Jn

∣∣∣∣∣ 1n
n∑
i=1

1{γi ∈ Im} −Bm

∣∣∣∣∣ > ε/2

)
, for

large n. Thus, we get:

µΓ

(
max

m=1,...,Jn

1

n

n∑
i=1

1{γi ∈ Im} > ε

)
≤ Jn max

m=1,...,Jn
µΓ

(∣∣∣∣∣ 1n
n∑
i=1

1{γi ∈ Im} −Bm

∣∣∣∣∣ > ε/2

)
,

for large n. To bound the probability in the RHS, we use |1{γi ∈ Im} − Bm| ≤ 1 and the Hoeffding’s

inequality (see Bosq (1998), Theorem 1.2) to get:

µΓ

(∣∣∣∣∣ 1n
n∑
i=1

1{γi ∈ Im} −Bm

∣∣∣∣∣ > ε/2

)
≤ 2 exp

(
−nε2/8

)
.

Then, since Jn ≤ n, we get:

∞∑
n=1

µΓ

(
max

m=1,...,Jn

1

n

n∑
i=1

1{γi ∈ Im} > ε

)
≤ 2

∞∑
n=1

n exp
(
−nε2/8

)
<∞,

and the conclusion follows.

A.6.2.2 Assumption A.1

Conditions a) and b) are clearly satisfied under BD.1, BD.3 and BD.4. Let us now consider condition c). We

have σij,t = E[εt(γi)εt(γj)|γi, γj ] =: σij independent of t. Thus, E[σ2
ij,t|γi, γj ]1/2 = σij . By BD.1, BD.4

and the Cauchy-Schwarz inequality σij =

Jn∑
m=1

1{γi, γj ∈ Im}E[εt(γi)εt(γj)|γi, γj ] ≤ C
Jn∑
m=1

1{γi, γj ∈ Im},

where C = sup
γ∈[0,1]

E[εt(γ)2]. Hence, we get:

E

 1

n

∑
i,j

E[σ2
ij,t|γi, γj ]1/2

 ≤ C
1

n

∑
i

Jn∑
m=1

E[1{γi ∈ Im}] + C
1

n

∑
i 6=j

Jn∑
m=1

E[1{γi, γj ∈ Im}]

= C

Jn∑
m=1

Bm + C(n− 1)

Jn∑
m=1

B2
m = O

(
1 + n

Jn∑
m=1

B2
m

)
.

From BD.2, the RHS is O(1), and condition c) in Assumption A.1 follows.
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A.6.2.3 Assumption A.2

Let us consider condition a). In the time-invariant case under BD.1 and BD.3, we have Sij = σijQx and

v3 = wibi, whereQx = E
[
x2
t

]
. Then, Assumption A.2 a) is equivalent to

1√
n

n∑
i=1

wiτiYi,T ⊗ bi ⇒ N(0, Sb),

where Sb := lim
n→∞

E

 1

n

∑
i,j

wiwj
τiτj
τij

σij(Qx ⊗ bib′j)

. This limit is finite (if it exists), since from BD.4

we have

∥∥∥∥∥∥ 1

n

∑
i,j

wiwj
τiτj
τij

σij(Qx ⊗ bib′j)

∥∥∥∥∥∥ ≤ C 1

n

∑
i,j

|σi,j |, and E

 1

n

∑
i,j

|σi,j |

 = O(1) from Assump-

tion A.1. Moreover:

1√
n

n∑
i=1

wiτiYi,T ⊗ bi =
1√
Tn

T∑
t=1

n∑
i=1

wiτiIi,t (xt ⊗ bi) εi,t =
1√
T

T∑
t=1

ξn,t,

where ξn,t =
1√
n

n∑
i=1

wiτiIi,t (xt ⊗ bi) εi,t. The triangular array (ξn,t) is a martingale difference sequence

w.r.t. the sigma-field Fn,t = {ft, εi,t, γi, i = 1, ..., n}. From a multivariate version of Corollary 5.26 in

White (2001), the CLT in condition a) follows if we show:

(i)
1

T

T∑
t=1

E[ξn,tξ
′
n,t]→ Sb,

(ii)
1

T

T∑
t=1

(
ξn,tξ

′
n,t − E[ξn,tξ

′
n,t]
)

= op(1),

(iii) sup
t=1,...,T

E[‖ξn,t‖2+δ] = O(1), for some δ > 0.

Moreover, we prove the alternative characterization of the asymptotic variance-covariance matrix:

(iv) Sb = a.s.- lim
n→∞

1

n

∑
i,j

wiwj
τiτj
τij

σij(Qx ⊗ bib′j).

Let us check these conditions. (i) Let Gn = {γi, i = 1, ..., n}. We have:

1

T

∑
t

E[ξn,tξ
′
n,t|Gn] =

1

Tn

∑
t

∑
i,j

wiwjτiτjE
[
Ii,tIj,t

(
xtx

′
t ⊗ bib

′
j

)
εi,tεj,t|γi, γj

]
=

1

Tn

∑
t

∑
i,j

wiwjτiτjE[Ii,tIj,t|γi, γj ]
(
E[xtx

′
t]⊗ bib

′
j

)
E[εi,tεj,t|γi, γj ]

=
1

n

∑
i,j

wiwj
τiτj
τi,j

σij

(
Qx ⊗ bib

′
j

)
.
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By taking expectation on both sides, condition (i) follows.

Let us now consider condition (ii). Define ζn,T =
1

T

∑
t

(ξn,t,kξn,t,l − E[ξn,t,kξn,t,l]), where ξn,t,k is

the k-th element of ξn,t. Since E[ζn,T ] = 0, it is enough to show V [ζn,T ] = o(1), for any k, l. We show

this for k = l, the proof for k 6= l is similar. For expository purpose we omit the index k, and we write

x2
t,k ≡ x2

t . We have:

V [ζn,T ] =
1

T 2

∑
t

V [ξ2
n,t] +

1

T 2

∑
t6=s

Cov
(
ξ2
n,t, ξ

2
n,s

)
, (62)

where:

ξ2
n,t =

1

n

∑
i,j

wiwjτiτjIi,tIj,tx
2
t bibjεi,tεj,t.

• Consider first the terms Cov(ξ2
n,t, ξ

2
n,s) for t 6= s. By the variance decomposition formula:

Cov(ξ2
n,t, ξ

2
n,s) = E

[
Cov(ξ2

n,t, ξ
2
n,s|Gn)

]
+ Cov

[
E(ξ2

n,t|Gn), E(ξ2
n,s|Gn)

]
.

We have Cov(ξ2
n,t, ξ

2
n,s|Gn) = 0 from the i.i.d. assumption over time. Moreover:

E[ξ2
n,t|Gn] =

1

n

∑
i,j

wiwj
τiτj
τij

Qxσijbibj =
1

n

Jn∑
m=1

∑
i,j

αijσij1{γi, γj ∈ Im},

where αij = wiwj
τiτj
τij

bibjQx. Thus:

Cov
[
E(ξ2

n,t|Gn), E(ξ2
n,s|Gn)

]
=

1

n2

Jn∑
m,p=1

∑
i,j,k,l

Cov (αijσij1{γi, γj ∈ Im}, αklσkl1{γk, γl ∈ Ip}) .

In the above sum, the terms such that sets {i, j} and {k, l} do not have a common element, vanish.

Consider now the sum of the terms such that i = k (terms such that i = l, or j = k, or j = l are

symmetric). Therefore, let us focus on the sum

Sn :=
1

n2

Jn∑
m,p=1

∑
i,j,l

Cov (αijσij1{γi, γj ∈ Im}, αilσil1{γi, γl ∈ Ip})

=
1

n2

Jn∑
m=1

∑
i,j,l

Cov (αijσij1{γi, γj ∈ Im}, αilσil1{γi, γl ∈ Im})

− 1

n2

Jn∑
m,p=1,m 6=p

∑
i,j,l

E [αijσij1{γi, γj ∈ Im}]E [αilσil1{γi, γl ∈ Ip}] .
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From BD.4, we haveαij ≤ C and σij ≤ C. Thus, we get Sn = O

 1

n2

Jn∑
m=1

∑
i,j,l

E[1{γi, γj , γl ∈ Im}]

+

O

 1

n2

Jn∑
m,p=1,m 6=p

∑
i,j,l

E [1{γi, γj ∈ Im}]E [1{γi, γl ∈ Ip}]

. By using that
∑
i,j,l

E[1{γi, γj , γl ∈ Im}] =

O
(
nBm + n2B2

m + n3B3
m

)
and

∑
i,j,l

E [1{γi, γj ∈ Im}]E [1{γi, γl ∈ Ip}] = O (nBmBp+

n2(B2
mBp +BmB

2
p) + n3B2

mB
2
p)
)
, we get Sn = O

1/n+

Jn∑
m=1

B2
m + n

Jn∑
m=1

B3
m + n

(
Jn∑
m=1

B2
m

)2
.

The RHS is o(1) from BD.2. Thus, we have shown that:

Cov(ξ2
n,t, ξ

2
n,s) = o(1), (63)

uniformly in t 6= s.

• Consider now V [ξ2
n,t]. By the variance decomposition formula:

V [ξ2
n,t] = E

[
V (ξ2

n,t|Gn)
]

+ V
[
E(ξ2

n,t|Gn)
]
.

By similar arguments as above, we have V
[
E(ξ2

n,t|Gn)
]

= o(1) uniformly in t. Consider now term

E
[
V (ξ2

n,t|Gn)
]
. We have:

V (ξ2
n,t|Gn) =

1

n2

∑
i,j,k,l

wiwjwkwlτiτjτkτlbibjbkbl

·Cov
(
Ii,tIj,tx

2
t εi,tεj,t, Ik,tIl,tx

2
t εk,tεl,t|γi, γj , γk, γl

)
.

Moreover:

Cov
(
Ii,tIj,tx

2
t εi,tεj,t, Ik,tIl,tx

2
t εk,tεl,t|γi, γj , γk, γl

)
= E [Ii,tIj,tIk,tIl,t|γi, γj , γk, γl]E [εi,tεj,tεk,tεl,t|γi, γj , γk, γl]E[x4

t ]− σijσklτ−1
ij τ

−1
kl E[x2

t ]
2.

From the block dependence structure in BD.1, the expectation E [εi,tεj,tεk,tεl,t|γi, γj , γk, γl] is dif-

ferent from zero only if a pair of indices are in a same block Im, and the other pair is also in

a same block Ip, say, possibly with m = p. Similarly, σijσkl is different from zero only if γi

and γj are in the same block and γk and γl are in the same block. From BD.4, we deduce that
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V (ξ2
n,t|Gn) ≤ C 1

n2

∑
i,j,k,l

Jn∑
m,p=1

1{γi, γj ∈ Im}1{γk, γl ∈ Ip}, where in the double sum the elements

with m 6= p are not zero only if the pairs (γi, γj) and (γk, γl) have no element in common. Thus:

E
[
V (ξ2

n,t|Gn)
]

= O

 1

n2

∑
i,j,k,l

Jn∑
m=1

E[1{γi, γj , γk, γl ∈ Im}]


+O

 1

n2

∑
i,j,k,l:i 6=k,l;j 6=k,l

Jn∑
m,p=1:m 6=p

E[1{γi, γj ∈ Im}]E[1{γk, γl ∈ Ip}]

 .

By using
∑
i,j,k,l

Jn∑
m=1

E[1{γi, γj , γk, γl ∈ Im}] = O

(
Jn∑
m=1

(nBm + n2B2
m + n3B3

m + n4B4
m)

)
and

∑
i,j,k,l

Jn∑
m,p=1

E[1{γi, γj ∈ Im}]E[1{γk, γl ∈ Ip}] = O

 Jn∑
m,p=1

(n2BmBp + n3B2
mBp + n4B2

mB
2
p)

, we

get:

E
[
V (ξ2

n,t|Gn)
]

= O

(
1 + n

Jn∑
m=1

B2
m + (n

Jn∑
m=1

B2
m)2 + n2

Jn∑
m=1

B4
m

)
.

By BD.2, n max
m=1,...,n

B2
m = O(1), and we get E

[
V (ξ2

n,t|Gn)
]

= O(1).

Thus, we have shown:

V (ξ2
n,t) = O(1), (64)

uniformly in t.

From (62), (63) and (64), we get V [ζnT ] = o(1), and condition (ii) follows. From (64) and by using

E[ξ2
n,t] = O(1), condition (iii) follows for δ = 2. Finally, condition (iv) follows from

1

n

∑
i,j

wiwj
τiτj
τij

σijbib
′
j = (1 + λ′V [ft]λ)−2 1

n

∑
i,j

1

τij

σij
σiiσjj

bib
′
j and the next Lemma 15.

Lemma 15 Under Assumptions BD.1-BD.4:
1

n

∑
i,j

1

τij

σij
σiiσjj

bib
′
j → L, P -a.s., where:

L = lim
n→∞

E

 1

n

∑
i,j

1

τij

σij
σiiσjj

bib
′
j

 =

ˆ 1

0
ω(γ)dγ + lim

n→∞
n

Jn∑
m=1

ˆ
Im

ˆ
Im

ω(γ, γ′)dγdγ′,

with ω(γ, γ′) := E[It(γ)It(γ
′)] E[εt(γ)εt(γ′)]

E[εt(γ)2]E[εt(γ′)2]
b(γ)b(γ′)′ and ω(γ) := ω(γ, γ).

Then, we have proved part a). Part b) follows by a standard CLT.
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A.6.2.4 Assumption A.3

Assumption A.3 is satisfied since the errors are i.i.d. and have zero third moment (Assumption BD.1).

A.6.2.5 Assumption A.4

We have to show that max
i

∑
j

‖Sij‖q̄ = Op(n
δ̄), for any q̄ ∈ (0, 1) and δ̄ > 1/2. From Sij = σijQx, and

an argument similar to (61):

max
i

∑
j

‖Sij‖q̄ ≤ C max
m=1,...,Jn

n∑
j=1

1{γj ∈ Im} ≤ Cn max
m=1,...,Jn

Bm+C max
m=1,...,Jn

∣∣∣∣∣∣
n∑
j=1

[1{γj ∈ Im} −Bm]

∣∣∣∣∣∣ ,
for any q̄ > 0. Let us derive (probability) bounds for the two terms in the RHS. From BD.2:

nmax
m
|Bm| ≤

√
n

(
n
∑
m

|Bm|2
)1/2

= O
(√
n
)
.

Let εn := nδ̄, with δ̄ > 1/2. Then:

P

 max
m=1,...,Jn

∣∣∣∣∣∣
n∑
j=1

[1{γj ∈ Im} −Bm]

∣∣∣∣∣∣ ≥ εn
 ≤ Jn max

m=1,...,Jn
P

∣∣∣∣∣∣
n∑
j=1

[1{γj ∈ Im} −Bm]

∣∣∣∣∣∣ ≥ εn


≤ 2Jn exp(−ε2
n/(2n)) = o(1),

from the Hoeffding’s inequality (see Bosq (1998), Theorem 1.2), and Jn ≤ n. Thus, we have shown that

max
m=1,...,Jn

∣∣∣∣∣∣
n∑
j=1

[1{γj ∈ Im} −Bm]

∣∣∣∣∣∣ = op(n
δ̄), and the conclusion follows.

A.6.2.6 Assumption A.5

In the time-invariant i.i.d. case we have Sii,T = σiiQ̂x,i and Sij = σijQx. Then, Assumption A.5 boils

down to ΥnT :=
1√
n

∑
i

wiτ
2
i

[
Yi,T ⊗ Yi,T − S̃ii,T

]
⇒ N (0,Ω), as n, T →∞, where S̃ii,T = σiivec(Q̂x,i)

and Ω = lim
n→∞

E

 1

n

∑
i,j

wiwj
τ2
i τ

2
j

τ2
ij

σ2
ij

 [Qx ⊗Qx + (Qx ⊗Qx)WK+1] . Let us denote by

H = σ ((ft), (It(γ)), γ ∈ [0, 1], γi, i = 1, 2, ...) the information in the factor path, the indicators paths and
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the individual random effects. The proof is in two steps.

STEP 1: We first show that conditional onH we have

ΥnT ⇒ N (0,Ω) , n, T →∞, (65)

P -a.s.. For this purpose, we apply the Lyapunov CLT for heterogenous independent arrays (see Davidson

(1994), Theorem 23.11). Write

ΥnT =
1√
n

∑
i

Jn∑
m=1

1{γi ∈ Im}wiτ2
i

[
Yi,T ⊗ Yi,T − S̃ii,T

]
=

1√
Jn

Jn∑
m=1

Wm,nT ,

where

Wm,nT :=

√
Jn
n

∑
i

1{γi ∈ Im}wiτ2
i

[
Yi,T ⊗ Yi,T − S̃ii,T

]
.

Conditional onH, the variables Wm,nT , for m = 1, ..., Jn are independent, with zero mean. The conclusion

follows if we prove:

(i) lim
n,T→∞

1

Jn

∑
m

V [Wm,nT |H] = Ω, P -a.s, and

(ii) lim
n,T→∞

1

J
3/2
n

∑
m

E
[
‖Wm,nT ‖3 |H

]
= 0, P -a.s..

To show (i), we use:

V [Wm,nT |H] =
Jn
n

∑
i,j∈Im

wiwjτ
2
i τ

2
j Cov [Yi,T ⊗ Yi,T , Yj,T ⊗ Yj,T |H]

=
Jn
n

∑
i,j∈Im

wiwjτ
2
i τ

2
j

{
E
[
(Yi,T ⊗ Yi,T ) (Yj,T ⊗ Yj,T )

′
|H
]
− S̃ii,T S̃

′
jj,T

}
,

where
∑
i,j∈Im

denotes double sum over all i, j = 1, ..., n such that γi, γj ∈ Im. Now, we have by the

independence property over time:

E
[
(Yi,T ⊗ Yi,T ) (Yj,T ⊗ Yj,T )

′
|H
]

=
1

T 2

∑
t

∑
s

∑
p

∑
q

E [εi,tεi,pεj,sεj,q| (ft) , γi, γj ] Ii,tIi,pIj,sIj,q
(
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′
s ⊗ xpx

′
q

)
= E

[
ε2
itε

2
jt|γi, γj

] 1

T 2

∑
t

Ii,tIj,t

(
xtx

′
t ⊗ xtx

′
t

)
+ σ2

ij

1

T 2

∑
t

∑
p 6=t

Iij,tIij,p

(
xtx

′
t ⊗ xpx

′
p

)
+σ2

iiσ
2
jj

1

T 2

∑
t

∑
s 6=t

Ii,tIj,s

(
xtx

′
s ⊗ xtx

′
s

)
+ σ2

ij

1

T 2

∑
t

∑
s6=t

Iij,tIij,s

(
xtx

′
s ⊗ xsx

′
t

)
=: E

[
ε2
itε

2
jt|γi, γj

]
A1,T + σ2

ijA2,T + σ2
iiσ

2
jjA3,T + σ2

ijA4,T .
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Moreover, A1,T =
Tij
T 2

∑
t

Iij,t
Tij

(
xtx

′
t ⊗ xtx

′
t

)
= O

(
Tij/T

2
)

= O(1/T ), uniformly in H. Let us de-

fine Q̂x,ij =
1

Tij

∑
t

Iij,txtx
′
t, then

A2,T =
1

T 2

∑
t

∑
p

Iij,tIij,p

(
xtx

′
t ⊗ xpx

′
p

)
−A1,T =

1

τ2
ij,T

(
Q̂x,ij ⊗ Q̂x,ij

)
+O (1/T ) ,

A3,T =
1

T 2

∑
t

∑
s

Ii,tIj,s

(
xtx

′
s ⊗ xtx

′
s

)
−A1,T = vec

(
Q̂x,i

)
vec

(
Q̂x,j

)′
+O (1/T ) ,

and

A4,T =
1

T 2

∑
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∑
s

Iij,tIij,s

(
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′
s ⊗ xsx

′
t

)
−A1,T

=
1

T 2

∑
t

∑
s
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′
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=
1

T 2

∑
t

∑
s

Iij,tIij,s (xt ⊗ xs) (xt ⊗ xs)
′
WK+1 −A1,T

=
1

τ2
ij,T

(
Q̂x,ij ⊗ Q̂x,ij

)
WK+1 +O (1/T ) .

Then, it follows that:

V [Wm,nT |H] =
Jn
n

 ∑
i,j∈Im

wiwj
τ2
i τ

2
j

τ2
ij,T

σ2
ij

(
Q̂x,ij ⊗ Q̂x,ij + Q̂x,ij ⊗ Q̂x,ijWK+1

)
+O

Jn
n

1

T

∑
i,j∈Im

wiwjτ
2
i τ

2
j

 ,

where the O term is uniform w.r.t. H. Thus, we get:

1

Jn

∑
m

V [Wm,nT |H] =

 1

n

∑
i,j

wiwj
τ2
i τ

2
j

τ2
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+
1

n

∑
m
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2
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2
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1
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∑
m

∑
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wiwjτ
2
i τ

2
j

 ,

where theαij =
1

τ2
ij,T

(
Q̂x,ij ⊗ Q̂x,ij + Q̂x,ij ⊗ Q̂x,ijWK+1

)
− 1

τ2
ij

(Qx ⊗Qx +Qx ⊗QxWK+1) are o(1)

uniformly in i, j, and wiwj
τ2
i τ

2
j

τ2
ij

σ2
ij = (1 + λ′Σ−1

f λ)−2 τiτj
τ2
ij

σ2
ij

σiiσjj
. Then, point i) follows from
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1

n

∑
i,j

τiτj
τ2
ij

σ2
ij

σiiσjj
→ L, P -a.s., where L = lim

n→∞
E

 1

n

∑
i,j

τiτj
τ2
ij

σ2
ij

σiiσjj

, which is proved by similar ar-

guments as Lemma 15.

Let us now prove point ii). We have:

1

J
3/2
n

∑
m

E
[
‖Wm,nT ‖3 |H

]
≤ 1

n3/2

∑
m

[∑
i∈Im

wiτ
2
i

(
E
[
‖(Yi,T ⊗ Yi,T )‖3 |H

]1/3
+
∥∥∥S̃ii,T∥∥∥)]3

≤ 1

n3/2

∑
m

(∑
i∈Im

wiτ
2
i

)3
(sup

i
E
[
‖Yi,T ⊗ Yi,T ‖3 |H

]1/3
+ sup

i

∥∥∥S̃ii,T∥∥∥)3

.

Now,

E
[
‖Yi,T ⊗ Yi,T ‖3 |H

]
≤ E

[
‖Yi,T ‖6 |H

]
= E

[(
Y
′
i,TYi,T

)3
|H
]

=
1

T 3

∑
t1,...,t6

Ii,t1 ...Ii,t6E [εi,t1 ...εi,t6 |γi]
(
x′t1xt2

) (
x′t3xt4

) (
x′t5xt6

)
.

By the independence property, the non-zero terms E [εi,t1 ...εi,t6 |γi] involve at most 3 different time indices,

which implies together with BD.4 that sup
i
E
[
‖Yi,T ⊗ Yi,T ‖3 |H

]
= O(1), P -a.s. Similarly sup

i

∥∥∥S̃ii,T∥∥∥ = O (1),

P -a.s. Thus, we get:

1

J
3/2
n

Jn∑
m=1

E
[
‖Wm,nT ‖3 |H

]
≤ C 1

n3/2

Jn∑
m=1

(∑
i

1{γi ∈ Im}

)3

.

Then, point ii) follows from the next Lemma 16.

Lemma 16 Under Assumptions BD.1-BD.4:
1

n3/2

Jn∑
m=1

(∑
i

1{γi ∈ Im}

)3

→ 0, P -a.s.

STEP 2: We show that (65) implies the asymptotic normality condition in Assumption A.4. Indeed,

from (65) we have:

lim
n,T→∞

P
[
α′ΥnT ≤ z|H

]
= Φ

(
z√
α′Ωα

)
,

for any α ∈ R2(K+1) and for any z ∈ R, and P -a.s. We now apply the Lebesgue dominated convergence the-

orem, by using that the sequence of random variables P [α′ΥnT ≤ z|H] are such that P [α′ΥnT ≤ z|H] ≤

1, uniformly in n and T . We conclude that, for any α ∈ R2(K+1), z ∈ R:

lim
n,T→∞

P
[
α′ΥnT ≤ z

]
= lim

n,T→∞
E
(
P
[
α′ΥnT ≤ z|H

])
= Φ

(
z√
α′Ωα

)
,

since Φ
(

z√
α′Ωα

)
is independent of the information setH. The conclusion follows.
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A.6.3 Proof of Lemma 15

Let us denote ξi,j =
1

τij

σij
σiiσjj

bib
′
j = w (γi, γj). We have

1

n

∑
i,j

ξi,j =
1

n

∑
i

ξii +
1

n

∑
i 6=j

ξi,j . By the LLN

we get
1

n

∑
i

ξii =
1

n

∑
i

ω(γi)→
ˆ 1

0
ω(γ)dγ, P -a.s.. Let us now consider the double sum

1

n

∑
i 6=j

ξi,j . The

proof proceeds in three steps.

STEP 1: We first prove that
1

n

∑
i 6=j

ξi,j = L′ + op(1), where L′ := lim
n→∞

n

Jn∑
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ˆ
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ˆ
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For this purpose, write
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1

n

∑
i 6=j
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dependence. Then, we have:
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ˆ
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Moreover:
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m

= O(nB4
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m) +O(B2
m),

and:

Cov(Xm, Xp) =
1

n2

∑
i 6=j

∑
k 6=l

E [ω(γi, γj)ω(γk, γl)1{γi, γj ∈ Im}1{γk, γl ∈ Ip}]− E[Xm]E[Xp]
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1
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for m 6= p, which implies:

V

 1

n

∑
i 6=j

ξi,j

 =

Jn∑
m=1

V [Xm] +

Jn∑
m,p=1,m 6=p

Cov(Xm, Xp) = o(1),

from BD.2. Then, Step 1 follows.

STEP 2: There exists a random variable L̃ such that
1

n

∑
i 6=j

ξi,j → L̃, P -a.s.. To show this statement, we

use that the event in which series
1

n

∑
i 6=j

ξi,j converges is a tail event for the i.i.d. sequence (γi). Indeed,

we have that
1

n

∑
i 6=j

ξi,j converges if, and only if,
1

n

∑
i,j≥N,i6=j

ξi,j converges, for any integer N . Then, by the

Kolmogorov zero-one law, the event in which series
1

n

∑
i 6=j

ξi,j converges has probability either 1 or 0. The

latter case however is excluded by Step 1. Therefore, the sequence
1

n

∑
i 6=j

ξi,j converges with probability 1,

and Step 2 follows.

STEP 3: We have L̃ = L′, with probability 1. Indeed, by Steps 1 and 2 it follows
1

n

∑
i 6=j

ξi,j − L′ = op(1)

and
1

n

∑
i 6=j

ξi,j − L̃ = op(1). These equations imply that L̃− L′ = op(1), which holds if and only if L̃ = L

with probability 1 (since L̃ and L′ are independent of n).

A.6.4 Proof of Lemma 16

The proof is similar to the one of Lemma 15 and we give only the main steps. First, we prove that

1

n3/2

Jn∑
m=1

(∑
i

1{γi ∈ Im}

)3

= op(1). Indeed, we have:

E

 1

n3/2

Jn∑
m=1
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)3
 =

1
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Jn∑
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∑
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n3/2

Jn∑
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B3
m

)
= o(1),

from Assumption BD.2, and we can show V

 1

n3/2

Jn∑
m=1

(∑
i

1{γi ∈ Im}

)3
 = o(1). Second, by us-

ing the monotone convergence theorem and the Kolmogorov zero-one law, we can show that sequence

1

n3/2

Jn∑
m=1

(∑
i

1{γi ∈ Im}

)3

converges with probability 1. Third, we conclude that the limit is 0 with

probability 1.
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Appendix 7 Monte-Carlo experiments

In this appendix, we report the results of Monte Carlo experiments to investigate the finite sample behaviour

of our estimators and test statistics (Section A.7.1) and the accuracy of the CLT asymptotic approximations

underlying Assumption A.2a) (Section A.7.2).

A.7.1 Finite sample behaviour of estimators and test statistics

In this section, we perform simulation exercises on balanced and unbalanced panels in order to study the

properties of our estimation and testing approaches. We pay particular attention to the interaction between

panel dimensions n and T in finite samples since we face conditions like n = o(T 3) for inference with

ν̂, and n = o(T 2) for inference with Q̂e and Q̂a, in the theoretical results. The simulation design mimics

the empirical features of our data. The balanced case serves as benchmark to understand when T is not

sufficiently large w.r.t. n to apply the theory. The unbalanced case shows that we can exploit the guidelines

found for the balanced case when we substitute the average of the sample sizes of the individual assets, i.e.,

a kind of operative sample size, for T . To summarize our Monte Carlo findings, we do not face any finite

sample distortions for the inference with ν̂ when n = 1, 000 and T = 150, and with Q̂e and Q̂a when

n = 1, 000 and T = 350. In light of these results, we do not expect to face significant inference bias in our

empirical application.

A.7.1.1 Balanced panel

We simulate S datasets of excess returns from a time-invariant one-factor model (CAPM), we estimate the

parameter ν, and compute the test statistics. A simulated dataset includes: a vector of intercepts as ∈ Rn,

a vector of factor loadings bs ∈ Rn, and a variance-covariance matrix Ωs ∈ Rn×n. At each simulation

s = 1, ..., S, we randomly draw n ≤ 9, 904 assets from the sample of our empirical analysis that comprises

9, 904 individual stocks. The assets are listed by industrial sectors. We use the classification proposed by

Ferson and Harvey (1999). The vector bs is composed by the estimated factor loadings for the n randomly

chosen assets. At each simulation, we build a block diagonal matrix Ωs with blocks matching industrial

sectors. The n elements of the main diagonal of Ωs correspond to the variances of the estimated residuals

of the individual assets. The off-diagonal elements of Ωs are covariances computed by fixing correlations
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within a block equal to the average correlation of the industrial sector computed from the 9, 904 × 9, 904

thresholded variance-covariance matrix of estimated residuals. Hence we get a setting in line with the block

dependence case developed in Appendix 6.

In order to study the size and power properties of our procedure, we set the values of the intercepts asi

according to four data generating processes:

DGP1: The true parameter is ν0 = 0.00% and the asi are generated under the null hypothesisH0 : asi = 0;

DGP2: The true parameter is the empirical estimate of ν, ν0 = 2.57%, and the asi are generated under the

null hypothesisH0 : asi = bsiν0;

DGP3: The asi are generated under the alternative hypothesis Ha : asi = (0.5bsi + 0.5) ν0, where ν0 =

2.57%;

DGP4: The asi are generated under the three-factor alternative hypothesis: Ha : asi = bs′i,(3)ν0,(3) where

bsi,(3) ∈ R3 and ν0,(3) = [2.92%, −0.63%, −9.96%]′ are estimates for the Fama-French model on the

CRSP dataset.

DGP1 and DGP2 match two different null hypotheses. The null hypothesis for DGP1 assumes that the factor

comes from a tradable asset, and for DGP2 that it does not. DGP3 and DGP4 match two different alternative

hypotheses as suggested by MacKinlay (1995). DGP3 is a “non risk-based alternative”. It represents a

deviation from CAPM, which is unrelated to risk: we take the one-factor model calibrated on the data with

intercepts deviating from the no arbitrage restriction. DGP4 is a “risk-based alternative”. It represents a

deviation from CAPM, which comes from missing risk factors: we take intercepts from a three-factor model

calibrated on the data, and then we estimate a one-factor model.

Let us define the simulated excess returns Rsi,t of asset i at time t as follows

Rsi,t = asi + bsift + εsi,t, for i = 1, ..., n, and t = 1, ..., T, (66)

where ft is the market excess return and εsi,t is the error term. The n × 1 error vectors εst are independent

across time and Gaussian with mean zero and variance-covariance matrix Ωs. We apply our estimation

approach on every simulated dataset of excess returns. We estimate the parameter ν and we compute the

statistics described in Section 3.5 of the paper. Since the panel is balanced, we do not need to fix χ2,T .

38



We only use χ1,T = 15. However, this trimming level does not affect the number of assets n in the simu-

lations. In order to compute the thresholded estimator of the variance-covariance matrix of ν̂, namely Σ̃ν

(see Proposition 5 in the paper), and the thresholded variance estimator Σ̃ξ (see Proposition 6) for the test

statistics, we fix the parameter M equal to 0.0780, that is used in the empirical application. We define the

parameter M using a cross-validation method as proposed in Bickel and Levina (2008). We build random

subsamples from the CRSP sample. For each subsample, we minimize a risk function that exploits the

difference between a thresholded variance-covariance matrix and a target variance-covariance matrix (see

Bickel and Levina (2008) for details).

In order to understand how our estimation approach works for different finite samples, we perform

exercises combining different values of the cross-sectional dimension n and the time dimension T . Table

4 reports estimation results for estimator ν̂, and for the bias-adjusted estimator ν̂B , under DGP 1 and 2.

The results include the bias of both estimators, the variance and the Root Mean Square Error (RMSE) of

estimator ν̂B , and the coverage of the 95% confidence interval for parameter ν based on Proposition 5. The

bias of estimator ν̂ is decreasing in absolute value with time series size T and is rather stable w.r.t. cross-

sectional size n. The analytical bias correction is rather effective, and the bias of estimator ν̂B is small. For

instance, for sample sizes T = 150 and n = 1000, under DGP 2 the bias of estimator ν̂B is equal to −0.03,

which in absolute value is about 1% of the true value of the parameter ν = 2.57. The variance of estimator

ν̂B is decreasing w.r.t. both time-series and cross-sectional sample sizes T and n. These features reflect the

large sample distribution of the estimators derived in Proposition 4. The coverage of the confidence intervals

is close to the nominal level 95% across the considered designs and sample sizes.

In Table 5, we display the rejection rates for the test of the null hypothesis ν = 0 (tradable factor). This

null hypothesis is satisfied in DGP 1, and the rejection rates are rather close to the nominal size 5% of the

test, with a slight overrejection. In DGP 2, parameter ν is different from zero, and the test features a power

equal to 100%.

Tables 6 and 7 report the results for the tests of the null hypotheses H0 : a (γ) = 0 and H0 : a (γ) =

b (γ)′ ν, respectively. The test statistics are based on Q̂a and Q̂e as defined in Proposition 6. DGP 1 satisfies

the null hypothesis for both tests. For T = 150, we observe an oversize, that is increasing w.r.t. cross-

sectional size n. The time series dimension T = 150 is likely too small compared to cross-sectional size
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n = 1000 and this combination does not reflect the condition n = o(T 2) for the validity of the asymptotic

Gaussian approximation of the statistics. For T = 500 instead, the rejection rates of the tests are quite

close to the nominal size. DGP 2 satisfies the null hypothesis of the test based on Q̂e, but corresponds to an

alternative hypothesis for the test based on Q̂a. The former statistic features a similar behaviour as under

DGP 1, while the power of the latter statistic is increasing w.r.t. n. Finally, the power of both statistics under

the "non risk-based" and "risk-based" alternatives in DGP 3 and DGP 4 is very large, with rejection rates

close to 100% for all considered combinations of sample sizes n and T .

Table 4: Estimation of ν, balanced case

T = 150 DGP 1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Bias(ν̂) -0.0742 -0.0567 -0.0585 -0.0586 -0.1630 -0.1472 -0.1484 -0.1493

Bias(ν̂B) -0.0244 -0.0063 -0.0082 -0.0083 -0.0319 -0.0156 -0.0169 -0.0178

Var(ν̂B) 0.1167 0.0394 0.0179 0.0121 0.1140 0.0401 0.0189 0.0121

RMSE(ν̂B) 0.3423 0.1985 0.1340 0.1102 0.3390 0.2007 0.1383 0.1114

Coverage 0.9320 0.9290 0.9350 0.9370 0.9370 0.9290 0.9320 0.9360

T = 500 DGP 1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Bias (ν̂) -0.0587 -0.0640 -0.0687 -0.0654 -0.0847 -0.0926 -0.0972 -0.0937

Bias(ν̂B) -0.0002 -0.0063 -0.0110 -0.0077 -0.0025 -0.0074 -0.0120 -0.0085

Var(ν̂B) 0.0343 0.0113 0.0060 0.0040 0.0341 0.0114 0.0061 0.0041

RMSE(ν̂B) 0.1851 0.1066 0.0781 0.0634 0.1846 0.1068 0.0788 0.0642

Coverage 0.9370 0.9340 0.9370 0.9390 0.9430 0.9370 0.9360 0.9320
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Table 5: Test of ν = 0, balanced case

T = 150 DGP 1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Rejection rate 0.0680 0.0710 0.0650 0.0630 1.0000 1.0000 1.0000 1.0000

T = 500 DGP 1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Rejection rate 0.0630 0.0660 0.0630 0.0610 1.0000 1.0000 1.0000 1.0000

Table 6: Test of the null hypothesisH0 : a (γ) = 0, balanced case

T = 150 DGP 1 DGP 2 DGP 3 DGP 4

n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500

Size/Power 0.1180 0.1400 0.1500 0.3850 0.5720 0.7170 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T = 500 DGP 1 DGP 2 DGP 3 DGP 4

n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500

Size/Power 0.0730 0.0610 0.0740 0.9240 0.9920 0.9970 0.9990 1.0000 1.0000 0.9990 1.0000 1.0000

Table 7: Test of the null hypothesisH0 : a (γ) = b (γ) ν, balanced case

T = 150 DGP 1 DGP 2 DGP 3 DGP 4

n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500

Size/Power 0.1110 0.1340 0.1460 0.1070 0.1360 0.1420 0.9970 1.0000 1.0000 1.0000 1.0000 1.0000

T = 500 DGP 1 DGP 2 DGP 3 DGP 4

n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500

Size/Power 0.0710 0.0570 0.0730 0.0730 0.0690 0.0750 0.9990 1.0000 1.0000 0.9990 1.0000 1.0000
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A.7.1.2 Unbalanced panel

Let us repeat similar exercises as in the previous section, but with unbalanced characteristics for the simu-

lated datasets. We introduce these characteristics through a matrix of observability indicators Is ∈ Rn×T .

The matrix gathers the indicator vectors for the n randomly chosen assets. We fix the maximal sample size

T = 546 as in the empirical application. In the unbalanced setting, the excess returns Rsi,t of asset i at time

t is:

Rsi,t = asi + bsift + εsi,t, if Isi,t = 1, for i = 1, ..., n, and t = 1, ..., T, (67)

where Isi,t is the observability indicator of asset i at time t in simulation s.

In Tables 8 and 9, we provide the operative cross-sectional and time-series sample sizes in the Monte-

Carlo repetitions for trimming χ1,T = 15 and four different levels of trimming χ2,T . More precisely, in Table

8 we report the average number n̄χ of retained assets across simulations, as well as the minimum min(nχ)

and the maximum max(nχ) across simulations (rounded). For the lowest level of trimming χ2,T = T/12,

all assets are kept in all simulations, while for the level of trimming χ2,T = T/60 on average we keep

about two thirds of the assets. In Table 9, we report the average across assets of the T̄i, that are the average

time-series size Ti for asset i across simulations, as well as the min and the max of the T̄i. Since the

distribution of Ti for an asset i is right-skewed, we also report the average across assets of the median Ti.

For trimming level χ2,T = T/60, the average mean time-series size is about 180 months, while the average

median time-series size is 140 months.

In Table 10, we display the results for estimators ν̂ and ν̂B . The bias adjustment reduces substantially

the bias for estimation of parameter ν. For trimming level χ2,T = T/60, the coverage of the confidence

interval is close to the nominal size 95% for all considered cross-sectional sizes, while for χ2,T = T/12 the

coverage deteriorates with increasing cross-sectional size. In comparison with Table 4, the bias and variance

of estimator ν̂B are larger than the ones obtained in the balanced case with time-series size T = 500.

However, for trimming level χ2,T = T/60, the results are similar to the ones with T = 150 in Table 5. In

fact, this time-series size of the balanced panel reflects the operative sample sizes for that trimming level

observed in Table 9. Similar comments apply for Table 11, where we report the results for the test of the

hypothesis ν = 0. For trimming level χ2,T = T/60, the size of the test is close to the nominal level 5%
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under DGP 1, and the the power is 100% under DGP 2.

In Tables 12 and 13, we display the results for the tests based on Q̂a and Q̂e, respectively. For trimming

level χ2,T = T/120, we observe an oversize, that increases with the cross-sectional dimension. We get a

similar behaviour with more severe oversize with lower trimming levels (not reported). We expect these

findings from the results in the previous section. Indeed, for trimming level χ2,T = T/120, the operative

time-series sample size in Table 9 is around 200 months, and in Tables 6 and 7, for a balanced panel with

T = 150, the statistics are oversized. For trimming level χ2,T = T/240 with operative size of about 350

months, the oversize of the statistics is moderate. Finally, the power of the statistics is very large also in the

unbalanced case, and close to 100%.

Table 8: Operative cross-sectional sample size

trimming level χ2,T = T
12

χ2,T = T
60

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

n̄χ 1,000 3,000 6,000 9,000 660 2,000 4,000 6,000

min (nχ) 1,000 3,000 6,000 9,000 600 1,900 3,900 5,900

max (nχ) 1,000 3,000 6,000 9,000 700 2,100 4,100 6,100

trimming level χ2,T = T
120

χ2,T = T
240

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

n̄χ 400 1,250 2,400 3,600 140 430 850 1,250

min (nχ) 350 1,100 2,300 3,500 100 370 800 1,200

max (nχ) 440 1,300 2,500 3,650 170 470 900 1,300
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Table 9: Operative time-series sample size

trimming level χ2,T = T
12

χ2,T = T
60

χ2,T = T
120

χ2,T = T
240

mean
(
T̄i
)

130 180 240 360

min
(
T̄i
)

110 160 210 350

max
(
T̄i
)

140 190 260 380

mean(median (Ti)) 90 140 197 330

Table 10: Estimation of ν, unbalanced case

trimming level: χ2,T = T
12

DGP 1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Bias(ν̂) -0.3059 -0.3119 -0.3047 -0.3021 -0.4211 -0.4324 -0.4202 -0.4201

Bias(ν̂B) -0.0893 -0.0954 -0.0880 -0.0854 -0.1127 -0.1233 -0.1113 -0.1113

Var(ν̂B) 0.1207 0.0409 0.0214 0.0124 0.1222 0.0405 0.0218 0.0124

RMSE(ν̂B) 0.3586 0.2235 0.1706 0.1402 0.3671 0.2360 0.1848 0.1574

Coverage 0.9230 0.9010 0.8740 0.8750 0.9180 0.8880 0.8410 0.8320

trimming level: χ2,T = T
60

DGP 1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Bias(ν̂) -0.1703 -0.1738 -0.1675 -0.1596 -0.2454 -0.2478 -0.0411 -0.2329

Bias(ν̂B) -0.0349 -0.0381 -0.0318 -0.0238 -0.0453 -0.0474 -0.0411 -0.0325

Var(ν̂B) 0.1294 0.0436 0.0231 0.0141 0.1281 0.0438 0.0232 0.0144

RMSE(ν̂B) 0.3613 0.2122 0.1551 0.1212 0.3606 0.2145 0.1578 0.1241

Coverage 0.9360 0.9310 0.9240 0.9350 0.9430 0.9310 0.9200 0.9300
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Table 11: Test of ν = 0, unbalanced case

trimming level: χ2,T = T
12

DGP 1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Rejection rate 0.0770 0.0990 0.1260 0.1250 1.0000 1.0000 1.0000 1.0000

trimming level: χ2,T = T
60

DGP 1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Rejection rate 0.0640 0.0690 0.0760 0.0650 1.0000 1.0000 1.0000 1.0000

Table 12: Test of the null hypothesisH0 : a (γ) = 0, unbalanced case

trimming level: χ2,T = T
120

DGP 1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Size/Power 0.1180 0.1710 0.2420 0.3030 0.6010 0.9410 0.9980 1.000

DGP 3 DGP 4

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Size/Power 1.0000 1.0000 1.0000 1.0000 0.9990 1.0000 1.0000 1.0000

trimming level: χ2,T = T
240

DGP 1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Size/Power 0.0880 0.0860 0.1020 0.1310 0.5320 0.8730 0.9920 1.0000

DGP 3 DGP 4

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Size/Power 1.0000 1.0000 1.0000 1.0000 0.9740 1.0000 1.0000 1.0000
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Table 13: Test of the null hypothesisH0 : a (γ) = b (γ) ν, unbalanced case

trimming level: χ2,T = T
120

DGP 1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Size/Power 0.1130 0.1670 0.2370 0.3010 0.0940 0.2190 0.2590 0.3740

DGP 3 DGP 4

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Size/Power 1.0000 1.0000 1.0000 1.0000 0.9990 1.0000 1.0000 1.0000

trimming level: χ2,T = T
240

DGP 1 DGP 2

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Size/Power 0.0800 0.0790 0.1000 0.1290 0.0790 0.0870 0.1080 0.1440

DGP 3 DGP 4

n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000

Size/Power 0.9990 1.0000 1.0000 1.0000 0.9690 1.0000 1.0000 1.0000

A.7.2 The CLT in Assumption A.2a)

In this section, we provide simulation exercises to assess the empirical validity of the CLT in Assumption

A.2a). We simulate S datasets of error terms εi,t from a time-invariant one-factor model (CAPM). At each

simulation s = 1, ..., S, we randomly draw n ≤ 9, 904 assets from the sample of our empirical analysis,

and we build a block diagonal matrix Ωs as described in the previous section. For each s, the n × 1 er-

ror vectors εst are independent across time and Gaussian with mean zero and variance-covariance matrix

Ωs. We perform the exercise for the unbalanced case. We fix the maximal sample size T = 546 as in

the empirical application. In the time-invariant one-factor framework, the statistic in Assumption A.2a)

reduces to
1√
n

∑
i

wiτiQ
−1
x,iYi,T bi with asymptotic variance Sv3 = lim

n→∞
E

 1

n

∑
i,j

wiwj
τiτj
τij

SQ,ijbibj

.
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At each simulation, we compute the 2 × 1 vector Ψs =
(
Ssv3
)−1/2 1√

n

∑
i

wsi τ
s
i

(
Qsx,i

)−1
Y s
i,T b

s
i with

Y s
i,T =

1√
T

∑
t

Isi,txtε
s
i,t and Ssv3 =

1

n

∑
i,j

wsiw
s
j

τ si τ
s
j

τ sij
SsQ,ijb

s
i b
s
j , where scalars wsi , τ

s
i , τ

s
ij , b

s
i , matrices

Qsx,i, S
s
Q,ij , and indicator processes

(
Isi,t

)
for draw s are those estimated for assets i and j in the empirical

analysis.

Figures 3 and 4 compare the univariate distributions of the two components of simulated vectors Ψs =

[Ψs
1,Ψ

s
2]′ ∈ R2, s = 1, ..., 1, 000, with the standard normal distribution through Q-Q plots. The cross-

sectional size is n = 1, 000 in Figure 3, and n = 3, 000 in Figure 4. Figures 3 and 4 show that the finite

sample distributions are well approximated by the asymptotic Gaussian distributions already for n = 1, 000.

This finding suggests that the possible heavy tails in the cross sectional distribution of asset characteristics

should not affect the validity of our CLT assumptions.

Figure 3: Q-Q plots of the simulated components of Ψ for n = 1, 000

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

Ψ1

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

Ψ2

The figure compares the finite-sample distributions of the two components of vector Ψ (right panel and left

panel) with the standard normal distribution. We estimate the finite-sample distributions with an unbalanced

panel of n = 1, 000 individual stocks in the Monte-Carlo exercise.
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Figure 4: Q-Q plots of the simulated components of Ψ for n = 3, 000
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The figure compares the finite-sample distributions of the two components of vector Ψ (right panel and left

panel) with the standard normal distribution. We estimate the finite-sample distributions with an unbalanced

panel of n = 3, 000 individual stocks in the Monte-Carlo exercise.

Appendix 8 Long-only factors

In this section, we estimate a time-invariant model with long-only factors derived from the FF methodology.

We use the market factor (denoted by m) available on Ken French’s website, then we build the long-only

factors from the six FF research portfolios available on Ken French’s website. The “Small” factor (denoted

by s) is the average excess return of the three small portfolios, and the “Value” factor (denoted by h) is

the average excess return of the two value portfolios. The long-only factors should be more immune to

market imperfections (e.g., transaction costs). We estimate the time-invariant three-factor model using the

individual stocks, the 25 FF and the 44 Indu. portfolios as base assets. The annualized estimates of the risk

premia and the components of ν are reported in Table 14. The estimated risk premium for the market factor

is positive across the three universes of assets, albeit not statistically significant at the 5% level for the 25 FF
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portfolios. The small long-only factor is positively and significantly remunerated for the individual stocks

(9.24%) and the 25 FF portfolios (9.12%). It is not significantly remunerated for the 44 Indu. portfolios.

The risk premium on the value factor is positive and not significant for the individual stocks and the 44 Indu.

portfolios. We observe that the estimates of risk premia for the 25 FF portfolios are less accurate than the

estimates that we get in Table 1. Moreover, we get close to zero estimates for the components of vector ν

when we use the 25 FF portfolios as base assets. On the contrary, we get non-zero estimates when we use

the individual stocks and the 44 Indu. portfolios. In particular, these datasets yield negative and significant

estimates of νh (−4.06% and −4.37%). Thus, the estimates of the time-invariant risk premia are close to

the average of the factors only for the 25 FF portfolios. Market imperfections due to rebalancing and short

selling are probably not the key drivers in the explanation of why we get non-zero estimated ν in Section

4.2.
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Appendix 9 Paths of νt for the four-factor model estimated from individual

stocks and the 25 FF portfolios

In this appendix, we provide the time-varying paths of ν̂t in Figures 5 and 6 for the four factor model,

estimated from individual stocks and the 25 FF portfolios. On Figure 6, we see that the path for the mo-

mentum factor is not centered around zero and is very imprecisely estimated on the 25 FF portfolios. A first

explanation might be the misspecification induced by the ad hoc portfolio aggregation based on size and

value sorting and the time-varying specification for the momentum factor sensitivity (see also the theory in

A.14.1). A second explanation of the statistical inaccuracy might be the tight factor structure observed by

Lewellen, Nagel, and Shanken (2010). The paths for the other combinations of models and base assets move

also a lot and are not centered on zero as in Figure 5.
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Appendix 10 Additional figures for the 25 FF portfolios

In this appendix, we provide the time-varying paths of λ̂t and ν̂t in Figures 7 and 8 for the Fama-French

model, estimated from the 25 FF portfolios. The paths of risk premia in the Fama-French model look similar

to the corresponding estimates for the four-factor model in Figure 2. In Figure 8, we get paths of ν̂t close

to zero for the market, size and value factors. The estimates are almost constant and centered on zero,

consistent with a time-invariant model and tradable factors, as revealed by the parametric test results in

Section 4 of the paper.
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Figure 7: Path of estimated annualized risk premia with n = 25 in the Fama-French model
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The figure plots the path of estimated annualized risk premia λ̂m,t, λ̂smb,t, and λ̂hml,t and their pointwise

confidence intervals at 95% probability level in the Fama-French model. We use the returns of the 25 FF

portfolios. We also report the time-invariant (dashed horizontal line) and the average conditional estimate

(solid horizontal line). The vertical shaded areas denote recessions determined by the National Bureau of

Economic Research (NBER).



Figure 8: Path of estimated annualized νt with n = 25 in the Fama-French model

65 70 75 80 85 90 95 00 05 10
−20

−10

0

10

20

30

40
ν̂m,t

65 70 75 80 85 90 95 00 05 10
−20

−10

0

10

20

30

40
ν̂smb,t

65 70 75 80 85 90 95 00 05 10
−20

−10

0

10

20

30

40
ν̂hml,t

The figure plots the path of estimated annualized risk premia ν̂m,t, ν̂smb,t and ν̂hml,t and their pointwise

confidence intervals at 95% probability level in the Fama-French model. We use the returns of the 25 FF

portfolios. We also report the time-invariant (dashed horizontal line) and the average conditional estimate

(solid horizontal line). The vertical shaded areas denote recessions determined by the National Bureau of

Economic Research (NBER).



Appendix 11 Additional figures for the industry portfolios

In this appendix, we provide the time-varying paths of λ̂t and ν̂t in Figures 9-12 for the four-factor model,

and the Fama-French model, estimated from the 44 Indu. portfolios. The factors are as in Section 4 of

the paper. The paths look very similar for the market, size and value factors between the two asset pricing

models. In Figures 9 and 10, the risk premia for the market, size and value factors feature a counter-cyclical

pattern, and they are similar to the paths of risk premia obtained using the individual stocks as base assets

(see Figures 1, 5, 46, and 49). The risk premium for the momentum factor is pro-cyclical and similar to

that obtained from the individual stocks. In Figures 11 and 12, we get paths of ν̂t close to zero only for

the market factor. The time-varying results with the 44 Indu. portfolios differ from those with the 25 FF

portfolios (see Figures 2, 7, 8, and 6). This finding is similar to the estimation results for time-invariant

specifications in Section 4.2.
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Figure 10: Path of estimated annualized risk premia with n = 44 in the Fama-French model
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The figure plots the path of estimated annualized risk premia λ̂m,t, λ̂smb,t, and λ̂hml,t and their pointwise

confidence intervals at 95% probability level in the Fama-French model. We use the returns of the 44 Indu.

portfolios. We also report the time-invariant (dashed horizontal line) and the average conditional estimate

(solid horizontal line). The vertical shaded areas denote recessions determined by the National Bureau of

Economic Research (NBER).
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Figure 12: Path of estimated annualized νt with n = 44 in the Fama-French model
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The figure plots the path of estimated annualized ν̂m,t, ν̂smb,t and ν̂hml,t and their pointwise confidence in-

tervals at 95% probability level in the Fama-French model. We use the returns of the 44 Indu. portfolios. We

also report the time-invariant (dashed horizontal line) and the average conditional estimate (solid horizontal

line). The vertical shaded areas denote recessions determined by the National Bureau of Economic Research

(NBER).



Appendix 12 Value-weighted estimation of time-invariant and time-varying

specifications

In this appendix, we show that the weights for the WLS estimator of ν defined in Equation (13) are increasing

w.r.t. the size of asset i. We also report some results for value-weighted estimation of time-invariant and

time-varying specifications. Here the weights directly account for the size characteristic of the assets through

their time-average market capitalisation. These results provide robustness checks that our results are not

entirely driven by small stocks. We start the section by an empirical analysis of the weights ŵi. Then, we

describe the two-pass methodology for value-weighted estimators before examining the empirical results

and comparing them with WLS and OLS outputs. In this appendix, mci,t denotes the market capitalisation

of firm i at month t.

A.12.1 Empirical analysis of the weights ŵi

Figure 13 plots the averages over time of size, M̄Ci =
1

Ti

∑
t

Ii,tmci,t, versus weights ŵi = 1χi v̂
−1
i for

the time-invariant four-factor model estimated on the nχ = 9, 902 stocks. Figure 14 plots the averages over

time of size, M̄Ci, versus Tr [ŵi], where ŵi = 1χi (diag [v̂i])
−1 is estimated by assuming a time-varying

four-factor model on the nχ = 3, 900 individual stocks. In Figures 13 and 14, we also report the estimated

linear quantile regressions for probability levels 90%, 75%, 50%, 25%, and 10%. All results show that the

weights ŵi are positively related with size. Thus, larger stocks receive larger weights in the second pass of

the procedure to get the WLS estimator of ν. We find a similar positive association between the second-pass

weights and the average size for the 25 FF and the 44 Indu. portfolios.
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Figure 13: M̄Ci vs ŵi for the time-invariant four-factor model
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The left panel plots the averages over time of the market capitalisation M̄Ci w.r.t. the estimated weights ŵi

defined in Section 3.2 and computed on the time-invariant four-factor model for the nχ = 9, 902 individual

stocks. The right panel is a zoom for the average market capitalisation below 1 × 106. We report the

estimated linear quantile regressions for probability levels 90%, 75%, 50%, 25%, and 10%.

Figure 14: M̄Ci vs Tr [ŵi] for the time-varying four-factor model
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(ŵ

i
)

0 2 4 6 8 10

x 10
5

0

200

400

600

800

1000

M̄C i

T
r
(ŵ
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The left panel plots the averages over time of the market capitalisation M̄Ci w.r.t. Tr [ŵi], where ŵi are

the estimated weights defined in Section 3.2 and computed on the time-varying four-factor model for the

nχ = 3, 900 individual stocks. The right panel is a zoom for the average market capitalisation below 1×106.

We report the estimated linear quantile regressions for probability levels 90%, 75%, 50%, 25%, and 10%.
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A.12.2 Value-weighted estimators

We consider the two-pass approach introduced in Section 3.2, but with a value-weighted version of the risk

premia estimator thanks to a different estimator for ν. The first pass of the estimation approach and the

trimming device remain unchanged. The second pass consists in computing a cross-sectional estimator of ν

using a multivariate WLS approach. There, the weights account for the size characteristic of asset i, through

its time-average market capitalisation, M̄Ci =
1

Ti

∑
t

Ii,tmci,t. The value-weighted (VW) estimator is

ν̂VW = Q̂−1
β3

1

n

∑
i

wiβ̂
′
3,iβ̂1,i, (68)

where Q̂β3 =
1

n

∑
i

wiβ̂
′
3,iβ̂3,i and wi =

M̄Ci∑
i

M̄Ci
. The weight wi is a scalar and does not require a first-

step estimator because it involves observable data only. The final estimator of the risk premia corresponds

to the estimator λ̂t introduced in Section 3.2 replacing Equation (13) with Equation (68). The asymptotic

properties of risk premia and cross-sectional estimators remain unchanged w.r.t. the asymptotic results in

Section 3.3 up to replacement of the weights in the bias correction terms and asymptotic variances.

A.12.3 Estimation results for time-invariant specifications

Tables 15 and 16 present the time-invariant risk premia estimates with the value-weighted estimator and the

corresponding estimates of the components of ν obtained with the cross-sectional estimator ν̂VW in Equation

(68). For comparison purposes, we also present the time-invariant estimates obtained with the equally-

weighted (OLS) estimator of risk premia, λ̂1 = ν̂1 +
1

T

∑
t

ft, with the cross-sectional OLS estimator ν̂1.

We consider the n = 9, 936 individual stocks. The VW results in Tables 15 and 16 are similar to those

obtained with the WLS estimator in Table 1. Moreover, the signs of the value-weighted risk premia estimates

are the same as those of the OLS estimates. In particular, the estimate of the VW market risk premium

(11.84%) is a bit larger than the estimate obtained with the WLS estimator. The OLS estimated market

risk premium (2.91%) is smaller than the VW estimated one, and is not statistically significant. The VW

estimated value risk premium is negative (−8.99%), and statistically significant. The OLS estimate of the

value risk premium is negative as well, albeit not statistically significant. We find a statistically significant
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negative estimate of νhml (−13.77%) for the VW estimator in line with the estimate obtained from the

WLS estimator (−9.38%), and the OLS estimator (−6.01%). The confidence intervals for the VW and OLS

estimators of the components of ν are wider than the confidence intervals for the WLS estimators. This

finding is not surprising, given that the weights used in the WLS estimator are optimal at least under cross-

sectional independence of the error terms. The block-dependence structure with small correlation within

blocks that we find in the data after thresholding the estimated covariance matrix of residuals is not too far

from such an exact factor structure.

A.12.4 Estimation results for time-varying specifications

Figures 15 and 16 plot the value-weighted (VW) and equally-weighted (OLS) estimated time-varying paths

of risk premia for individual stocks (nχ = 3, 900). The VW estimated risk premium for the market features

a counter-cyclical pattern, and is more volatile than the OLS estimates. The paths of λ̂t for the size factor

look similar in Figures 15 and 16, but their pro-cyclical pattern differs from the WLS estimate (see Figure

1). The VW estimates of the value risk premium are negative and more stable over time than the WLS

and OLS estimates (see Figures 1 and 16). The confidence intervals for the VW and OLS estimators are

wider than the confidence intervals for the WLS estimators. Figures 17 and 18 plot the value-weighted and

equally-weighted estimated paths of νt. The paths are away from zero over time, especially for the OLS

estimates. We report the value-weighted and equally-weighted estimates of the components of vector ν

in Table 17. The estimates of ν differ from the WLS estimates of Table 2. This explains the differences

between the VW and OLS estimated paths shown in Figures 15-18 compared to the WLS estimated paths.

For instance, the large negative VW and OLS estimates for the impact of default spread on the size factor

coefficient (-7.3882 and -7.5468) imply the pro-cyclical pattern observed in Figures 15 and 16. However,

the confidence intervals for the VW and OLS estimates of the components of ν are large and in particular

much larger than the confidence intervals of the WLS estimates of Table 2. Thus, the observed differences

between the estimates obtained with the different weighting schemes may be due to the statistical inaccuracy

of the VW and OLS estimates.
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Table 15: Value-weighted and equally-weighted estimates of annualized risk premia for the time-

invariant models

Stocks (n = 9, 936)

Value-weighted estimate (VW) Equally-weighted estimate (OLS)

bias corrected estimate (%) 95% conf. interval bias corrected estimate (%) 95% conf. interval

Four-factor model

(nχ = 9, 902)

λm 11.84 (6.96, 16.72) 2.91 (-1.98, 7.79)

λsmb 3.51 (0.16, 6.87) 4.03 (0.67, 7.38)

λhml -8.99 (-12.45, -5.53) -1.23 (-4.69, 2.24)

λmom 13.25 (8.65, 17.85) 5.99 (1.39, 10.59)

Fama-French model

(nχ = 9, 904)

λm 10.86 (5.98, 15.30) 2.92 (-1.96, 7.80)

λsmb 3.36 (0.01, 6.72) 3.90 (0.54, 7.25)

λhml -8.96 (-12.42, -5.49) -1.20 (-4.67, 2.26)

CAPM

(nχ = 9, 904)

λm 12.62 (7.74, 17.50) 3.76 (-1.12, 8.64)

The table contains the value-weighted and equally-weighted estimates of annualized risk premia for the

market (λm), size (λsmb), book-to-market (λhml), and momentum (λmom) factors. We report the bias

corrected estimates λ̂B of λ for individual stocks (n = 9, 936). In order to build the confidence intervals for

n = 9, 936, we use the HAC estimator Σ̂f defined in Section 3.4.
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Table 16: Value-weighted and equally-weighted estimates of annualized ν for the time-invariant

models

Stocks (n = 9, 936)

Value-weighted estimate (VW) Equally-weighted estimate (OLS)

bias corrected estimate (%) 95% conf. interval bias corrected estimate (%) 95% conf. interval

Four-factor model

(nχ = 9, 902)

νm 6.99 (5.55, 8.43) -1.95 (-3.85, -0.05)

νsmb 0.24 (-2.33, 2.81) 0.76 (-1.06, 2.57)

νhml -13.77 (-16.26, -11.29) -6.01 (-7.88, -4.15)

νmom 4.62 (-0.30, 9.53 ) -2.64 (-5.91, 0.64 )

Fama-French model

(nχ = 9, 904)

νm 6.01 (4.71, 7.30) -1.93 (-4.18, -0.31)

νsmb 0.09 (-1.88, 2.06) 0.63 (-1.04, 2.29)

νhml -13.74 (-15.91, -11.57) -5.99 (-8.00, -3.97)

CAPM

(nχ = 9, 904)

νm 7.77 (6.14, 9.40) -1.10 (-3.95, 1.77)

The table contains the value-weighted and equally-weighted annualized estimates of the components of

vector ν for the market (νm), size (νsmb), book-to-market (νhml), and momentum (νmom) factors. We

report the bias corrected estimates ν̂B of ν for individual stocks (n = 9, 936). In order to build the confidence

intervals, we compute Σ̃ν in Proposition 5 for n = 9, 936.
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Table 17: Estimated annualized components of ν for the time-varying four-factor model

value-weighted estimate (VW) of ν equally-weighted estimate (OLS) of ν

const
5.2206

(3.2894, 7.1517)

1.9634

(0.5951, 3.3316)

m dst−1
1.3546

(−2.3692, 5.0784)

−3.8687

(−8.5946, 0.8573)

tst−1
−5.1721

(−6.8086, −3.5356)

−1.2790

(−3.2226, 0.6647)

const
−1.9799

(−0.6870, 4.6468)

1.1089

(−0.1936, 2.4113)

smb dst−1
−7.3882

(−11.2165, −3.6162)

−7.5468

(−12.2291, −2.8645)

tst−1
0.1753

(−2.0315, 2.3820)

−0.3858

(−1.2706, 2.0422)

const
−11.2165

(−14.0983, −8.3347)

−5.6595

(−7.2660, −4.0529)

hml dst−1
1.6581

(−2.1038, 5.4199)

3.3613

(−3.4080, 10.1305)

tst−1
−0.2633

(−2.4270, 1.9004)

−5.6149

(−7.4538, −3.7760)

const
−0.5102

(−3.6884, 2.6680)

−6.6244

(−8.8359, −4.4129)

mom dst−1
1.9627

(−3.8599, 7.7852)

24.0970

(16.6218, 31.5721)

tst−1
−1.7040

(−4.3746, 0.9666)

−3.3855

(−6.1543, −0.6167)

The table contains the value-weighted and equally-weighted estimated annualized components of vector

ν, and their confidence intervals at 95% probability level for the individual stocks (n = 9, 936 and nχ =

3, 900). We report the bias corrected estimates ν̂B of ν. In order to build the confidence intervals for ν,

we use the thresholded variance-covariance matrix of Proposition 5. The default spread dst−1 and the term

spread tst−1 are centered and standardized.
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Appendix 13 Empirical analysis of estimated time-varying betas

In this appendix, we provide an empirical comparison between the estimated time-varying betas for the

portfolios and the individual stocks. The aim is to show that individual stock betas and Indu. portfolio

betas move over time substantially while the FF portfolio betas are much more stable. This means that the

time-invariant models for the individual stocks and Indu. portfolios in Section 4.2 are likely misspecified

as discussed theoretically in Section A.14.1. The first subsection A.13.1 looks at the distributional char-

acteristics of the estimated time-varying betas. The second subsection A.13.2 presents test results for time

invariance of betas similar to the ones developed for λt and νt in Section 4.3. The third subsection A.13.3

gives examples of estimated paths of factor sensitivities.

A.13.1 Distribution of variability of estimated time-varying betas

The time-varying factor loadings are bi,t = Qi,tβ2,i, with Qi,t =
(
IK ⊗ Z ′t−1, IK ⊗ Z ′i,t−1

)
∈ RK×d2 ,

from the functional specification in Assumption FS.1. In this section, we compute the estimates b̂i,t =

Qi,tβ̂2,i if Ii,t = 1, and we study their stability over time. Table 18 reports the cross-sectional summary

statistics of three measures of dispersion over time of the b̂i,t: (i) the standard deviation std
(
b̂k,i

)
=√

V
[
b̂k,i

]
, with V

[
b̂k,i

]
=

1

Ti

∑
t

Ii,t

(
b̂k,i,t − b̄k,i

)
and b̄k,i =

1

Ti

∑
t

Ii,tb̂k,i,t for k = 1, ...,K; (ii) the

coefficient of variation cv
(
b̂k,i

)
=
std
(
b̂k,i

)
∣∣b̄k,i∣∣ ; (iii) the quartile coefficient of dispersion

qc
(
b̂k,i

)
=
Q3

(
b̂k,i

)
−Q1

(
b̂k,i

)
∣∣∣Q2

(
b̂k,i

)∣∣∣ , whereQ1

(
b̂k,i

)
, Q2

(
b̂k,i

)
, andQ3

(
b̂k,i

)
are the lower, median, and

upper quartiles of the b̂k,i,t over time. Figures 19-21 plot the cross-sectional distributions of the three mea-

sures of time variation of betas for individual stocks and portfolios.

The individual stocks have the most pronounced time variation in the sensitivities of the four factors.

For instance, the median standard deviation of betas is about 10 times larger for the individual stocks than

for the 25 FF portfolios uniformly across factors. A similar comment applies for the other measures of time

variability of betas. The cross-sectional distributions of the time variability measures for individual stocks

are strongly right skewed, and the largest values fall outside the support [0, 15] displayed in Figures 20 and
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21. In Table 18, the median quartile coefficient of dispersion of the momentum betas is almost equal for the

individual stocks and the 25 FF portfolios, and the mean value is larger for the 25 FF portfolios. However this

result is driven by the large quartile coefficients of dispersion of two portfolios. Excluding those portfolios,

the mean coefficient of dispersion of the momentum beta for the remaining 23 FF portfolios is 2.2074, an

order of magnitude smaller than for individual stocks.
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Table 18: Summary statistics of std
(
b̂k,i

)
, cv

(
b̂k,i

)
and qc

(
b̂k,i

)
for the four-factor model

n = 9, 936 n = 25 n = 44 n = 9, 936 n = 25 n = 44 n = 9, 936 n = 25 n = 44

bm std cv qc

Min 0.0029 0.0041 0.0365 0.0013 0.0038 0.0354 0.0021 0.0055 0.0395

Median 0.3858 0.0311 0.1089 0.4000 0.0298 0.1031 0.5493 0.0430 0.1319

Mean 0.5235 0.0390 0.1077 1.0494 0.0376 0.1076 1.6491 0.0473 0.1355

Max 5.2495 0.1105 0.1964 208.2981 0.1045 0.2924 505.5851 0.0995 0.3250

Std 0.4821 0.0252 0.0417 5.0411 0.0233 0.0503 11.3116 0.0280 0.0647

bsmb std cv qc

Min 0.0078 0.0182 0.0115 0.0000 0.0484 0.0983 0.0000 0.0472 0.1409

Median 0.5764 0.0701 0.1916 0.8000 0.1005 0.6089 1.0000 0.1402 0.7833

Mean 0.7979 0.0713 0.1861 3.6000 0.1903 0.8565 3.7000 0.2402 1.2567

Max 10.3200 0.1285 0.4968 2,131.0000 0.5966 4.8580 2,392.0000 0.8739 8.0974

Std 0.7686 0.0278 0.0975 393.0000 0.1528 0.8496 41.40000 0.2110 1.5337

bhml std cv qc

Min 0.0128 0.0366 0.0532 0.0000 0.0486 0.2898 0.0000 0.0496 0.2879

Median 0.6275 0.1031 0.2247 1.3000 0.2810 0.8727 1.7000 0.4048 1.0380

Mean 0.8562 0.1176 0.2436 8.7000 0.4316 1.3741 14.3000 0.6345 1.7489

Max 16.8142 0.2373 0.4649 7,117.8000 1.5348 4.8387 8,355.80 2.3510 9.5961

Std 0.8416 0.0561 0.0945 13.9600 0.4286 1.1810 19.2100 0.6470 1.8855

bmom std cv qc

Min 0.0120 0.0075 0.0164 0.0000 0.0813 0.2191 0.0000 0.6997 0.3196

Median 0.4231 0.0462 0.1019 2.0000 1.5244 1.6877 2.0000 1.9840 2.0369

Mean 0.6002 0.0521 0.1212 12.0000 2.7166 2.8861 17.0000 141.7774 10.8291

Max 9.5135 0.1352 0.2831 11,885.0000 21.0727 28.0131 10,847.0000 3,343.4000 300.2741

Std 0.6339 0.0276 0.0721 214.0000 4.1031 4.4284 270.0000 667.6600 45.4179

The table contains the descriptive statistics (cross-sectional minimum, median, mean, maximum and stan-

dard deviation) of the standard deviation (std), the coefficient of variation (cv) and the quartile coefficient

of dispersion (qc) over time of the time-varying estimated loadings for the market (bm), size (bsmb), book-

to-market (bhml) and momentum (bhml) factors. We report the results for individual stocks (n = 9, 936,

nχ = 3, 900), for the 25 FF (n = 25) and 44 Indu. (n = 44) portfolios.
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A.13.2 Test results for time invariance of betas

Time variation of factor loadings bi,t goes through the coefficients of parameter β2,i which load on the

instruments. For each asset i, the null hypothesis isHβ2,i0 : Aβ2,i = 0,where the matrixA =

 A1 0

0 A2


with diagonal blocksA1 = IK ⊗

 0 1 0

0 0 1

 andA2 = IK⊗Iq selects the instrument coefficients when

p = 3 as in our empirical specification. We build the standard chi-square statistic with K (p− 1 + q)

degrees of freedom by using

√
T
(
β̂2,i − β2,i

)
=
√
TE′2

(
β̂i − βi

)
= τi,TE

′
2Q̂
−1
x,iYi,T . (69)

Standard results on OLS imply that the estimator β̂i is asymptotically normal,
√
T
(
β̂i − βi

)
⇒

N
(

0, τiQ
−1
x,iSiiQ

−1
x,i

)
.

We compute the statistic for the four-factor model, the Fama-French model, and the CAPM. For indi-

vidual stocks, we plot the histogram of the p-values of nχ = 3, 900 statistics in Figure 22. We estimate

the proportion of assets with time-invariant betas, denoted π̂0, as in Barras, Scaillet and Wermers (2010)

(see also Bajgrowicz and Scaillet (2012)). We fix the threshold of their approach at λ∗ = 0.6, and we get

π̂0 = 11.67% for the four-factor model. We get π̂0 = 19.69% for the Fama-French model, and π̂0 = 56.51%

for the CAPM. For the 25 FF and 44 Indu. portfolios, we show the p-values of the statistics in Figures 23

and 24, respectively. Moreover, for the 25 FF portfolios, we compute the K (p− 1 + q) t-statistics of com-

ponents of vector Aβ2,i. We perform this exercise assuming the four-factor model, the Fama-French model,

and the CAPM. Tables 19-21 report the p-values of the t-statistics for each portfolio. The null hypothesis of

time-invariant betas in the four-factor model is not rejected at the 5% level for 2 out of the 25 FF portfolios,

and for 6 out of the 44 Indu. portfolios. For both the individual stocks and the portfolios, the propor-

tion of assets, for which the time-invariance hypothesis is not rejected, increases when we switch from the

four-factor model to the Fama-French model and the CAPM. The misspecification due to omitted factors

can mask the time variation in betas. Moreover, the number of constraints from time-invariance of betas

increases with the number of factors. Overall, the findings in Tables 19-21 and Figures 19-24 suggest that

(i) there is statistical evidence to reject the hypothesis of time-invariant betas for the majority of individual

stocks and portfolios, but (ii) time variation in betas is much more pronounced for the individual stocks than
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for portfolios.
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Figure 22: Distribution of p-values of statistics for the null hypothesisHβ2,i0 on individual stocks
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Panel A represents the p-value histogram of the nχ = 3, 900 statistics for testing the null hypothesisHβ2,i0 on

individual stocks computed by assuming a four-factor model. Panel B plots the distribution of nχ = 4, 545

p-values using the Fama-French model. Panel C plots the p-values histogram for the nχ = 5, 225 stocks

computed by assuming the CAPM. We also display the threshold λ∗ (dashed vertical line) and the estimated

proportion of assets with time-invariant betas, π̂0 (solid horizontal line).



Figure 23: p-values of statistics for the null hypothesisHβ2,i0 on the 25 FF portfolios
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The figure represents the p-values of the n = 25 statistics for testing the null hypothesis Hβ2,i0 computed

on the 25 FF portfolios. Panel A, B, and C represent the p-values computed by using the four-factor model,

the Fama-French model, and the CAPM, respectively. We also plot the probability level at 5% (dashed red

line).



Figure 24: p-values of statistics for the null hypothesisHβ2,i0 on the 44 Indu. portfolios
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The figure represents the p-values of the n = 44 statistics for testing the null hypothesisHβ2,i0 computed on

the 44 Indu. portfolios. Panel A, B, and C represent the p-values computed by using the four-factor model,

the Fama-French model, and the CAPM, respectively. We also plot the probability level at 5% (dashed red

line).



Table 19: p-values of the t-statistics for the components of Aβ̂2,i for the 25 FF portfolios and the

four-factor model
Portfolio 1 2 3 4 5 6 7 8 9 10 11 12 13

dst−1 0.4599 0.6185 0.4356 0.4548 0.4432 0.1831 0.1135 0.5233 0.7541 0.5114 0.7382 0.0647 0.8481

m tst−1 0.6584 0.6517 0.6834 0.7228 0.2680 0.3131 0.7852 0.1950 0.1156 0.0005 0.8073 0.1768 0.0071

bmi,t−1 0.0976 0.0055 0.3975 0.1640 0.1038 0.0007 0.4470 0.2099 0.4447 0.0151 0.2022 0.2644 0.4862

dst−1 0.1223 0.0859 0.0064 0.2465 0.4586 0.1683 0.2447 0.8990 0.0395 0.0289 0.9005 0.4365 0.5095

smb tst−1 0.0189 0.1501 0.0938 0.2820 0.0171 0.6009 0.0732 0.8610 0.0408 0.0557 0.0077 0.6464 0.0706

bmi,t−1 0.0514 0.2139 0.0173 0.2119 0.0451 0.0252 0.0000 0.0000 0.0015 0.8296 0.0037 0.0000 0.0000

dst−1 0.9678 0.4848 0.4141 0.1766 0.5357 0.2775 0.9541 0.1474 0.2168 0.0556 0.3575 0.7250 0.0168

hml tst−1 0.3009 0.2786 0.2627 0.0251 0.2717 0.0194 0.7075 0.9352 0.0519 0.8536 0.2403 0.5425 0.5304

bmi,t−1 0.2019 0.1397 0.5248 0.8637 0.3888 0.2263 0.3365 0.9560 0.9280 0.0006 0.8066 0.4886 0.0910

dst−1 0.6860 0.9257 0.6865 0.5461 0.0100 0.0301 0.2530 0.6400 0.1534 0.9856 0.3619 0.3835 0.5017

mom tst−1 0.3482 0.5326 0.4638 0.8555 0.4688 0.1311 0.1423 0.0036 0.3800 0.4977 0.1016 0.0395 0.433

bmi,t−1 0.0962 0.4054 0.1342 0.4952 0.6964 0.0035 0.0272 0.8324 0.1495 0.5121 0.0134 0.1114 0.6725

p-values forHβ2,i0 0.0009 0.0000 0.0017 0.1117 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0037 0.0003 0.0000

Portfolio 14 15 16 17 18 19 20 21 22 23 24 25

dst−1 0.1303 0.0013 0.9973 0.400 0.2704 0.6714 0.1186 0.0459 0.2473 0.1775 0.5812 0.0037

m tst−1 0.6402 0.0025 0.8609 0.2055 0.0189 0.2668 0.6195 0.0454 0.6947 0.1387 0.0353 0.1105

bmi,t−1 0.7233 0.4948 0.2548 0.1706 0.1649 0.1101 0.1108 0.0000 0.2302 0.0503 0.6767 0.7626

dst−1 0.0898 0.1962 0.1013 0.0107 0.1603 0.1882 0.1090 0.1470 0.5581 0.1293 0.6939 0.4463

smb tst−1 0.0000 0.8924 0.8245 0.0000 0.0002 0.0044 0.2585 0.0024 0.0417 0.0083 0.7002 0.0091

bmi,t−1 0.0007 0.2947 0.6232 0.0001 0.0000 0.0001 0.0312 0.2663 0.0289 0.0219 0.0000 0.4522

dst−1 0.8898 0.0023 0.7911 0.2648 0.0125 0.3582 0.2970 0.7678 0.0490 0.6217 0.0755 0.5504

hml tst−1 0.1770 0.5773 0.8343 0.6240 0.2653 0.8440 0.2591 0.2443 0.7116 0.3477 0.1381 0.0004

bmi,t−1 0.7110 0.0337 0.8939 0.1758 0.3545 0.4109 0.0074 0.0081 0.7634 0.0376 0.9627 0.0415

dst−1 0.7466 0.0209 0.4460 0.4506 0.9760 0.3856 0.6150 0.6161 0.2053 0.5055 0.6394 0.7532

mom tst−1 0.7259 0.4885 0.1521 0.5367 0.8791 0.0034 0.9300 0.0220 0.0044 0.8331 0.8990 0.0101

bmi,t−1 0.5076 0.5047 0.7720 0.1908 0.1468 0.0453 0.6284 0.0005 0.1625 0.0004 0.1031 0.9169

p-values forHβ2,i0 0.0000 0.0000 0.5360 0.0000 0.0000 0.0000 0.0189 0.0000 0.0000 0.0009 0.0005 0.0000

The table reports the p-values of the t-statistics computed on each component of vector Aβ̂2,i, estimated

on the 25 FF portfolios by assuming the four-factor model. For comparison purposes, we also report the

p-values for the joint null hypothesisHβ2,i0 (see Figure 23, Panel A).



Table 20: p-values of the t-statistics for the components of Aβ̂2,i for the 25 FF portfolios and the

Fama-French model
Portfolio 1 2 3 4 5 6 7 8 9 10 11 12 13

dst−1 0.0733 0.1738 0.3635 0.3456 0.5784 0.7323 0.3457 0.2645 0.5706 0.3156 0.7191 0.1367 0.6048

m tst−1 0.4409 0.6374 0.7057 0.6129 0.2835 0.2048 0.9056 0.2105 0.1070 0.0005 0.8593 0.1847 0.0108

bmi,t−1 0.1324 0.0081 0.5098 0.1878 0.0429 0.0021 0.2179 0.1962 0.4834 0.0168 0.3305 0.1914 0.3862

dst−1 0.1459 0.0861 0.0123 0.2738 0.3186 0.3676 0.5540 0.8204 0.0490 0.0440 0.7496 0.5272 0.7128

smb tst−1 0.0248 0.3091 0.1622 0.3762 0.0071 0.4027 0.0883 0.4520 0.0023 0.2589 0.0171 0.8453 0.0095

bmi,t−1 0.0158 0.1726 0.0187 0.1428 0.0455 0.1364 0.0000 0.0000 0.0012 0.9687 0.0085 0.0000 0.0000

dst−1 0.0523 0.0499 0.4741 0.7366 0.4097 0.0334 0.7426 0.9243 0.7577 0.0004 0.7209 0.3340 0.0633

hml tst−1 0.3982 0.7438 0.9607 0.4064 0.0082 0.0199 0.3157 0.5476 0.3598 0.8374 0.5712 0.3042 0.4313

bmi,t−1 0.4678 0.5325 0.7249 0.7649 0.6699 0.0671 0.0904 0.0067 0.3447 0.4400 0.1479 0.0353 0.4496

p-values forHβ2,i0 0.0417 0.0000 0.0028 0.2055 0.0000 0.0025 0.0000 0.0000 0.0000 0.0000 0.0419 0.0000 0.0000

Portfolio 14 15 16 17 18 19 20 21 22 23 24 25

dst−1 0.3016 0.0000 0.8815 0.3852 0.9783 0.5598 0.4009 0.0120 0.0596 0.1627 0.3556 0.0218

m tst−1 0.7432 0.0012 0.8280 0.2201 0.0172 0.2321 0.4984 0.0824 0.5970 0.1949 0.0855 0.0753

bmi,t−1 0.5189 0.3695 0.2622 0.0778 0.0672 0.2529 0.0447 0.0000 0.2093 0.0418 0.8899 0.5907

dst−1 0.1529 0.0377 0.1048 0.0295 0.2915 0.3308 0.0633 0.1957 0.6493 0.1268 0.9920 0.4404

smb tst−1 0.0000 0.2151 0.9222 0.0000 0.0231 0.0226 0.7312 0.0043 0.0045 0.0277 0.3240 0.0103

bmi,t−1 0.0008 0.4977 0.5754 0.0001 0.0000 0.0000 0.0400 0.8390 0.0716 0.1191 0.0002 0.7700

dst−1 0.9560 0.0161 0.8782 0.0970 0.1201 0.4852 0.0161 0.0214 0.8588 0.0774 0.6542 0.0219

hml tst−1 0.9727 0.0133 0.3853 0.5180 0.8978 0.1470 0.3894 0.1204 0.0757 0.4976 0.5606 0.6095

bmi,t−1 0.7079 0.4841 0.1070 0.4380 0.4987 0.0030 0.7976 0.1272 0.0038 0.5805 0.6000 0.0174

p-values forHβ2,i0 0.0000 0.0000 0.6013 0.0000 0.0000 0.0000 0.0200 0.0000 0.0000 0.0835 0.0067 0.0010

The table reports the p-values of the t-statistics computed on each component of vector Aβ̂2,i, estimated

on the 25 FF portfolios by assuming the Fama-French model. For comparison purposes, we also report the

p-values for the joint null hypothesisHβ2,i0 (see Figure 23, Panel B).
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Table 21: p-values of the t-statistics for the components of Aβ2,i for the 25 FF portfolios and the

CAPM
Portfolio 1 2 3 4 5 6 7 8 9 10 11 12 13

dst−1 0.2822 0.4219 0.8277 0.776 0.1996 0.0034 0.3452 0.7554 0.3288 0.2308 0.0032 0.5610 0.4998

m tst−1 0.1260 0.6239 0.8390 0.7438 0.9200 0.9148 0.6101 0.8916 0.8077 0.2202 0.2291 0.7162 0.7482

bmi,t−1 0.4183 0.4919 0.9931 0.8983 0.756 0.5648 0.7754 0.9376 0.9035 0.3168 0.2999 0.9809 0.6946

p-values forHβ2,i0 0.1004 0.5365 0.9955 0.9843 0.5672 0.0155 0.8056 0.9758 0.6962 0.0773 0.0043 0.9486 0.8396

Portfolio 14 15 16 17 18 19 20 21 22 23 24 25

dst−1 0.6779 0.5691 0.0007 0.7009 0.2842 0.1467 0.0618 0.0673 0.0643 0.0254 0.0002 0.7756

m tst−1 0.0800 0.0819 0.2468 0.1490 0.1606 0.1712 0.1964 0.9456 0.0056 0.1262 0.2399 0.0064

bmi,t−1 0.7112 0.0795 0.3907 0.8753 0.7991 0.7391 0.1331 0.3524 0.1547 0.5142 0.8446 0.5030

p-values forHβ2,i0 0.1694 0.0240 0.0008 0.3907 0.1792 0.0526 0.0090 0.2838 0.0240 0.0043 0.0000 0.0512

The table reports the p-values of the t-statistics computed on each component of vector Aβ̂2,i, estimated on

the 25 FF portfolios by assuming the CAPM. For comparison purposes, we also report the p-values for the

joint null hypothesisHβ2,i0 (see Figure 23, Panel C).

A.13.3 Examples of estimated beta paths

In this section, we plot the estimated path of time-varying betas for some of the 25 FF and 44 Indu. port-

folios. In order to build confidence intervals for b̂i,t = Qi,tβ̂2,i, we use Equation (69) and deduce that
√
T
(
b̂i,t − bi,t

)
⇒ N

(
0, τiQi,tE

′
2Q
−1
x,iSiiQ

−1
x,iE2Q

′
i,t

)
. The examples of estimated paths show that the

betas for the 25 FF portfolios are more stable than for the 44 Indu. portfolios. As expected, portfolios of

small firms have overall a large value of beta w.r.t the smb factor, and portfolios of value firms have a large

beta w.r.t. the hml factor (see Figures 25 and 26). We observe both cyclical and countercyclical variation in

the FF portfolios betas. Some Indu. portfolios, such as those of the Agriculture, Fabricated Products, and

Petroleum and Natural Gas sectors, show substantial countercyclical variation in their beta w.r.t. the value

factor (see Figures 28 and 29).
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Figure 25: Paths of the components of b̂i,t with n = 25

Panel A: i = 1 (Small size, Low value)
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Panel B: i = 5 (Small Size, High value)
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The figure plots the path of estimated time-varying betas b̂m,t, b̂smb,t, b̂hml,t and b̂mom,t and their pointwise

confidence intervals at 95% probability level for two small size FF portfolios. We also report the time-

invariant (dashed horizontal line) and the average conditional estimate (solid horizontal line).



Figure 26: Paths of the components of b̂i,t with n = 25

Panel A: i = 16 (Size 4, Low value)
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Panel B: i = 20 (Size 4, High value)
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The figure plots the path of estimated time-varying betas b̂m,t, b̂smb,t, b̂hml,t and b̂mom,t and their pointwise

confidence intervals at 95% probability level for two FF portfolios in the fourth size quintile. We also report

the time-invariant (dashed horizontal line) and the average conditional estimate (solid horizontal line).



Figure 27: Paths of the components of b̂i,t with n = 25

Panel A: i = 21 (Big Size, Low value)
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Panel B: i = 25 (Big size, High value)
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The figure plots the path of estimated time-varying betas b̂m,t, b̂smb,t, b̂hml,t and b̂mom,t and their pointwise

confidence intervals at 95% probability level for two big size FF portfolios. We also report the time-invariant

(dashed horizontal line) and the average conditional estimate (solid horizontal line).



Figure 28: Paths of the components of b̂i,t with n = 44

Panel A: i = 1 (Agriculture)
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Panel B: i = 20 (Fabricated Products)
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The figure plots the path of estimated time-varying betas b̂m,t, b̂smb,t, b̂hml,t and b̂mom,t and their pointwise

confidence intervals at 95% probability level for two Indu. portfolios. We also report the time-invariant

(dashed horizontal line) and the average conditional estimate (solid horizontal line).



Figure 29: Paths of the components of b̂i,t with n = 44

Panel A: i = 30 (Petroleum and Natural Gas)
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Panel B: i = 40 (Transportation)
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The figure plots the path of estimated time-varying betas b̂m,t, b̂smb,t, b̂hml,t and b̂mom,t and their pointwise

confidence intervals at 95% probability level for two Indu. portfolios. We also report the time-invariant

(dashed horizontal line) and the average conditional estimate (solid horizontal line).



Appendix 14 Misspecification analysis

In this appendix, we first present theoretical results on the role of misspecification and aggregation (Sec-

tion A.14.1) and we derive the pseudo-true value of the risk premia parameter when we estimate a poten-

tially misspecified time-invariant model using either individual assets (Section A.14.2) or portfolios (Section

A.14.3). Then, we estimate these pseudo-true values using our dataset (Section A.14.4).

A.14.1 The role of misspecification and aggregation

A potential explanation of the differences between the results on individual stocks and portfolios, as well

as between sets of portfolios, is the uneven degree of misspecification of a given model across universes of

assets. Using mimicking portfolio returns as observable factors and aggregating assets into portfolios may

induce misspecification in the functional form of the beta dynamics. Risk premia estimated by the two-pass

methodology from misspecified models converge to pseudo-true values. Estimation from individual stocks

and portfolios may yield different pseudo-true values. In this section, we present theoretical and empirical

arguments to support the plausibility of these claims for explaining the findings in Sections 4.2 and 4.3 of

the paper.

Suppose that the Data Generating Process (DGP) for the excess returns in the continuum economy is:

Rt(γ) = ct(γ) + dt(γ)′ht + εt(γ), (70)

where ht is a r×1 vector of “structural", or “economic", unknown factors with time-varying loadings dt(γ).

The intercepts are ct(γ) = dt(γ)′µt for some stochastic vector µt because of the no-arbitrage restriction. We

have µt = 0 for tradable factors. In applying the two pass methodology, we approximate the unobservable

factors by the excess returns of some mimicking portfolios. The market, Fama-French, and momentum

factors are standard examples.

Let us formalize the concept of mimicking portfolio construction. Take a weighting function w(γ, ω),

which is F0-measurable w.r.t. ω ∈ Ω for a.e. γ ∈ [0, 1], and Lebesgue measurable w.r.t. γ ∈ [0, 1] for

a.e. ω ∈ Ω, such that
ˆ
w(γ, ω)dγ = 1 for a.e. ω ∈ Ω. Quantities wt(γ, ω) = w[γ, St−1(ω)], for γ

varying, yield the portfolio weights wt(γi)/nwt at time t, where nwt =
∑
i

wt(γi) is the weighted number
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of the n sampled assets included in the portfolio w at time t. The excess return of the portfolio w is

Rwt =
1

nwt

∑
i

wt(γi)Rt(γi). From Equation (70), we have:

Rwt = (dwt )′(ht + µt) + εwt , (71)

with factor sensitivities dwt =
1

nwt

∑
i

wt(γi)dt(γi) and an error term εwt =
1

nwt

∑
i

wt(γi)εt(γi). We have

that εwt is close to zero for large n if the error terms of the individual assets feature weak cross-sectional

dependence and the portfolio is sufficiently diversified. Thus, the k × 1 vector ft of excess returns from

k diversified portfolios is close to Dt(ht + µt), for some k × r matrix Dt which is measurable w.r.t. the

information Ft−1. To focus this section on specification analysis (see the next Appendix 15 for discussion

on missing factor impact), we assume k = r, namely that the number of observable factors corresponds to

the number of unknown factors, and we neglect approximation errors. Then, we have:

ht + µt = D−1
t ft. (72)

for non redundant observable factors. Replacing Equation (72) into model (70) shows that the asset returns

satisfy model (1) with factors ft and sensitivities bt(γ) = (D−1
t )′dt(γ). By construction, we get νt = 0

because the factors ft are returns of tradable portfolios. Thus, model (1) is correctly specified as long as we

set the correct number of factors, even if the observable factors ft do not correspond to the unknown factors

ht. Indeed, the vector ft dynamically spans the true factor space. However, a constrained parametric model

for the economic factor sensitivities, instead of a generic unconstrained dt(γ), does not necessarily transmit

to the observable factor sensitivities. For instance, if the economic factor sensitivities are linear functions of

some instruments, the observable factor sensitivities are not necessarily linear functions of these instruments.

Choosing mimicking portfolio returns as observable factors jointly with a constrained parametrization can

lead to a first source of misspecification.

A second potential source of misspecification comes from the aggregation of assets into portfolios. Let

wj for j = 1, ...,m be a set of portfolios. We use the index j and the cardinality m for portfolios in order

to distinguish them from the corresponding i and n for the fundamental assets. Under model (1) for the

individual assets, the asset pricing restrictions yield the portfolio returns:

Rjt = ajt + (bjt )
′ft + εjt , (73)
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with factor sensitivities:

bjt =
1

njt

∑
i

wjt (γi)bt(γi), (74)

intercepts ajt = (bjt )
′νt, and error terms εjt =

1

njt

∑
i

wjt (γi)εt(γi). Model (73) is a factor model with the

same factors as the original model for the individual assets, and time-varying alphas and betas. Hence, as

observed in Section 2.2 for repackaging, we have robustness w.r.t. portfolio aggregation. However, if we

choose a constrained parametric specification for the coefficients of a time-varying model, that parametric

choice does not transmit easily under portfolio aggregation. First, the dynamics of the portfolio betas result

from a combination of the dynamics of the individual stock betas and of the portfolio weights. Second,

even with time-invariant portfolio weights, the aggregation of the asset specific instruments is complex,

and results in models with portfolio specific instruments which involve unknown model parameters. For

instance, let us consider the linear beta specification bi,t = BiZt−1 + CiZi,t−1 with a scalar stock specific

instrument estimated in our empirical analysis, and equally-weighted portfolios, i.e. wjt = 1/|Aj | for

γ ∈ Aj , and 0 otherwise, for all j and t, where Aj ⊂ [0, 1] is a measurable set with non-zero measure

|Aj |. Then, from (74), the portfolio betas are bjt = BjZt−1 + CjZjt−1, where the portfolio coefficients

Bj =
1

nj

∑
i:γi∈Aj

Bi and Cj =
1

nj

∑
i:γi∈Aj

Ci are averages of the individual coefficients, nj is the number

of indices i with γi ∈ Aj , and the portfolio specific instrument Zjt−1 =
∑

i:γi∈Aj
CiZi,t−1

/ ∑
i:γi∈Aj

Ci is a

weighted average of the assets specific instruments, with weights involving the unknown coefficients Ci. If

we use an ad-hoc aggregation scheme to define the portfolio specific instruments, the resulting model is in

general misspecified. If we try to replace the unknown Ci with estimates to get a proxy for the Zjt−1, we

need first to estimate the model for the individual assets and face an EIV problem. For the FF portfolios,

misspecification of the beta dynamics may result from the time-varying portfolio weights and the ad-hoc

aggregation scheme used to construct the portfolio specific instrument, namely the book-to-market equity

of the portfolio as in Section 4.3 of the paper.

Under misspecification, the two-pass methodology may yield different pseudo-true values for the risk

premia depending on the selected universe of assets. Let us assume that the DGP for the individual stock

returns is given by model (1)-(3), with possibly time-varying betas and risk premia, but the researcher
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estimates a time-invariant model. For expository purposes, we focus on the OLS estimator in the second

pass. We show in Section A.14.2 that the pseudo true value of parameter ν using individual stock returns

is ν∗ =

(ˆ
b∗(γ)b∗(γ)′dG(γ)

)−1 ˆ
b∗(γ)a∗(γ)dG(γ), where the pseudo-true values of sensitivities and

intercepts are:

b∗(γ) =
[
IK + V [ft]

−1Cov(ft, νt)
]
E[bt(γ)] + E [ξt(bt(γ)− E[bt(γ)])] ,

a∗(γ) = E
[
νt − Cov(νt, ft)V [ft]

−1ft
]′
E[bt(γ)]− E

[
η′t(bt(γ)− E[bt(γ)])

]
,

and the matrix and vector processes ξt and ηt are defined by ξt = V [ft]
−1(ft − E[ft])(νt + ft)

′ and

ηt =
(
E[ft]

′V [ft]
−1(ft − E[ft])− 1

)
(νt + ft). Expectations, variances, and covariances are w.r.t. the

DGP. The pseudo-true value ν∗ is equal to the unconditional expectation E[νt] if the individual betas are

uncorrelated with the conditional expectations of ft and νt given Ft−1, and process νt is uncorrelated with

ft. Then the pseudo-true risk premia vector is λ∗ = ν∗ + E[ft] = E[λt]. Here, even if the model is mis-

specified, there is no effect on the time-averaged risk premia. However, in general, time-variation distorts

risk premia estimates. Even if the factors ft are tradable, i.e., νt = 0, we may have ν∗ 6= 0. The factors may

appear as nontradable because of a misspecified time-invariant model as it is likely in Section 4.2.

If we estimate the time-invariant model using the returns on m portfolios wj , with j = 1, ...,m, the

pseudo-true value of ν becomes ν∗∗ =

∑
j

b∗jb
∗′
j

−1∑
j

b∗ja
∗
j , where (see Section A.14.3)

b∗j =

ˆ
E[wjt (γ)]b∗(γ)dG(γ) +

ˆ
Cov

(
ξtbt(γ), wjt (γ)

)
dG(γ),

and

a∗j =

ˆ
E[wjt (γ)]a∗(γ)dG(γ)−

ˆ
Cov

(
η′tbt(γ), wjt (γ)

)
dG(γ).

The pseudo-true portfolio loadings b∗j are the sum of two components. The first one is an aggregate of

the pseudo-true individual loadings b∗(γ) weighted by the time-averaged portfolio weights E[wjt (γ)]. The

second component is induced by the time-variation of the portfolio weights and its interaction with ft, νt,

and factor sensitivities. A similar comment applies to the pseudo-true portfolio intercepts a∗j . If the portfolio

weights are time-invariant, building portfolios corresponds to aggregating the individual pseudo-true alphas

and betas. The portfolio aggregation effect is more complex if portfolio weights are time-varying. In general,
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the pseudo-true value ν∗∗ depends on the number m of chosen portfolios and the weights wjt (γ) they are

built on, and we expect the pseudo-true values ν∗∗ and ν∗ not to be equal as the different estimated ν̂ in

Table 1 Panel B may indicate. Besides, even if we observe that the portfolio betas are more stable over

time, this does not imply that ν∗∗ will be closer to zero than ν∗, when νt = 0. We give a simple estimation

exercise (see Section A.14.4) to check whether the numerical values for these pseudo-true values and their

differences are compatible with the order of magnitude observed in Table 1 Panel B, including values close

to zero in some cases. For the value factor, time variation in the portfolio weights can explain the large

discrepancy between the pseudo-true values computed on the 25 FF portfolios and the individual stocks.

The above discussion concentrates on the impact of misspecification when the econometrician estimates

a time-invariant model. Similar computations and remarks apply for estimation of misspecified time-varying

models.

A.14.2 Pseudo-true value using individual assets

The pseudo true values of the regression coefficients are β∗(γ) = (a∗(γ), b(γ)∗′)′ = Q−1
x E[xtRt(γ)],

for all γ ∈ [0, 1], where the expectation is w.r.t. the DGP. Let β∗i = β∗(γi). If the OLS estimator is

used in the second pass, and matrix E[b∗i b
∗′
i ] is positive definite, the pseudo-true value of parameter ν is

ν∗1 = E[b∗i b
∗′
i ]−1E[b∗i a

∗
i ]. The pseudo-true weights are w∗i = (v∗i )

−1 with v∗i = τic
′
ν∗1
Q−1
x S∗iiQ

−1
x cν∗1 , where

S∗ii = E[(ε∗i,t)
2xtxt|γi] and ε∗i,t = Ri,t − x′tβ∗i . If the WLS estimator is used in the second pass, and matrix

E[w∗i b
∗
i b
∗′
i ] is positive definite, the pseudo-true value of parameter ν is

ν∗ = E[w∗i b
∗
i b
∗′
i ]−1E[w∗i b

∗
i a
∗
i ]. (75)

Then, the pseudo-true value of the risk premia vector is λ∗ = ν∗ + E[ft].

Let ν̂ be the estimator defined in Equation (14) of the paper, using the first-pass estimators β̂i and the

weights ŵi for the second pass. The next lemma states that the estimators converge to the corresponding

pseudo-true values and is proved at the end of this subsection.

Lemma 17 Suppose Assumptions A.1b), SC.1-SC.2, B.1, B.4, B.5 hold. Moreover, let

sup
γ∈[0,1]

P

[∥∥∥∥∥ 1

T

∑
t

It(γ)xtε
∗
t (γ)

∥∥∥∥∥ ≥ δ
]

satisfy the large deviation bound in Assumption B.1, for any δ > 0

and T ∈ N, where ε∗t (γ) = Rt(γ) − x′tβ
∗(γ) is the pseudo-true error. Then, as n, T → ∞ such that
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n = O (T γ̄) for γ̄ > 0, we have: (i) sup
i

1χi ‖β̂i − β
∗
i ‖ = op(1); (ii)

1

n

∑
i

‖ŵi − w∗i ‖ = op(1); (iii)

ν̂ = ν∗ + op(1).

Let us now derive more explicit expressions for the components a∗(γ) and b∗(γ) of the pseudo-true

coefficients vector. We have:

b∗(γ) = V [ft]
−1Cov(ft, Rt(γ)), a∗(γ) = E[Rt(γ)]− E[ft]

′b∗(γ), (76)

for all γ ∈ [0, 1]. From Rt(γ) = (ft + νt)
′bt(γ) + εt(γ), we have:

E[Rt(γ)] = E[(ft + νt)
′bt(γ)]

= E[νt]
′E[bt(γ)] + E[ft]

′E[bt(γ)] + E[(ft + νt)
′(bt(γ)− E[bt(γ)])],

and:

Cov(ft, Rt(γ)) = Cov(ft, (ft + νt)
′bt(γ))

= (V [ft] + Cov(ft, νt))E[bt(γ)] + Cov(ft, (ft + νt)
′(bt(γ)− E[bt(γ)]))

= (V [ft] + Cov(ft, νt))E[bt(γ)] + E[(ft − E[ft])(ft + νt)
′(bt(γ)− E[bt(γ)])].

Then, by replacing into (76) and rearranging terms, we get:

b∗(γ) =
[
IK + V [ft]

−1Cov(ft, νt)
]
E[bt(γ)] + E [ξt(bt(γ)− E[bt(γ)])] , (77)

a∗(γ) = E
[
νt − Cov(νt, ft)V [ft]

−1ft
]′
E[bt(γ)]− E

[
η′t(bt(γ)− E[bt(γ)])

]
, (78)

for all γ ∈ [0, 1], where ξt = V [ft]
−1(ft − E[ft])(νt + ft)

′ and ηt =
(
E[ft]

′V [ft]
−1(ft − E[ft])− 1

)
(νt + ft).

Proof of Lemma 17: We have β̂i − β∗i = τi,T Q̂
−1
x,i

1

T

∑
t

Ii,txtε
∗
i,t. Then part (i) follows by similar argu-

ments as in the proof of Lemma 3 (i) for a well-specified time-invariant model. The proof of part (ii) is

similar to the proof of Lemma 3 (iii) and is omitted. Finally, using parts (i)-(ii) of this lemma, Assumption

SC.2 and the LLN, we have:

1

n

∑
i

ŵib̂ib̂
′
i =

1

n

∑
i

w∗i b
∗
i b
∗′
i + op(1) = E[w∗i b

∗
i b
∗′
i ] + op(1),

and
1

n

∑
i

ŵib̂iâi =
1

n

∑
i

w∗i b
∗
i a
∗
i + op(1) = E[w∗i b

∗
i a
∗
i ] + op(1).

Since matrix E[w∗i b
∗
i b
∗′
i ] is invertible, part (iii) follows.
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A.14.3 Pseudo-true value using portfolios

Let us now assume that we estimate the time-invariant model on a set of m portfolios wj , with j = 1, ...,m.

If the portfolios are well diversified, and the number of underlying assets n tends to infinity, the idiosyncratic

error terms εjt vanish in Equation (73). Then, the portfolio returns areRjt = (bjt )
′(ft+νt), where the portfolio

sensitivities are:

bjt =

ˆ
wjt (γ)bt(γ)dG(γ). (79)

Then, the pseudo-true values of the regression coefficients are obtained along the lines of Section A.14.2

replacing Rt(γ) with Rjt , and bt(γ) with bjt . We get β∗j = (a∗j , (b∗j)′)′ where:

b∗j =
[
IK + V [ft]

−1Cov(ft, νt)
]
E[bjt ] + E

[
ξt(b

j
t − E[bjt ])

]
, (80)

a∗j = E
[
νt − Cov(νt, ft)V [ft]

−1ft
]′
E[bjt ]− E

[
η′t(b

j
t − E[bjt ])

]
, (81)

for all j = 1, ...,m. Then, when the OLS estimator is used in the second pass, the pseudo-true value of

parameter ν is ν∗1 =

∑
j

b∗j(b∗j)′

−1∑
j

b∗ja∗j . When the WLS estimator is used, the pseudo-true value

of parameter ν is ν∗ =

∑
j

(v∗j)−1b∗j(b∗j)′

−1∑
j

(v∗j)−1b∗ja∗j , where the reciprocal of the pseudo-

true weights are v∗j = c′ν∗1Q
−1
x S∗jQ−1

x cν∗1 , with S∗j = E[(ε∗jt )2xtxt] and ε∗jt = Rjt − x′tβ∗j .

Let us now derive the expressions of the pseudo-true regression coefficients given in Section A.14.1.

From (79), we have:

E[bjt ] =

ˆ
E[wjt (γ)]E[bt(γ)]dG(γ) +

ˆ
Cov

(
bt(γ), wjt (γ)

)
dG(γ),

and:

bjt − E[bjt ] =

ˆ
E[wjt (γ)] (bt(γ)− E[bt(γ)]) dG(γ)

+

ˆ (
wjt (γ)− E[wjt (γ)]

)
bt(γ)dG(γ)−

ˆ
Cov

(
bt(γ), wjt (γ)

)
dG(γ).
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By replacing into (80), we get:

b∗j =

ˆ
E[wjt (γ)]b∗(γ)dG(γ)

+
[
IK + V [ft]

−1Cov(ft, νt)− E[ξt]
]ˆ

Cov
(
bt(γ), wjt (γ)

)
dG(γ)

+

ˆ
Cov

(
ξtbt(γ), wjt (γ)

)
dG(γ).

Since E[ξt] = IK + V [ft]
−1Cov(ft, νt), the second term in the RHS vanishes, and we get the expres-

sion of b∗j given in Section A.14.1. The proof of the expression of a∗j is similar, by using E[ηt] =

−E
[
νt − Cov(νt, ft)V [ft]

−1ft
]
.

A.14.4 Empirical pseudo-true values

In Table 22, we report the estimates of the pseudo-true values of parameter vector ν in a time-invariant four-

factor model obtained with the individual stocks, the 25 FF portfolios, and the 44 Indu. portfolios. We get

the estimates by replacing the expectations in Equations (75), (77)-(78), and (80)-(81) with sample averages.

To assess the contributions of misspecifications along different directions, we consider several alternative

assumptions on the DGP for process νt and factor sensitivities bt(γ) of the individual stocks. Specifically,

we assume that the vector νt is either (i) time-invariant and equal to zero, or (ii) time-invariant and equal to

the time-average ν̄ = [1.3772, −0.2122, −6.1630, −2.5507]′ of the estimates ν̂t obtained with the time-

varying model applied on individual stocks in Section 4.3, or (iii) time-varying and equal to the estimates

ν̂t. Furthermore, we assume that the betas of the nχ = 3, 900 individual stocks after trimming are either (a)

time-invariant and equal to the time averages of the estimates b̂i,t obtained with the time-varying model in

Section 4.3, or (b) time-varying and equal to the estimates b̂i,t. The combination of (i)-(iii) and (a)-(b) yields

six alternative (empirical) DGPs. We compute the portfolio betas by aggregating the betas of the 3, 900

individual stocks using weights ŵji,t. These weights are obtained by following the methodology underlying

the FF and Indu. portfolios applied to the 3, 900 assets of our trimmed sample. To assess the contribution

of time-varying portfolio weights, we also compute the pseudo-true values using the returns of 25 and 44

portfolios with time-invariant weights equal to the time-averages of the corresponding weights ŵji,t. Thus,

the pseudo-true values are computed for five different universes of assets.
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For the DGPs with time constant bi,t and νt, the time-invariant model is correctly specified on individual

stocks. This explains why the (pseudo-)true values of ν with individual stocks, and with time constant

portfolio weights, coincide in the first and third subpanels. Moreover, Equations (77)-(78) and (80)-(81)

imply that these pseudo-true values of ν coincide also when νt is time-varying but the individual stocks betas

are constant, as observed in the fifth subpanel. Instead, the pseudo-true values with time-varying portfolio

weights differ from the pseudo-true values with individual stocks for all DGPs. The largest differences

across universes of assets are observed for the value and momentum factors. We get a substantial difference

between ν∗hml = −6.1636 on the individual stocks and ν∗∗hml = −3.0085 on the 25 FF portfolios (with

time-varying weights) already for the DGP with constant νt = ν̄ and constant bi,t. The five pseudo-true

values for νhml do not change a lot when we move to DGPs with time-variation in νt and/or bi,t. Moreover,

the estimate of νhml on the 25FF portfolios with time-varying weights are asymptotically larger than the

estimates with constant weights. These findings suggest that, for the value factor, the difference between

the results with the individual stocks and the FF portfolios is due mainly to time variation in the portfolio

weights. For the momentum factor, the largest discrepancies between individual stocks and FF portfolios

are observed for the DGPs with time-varying betas and weights. The pseudo-true values for the 44 Indu.

portfolios are more similar to the the pseudo-true values for individual stocks.
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Table 22: Estimated pseudo-true values of parameter ν for the four-factor model

n = 9, 936 n = 25 n = 44

CW TVW CW TVW

νt = 0, bi,t constant

ν∗m 0.0000 0.0000 -0.3427 0.0000 -0.0801

ν∗smb 0.0000 0.0000 0.6167 0.0000 0.1843

ν∗hml 0.0000 0.0000 1.1304 0.0000 -0.4866

ν∗mom 0.0000 0.0000 0.8850 0.0000 -2.3739

νt = 0, bi,t time-varying

ν∗m -0.0251 1.5815 -0.0349 0.5738 -0.3040

ν∗smb 0.6486 0.7998 0.8877 0.6075 1.2729

ν∗hml -1.1835 -4.9452 0.6012 -0.6365 -0.8209

ν∗mom -4.5639 -1.0871 -1.4821 -3.3692 -5.5221

νt = ν̄, bi,t constant

ν∗m 1.3772 1.3772 0.4453 1.3772 1.0312

ν∗smb -0.2122 -0.2122 0.4779 -0.2122 0.0657

ν∗hml -6.1636 -6.1636 -3.0085 -6.1636 -5.8395

ν∗mom -2.5507 -2.5507 -0.7216 -2.5507 -4.5657

νt = ν̄, bi,t time-varying

ν∗m 1.3406 2.6374 0.6123 1.6079 0.9199

ν∗smb 0.1490 0.1940 0.7492 0.1824 0.8432

ν∗hml -6.5468 -9.8461 -3.4016 -6.1935 -6.4573

ν∗mom -6.6899 -3.5831 -2.6132 -5.4675 -8.0675

νt = ν̂t, bi,t constant

ν∗m 1.3788 1.3788 0.8521 1.3788 1.0816

ν∗smb -0.2158 -0.2158 0.4970 -0.2158 0.1172

ν∗hml -6.1291 -6.1291 -3.9565 -6.1291 -5.9395

ν∗mom -2.4741 -2.4741 -0.9824 -2.4741 -4.2506

νt = ν̂t, bi,t time-varying

ν∗m 1.0201 1.5269 -0.0080 1.4433 0.6526

ν∗smb 0.1678 0.1870 0.8511 -0.3721 0.6996

ν∗hml -6.0848 -8.1776 -2.6871 -6.6668 -6.5043

ν∗mom -4.8815 -3.9304 -1.6555 -6.0449 -7.4999

The table contains the annualized estimates of the pseudo-true values of parameter ν for the market (ν∗m),

size (ν∗smb), book-to-market (ν∗hml) and momentum (ν∗mom) factors. We report the estimates ν∗ for individ-

ual stocks (n = 9, 936, nχ = 3, 900), the 25 FF and 44 Indu. portfolios as base assets for several DGPs.

For portfolios, we report both the estimates with time-varying portfolio weights (TVW) and the estimates

obtained assuming time constant weights (CW).



Appendix 15 Empirical analysis of idiosyncratic risks

In this appendix, we compare the cross-sectional distributions of β̂′1,iβ̂1,i, the idiosyncratic risk (square root

of residual variance), and the estimated time-series coefficient of determination ρ̂2
i (ratio of explained vari-

ance and total variance) for the time-varying specifications assuming the four-factor model for the excess

returns. We can view those estimates as measures of limits-to-arbitrage and missing factor impact. We

relate these measures to stock characteristics such as size, book-to-market, and sample size. For each asset

(either stock, or portfolio) i, we compute four measures: (i) the estimated time-series coefficient of deter-

mination ρ̂2
i =

ESSi
TSSi

, where ESSi =
∑
t

Ii,t

(
R̂i,t − ¯̂

Ri

)2
, with R̂i,t = β̂′ixi,t and ¯̂

Ri =
1

Ti

∑
t

Ii,tR̂i,t,

and TSSi =
∑
t

Ii,t
(
Ri,t − R̄i

)2, with R̄i =
1

Ti

∑
t

Ii,tRi,t; (ii) the estimated adjusted R2 defined by

ρ̂2
ad,i = 1− (Ti − 1)

(Ti − d)

(
1− ρ̂2

i

)
; (iii) the idiosyncratic risk IdiV oli =

√
RSSi
Ti

, with RSSi =
∑
t

Ii,tε̂
2
i,t;

(iv) the systematic risk SysRiski =

√
ESSi
Ti

.

Figures 30 and 31 compare the cross-sectional distributions of the four measures (i)-(iv) computed on

the time-invariant and time-varying four-factor models using the individual stocks, 25 FF and 44 Indu.

portfolios as base assets. For comparison purposes, the cross-sectional distributions for individual stocks in

both figures refer to the nχ = 3, 900 stocks used in the estimation of the time-varying specification after

trimming. The time-series (adjusted) ρ̂2
i of the 25 FF portfolios are all larger than 0.80. The estimates ρ̂2

i of

the individual stocks are typically much smaller, with a median below 0.30. As expected, the excess returns

of individual stocks also have larger idiosyncratic volatilities. The time-series adjusted ρ̂2
i of individual

stocks tend to be a bit larger in the time-varying model than in the time-invariant one, as a result of the

explanatory power that we gain by allowing for beta dynamics. Figures 30 and 31 show that the use of the

FF portfolios also shrinks the dispersion of ρ̂2
i , IdiV oli, and SysRiski, by a large amount. The distributions

for the individual stocks and the 44 Indu. portfolios are comparable and share a wide support. Figure 32 plots

the cross-sectional distributions of β̂′1,iβ̂1,i for the three universes of assets. We observe a huge heterogeneity

in β̂′1,iβ̂1,i for the individual stocks in Figure 32, similar to the one observed on IdiV oli in Figure 31. We

may face the presence of limits-to-arbitrage and missing factors in that case. On the contrary, the estimates

β̂′1,iβ̂1,i are concentrated close to zero for the 25 FF and 44 Indu. portfolios.
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Figures 33-35 plot the idiosyncratic risks IdiV oli and systematic risks SysRiski versus the estimated

coefficients of determination ρ̂2
i . These three quantities are related by ρ̂2

i =
SysRisk2

i

SysRisk2
i + IdiV ol2i

.

Figures 36-44 plot the averages over time of size, M̄Ci =
1

Ti

∑
t

Ii,tmci,t, and book-to-market

¯BM i =
1

Ti

∑
t

Ii,tbmi,t, versus ρ̂2
i , IdiV oli and β̂′1,iβ̂1,i. Figure 45 plots the relation between the in-

verse standardized time-series dimension τi,T =
T

Ti
and the idiosyncratic and systematic risks IdiV oli and

SysRiski, the estimated coefficients of determination ρ̂2
i , the estimated β̂′1,iβ̂1,i, and the time averaged

size and book-to-market M̄Ci and ¯BM i. For the individual stocks, we report the estimated linear quantile

regressions for probability levels 90%, 75%, 50%, 25%, and 10% on Figures 33, 36, 39, 42 and 45. Figures

34-35, 37-38, 40-41, 43-44 do not seem to deliver a clear relationship between
(
ρ̂2
i , IdiV oli

)
,
(
ρ̂2
i , SysRiski

)
,(

M̄Ci, ρ̂
2
i

)
,
(

¯BM i, ρ̂
2
i

)
,
(
M̄Ci, IdiV oli

)
,
(

¯BM i, IdiV oli
)
,
(
M̄Ci, β̂

′
1,iβ̂1,i

)
, and

(
¯BM i, β̂

′
1,iβ̂1,i

)
when

we examine the 25 FF and 44 Indu. portfolios, except perhaps a negative association between ρ̂2
i and IdiV oli

for the 44 Indu. portfolios. This lack of conclusive evidence is probably due to the small number of points

and aggregation effects. On the contrary, for the individual stocks, the linear quantile regressions show

a positive relationship for
(
ρ̂2
i , SysRiski

)
,
(
M̄Ci, ρ̂

2
i

)
, and a negative relationship for

(
ρ̂2
i , IdiV oli

)
,(

M̄Ci, IdiV oli
)
, and

(
M̄Ci, β̂

′
1,iβ̂1,i

)
. Moreover, the linear quantile regressions at 50% or higher show

a negative relationship for
(

¯BM i, IdiV oli
)

and
(
BM̄i, β̂

′
1,iβ̂1,i

)
in Figures 39 and 42. In Figure 45, we

observe a positive relationship for (τi,T , IdiV oli), (τi,T , SysRiski),
(
τi,T , β̂

′
1,iβ̂1,i

)
, and a negative rela-

tionship for
(
τi,T , M̄Ci

)
. Our preliminary results based on linear quantile regressions reveal that stocks with

small size tend to yield large β̂′1,iβ̂1,i, large idiosyncratic risks, and small estimated ρ̂2
i . We also find that

firms with short observation periods (i.e., large τi,T ) tend to be associated with large values of both idiosyn-

cratic and systematic risks (with a larger proportion of systematic risk to total risk), large β̂′1,iβ̂1,i, as well as

small market capitalisation. The results observed for IdiV oli and β̂′1,iβ̂1,i are similar as expected from their

interpretation as measures of limits-to-arbitrage and missing factor impact. Measuring and understanding

limits-to-arbitrage and missing factor impact on individual stocks certainly awaits more work.
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Figure 30: Cross-sectional distributions of ρ̂2
i , ρ̂2

ad,i, IdiV oli, and SysRiski for the time-invariant

four-factor model
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The figure displays the cross-sectional distributions of (i) the estimated coefficients of determination ρ̂2
i , (ii)

the estimated adjusted coefficients of determination ρ̂2
ad,i, (iii) the idiosyncratic risks IdiV oli, and (iv) the

systematic risks SysRiski for the individual stocks (box-plots), the 25 FF portfolios (red triangles) and the

44 Indu. portfolios (blue stars). Estimates are for the time-invariant four-factor model. For comparison

purposes, the cross-sectional distribution for individual stocks refers to the nχ = 3, 900 stocks that are used

in the estimation of the time-varying model after trimming.
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Figure 31: Cross-sectional distributions of ρ̂2
i , ρ̂2

ad,i, IdiV oli, and SysRiski for the time-varying four-

factor model
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The figure displays the cross-sectional distributions of (i) the estimated coefficients of determination ρ̂2
i ,

(ii) the estimated adjusted coefficients of determination ρ̂2
ad,i, (iii) the idiosyncratic risks IdiV oli, and (iv)

the systematic risks SysRiski for the nχ = 3, 900 individual stocks (box-plots), the 25 FF portfolios (red

triangles) and the 44 Indu. portfolios (blue stars). Estimates are for the time-varying four-factor model.
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Figure 32: Cross-sectional distributions of β̂′1,iβ̂1,i for the time-varying four-factor model
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The figure plots the cross-sectional distributions of β̂′1,iβ̂1,i for the nχ = 3, 900 individual stocks (box-

plot), the 25 FF portfolios (red triangles) and the 44 Indu. portfolios (blue stars). Estimated β̂1,i are for the

time-varying four-factor model.

Figure 33: ρ̂2
i vs IdiV oli and SysRiski for the nχ = 3, 900 stocks
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The figure plots the estimated coefficients of determination ρ̂2
i w.r.t. the idiosyncratic risks IdiV oli (Panel

A) and the systematic risks SysRiski (Panel B) computed on the time-varying four-factor model using the

nχ = 3, 900 individual stocks. We report the estimated linear quantile regressions for probability levels

90%, 75%, 50%, 25%, and 10%.



Figure 34: ρ̂2
i vs IdiV oli and SysRiski for the 25 FF portfolios
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The figure plots the estimated coefficients of determination ρ̂2
i w.r.t. the idiosyncratic risks IdiV oli (Panel

A) and the systematic risks SysRiski (Panel B) computed on the time-varying four-factor model for the 25

FF portfolios.

Figure 35: ρ̂2
i vs IdiV oli and SysRiski for the 44 Indu. portfolios
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The figure plots the coefficients of determination ρ̂2
i w.r.t. the idiosyncratic risks IdiV oli (Panel A) and

the systematic risks SysRiski (Panel B) computed on the time-varying four-factor model for the 44 Indu.

portfolios.



Figure 36: M̄Ci and ¯BM i vs ρ̂2
i for the nχ = 3, 900 individual stocks
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The figure plots the averages over time of the market capitalisation M̄Ci (Panel A) and the book-to-market

¯BM i (Panel B) w.r.t. the estimated coefficients of determination ρ̂2
i computed on the time-varying four-

factor model for the nχ = 3, 900 individual stocks. We report the estimated linear quantile regressions for

probability levels 90%, 75%, 50%, 25%, and 10%.

Figure 37: M̄Ci and ¯BM i vs ρ̂2
i for the 25 FF portfolios
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The figure plots the averages over time of the market capitalisation M̄Ci (Panel A) and the book-to-market

¯BM i (Panel B) w.r.t. the estimated coefficients of determination ρ̂2
i computed on the time-varying four-

factor model for the 25 FF portfolios.



Figure 38: M̄Ci and ¯BM i vs ρ̂2
i for the 44 Indu. portfolios
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The figure plots the averages over time of the market capitalisation M̄Ci (Panel A) and the book-to-market

¯BM i (Panel B) w.r.t. the estimated coefficients of determination ρ̂2
i computed on the time-varying four-

factor model for the 44 Indu. portfolios.

Figure 39: M̄Ci and ¯BM i vs IdiV oli for the nχ = 3, 900 individual stocks

12 14 16 18 20 22 24 26
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M̄C i

I
d
iV

o
l i

Panel A

−2 −1 0 1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

¯BM i

I
d
iV

o
l i

Panel B

The figure plots the averages over time of the market capitalisation M̄Ci (Panel A) and the book-to-market

¯BM i (Panel B) w.r.t. the idiosyncratic risks IdiV oli computed on the time-varying four-factor model for

the nχ = 3, 900 individual stocks. We report the estimated linear quantile regressions for probability levels

90%, 75%, 50%, 25%, and 10%.



Figure 40: M̄Ci and ¯BM i vs IdiV oli for the 25 FF portfolios
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The figure plots the averages over time of the market capitalisation M̄Ci (Panel A) and the book-to-market

¯BM i (Panel B) w.r.t the idiosyncratic risks IdiV oli computed on the time-varying four-factor model for the

25 FF portfolios.

Figure 41: M̄Ci and ¯BM i vs IdiV oli for the 44 Indu. portfolios
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The figure plots the averages over time of the market capitalisation M̄Ci (Panel A) and the book-to-market

¯BM i (Panel B) w.r.t. the idiosyncratic risks IdiV oli computed on the time-varying four-factor model for

the 44 Indu. portfolios.



Figure 42: M̄Ci and ¯BM i vs β̂′1,iβ̂1,i for the nχ = 3, 900 individual stocks

12 14 16 18 20 22 24 26
0

2

4

6

8

10

12

14

16

18

20
x 10

−3

M̄C i

β̂
′ 1
,i
β̂
1
,i

Panel A

−2 −1 0 1 2
0

2

4

6

8

10

12

14

16

18

20
x 10

−3

¯BM i

β̂
′ 1
,i
β̂
1
,i

Panel B

The figure plots the averages over time of the market capitalisation M̄Ci (Panel A) and the book-to-market

¯BM i (Panel B) w.r.t. the β̂′1,iβ̂1,i. Estimated β̂1,i are for the time-varying four-factor model using the nχ =

3, 900 individual stocks as base assets. We report the estimated linear quantile regressions for probability

levels 90%, 75%, 50%, 25%, and 10%.

Figure 43: M̄Ci and ¯BM i vs β̂′1,iβ̂1,i for the 25 FF portfolios
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The figure plots the averages over time of the market capitalisation M̄Ci (Panel A) and the book-to-market

¯BM i (Panel B) w.r.t the β̂′1,iβ̂1,i. Estimated β̂1,i are for the time-varying four-factor model using the 25 FF

portfolios as base assets.



Figure 44: M̄Ci and ¯BM i vs β̂′1,iβ̂1,i for the 44 Indu. portfolios
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The figure plots the averages over time of the market capitalisation M̄Ci (Panel A) and the book-to-market

¯BM i (Panel B) w.r.t. β̂′1,iβ̂1,i. Estimated β̂1,i are for the time-varying four-factor model using the 44 Indu.

portfolios as base assets.



Figure 45: τi,T vs ρ̂2
i , IdiV oli, M̄Ci and β̂′1,iβ̂1,i for the nχ = 3, 900 individual stocks
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The figure plots the inverse standardized sample size τi,T w.r.t. the idiosyncratic risks IdiV oli (panel

A), the systematic risks SysRiski (panel B), the estimated coefficients of determination ρ̂2
i (panel C),

the β̂′1,iβ̂1,i (panel D), the averages over time of the market capitalisation M̄Ci (Panel E), and the aver-

ages over time of book-to-market ¯BM i (Panel F), computed on the time-varying four-factor model for the

nχ = 3, 900 individual stocks. We report the estimated linear quantile regressions for probability levels

90%, 75%, 50%, 25%, and 10%.

113



Appendix 16 Robustness checks on the beta specification for individual stocks

In this section, we perform several checks to evaluate the robustness of the empirical results reported in the

paper. In particular, we estimate the paths of the time-varying risk premia and we compute the test statistics

by:

a. Assuming several asset pricing models as baseline specification;

b. Using several sets of asset-specific instruments Zi,t−1;

c. Using several sets of common instruments Zt−1;

d. Assuming that the time-varying betas bi,t depend only on the asset-specific instruments.

In Table 23, we provide the details of the conditional specifications for the four exercises. We use the fol-

lowing abbreviations. For common instruments, we denote by tst the term spread, dst the default spread,

and divY t the dividend yield. The dividend yield is provided by CRSP. For asset-specific instruments, we

denote by mci,t the market capitalisation, bmi,t the book-to-market, and indi,t the return of the correspond-

ing industry portfolio. For each exercise, when not explicitly indicated in Table 23, the specification is the

four-factor model, the vector of common instruments is Zt−1 = [1, tst−1, dst−1]′ and the asset-specific

instrument is the scalar Zi,t−1 = bmi,t−1. Table 23 reports the operative trimmed population of individual

stocks and the number of regressors in the first-pass time series regression for each exercise that we imple-

ment. Indeed, the population of individual stocks changes depending on the asset pricing model (Exercise a)

as an effect of the trimming conditions: the number of assets decreases as the numberK of factors increases.

Moreover, by using the four-factor model as baseline and modifying the sets of instruments, the number of

assets decreases as the number of regressors in the first pass increases (see Exercise c) .

We first present conditional estimates of risk premia by using several asset pricing models as baseline

(Exercise a). Panel A of Figure 46 compares the estimated time-varying paths of market risk premia when

we assume the four-factor model (shown in Section 4) and the CAPM. Panel B compares the estimates

λ̂m,t for the four-factor model and the Fama-French model. The paths look very similar. Figure 47 plots the
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estimated time-varying paths of risk premia for the size and value factors computed on the four-factor model

and on the Fama-French model. The risk premium for the size factor is very similar for the two models. The

value risk premium for the Fama-French model takes slightly smaller values than that for the four-factor

model and it exhibits a counter-cyclical path. Figures 48 and 49 compares the paths of estimated annualized

ν̂t. The paths look similar through the asset pricing models. The discrepancy between the estimates of the

CAPM and the four-factor model is explained by the three factors (size, value and momentum factor) that

we introduce in the four-factor model. Overall, the conditional estimates of the risk premia and coefficients

vector ν are stable with respect to the asset pricing model that is assumed for the excess returns.

Figures 50 and 51 plot the estimates of the risk premia by adopting several sets of asset-specific instru-

ments Zi,t−1 (Exercise b). We do not modify the set of common instruments Zt−1 compared to Section 4 of

the paper. In Figure 50, we get the estimates by setting the scalar Zi,t−1 equal to the market capitalisation of

firm i. In Figure 51, we set Zi,t−1 equal to the monthly returns of the industry portfolio for the industry asset

i belongs to. We use the 48 Fama-French industry portfolios. The risk premia paths look very similar to the

results in Section 4. The results for the tests of the asset pricing restrictions for the conditional specifications

in Exercise b are reported in Table 24, upper panel. The test statistics reject the null hypotheses at 5% level.

The time-varying paths of the risk premia showed in Figures 52 and 53 are computed by modifying

the set of common instruments Zt−1 =
[
1, Z∗′t−1

]′ (Exercise c). In Figure 52, Z∗t is a bivariate vector

that includes the default spread and the dividend yield. The paths of the risk premia for market, value

and momentum factors look similar to the results in Section 4. However, the risk premium for the size

factor features a very stable pattern that does not correspond to the unconditional estimate. In Figure 53,

vector Z∗t includes the term spread, the default spread, and the dividend yield. The paths of the risk premia

look similar to the results in Section 4. Introducing the dividend yield increases the discrepancy between

the unconditional estimates and the average over time of conditional estimates for the size and momentum

factors w.r.t. the results shown in Figure 1. On the contrary, this discrepancy is smaller for the value

premium. Moreover, the risk premium of the momentum factor takes larger values than that in Figure 1. We

also notice that including the dividend yield among the common instruments decreases the number of stocks

after trimming as an effect of the large number of parameters to estimate in the first pass. The confidence

bands in Figure 53 are wider than in Figure 1. The test statistics reject the null hypothesis at 5% level (see
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Table 24), middle panel.

Finally, we consider conditional specifications in which the time-varying betas are linear functions of

asset specific instruments Zi,t−1 only (Exercise d). The risk premia are modeled via common instruments

Zt−1 = [1, tst−1, dst−1]′ as usual. In Figure 54, Zi,t−1 is a bivariate vector that includes the constant

and the book-to-market equity of firm i. In Figure 55, vector Zi,t−1 includes the constant and the return

of the industry portfolio as asset-specific instrument. When bi,t does not depend on Zt−1, the vector Zi,t−1

contains the element 1 to include the constant in the beta specification. The paths of the risk premia for the

four factors in Figure 54 look more volatile w.r.t. the paths in Figure 1. The risk premia for market, size

and value factors in Figure 55 look similar to the results in Section 4. The risk premium for the momentum

factor features a less stable pattern, albeit its confidence intervals look similar to that in Figure 1. In Table

24, lower panel, the test statistic does not reject the asset pricing restriction H0 : β1 (γ) = β3 (γ) ν for the

conditional specification with time-varying betas depending on book-to-market equity.

Table 23: Operative cross-sectional sample size (nχ), number of factors (K) and instruments (p and

q) and first-pass regressors (d) in the four exercises of robustness checks

nχ K p q d nχ K p q d

Exercise a. Exercise c.

CAPM 5,225 1 3 1 13 Zt−1 = [1, dst−1, divYt−1]
′ 1,107 4 3 1 25

Fama-French model 4,545 3 3 1 21 Zt−1 = [1, dst−1, tst−1, divYt−1]
′ 667 4 4 1 34

Exercise b. Exercise d.

Zi,t−1 = mci,t−1 3,835 4 3 1 25 Zi,t−1 = [1, bmi,t−1]
′ 6,135 4 3 2 14

Zi,t−1 = indi,t−1 4,816 4 3 1 25 Zi,t−1 = [1, indi,t−1]
′ 6,515 4 3 2 14

116



Ta
bl

e
24

:T
es

tr
es

ul
ts

fo
r

as
se

tp
ri

ci
ng

re
st

ri
ct

io
ns

Te
st

of
th

e
nu

ll
hy

po
th

es
is
H

0
:
β
1

(γ
)

=
β
3

(γ
)
ν

Te
st

of
th

e
nu

ll
hy

po
th

es
is
H

0
:
β
1

(γ
)

=
0

E
xe

rc
is

e
b.

Z
i,
t−

1
=
m
c i
,t
−
1

Z
i,
t−

1
=
in
d
i,
t−

1
Z
i,
t−

1
=
m
c i
,t
−
1

Z
i,
t−

1
=
in
d
i,
t−

1

(n
χ

=
1
,3

8
3
)

(n
χ

=
1
,3

9
6
)

(n
χ

=
1
,3

8
3
)

(n
χ

=
1
,3

9
6
)

Te
st

st
at

is
tic

8.
04

93
5.

73
73

8.
71

26
6.

45
44

p-
va

lu
e

0.
00

00
0.

00
00

0.
00

00
0.

00
00

E
xe

rc
is

e
c.

Z
t−

1
=

[1
,d
s t
−
1
,d
iv
Y
t−

1
]′

Z
t−

1
=

[1
,d
s t
−
1
,t
s t
−
1
,d
iv
Y
t−

1
]′

Z
t−

1
=

[1
,d
s t
−
1
,d
iv
Y
t−

1
]′

Z
t−

1
=

[1
,d
s t
−
1
,t
s t
−
1
,d
iv
Y
t−

1
]′

(n
χ

=
8
1
8
)

(n
χ

=
6
3
8
)

(n
χ

=
8
1
8
)

(n
χ

=
6
3
8
)

Te
st

st
at

is
tic

2.
79

54
2.

24
63

3.
63

35
2.

84
34

p-
va

lu
e

0.
00

26
0.

01
23

0.
00

00
0.

00
22

E
xe

rc
is

e
d.

Z
i,
t−

1
=

[1
,b
m
i,
t−

1
]′

Z
i,
t−

1
=

[1
,i
n
d
i,
t−

1
]′

Z
i,
t−

1
=

[1
,b
m
i,
t−

1
]′

Z
i,
t−

1
=

[1
,i
n
d
i,
t−

1
]′

(n
χ

=
1
,3

9
5
)

(n
χ

=
1
,3

9
6
)

(n
χ

=
1
,3

9
5
)

(n
χ

=
1
,3

9
6
)

Te
st

st
at

is
tic

1.
09

50
3.

18
26

2.
85

64
5.

00
02

p-
va

lu
e

0.
13

68
0.

00
07

0.
00

21
0.

00
00

W
e

co
m

pu
te

th
e

st
at

is
tic

s
Σ̃
−

1
/
2

ξ
ξ̂ n
T

ba
se

d
on
Q̂
e

an
d
Q̂
a

de
fin

ed
in

Pr
op

os
iti

on
6

fo
rn

χ
in

di
vi

du
al

st
oc

ks
to

te
st

th
e

nu
ll

hy
po

th
es

es

H
0

:
β

1
(γ

)
=
β

3
(γ

)
ν

an
d
H

0
:
β

1
(γ

)
=

0.
T

he
ta

bl
e

re
po

rt
s

th
e

st
at

is
tic

s
an

d
th

ei
r

p-
va

lu
es

w
he

n
w

e
us

e
se

ve
ra

l
se

ts
of

as
se

t-
sp

ec
ifi

c
in

st
ru

m
en

ts
Z
i,
t−

1
(E

xe
rc

is
e

b)
an

d
co

m
m

on
in

st
ru

m
en

ts
Z
t−

1
(E

xe
rc

is
e

c)
,a

nd
w

he
n

tim
e-

va
ry

in
g

be
ta

s
ar

e
fu

nc
tio

ns

of
th

e
as

se
t-

sp
ec

ifi
c

in
st

ru
m

en
ts

on
ly

(E
xe

rc
is

e
d)

.

117



Figure 46: Path of estimated annualized risk premia for the market factor
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Panel A plots the paths of estimated annualized market risk premia λ̂m,t computed by using the four-factor

model (thin red line) and the CAPM (thick blue line). Panel B plots the paths of market risk premia λ̂m,t es-

timated by assuming the four-factor model (thin red line) and the Fama-French model (thick blue line). The

pointwise confidence intervals at 95% level are also displayed. The vertical shaded areas denote recessions

determined by the National Bureau of Economic Research (NBER).
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Figure 47: Path of estimated annualized risk premia for the size and value factors
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The figure plots the paths of estimated annualized risk premia λ̂smb,t (Panel A) and λ̂hml,t (Panel B) com-

puted by using the four-factor model (thin red line) and the Fama-French model (thick blue line). The

pointwise confidence intervals at 95% level are also displayed. The vertical shaded areas denote recessions

determined by the National Bureau of Economic Research (NBER).
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Figure 48: Path of estimated annualized νt for the market factor
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Panel A plots the paths of estimated annualized ν̂m,t computed by using the four-factor model (thin red

line) and the CAPM (thick blue line). Panel B plots the paths of ν̂m,t estimated by assuming the four-factor

model (thin red line) and the Fama-French model (thick blue line). The pointwise confidence intervals

at 95% level are also displayed. The vertical shaded areas denote recessions determined by the National

Bureau of Economic Research (NBER).
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Figure 49: Path of estimated annualized νt for the size and value factors

65 70 75 80 85 90 95 00 05 10
−20

−10

0

10

20

30

40
ν̂smb,t

65 70 75 80 85 90 95 00 05 10
−20

−10

0

10

20

30

40
ν̂hml,t

The figure plots the paths of estimated annualized ν̂smb,t (Panel A) and ν̂hml,t (Panel B) computed by using

the four-factor model (thin red line) and the Fama-French model (thick blue line). The pointwise confidence

intervals at 95% level are also displayed. The vertical shaded areas denote recessions determined by the

National Bureau of Economic Research (NBER).
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Appendix 17 Cost of equity

We can use the results in Section 3 for estimation and inference on the cost of equity in conditional factor

models. We can estimate the time-varying cost of equity CEi,t = rf,t + b′i,tλt of firm i with ĈEi,t =

rf,t + b̂′i,tλ̂t, where rf,t is the risk-free rate. We have (see Appendix A.17.1)

√
T
(
ĈEi,t − CEi,t

)
= ψ′i,tE

′
2

√
T
(
β̂i − βi

)
+
(
Z ′t−1 ⊗ b′i,t

)
Wp,K

√
Tvec

[
Λ̂′ − Λ′

]
+ op (1) , (82)

where ψi,t =
(
λ′t ⊗ Z ′t−1, λ

′
t ⊗ Z ′i,t−1

)′
. Standard results on OLS imply that estimator β̂i is asymptotically

normal,
√
T
(
β̂i − βi

)
⇒ N

(
0, τiQ

−1
x,iSiiQ

−1
x,i

)
, and independent of estimator Λ̂. Then, from Proposition

4, we deduce that
√
T
(
ĈEi,t − CEi,t

)
⇒ N

(
0,ΣCEi,t

)
, conditionally on Zt−1, where

ΣCEi,t = τiψ
′
i,tE

′
2Q
−1
x,iSiiQ

−1
x,iE2ψi,t +

(
Z ′t−1 ⊗ b′i,t

)
Wp,KΣΛWK,p (Zt−1 ⊗ bi,t) .

Figure 56 plots the path of the estimated annualized costs of equity for Ford Motor, Disney, Motorola and

Sony. We use the time-varying four-factor model estimated on individual stocks (n = 9, 936, nχ = 3, 900).

The cost of equity has risen tremendously during the recent subprime crisis.

A.17.1 Proof of Equation (82)

We have:

b̂′i,tλ̂t = tr
[
Zt−1Z

′
t−1B̂

′
iΛ̂
]
+tr

[
Zt−1Z

′
i,t−1Ĉ

′
iΛ̂
]

=
(
Z ′t−1 ⊗ Z ′t−1

)
vec

[
B̂′iΛ̂

]
+
(
Z ′t−1 ⊗ Z ′i,t−1

)
vec

[
Ĉ ′iΛ̂

]
.

Thus, we get:

√
T
(
ĈEi,t − CEi,t

)
=

(
Z ′t−1 ⊗ Z ′t−1

)√
T
(
vec

[
B̂′iΛ̂

]
− vec

[
B′iΛ

])
+
(
Z ′t−1 ⊗ Z ′i,t−1

)√
T
(
vec

[
Ĉ ′iΛ̂

]
− vec

[
C ′iΛ

])
=

(
Z ′t−1 ⊗ Z ′t−1

) [(
Λ̂′ ⊗ Ip

)√
Tvec

[
B̂′i −B′i

]
+
(
Ip ⊗B′i

)√
Tvec

[
Λ̂− Λ

]]
+
(
Z ′t−1 ⊗ Z ′i,t−1

) [(
Λ̂′ ⊗ Iq

)√
Tvec

[
Ĉ ′i − C ′i

]
+
(
Ip ⊗ C ′i

)√
Tvec

[
Λ̂− Λ

]]
.

By using that Λ̂ = Λ + op(1) and vec
[
Λ̂− Λ

]
= Wp,Kvec

[
Λ̂′ − Λ′

]
, Equation (82) follows.
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