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This paper introduces two new nonparametric estimators for probability density func-

tions which have support on the non-negative real line. These kernel estimators are based

on some inverse Gaussian and reciprocal inverse Gaussian probability density functions
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1 Introduction

This paper considers estimation of a probability density function that has bounded support

on [0; 1). Recently Chen (2000) has proposed a nice way to circumvent the well known

boundary bias or edge e®ect that appears in standard kernel density estimation. Boundary

bias is due to weight allocation by the ¯xed symmetric kernel outside the density support

when smoothing is carried out near the boundary. The remedy consists in replacing

symmetric kernels by an asymmetric gamma kernel, which never assigns weight outside

the support. In addition to nice asymptotic features, Chen (2000) reports good ¯nite

sample performance of this cure through a simulation study.

Here we pursue this idea by proposing two new classes of density estimators. They

rely on the use of inverse Gaussian (IG) and reciprocal inverse Gaussian (RIG) probability

density functions as kernels in place of the gamma density function. The name `inverse

Gaussian' was introduced by Tweedie (1947) who noted the inverse relationship between

cumulant generating functions of these distributions and those of Gaussian distributions.

They are also known under the name `Wald' distributions since the same class of distri-

butions was derived by Wald (1947). The IG and RIG kernels have °exible shape and

location on the non-negative real line. Their shapes are allowed to vary according to the

position of the data points, thus changing the degree of smoothing in a natural way, and

their support matches the support of the probability density function under estimation.

As gamma kernel estimators, the IG and RIG kernel estimators are free of boundary bias,

always non-negative, and achieve the optimal rate of convergence for the mean integrated

squared error (MISE) within the class of non-negative kernel density estimators. Fur-

thermore their variance reduces as the position where the smoothing is made moves away

from the boundary. In contrast with the gamma kernel estimators, the IG and RIG kernel

estimators avoid the presence of the ¯rst derivative of the probability density function in

their bias. Let us further remark that the Weibull, non-central chi-square, Fisher, lognor-

mal and Pareto distributions are not suitable for use as asymmetric kernels. This can be

checked from the arguments needed to show our results (kernel behaviour at boundary,

mean and variance of the distribution underlying the kernel speci¯cation).
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The paper is organised as follows. In Section 2 we introduce the IG and RIG kernel

estimators. We compute their bias, variance, optimal MSE and optimal MISE. A compar-

ison is made with gamma kernel estimators. In Section 3 we report Monte Carlo results

concerning the ¯nite sample properties of the di®erent asymmetric kernel estimators for

various distributions and parameter values. Their performance is compared with the one of

smooth optimum boundary and standard symmetric kernel estimators. Section 4 contains

some concluding remarks. An appendix gathers technical details.

2 IG and RIG kernel estimators

Let X1; : : :Xn be a random sample from a distribution with an unknown probability

density function f de¯ned on [0; 1). We assume that f is twice continuously di®erentiable,

and
R1
0 (x3f 00(x))2dx < 1.

Let KIG(m;¸) be the density of an IG(m; ¸) distributed random variable Y de¯ned as:

KIG(m;¸)(y) =
p

¸p
2¼y3

exp
µ
¡ ¸

2m
(

y
m

¡ 2 +
m
y

)
¶

; y > 0:

The mean and variance of Y are equal to

E[Y ] = m; Var[Y ] =
m3

¸
:

The random variable Z = 1=Y then follows an RIG(m; ¸) distribution whose density

is:

KRIG(m; )̧(z) =
p

¸p
2¼z

exp
µ

¡ ¸
2m

(mz ¡ 2 +
1

mz
)
¶

; z > 0:

The mean and variance of Z are equal to

E[Z] =
1
m

+
1
¸

; Var[Z] =
1

¸m
+

2
¸2

:

The classes of IG and RIG kernels we consider are:

KIG(x;1b )(u) =
1p

2¼bu3
exp

µ
¡ 1

2bx
(
u
x

¡ 2 +
x
u

)
¶

;

and

KRIG( 1
x¡b ;

1
b )

(u) =
1p

2¼bu
exp

µ
¡x ¡ b

2b
(

u
x ¡ b

¡ 2 +
x¡ b

u
)
¶

;
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where b is a smoothing parameter satisfying b +1=(bn) ! 0 when n goes to in¯nity. The

estimators of the pdf are

f̂IG(x) = n¡1
nX

i=1
KIG(x; 1b )(Xi);

and

f̂RIG(x) = n¡1
nX

i=1
KRIG( 1

x¡b ;
1
b )

(Xi):

These estimators are extremely easy to implement, and very similar to gamma kernel

estimators. They are obtained after substitution of the IG and RIG kernels for the gamma

kernels used by Chen (2000), namely either:

KGam(x=b+1;b)(u) =
ux=be¡u=b

bx=b+1¡(x=b + 1)
; u > 0;

or

KGam(½b(x);b)(u) = u½b(x)¡1e¡u=b

b½b (x)¡(½b(x))
; u > 0;

with

½b(x) =

8
><
>:

x=b if x ¸ 2b;
1
4(x=b)2 +1 if x 2 [0;2b):

Figure 1 plots the shapes of the IG and RIG kernels, together with the shapes of the two

gamma kernels for some selected values of x and b = 0:2. Let us remark that KIG(x;1=b)(u)

tends to zero for all u as x approaches the boundary. This will induce the constraint

f̂IG(0) = 0, which may be undesirable in some cases. At x = 0, KRIG(1=(¡b);1=b)(u) tends

to zero when u goes to zero, while KGam(1;b)(0) = KGam(½b(0);b)(0) = 1=b. For x > 0, all

kernels vanish at u = 0. In light of Figure 1, the RIG and second gamma kernels exhibit

very similar shapes, except at x = 0, whereas the di®erence between the IG kernel and

the ¯rst gamma kernel is more marked.

The ¯rst proposition is related to the bias of IG and RIG kernel estimators.

Proposition 1 (Bias)

The biases are equal to

Biasff̂IG(x)g =
1
2
x3f 00(x)b + o(b);

4



and

Biasff̂RIG(x)g = 1
2
xf 00(x)b + o(b):

The bias is larger, resp. smaller, for the IG kernel estimator for x > 1, resp. x < 1. The ¯rst

gamma kernel estimator proposed by Chen (2000) has a bias equal to (f0(x)+ 1
2xf 00(x))b.

His second gamma estimator shares the same bias as that of the RIG estimator when

x ¸ 2b, but for x < 2b, it involves f 0 since the bias is then equal to (½b(x) ¡ x=b)f 0(x)b.

Note that the ¯rst derivative f0 is removed from the bias on the whole support in the

IG and RIG kernel estimators which contrasts with the gamma kernel estimators and

transformation kernel density estimators based on the logarithmic mapping. IG, RIG

and gamma kernel estimators are all free of boundary bias since their bias is O(b) in the

interior as well as near the origin. The order of magnitude of the bias does not depend on

the location within the density support. Finally, as
R1
0 (x3f00(x))2dx < 1, x3f 00(x) and

xf00(x) converge to zero as x ! 1. So the bias will be smaller as x increases.

Let us now examine the variance for x 2 (0;1) and take a strictly positive constant

·.

Proposition 2 (Variance)

i) For x=b ! 1 (interior x), x > 0, the variances are equal to

Var[f̂IG(x)] =
1

2
p

¼
n¡1b¡1=2x¡3=2f(x) + o(n¡1b¡1=2);

and

Var[f̂RIG(x)] =
1

2
p

¼
n¡1b¡1=2x¡1=2f(x) + o(n¡1b¡1=2):

ii) For x=b ! · (boundary x), x > 0, the variances are equal to

Var[f̂IG(x)] =
1

2
p

¼
n¡1b¡2·¡3=2f(x) + o(n¡1b¡2);

and

Var[f̂RIG(x)] =
1

2
p

¼
n¡1b¡1(·¡1=2 +

7
16

·¡3=2)f(x) + o(n¡1b¡1);

For interior x the variance is smaller, resp. larger, for the IG, resp. RIG, kernel than

for the RIG, resp. IG, kernel when x > 1, resp. x < 1. The variance expression in the
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RIG case is equal to the approximation obtained for both gamma kernel estimators under

x=b ! 1. As pointed out by Chen (2000), a unique feature of such estimators is that

the variance coe±cient decreases as x increases. This compensates for a potential larger

bias when compared to kernels with compact support. Besides it has an advantage in

estimating densities that have sparse areas because more data points can be pooled to

smooth in areas with fewer observations. This can be viewed as a kind of robustness

property of asymmetric kernels.

For boundary x the variance of the RIG estimator shares the same order as the one

of the gamma kernel estimators. The following ranking can be obtained from a numerical

comparison of the di®erent multipliers of n¡1b¡1f(x): VGam2 ¸ VRIG > VGam1 for · 2
[1:2272;1), and VRIG > VGam2 > VGam1 otherwise. The variance of the IG estimator

is of a higher order. Let us remark that comparison with other techniques for boundary

correction such as use of smooth optimum boundary kernels is di±cult to make. Indeed

such a comparison becomes bandwidth dependent since boundary x is there de¯ned as

x=h ! q. We need then to put h =
p

b and q = ·
p

b to ensure an amount of smoothing

in the same scale.

Note also that the variance of the IG estimator is zero when x = 0 since f̂IG(0) = 0 by

construction. The variance of the RIG kernel at x = 0 is ¯nite if E[(KRIG( 1
¡b ;

1
b
)(Xi))2] <

1. Unfortunately the trick used in the proof of Proposition 2 cannot be applied here since

KRIG( 1
¡b ;

2
b )

(u)) does not correspond to a properly de¯ned density of an RIG distributed

random variable (its variance is zero). The variance of both gamma kernel estimators at

x = 0 is n¡1b¡1f(0)=2 + o(n¡1b¡1).

In the interior, the optimal mean squared errors based on

b¤IG =
µ 1

2
p

¼
f(x)

f 00(x)2

¶2=5
x¡3n¡2=5;

b¤RIG =
µ 1

2
p

¼
f(x)

f 00(x)2

¶2=5
x¡1n¡2=5;

are given by:

MSE¤
IG =

5
4

µ 1
2
p

¼
f(x)

¶4=5
f00(x)2=5n¡4=5;
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MSE¤
RIG =

5
4

µ 1
2
p

¼
f(x)

¶4=5
f00(x)2=5n¡4=5:

Notice that both MSE¤
IG and MSE¤

RIG only depend on f(x) and not on x itself. They

are the same as MSE¤
Gam2 of the second gamma kernel estimator when x ¸ 2b. They are

also equal to MSE¤
Gau of the standard density estimator relying on the Gaussian kernel.

In the interior their e±ciency is thus equal to the e±ciency of the Gaussian kernel, namely

.951. The price to pay to avoid boundary bias is here a little suboptimality with respect

to the Epanechnikov kernel. The optimal MSE¤
Gam1 for the ¯rst gamma kernel estimator

is di®erent and can not be compared directly since it depends on the ¯rst derivative of the

density as well as x itself.

The increase in the variance near the boundary can be shown as in Chen (2000) to have

a negligible impact on the integrated variance. Regarding global properties the optimal

bandwidths and mean integrated squared errors are thus:

b¤¤IG =

³
1

2
p
¼

R1
0 x¡3=2f(x)dx

´2=5

(
R1
0 (x3f 00(x))2dx)2=5

n¡2=5;

b¤¤RIG =

³
1

2
p
¼

R1
0 x¡1=2f(x)dx

´2=5

(
R1
0 (xf 00(x))2dx)2=5

n¡2=5;

and

MISE¤¤
IG =

5
4

µ 1
2
p

¼

Z 1

0
x¡3=2f(x)dx

¶4=5 µZ 1

0
(x3f00(x))2dx

¶1=5
n¡4=5;

MISE¤¤
RIG =

5
4

µ 1
2
p

¼

Z 1

0
x¡1=2f(x)dx

¶4=5 µZ 1

0
(xf 00(x))2dx

¶1=5
n¡4=5:

This means that both estimators achieve the optimal rate of convergence for the MISE

within the class of non-negative kernels (class of second order kernel functions). Observe

also that the order O(n¡2=5) of the optimal bandwidths is the same as that for non-

negative kernels when expressing the amount of smoothing in the same scale (b = h2).

The optimal MISE¤¤
RIG is equal to the optimal MISE¤¤

Gam2 for the second gamma kernel

estimator. Besides Chen (2000) has shown that MISE¤¤
Gam1 ¸ MISE¤¤

Gam2 if both
R
(f 0)2

and
R
(f 00)2 are ¯nite. The comparison with MISE¤¤

IG is unclear. Further theoretical

properties are reported in Bouezmarni and Scaillet (2002). They concern the weak
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and strong uniform consistency as well as L1 consistency of asymmetric kernel density

estimators.

Finally let us remark that bandwidth selection for symmetric kernels is frequently

based in practice on the rule of thumb proposed by Silverman (1986). This rule is in fact

optimal according to the MISE for the normal probability density function. An analogous

rule may be suggested for the lognormal probability density function in the IG and RIG

cases. Indeed when log X follows a normal distribution with parameters ¹ and ¾2 we have:

Z 1

0
x¡1=2f(x)dx = exp(

1
8
(¾2 ¡ 4¹));

Z 1

0
x¡3=2f(x)dx = exp(

1
8
(9¾2 ¡ 12¹));

Z 1

0
(xf 00(x))2dx =

12 + 4¾2 + ¾4

32
p

¼¾5 exp(
1
4
(9¾2 ¡ 12¹));

Z 1

0
(x3f 00(x))2dx =

12 + 68¾2 +225¾4

32
p

¼¾5 exp(
1
4
(¾2 +4¹)):

This leads to:

b¤¤IG =
Ã

16¾5 exp(18(7¾
2 ¡ 20¹))

12 + 68¾2 +225¾4

!2=5

n¡2=5;

b¤¤RIG =
Ã

16¾5 exp(18(¡17¾2 + 20¹))
12 + 4¾2 + ¾4

!2=5

n¡2=5:

In applied work the unknown parameters ¹ and ¾2 may be estimated by the empirical

mean and empirical variance computed on the logarithm of the data. However this rule of

thumb tends to provide bandwidths values which are very small. Monte Carlo experiments

(not reported here) show that this leads to unsatifactory ¯nite sample properties. Hence

we do not advocate the use of this type of rule of thumb as quick bandwidth selection

device for asymmetric kernel estimators.

Explicit but lengthy expressions can also be computed for Weibull and Gamma distrib-

utions. These expressions show that MISE¤¤
IG, resp. MISE¤¤

RIG, is well-de¯ned if ° ¸ 3=2,

resp. ° ¸ 4=3, for the W (°;¸) case, and MISE¤¤
IG, resp. MISE¤¤

RIG, is well-de¯ned if

° ¸ 3=2, resp. ° ¸ 3=2 for the Gam(°; ¸) case.
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3 Monte Carlo results

In this section we wish to investigate the ¯nite sample properties of the four asymmetric

kernel estimators. We compare their performance with the one of two standard symmet-

ric kernel estimators, namely the Epanechnikov and Gaussian kernel estimators. We also

consider the smooth boundary optimum boundary kernel estimator obtained by modi¯ca-

tion of the Epanechnikov kernel in MÄuller (1991). The experiments are based on 1000

random samples of length n = 35 = 243, n = 486, and n = 972. For each simulated sample

and each estimator considered, integrated squared errors (ISE) were computed from a grid

of bandwith values proportional to n¡2=5 for the asymmetric kernels and proportional to

n¡1=5 for the other kernels. Numerical integration was performed by a Gauss Legendre

quadrature with 96 knots. Minimum average integrated squared errors are reported in

Table 1 for various distributions, namely Gamma, Weibull and lognormal distributions,

and various parameter values.
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Table 1: Average ISE

n = 243 IG RIG Gam1 Gam2 Epa Gau Bou

Gam(1:5; 1) .03858 .00492 .00478 .00475 .00630 .00622 .01078

Gam(2; 1) .01350 .00296 .00360 .00316 .00391 .00392 .00889

Gam(3; 1) .00833 .00202 .00226 .00200 .00253 .00252 .00737

W (1:5; 1) .04715 .00631 .00713 .00651 .00726 .00726 .01076

W(2; 1) .02562 .00644 .00751 .00653 .00642 .00662 .00915

W(3; 1) .02064 .00944 .01368 .01194 .00798 .00835 .01050

LN(0; 1) .02040 .00611 .02157 .02107 .01031 .01019 .00814

LN(1; 1) .00740 .00224 .00403 .00344 .00378 .00373 .00357

LN(2; 1) .00238 .00081 .00098 .00084 .00134 .00133 .00198

n = 486 IG RIG Gam1 Gam2 Epa Gau Bou

Gam(1:5; 1) .02165 .00286 .00294 .00280 .00400 .00394 .00618

Gam(2; 1) .00795 .00172 .00210 .00181 .00239 .00240 .00535

Gam(3; 1) .00504 .00123 .00137 .00122 .00155 .00156 .00522

W (1:5; 1) .04021 .00375 .00438 .00389 .00463 .00462 .00622

W(2; 1) .01479 .00387 .00494 .00398 .00395 .00407 .00570

W(3; 1) .01258 .00574 .01186 .00977 .00485 .00507 .00758

LN(0; 1) .01206 .00364 .02095 .02025 .00648 .00643 .00548

LN(1; 1) .00424 .00134 .00350 .00290 .00237 .00236 .00226

LN(2; 1) .00139 .00049 .00065 .00050 .00084 .00084 .00121
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n = 972 IG RIG Gam1 Gam2 Epa Gau Bou

Gam(1:5; 1) .01579 .00171 .00201 .00177 .00257 .00254 .00393

Gam(2; 1) .00463 .00105 .00133 .00109 .00152 .00152 .00376

Gam(3; 1) .00299 .00073 .00084 .00073 .00094 .00095 .00416

W (1:5; 1) .01913 .00227 .00287 .00236 .00297 .00296 .00388

W(2; 1) .00855 .00236 .00365 .00273 .00245 .00252 .00393

W(3; 1) .00764 .00354 .01064 .00899 .00296 .00310 .00593

LN(0; 1) .00661 .00216 .02143 .02067 .00403 .00402 .00423

LN(1; 1) .00241 .00079 .00335 .00277 .00148 .00147 .00159

LN(2; 1) .00080 .00029 .00048 .00034 .00053 .00052 .00083

We may observe that the RIG kernel estimator and the second gamma kernel estimator

have similar performance with a small advantage of the former over the latter (except for

gamma densities). This was expected due to their close shapes. The second gamma kernel

estimator performs better than the ¯rst. This was already observed by Chen (2000) on

Gamma distributed data. The IG kernel estimator is almost always dominated by the

others. As also expected, both symmetric kernel estimators perform well for distribu-

tions exhibiting low probability mass near the boundary (W (3;1)). The smooth optimum

boundary kernel does not seem to make a good job in general. Besides use of smooth

optimum boundary kernels based on polynomials with ¯nite support may lead to nega-

tive density estimates. This feature may be another reason to prefer asymmetric kernel

estimators. The following table gives the number of cases where at least one knot in

the Gaussian quadrature with a negative density has been detected on the one thousand

simulated samples.
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Table 2: Number of cases with negative density

n = 243 Gam(1:5; 1) Gam(2; 1) Gam(3; 1)

780 644 422

W (1:5;1) W(2; 1) W(3; 1)

784 653 119

LN(0; 1) LN(1;1) LN(2; 1)

550 678 519

n = 486 Gam(1:5; 1) Gam(2; 1) Gam(3; 1)

771 764 617

W (1:5;1) W(2; 1) W(3; 1)

785 701 119

LN(0; 1) LN(1;1) LN(2; 1)

763 672 607

n = 972 Gam(1:5; 1) Gam(2; 1) Gam(3; 1)

773 854 803

W (1:5;1) W(2; 1) W(3; 1)

789 685 106

LN(0; 1) LN(1;1) LN(2; 1)

772 763 679

4 Concluding remarks

We have proposed two new kernel estimators for probability density functions de¯ned on

[0;1), namely IG and RIG kernel estimators. Such densities are encountered in a wide

variety of applications in the biological sciences and economics. The estimators have good

¯nite sample properties, and should therefore be useful in applied work involving nonpara-

metric techniques, see e.g. HÄardle and Linton (1994), Pagan and Ullah (1999), Hall

(2001) for some examples. Obiously the new classes of kernels considered here can also be
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exploited in regression curve estimation or hazard rate estimation (see Fernandes and

Grammig (2000) for a convincing use in goodness-of-¯t testing procedures for duration

models).
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APPENDIX

Proof of Proposition 1

1) Bias of the IG kernel estimator

We have:

E[f̂IG(x)] =
Z 1

0
KIG(x; 1b )(y)f(y)dy = E[f(»x)];

where »x follows an IG(x; 1b ) distribution. From the expressions for the mean and variance

of an IG distributed random variable, we deduce ¹x = E[»x] = x and Vx = Var[»x] = x3b.

Then we get by Taylor expansion:

E[f(»x)] = f(¹x) + 1
2
f 00(x)Vx+ o(b)

= f(x)+
1
2
x3f 00(x)b + o(b);

which gives the ¯rst statement.

2) Bias of the RIG kernel estimator

Along the same lines we have:

E[f̂RIG(x)] =
Z 1

0
KRIG( 1

x¡b ;
1
b )

(y)f(y)dy = E[f(»x)];

where »x follows an RIG( 1
x¡b;

1
b ) distribution. By Taylor expansion and using ¹x =

E[»x] = x and Vx = Var[»x] = xb + b2, we deduce:

E[f(»x)] = f(¹x) +
1
2
f 00(x)Vx+ o(b)

= f(x)+
1
2
xf00(x)b + o(b);

which ends the proof.
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Proof of Proposition 2

1) Variance of the IG kernel estimator

The variance is equal to:

Var[f̂IG(x)] = n¡1Var[KIG(x;1b )(Xi)]

= n¡1E[(KIG(x; 1b )(Xi))
2] +O(n¡1):

Let ´x be an IG(x; 2b ) distributed random variable. Hence ¹x = E[´x ] = x and Vx =

Var[´x] = x3b=2. We have

E[(KIG(x; 1b )(Xi))
2] = BbE[´¡3=2x f(´x)];

where Bb = (4¼b)¡1=2. By Taylor expansion we get:

E[´¡3=2x f(´x)] = ¹¡3=2x f(¹x) + 1
2

µ
15
4

x¡7=2f(x) ¡ 3x¡5=2f 0(x) +x¡3=2f00(x)
¶

Vx+ o(b)

= x¡3=2f(x) +
1
4

µ15
4

x¡1=2f(x) ¡ 3x1=2f0(x) +x3=2f 00(x)
¶

b + o(b);

= x¡3=2f(x) +O(b);

which leads to the ¯rst result.

2) Variance of the RIG kernel estimator

We have:

Var[f̂RIG(x)] = n¡1E[(KRIG( 1
x¡b ;

1
b )

(Xi))2] + O(n¡1):

Let ´x be an RIG( 1
x¡b ;

2
b ), so that

E[(K 1
x¡b ;

1
b
(Xi))2] = BbE[´¡1=2x f(´x)];

where Bb = (4¼b)¡1=2. Since ¹x = E[´x ] = x¡ b=2 and Vx = Var[´x] = xb=2, we obtain

by Taylor expansion :

E[´¡1=2x f(´x)] = ¹¡1=2x f(¹x) + 1
2

µ
3
4
x¡5=2f(x)¡ x¡3=2f0(x) + x¡1=2f 00(x)

¶
Vx+ o(b)
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= x¡1=2f(x) +
1
4

µ7
4
x¡3=2f(x) ¡ 3x¡1=2f 0(x) + x1=2f00(x)

¶
b + o(b);

= x¡1=2f(x) +O(b);

which gives the second result.
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