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Abstract

Two extensions of a parametric model are proposed, each one involv-
ing the score function of an alternative parametric model. We show
that the encompassing hypothesis is equivalent to standard conditions
on the score of each of the extended models. The condition on the first
extension gives rise to the standard score encompassing test, while the
condition on the second extension induces a so-called reversed score
encompassing test. A similar logic is applied to the likelihood ratio,
generating a likelihood ratio and a reversed likelihood ratio encom-
passing test. The ensued test statistics can be based on simulations
if certain calculations are too difficult to carry out analytically. We
study the first order asymptotic properties of the proposed test statis-
tics under general conditions.
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1 Introduction

Specification tests of parametric models are a central theme in the economet-
ric literature. A standard approach is to confront a given parametric model
with another, often non-nested, parametric model (see GOURIEROUX and
MONFORT [1994] for a review), and therefore such tests are oriented towards
this particular alternative model. The constraint underlying most of these
tests is in fact the encompassing condition (see e.g. M1ZON and RICHARD
[1986], HENDRY and RICHARD [1990], SmiTH [1994], GOURIEROUX and
MONFORT [1995], DHAENE [1997], DHAENE, GOURIEROUX and SCAILLET
[1998]), but not always (see VUONG [1989]). Another approach exploits mo-
ment conditions implied by the model under test without having a specific
alternative model in mind. Information matrix tests (WHITE (1982)) and un-
conditional and conditional moment tests (NEWEY [1985], TAUCHEN [1985],
BIERENS [1991]) are examples of the latter approach.

The approach taken in this paper falls into the former category. An
arbitrary conditional parametric model is tested against another arbitrary,
possibly non-nested, conditional parametric model. We expand on results
reported in GOURIEROUX and MONFORT [1995] and DHAENE [1997], where
score and likelihood ratio encompassing tests were proposed. These tests, and
the new tests we propose, are generated by exponentially tilting the model
under test in two alternative directions, each one involving the score function
of the alternative model. Intuitively, the new tests are obtained from revers-
ing the roles of the true distribution generating the data and the pseudo-true
distribution of the model under test. This leads to what we call reversed
score and likelihood ratio tests. The tests rely on simulations in order to
avoid the need for analytic calculations of certain expectations in any par-
ticular application. In a recent paper, CHEN and KUAN [2000] propose what
they call the pseudo-true score encompassing test for non-nested hypotheses,
which is based on essentially the same idea of reversing the roles of the two
distributions just mentioned. The main differences with the present paper
are as follows. We provide a heuristic argument, based on model extensions,
which unifies the standard and the reversed score tests. Furthermore, we
also apply the idea to the likelihood ratio test, we consider nested as well
as non-nested hypotheses, we propose simulation-based versions of the tests,
and provide robust asymptotic theory.

The framework is briefly presented in Section 2. Section 3 introduces
two extensions of the model under test, obtained by exponential tilting. It
also restates the encompassing condition in terms of these extensions and
gives the intuition underlying the reversed score and likelihood ratio tests.
The basic test statistics are presented in Section 4. Their first order asymp-



totic properties are studied in Section 5, in descending order of generality.
Section 6 concludes.

2 Framework

We consider an arbitrary pair of conditional, possibly non-nested, possibly
misspecified, parametric models for independent and identically distributed
data.

Let X and Y be random vectors taking values = and y in IR* and R,
respectively, and let Px be the true marginal distribution of X and Py x the
true conditional distribution of Y, given X. Assume that the available data
are T independent drawings (z¢,y¢), t = 1,...,T, from Px and Py|x. Let
G={Fg(a)|a € Qy, CR™} and H = {Fy(B) | B € Q3 C R"} be parametric
models of Py|x. It is assumed that the distributions Fg(o), F(8) and
Py x admit conditional density functions fg(y|z; ), fx(y|z; 3) and po(y|z),
respectively, relative to some measure p not depending on =, o and 3. It is
also assumed that the expectations of the log density functions exist whenever
they are taken.

Accounting for the possibility that G is misspecified, i.e. Py|x € G, and
likewise for H, it is of interest to define the pseudo-true values of o and (3
with respect to Px and Py|x (see e.g. SAWA [1978]):

Qg = arg max ExEylog fg(Y|X; )
aclly

fo = argmax Ex Eylog f(Y[X; 3),
ﬁGQﬁ

where the mathematical expectations E'x and FE, are taken with respect to
Px and Py x, respectively. We assume that ag and [ exist, are unique and
interior to {2, and {23, respectively.

We shall be interested in testing G against H. Therefore, we also define
the pseudo-true value of 3 with respect to Py and Fg(«),

Bo = argmax ExE, log f»(Y|X; ),
/3695

where the mathematical expectation F,, is taken with respect to Fg(a). We
assume that (3, exists, is unique and interior to {13 and is continuously differ-
entiable with respect to o. By definition, G encompasses H, written G € H, if
Bo = Bay- It is well known that the implicit null hypothesis of many tests of G
against H is characterized by the condition that G £ H. See e.g. M1ZON and
RICHARD [1986], GOURIEROUX and MONFORT [1995], and DHAENE [1997].



Note that the underlying distributions Px and Py|x are crucial in deter-
mining whether or not G £ H. The score functions of G and H are defined
as

0
sg(ylz; a) = S log fg(yl|z; a)
and

B)
su(ylz; B) = a3 log fr(ylx; 3),

respectively. It is assumed that the score functions are continuously differ-
entiable in the parameters, that their expectations exist whenever they are
taken, that

ExEysg(Y|X;a) =0 onlyif a= ay,
Ex Eysy(Y]X;08) =0 onlyif 3= f,
ExEasn(Y|X;6) =0 onlyif §=fa,
and that the matrices Ex Fo[sg(Y | X; ao)sg (Y| X; o)), Ex Eolsy(Y|X; Bo) sy (Y|X; Bo))

and Ex E,[sn(Y|X; 8a)sh(Y|X; Ba]) exist and are positive definite. Then,
defining the score quantity

s1 = ExEosn(Y[X; Ba,)
and the likelihood ratio (LR) quantity

Iy = ExEqllog fr(Y|X; Bay) — log fr(Y|X; Bo)],

it is obvious that G & H is equivalent to s; = 0 and also to I; = 0. This
property has led to the development of score encompassing tests, based on
estimates of s; (GOURIEROUX and MONFORT [1995]), and LR encompassing
tests, based on estimates of Iy (SMITH [1994] and DHAENE [1997]). The
purpose of this paper is to introduce tests that are based on quantities similar
to s; and [y, in particular the quantities obtained from s; and [, by reversing
the roles of Pyx and Fg(ag). A heuristic argument for doing so is presented
in the next section.

3 Model extensions
Consider the following extension of G:

Gi = {Fg(a, M) | (e, A1) € Qo x R},



where the distribution F7(cv, A1) has the following density function relative
to w:
Ja(ylz; @) exp(Nysn(y]2; Bay))

Eo exp(Nisy(y]2; fuy))
The density fg(y|z; o, A1) is obtained from fg(y|z; o) by exponential tilting
(BARNDORFF-NIELSEN and CoX [1989]). Observe that G C G; and that the
parameter vector (a, A1) need not be identified. Instead of putting 8 = f,,
in the random vector sy (Y| X; 3), one may alternatively put 8 = 3y, leading
to another extension of G:

fé(y’xch?)‘l) =

Gy = {Fg(a,)\g) ‘ (CM,)\Q) € Q, X IR”},

where the distribution FZ(c, A2) has the following density function relative
to

fo(yla; a) exp(Aysy(y|z; Bo))

Eoq exp(Mysy(ylz; Bo))
The density f3(y|z; o, A2) is also obtained from fg(y|z; ) by exponential
tilting, but in a different direction. As before, G C G, and (a, A2) need not
be identified. The motivation for considering the extended models G; and G-
comes from the following proposition.

Proposition 1 The following equivalences hold:

GEH <= ExEylog f3(Y|X;a, ) has a local mazimum at (o, \) = (ap, 0)

< ExE()SH(Y‘X;ﬁaO) = 0,

GEH <= ExEylog f3(Y|X;a,As) has a local mazimum at (o, Xa) = (ap, 0)

—  ExFEusnu(Y|X;5)=0.

Proof. The score functions associated with G; and Gy are

E,[sg(Y|x; ) exp(Msu(Y |25 Bao))]

sg(ylr; a) — ; :

sé(y|x,a,/\1) _ Ea eXp()\ls'H(Y‘xa/BOéO))
s (y|z; Bay) — Eols1(Y|2; Bao) exp(N53(Y]; Bas )]
HAYIES Peg Eo exp(Nysn(Y[; Bag))

and
, Eq[sg(Y|z; ) exp(Nysw (Y |25 50))]
, sglylesa) = B exp(Nosn(Y |2 Bo))

sg(ylz; o, Xo) = Eolsne(Y]: o) expOsn(Y 2 Ao |

sw(yla; Bo) — ol SH 1 P0) EXP(AgSH 3P0

Eq exp(Nysy (Y Bo))



respectively. Putting (o, A1) = (o, A\2) = (ap,0) and taking expectations
yields

Ex Eosh(Y|X:00,0) = ( ExEysg(Y|X; ) — Ex Eoysg(Y|X; ) )

ExE()SH(Y|X; ﬁag) - EXEQOSH(Y|X§ ﬁao)

0
( Ex Eosn(Y|X; Bag) )

and

Ex Eos(Y]X; a0,0) — ( ExEysg(Y|X; ) — Ex Eoysg(Y|X; ) )

ExEosy(Y|X; 50) — Ex Eagsn(Y|X; B0)

0
( Ex Eoys1(Y|X; Bo) ) '

Given the assumptions made earlier, it follows that G & H if and only if
the functions Ex Eylog f4(Y|X;a, A1) and ExEplog f3(Y|X;a, Xy) have a
stationary point at (o, A1) = (ag,0) and (a,As) = (ap,0), respectively.
Now we need to show that, if fy = (3,,, the stationary point (ag,0) is
indeed a local maximum of the functions involved. First, fixing Ay = 0,
ExEylog f3(Y|X;a,0) attains a global maximum at a = «, by definition.
Secondly, fixing o = ag, we find, if Gy = Ba,,
82

MEXEO log fG(Y|X; ao, A1) = —ExEo[su(Y|X; Bo)sy(Y]X; Bo)].
10X A1=0

The latter matrix is negative definite by assumption, hence Ex Eylog f4(Y | X; a, A1)
attains a local maximum at A\; = 0. The proof is complete by noting that
the functions fj and f§ are identical when fy = 34,. (Q.E.D.)

The proposition is in several respects similar to Theorem 1 in CHESHER
and SMITH [1997], which restates moment conditions in terms of an extended
parametric density. Here, an encompassing condition is restated in terms of
extended parametric densities. The proposition shows that G & H if and
only if the extensions of G carrying the score function of H do not alter the
pseudo-true value associated with G, at least not locally. In a sense, the
extensions are thus ineffective in bringing G closer to Py|x, according to the
KULLBACK-LEIBLER (1951) Information Criterion. Further, the condition
G £ H is restated in terms of properties of the score function sz in relation to
the distributions Py|x and Fg(ag). Interestingly, the two properties mirror
each other in the sense that each one, compared to the other, reverses the
roles of Py|x and Fg(ag). After all, this should not come as a surprise since,
for given g, the distributions Py|x and Fg(ap) play a symmetric role in the
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definition of encompassing. Thus, we are led to define the reversed score
quantity
sy = ExEoysn(Y(X; 5o),

and, applying the same logic, the reversed LR quantity
l2 = EXan [log fH(Y’Xa ﬁO) - IOg fH(Y‘Xa ﬁao)]‘

The quantities s; and Iy share the property with s; and [; that GEH is
equivalent to s = 0 and also to I = 0. This property enables us to develop
reversed score encompassing tests, based on estimates of s,, and reversed LR
encompassing tests, based on estimates of [5.

One may wonder whether the same reasoning of reversing the roles of
Py|x and Fg(ap) can also be applied to the Wald encompassing test to
yield something interesting. The Wald encompassing test (GOURIEROUX
and MONFORT [1995]) is based on estimates of the Wald quantity, defined as
wy = Po — Buy- The reversed Wald quantity would then be wy = 3,, — By =
—wy, which obviously does not lead to an interesting new test. The reason
for this finding is that Pyx and Fg(ag) play similar roles in wy, apart from
the sign. Hence, reversing their roles doesn’t lead to anything new. Looking
back now at s; and Iy, we clearly see that Pyx and Fg(ag) play essentially
different roles. This is why reversing them happens to be fruitful.

4 Test statistics

Given the sample (2, y;), t = 1,...,T, of independent observations from Px
and Py|x, we seek to develop tests of the hypothesis that G & H. It follows
from the properties derived in the previous section that estimates of the
quantities s1, [, S and Il and of their covariance matrices naturally lead to
tests of G £ H. Note that this hypothesis is weaker than the hypothesis that G
is correctly specified, i.e. Pyjx € G. Hence estimates of the same quantities
are also suited for testing the hypothesis that G is correctly specified. A
distinguishing feature between tests of G £ H and tests of Py x € G is that,
for the latter tests the distribution theory is usually based on the assumption
that G is correctly specified, whereas for the former tests the distribution
theory can at most be based on the assumption that G € H. The distribution
theory presented in this paper considers the most general case, i.e. where G
possibly does not encompass H.
The pseudo-maximum likelihood estimators & and 3 solve

1 T
max ; log fg(yi|zi; @)
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and

— 31
max - Z og fre(yelzis B),
respectively. Under regularity conditions such as given in WHITE [1982], & %
oo and 3 5 By. For any a € Q,, let y*(a),t=1,...,Tand h=1,...,H,
be independent drawings from Fg(a), given z;. For any h = 1,... ,H , the
simulated pseudo-maximum likelihood estimator 3" is defined to solve

max— Zlog Pru(yi'()lze; B).

BeQs T

Under similar regularity conditions, 8" *% 8, and 8% *% f3,,. Here and in
the sequel, stochastic limits are taken as T — oo, with H fixed, possibly at
0o. Then, define the simulated score and reversed score statistics as

S sl B
51 = 5H(Qt|£t§5@)7
TH ;==
1 H T . .
Sy = EZZSH(yt(a)Wt;ﬂ%

>
Il
Il
—

1t

respectively, and the simulated LR and reversed LR statistics as

. H T

ll == % hgltzzl |:10ng yt|xta ) lOg fH(yt|xt7 )} )

R 1 H T R R

ly = TH Z Z [log fr(y! (@ ( )|z¢; B) — log fH(y?(d)’%ﬁg)} )
h=1t=1

respectively. We have ; =3 51, 85 5 s, I, 2% 1, and Iy 2% I,. The first order
limit distributions of $1, S9, 1 and [, are investigated in the next section.

5 Limit distributions

We need to introduce some additional notation. Let
1 T

= — > log fg(ye|w; )
Ti=

and

T
ha(5) = 7 Y108 flunles )



be the normalized log likelihood functions of G and H based on the observed
data (zy,y), t=1,...,7T, and let

lﬁ(ﬂ ) Zlong yt a)l|zs; )

be the normalized log likelihood function of H based on the simulated data

(z¢, y()), t =1,...,T. Correspondingly, define the normalized score func-
tions
0
sgla) = 5-lgla),
0
sn(B) = %ZH(5)7
and 5
sy (B; @) = a—ﬂlh (8; ).

5.1 Limit distributions under general conditions

For sufficiently large T, & satisfies the first order condition sg(&) = 0. Ex-
panding sg(&) in a Taylor series around sg(ay), taking the probability limit
of [0sg(a)/0a'| 4=, and rearranging yields the well known result (WHITE
[1982])

VT (& — an) = VTEg ' sg(ao) + 0(1),

where
K = _EXEO [88/ (Oé)‘| .
Similarly, R
VT(B = Bo) = VT Ky sn(Bo) + 0p(1),
where 5
Ko = =By )|
and R .
VT(B, = Bao) = VT K5}, (Bag; c0) + 0p(1),
where 5
~ﬂ = —ExE,, la—ﬂ,s%(ﬂ, 04)] e .



Further, expanding BZ around BZO yields

VT (B = Bag) = VT(Bly = Bas) + VTB(& = a0) + 0,(1)
VIR S8 (B a0) + BKgsg(00) + 0p(1),
where (see DHAENE [1997])

8ﬁa —1 71

with

Jrig = ExEay | 77108 fr(Y]X; ﬁ) —10g fo(Y|X; 0)

’ [35 N
Now, expanding sy (3%) around sy (Ba,) gives
VT(51—51) = VT(s1(Bag) — 51) — g hf:lKH(Bg — Bag) +0p(1)
= VTlnin) ) VT KnBK's9(c0)
VTR 3 shl o) 0,

where 9
Ky =—ExEp [85’ (ﬁ)]ﬁﬁao :
Expanding s/,(3; &) around sk, (3y; a) gives
. T -
T(83—s2) = T > (s5(Bo; ) — s2) — VT Kn(8 — o)
h=1
ﬁjﬂg(@ — Oéo) + 0p(1)
H
= g > (5 (Bo; ao) — s9) — VT K Ky s(6o)
h=1
VT I K sg(an) + 0p(1),
where
Jng = ExEq, [886 log fr(Y'|X; 5) log fo(Y[X;a) = Jgx
a=ao,=Po
Ky, = —ExFE,, ,(5,)1 :
" * |~8ﬁ a=ag,B=Po
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This completes the asymptotic expansions for §; and $;. Turning to Zl,
expanding ly(4%) around ly(B,,) gives

VI(h=1h) = VT(ln(Boy) = bulBo) = ) + g S sl (B = o)

Tsn(Bo) (B — Bo) + 0p(1)
= VT (In(Bay) — lH(ﬁo) — 1) + VT, BKg ' sg(x)

VTSR 3 ZSH Bl 0) + 0y(1)

where it was used that sy (6o) 3 0. Finally, for s,

\/T(ZE - l2) = g Z(Z?{(ﬁo; Oéo) (50407 040 g Z 507 040 ﬁ 50)
—g hz::l 551 (Bao; @0) (B = Bay) + VT (@gr — Bgr)' (& — o) + 0p(1)
= g i(l?{(ﬁo; a0) = Uy (Bag; o) — o) + VT 55Ky 534(o)

h
VT (@gr — Ggr) Kg*sg(ao) + 0p(1),

using s%,(Bag; o) =5 0, with

50 108 fo(Y|X; o) log fH(Y!X;ﬁo)] ;

a=qag

0
wgn = ExFE,, [—

i log fg(Y|X; ) log fH(Y|X350<0)]

(I)gﬂ - EXEQO laa

a=wap

To summarize the expansions, let

81 S1
7 §2 S92
d=| 3 |, d= :
lh lh
lg l2

10



Sg(yt‘xﬁ CVO)
SH(yt’xt; ﬁo)
SH(yt’CBﬁ ﬁao) — 51

. 1 —H h .
Wy = H Zh:l S'H(yt (QO)’xta ﬁO) — 82 )
% il sy (o) e Bay)
log fH(yt|$t§ ﬁao) —log fH(yt|$t; 50) -0
7 Sohey 1og fr(yp ()| o) — 7 Thi 108 eyt (0) 45 Bao) — I

and
—KzBKg' 0 I 0 —KgK;' 00
e JngK gt ~KyKy' 01 0 00
sy BKg" 0 00 sKz' 10
(Wgr — D) Kg'  shKz' 0 0 0 0 1

Then,

VT(d—d) = \/_ZAwt—i-op(l)
Observe that Ex Eqw; = 0. Assuming the existence of V' = Ex Ey(w,w}),
VT(d—d) % N0, AVA),

by the central limit theorem. Note that all the submatrices in A can be
consistently estimated, and hence A itself, by replacing ExFEy by %Z'f 15
Ex by 7 Zt 1, Fag by Eq or by & 4L, and using y'(&) in place of y;, oo by

&, Bo by 3, Bao bY ~ i SH ﬁg, and (81, $o, I, lg) by (s1, 82, 11, l2), successively.
Similar replacements in w, yield w, and V = %ZL wyw, as a consistent
estimator of V. A consistent estimator of AV A’ follows.

Inspection of Aw, reveals that no general asymptotic equivalences hold
between subvectors of d. More precisely, there does not exist in general
a fixed non-zero matrix C such that vTC(d — d) = o,(1), because V is
not of reduced rank in general and A has not reduced row rank in general.
This implies, in particular, that no general asymptotic equivalences exist
between $1, So, Zl and ig. This finding, and the full characterization of the
joint first order limit distribution of §1, Sg, I, and I opens perspectives for
jointly exploiting the evidence contained in these statistics against any of the
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hypotheses G £ H and Pyx € G, thereby gaining in power compared to the
standard score or LR test. The unresolved problem for doing this is to control
the (asymptotic) size of the joint test. A fully joint test would typically take
a quadratic form in vTd, weighted by a consistent estimate of (AVA)T,
and refer to the y? distribution with appropriate degrees of freedom. As
we show below, asymptotic equivalences do appear when G EH (a fortiori
when Py x € G), making AV A’ a singular matrix. In many cases of interest,
consistent estimates of AV A" have an asymptotic rank that exceeds the rank
of AV A’, which makes consistent estimation of (AV A")" a difficult task (see
also Andrews [1989]). In other words, the main difficulty for building a test
on the full vector d is that the rank of his covariance matrix depends on
whether or not G £ 'H, which is precisely the hypothesis being tested.

5.2 Limit distributions under the condition G £ H

The first order limit distribution of d when G € H is easily obtained using the
results of the previous subsection. We then have d = 0 and

sg(ye|zt; o)
sr (Y| 45 Bo)
sr (Y| 45 Bo)
we = | 5 Zil1 su(yt (@o)lze; Bo)
% Yot sm (Yt (o) 43 Bo)
0
0

Further, Ky, = Ky, Ky = Ky, gy = wgr, B = —f(ﬁleg and

— Ky K7 g Kg' 0 I 0 —KyKz' 00

e JngKg* ~KyKyt 0 1 0 00
0 0 00 0 10

0 0 00 0 0 1

from which we obtain /Tl; = op(1) = VTl and the asymptotic equivalence

\/Tg’l = —KHK;[I T§2 + Op(l).
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We can be more precise about the limiting behaviour of I, and Iy by consid-
ering the expansions

Thy(Bl) = Tlu(ﬁ)——(ﬁ — B Kn (Bt = B) + 0,(1),

~ ~

Tl (%6) = Tlhy(Bs;6) - 5(522 = B) (5 = ) + 0p(1),

wherefrom

—oTl, = ﬁh B Ky (B2 — B) + 0,(1),

~

—2Ti2 = (5h 5)/-}%71(&3 — B3) + 0p(1).

I Mm I Mm

TN =N

Upon gathering previous results,
VT(Bh - B) = VTEy s3,(60; a0) + VT Ky JngKg ' sg(ao) — VT Kqy s1 (o)
_ﬁKﬁlgl + 0p(1)
= —VTE;'3 +0,(1),
yielding the asymptotic equivalences
—2Tl, = T&K;'51 + 0,(1)
= T f(glKHfg;lég +0,(1),
—2Tly = T8,K; 5, + 0,(1)
= T8 Ky KyK7'5) + 0,(1).
Note that —271; and —2Tl, are not in general asymptotically equivalent.
The limit distributions can be summarized as follows. Let
sg(ye| w15 o)
v = s1(Yi|2e; Bo)
% S syt (ao) |z Bo)
and
D= ( JugKg' —EKnKy' I )
Now Ev; = 0, and letting ¥ = E(v,v;) we have

VT3, % N(0,KnK,'DSD'K; Ky,
VT3 % N(0,DED),

—oTl;, 4 M(MK;'KnK;' DED')),
—oTl, 4 M(MNK;'DED')),

13



where M(A(W)) is the distribution of a weighted sum of independent x?
variates with weights equal to the eigenvalues of W. The matrices D and
> and the necessary eigenvalues can be consistently estimated by the proce-
dure outlined in the previous subsection. If we can determine the rank of the
asymptotic covariance matrices of v/T'$; and v/T'§,, asymptotic score and re-
versed score encompassing tests follow readily. Asymptotic LR and reversed
LR encompassing tests follow also from the limit distribution given above.
They require the calculation of critical values of weighted sum of chi-squares
distributions, which can easily be obtained by simulation. Note that LR and
reversed LR tests do not require the determination of the rank of a matrix.

5.3 Limit distributions under the condition Py x € g

Further simplifications occur when Pyx € G. We have Fg(ag) = Pyx,
wherefrom Ky = Ky, yielding

VT3, = —VTJgKg'sg(ag) + VT (SH fo) — i (Bo; o ) + 0p(1)

H

VT3 = VTJngKg'sg(ag) — VT (SH Bo) — Z (Bo; o ) + 0p(1)

and the asymptotic equivalences
\/Tg‘l = —ﬁg‘g —|— Op(l)

and

2Tl = T&K;'3, + 0,(1)
= T3,K;; 55 + 0,(1),
= 2Tl 4 0,(1).
Note also that sy (3) and s,(5o;0), h = 1,..., H, are conditionally in-
dependent and identically distributed, given z;, t = 1,...,T. Asymptotic
score and reversed score tests and asymptotic LR and reversed LR tests of

Pyx € G can be constructed along the same lines as given in the previous
subsection, taking advantage of the simplifications just mentioned.

6 Conclusion

We have outlined alternative procedures to the standard score and LR en-
compassing tests. They follow from restating the encompassing condition in

14



terms of exponentially tilted models. Intuitively, the alternative procedures
are obtained from reversing the roles of the true distribution generating the
data and the pseudo-true distribution of the model under test. Application
requires the models to be estimable by the method of maximum likelihood.
No analytic calculations are needed beyond the analytic first and second
derivatives of the log likelihood functions. The need to calculate mathemat-
ical expectations analytically is avoided by the use of any finite number of
simulations from the model under test.
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