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Abstract

Testing procedures for predictive regressions involving lagged autoregressive variables

produce a suboptimal inference in presence of minor violations of ideal assumptions. A

novel testing framework based on resampling methods that exhibits resistance to such

violations and is reliable also in models with nearly integrated regressors is introduced.

To achieve this objective, the robustness of resampling procedures for time series are

defined by deriving new formulas quantifying their quantile breakdown point. For both

the block bootstrap and subsampling, these formulas show a very low quantile breakdown

point. To overcome this problem, a robust and fast resampling scheme applicable to a

broad class of time series settings is proposed. This framework is also suitable for multi-

predictor settings, particularly when the data only approximately conform to a predictive

regression model. Monte Carlo simulations provide substantial evidence for the significant

improvements offered by this robust approach. Using the proposed resampling methods,

empirical coverages and rejection frequencies are very close to the nominal levels, both in

the presence and absence of small deviations from the ideal model assumptions. Empirical

analysis reveals robust evidence of market return predictability, previously obscured by

anomalous observations, both in- and out-of-sample.

Keywords: Predictive Regression, Stock Return Predictability, Bootstrap, Subsampling,

Robustness.

JEL: C12, C13, G1.
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1 Introduction

Extensive research has examined the predictive power of economic variables, such as the price-

dividend ratio, proxies of labor income, or interest rate, for stock returns. The econometric

approach to testing predictability relies on a predictive regression of stock returns onto a set of

lagged financial variables, as exemplified by Stambaugh (1999). Significant disparities in testing

methodologies within the literature emerge due to variations in test statistics and asymptotic

theories employed to assess the null hypothesis of no predictability. These discrepancies result

in divergent findings and conclusions in numerous cases.

A general approach to obtaining tests that are less susceptible to finite sample biases or

assumptions on the form of their asymptotic distribution involves nonparametric resampling

methods, such as the bootstrap or subsampling, see Wolf (2000) and Ang and Bekaert (2007).

A common characteristic of these approaches is their dependence on procedures that are sig-

nificantly influenced by a small fraction of anomalous observations in the data. This issue has

long been recognized for standard OLS estimators, see Huber (1981). Recent research has also

demonstrated that inference provided by bootstrap and subsampling tests can be easily inflated

by a small fraction of anomalous observations, see Singh (1998), Salibian-Barrera and Zamar

(2002), and Camponovo, Scaillet, and Trojani (2012).

This failing robustness is caused by the often excessively high fraction of anomalous obser-

vations generated by standard bootstrap and subsampling procedures, which tends to surpass

the actual fraction of such observations in the original data. Addressing this issue is not

straightforward, as it is not solved by merely applying conventional bootstrap or subsampling

methods to more robust estimators or test statistics. Resampling trimmed or winsorized es-

timators fails to produce a robust resampling method, as demonstrated in detailed examples

by Singh (1988) and Camponovo, Trojani, and Scaillet (2012). Therefore, we introduce new

robust bootstrap and subsampling methodologies aimed at developing more stable and reliable

tests for predictability hypotheses in predictive regression settings.

Our methodology naturally complements also more recent literature proposing predictive

regression methods covering models with parameter instabilities or with predictors nearly fea-
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turing a unit root behaviour; see, e.g., Lin and Tu (2020), Boudoukh, Israel, and Richardson,

(2022), Andersen and Varneskov (2022), Boucher, Jasinski, and Tokpavi (2023) and Coqueret

and Tavin (2023) among others. The main objective of our study is different, as we introduce

new robust resampling tests that outperform standard resampling procedures in reliability,

especially when dealing with anomalous observations in the data. Such anomalies may arise

because of outliers that deviate from the true data-generating process. Alternatively, they

might also be originate from the true data-generating process.

We theoretically characterize the robustness properties of resampling methods in a time

series context, through the concept of breakdown point, which measures the resistance of a

testing procedure to outliers, see Hampel (1971), and Donoho and Huber (1983). Our theo-

retical results affirm the dramatic non-robustness of conventional resampling procedures. To

overcome this problem, we introduce robust bootstrap and subsampling procedures. Our ap-

proach relies on a straightforward weighted least-squares procedure. The data-driven weights

are applied to dampen, when necessary, the influence of a few data points identified as anoma-

lous with respect to the assumed predictive link. Furthermore, our robust resampling approach

is built on the fast resampling concept proposed in, among others, Davidson and McKinnon

(1999), and Andrews (2002). The methodology is applicable to a broad range of bootstrap

and subsampling simulation schemes in the literature. Monte Carlo simulations confirm that

these tests effectively mitigate the adverse impact of outliers, preserving desirable finite sample

properties in the presence of anomalous observations.

Finally, we conduct a robust analysis of recent empirical evidence on stock return pre-

dictability in US stock market data. Understanding potential predictability patterns in asset

returns is key not only for the associated implications for dynamic portfolio choice, but also

to understand more broadly the origins of time-varying asset risk premia, which can be ex-

plained theoretically, see Koijen and Van Nieuwerburgh (2011). We explore single-predictor

and multi-predictor models, employing well-known predictive variables from the literature, such

as dividend yield, difference between implied volatility and realized volatility, interest rate, and

share of labor income to consumption. Empirical analysis reveals robust evidence of return

predictability, previously obscured by anomalous observations, both in- and out-of-sample.
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The remainder of the paper is organized as follows. In Section 2, we introduce the stan-

dard predictive regression model and illustrate, through simulation, the robustness challenges

associated with some recent tests of predictability proposed in the literature. In Section 3, we

theoretically examine the robustness properties of tests based on resampling procedures in gen-

eral time series settings. In Section 4, we present our robust approach and develop bootstrap

and subsampling tests of predictability. In Section 5, we apply our robust testing procedure to

US equity data and reevaluate some recent empirical evidence on market return predictability.

Section 6 concludes. Appendices gather the statistical theory underlying our approach to assess

predictabilty hidden by anomalous observations in financial data.

2 Predictability and Anomalous Observations

In Sections 2.1 we introduce the predictive regression model. In Section 2.2 and Section 2.3,

we study the robustness properties of bias-corrected methods, testing procedures relying on

local-to-unity asymptotics, bootstrap and subsampling tests.

2.1 The Predictive Regression Model

We consider the predictive regression model:

yt = α + βxt−1 + ut, (1)

xt = µ+ ρxt−1 + vt, (2)

where, for t = 1, . . . , n, yt denotes the stock return at time t, and xt−1 is an economic variable

observed at time t − 1, predicting yt. The parameters α ∈ R and µ ∈ R are the unknown

intercepts of the linear regression model and the autoregressive model, respectively, β ∈ R

is the unknown parameter of interest, ρ ∈ R is the unknown autoregressive coefficient, and

ut ∈ R, vt ∈ R are error terms with ut = ϕvt + et, ϕ ∈ R, and et is a scalar random variable.

In this context, it is well-known that inference based on standard asymptotic theory is

prone to small sample biases, potentially leading to an overrejection of the hypothesis of no
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predictability, denoted as H0 : β0 = 0, where β0 represents the true value of the unknown

parameter β. This issue has been highlighted by Mankiw and Shapiro (1986) and Stambaugh

(1986), among others. Additionally, as emphasized by Torous, Valkanov, and Yan (2004),

various state variables considered as predictors in the model (1)-(2) are well-approximated by

a nearly integrated process. Consequently, it suggests a local-to-unity framework, specifically

ρ = 1 + c/n where c < 0, for the autoregressive coefficient of model (2). This framework may

imply a nonstandard asymptotic distribution for the OLS estimator β̂n of parameter β. Several

recent testing procedures have been proposed to address these challenges. In Section 2.2, we

focus on the of bias-corrected methods proposed in Amihud, Hurvich, and Wang (2008) and the

Bonferroni approach for local-to-unity asymptotics introduced by Campbell and Yogo (2006).

2.2 Bias Correction Methods and Near-to-Unity Asymptotic Tests

A common characteristic of bias-corrected methods and inference based on local-to-unity asymp-

totics is their susceptibility to anomalous observations, potentially leading to conclusions driven

by the specific features of a small subset of the data. Indeed, these approaches utilize statistical

tools sensitive to small deviations from the predictive regression model (1)-(2). Consequently,

despite their accuracy under strict model assumptions, these testing procedures may become

less efficient or biased, even with a small fraction of anomalous observations in the data.

We conduct a Monte Carlo simulation analyzing the bias-corrected method proposed by

Amihud, Hurvich, and Wang (2008) and the Bonferroni approach for the local-to-unity asymp-

totic theory introduced by Campbell and Yogo (2006). Initially, we generate 1,000 samples

z(n) =
(
z1, . . . , zn

)
of size n = 180 according to model (1)-(2), with parameters chosen as

vt ∼ N(0, 1), et ∼ N(0, 1), ϕ = −1, α = µ = 0, ρ = 0.9, and β0 ∈ [0, 0.15]. These parameter

choices align with the Monte Carlo setting studied in, for example, Choi and Chue (2007).

In the next step, to investigate the robustness of the methods under analysis, we consider re-

placement outliers in random samples z̃(n) =
(
z̃1, . . . , z̃n

)
, where z̃t = (ỹt, xt−1)

′ is generated

according to,

y3max = 3 ·max(y1, . . . , yn), (3)
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and pt is an independent and identically distributed (iid) 0− 1 random sequence, independent

of the process (1)-(2), such that P[pt = 1] = η. The probability of contamination by outliers is

set to η = 4%, a small contamination level compatible with the characteristics of the real data

set analyzed in the empirical study in Section 5.1.

We investigate the finite sample properties of tests for the null hypothesis H0 : β0 = 0 in

the predictive regression model. Figure 1 illustrates the empirical frequency of rejecting null

hypothesis H0 for various testing methods across different values of the alternative hypothesis

β0 ∈ [0, 0.15], with a nominal significance level of 10%.

In the Monte Carlo simulation with non-contaminated samples (solid line), the fraction of

null hypothesis rejections for all procedures closely aligns with the nominal level of 10% when

β0 = 0. As anticipated, the power of the tests increases with higher values of β0. For β0 = 0.1,

both methods exhibit a rejection frequency close to 70%, and for β0 = 0.15, a frequency

exceeding 95% is observed. In the simulation with contaminated samples (dashed line), the

size of all tests remains proximate to the nominal significance level. Conversely, the presence

of anomalous observations significantly diminishes the power of both procedures. Indeed, for

β0 > 0, the rejection frequency of the null hypothesis for both tests is considerably lower than

in the non-contaminated case. The power of both tests remains relatively flat and below 55%,

even for large values of β0. Unreported Monte Carlo results for different parameter choices and

significance levels yield similar findings.

The outcomes in Figure 1 underscore the susceptibility of bias-corrected methods and in-

ference based on local-to-unity asymptotics to anomalous data. Due to a small fraction of

anomalous observations, these testing procedures become unreliable and fail to reject the null

hypothesis of no predictability, even for large values of β0. It is a critical consideration for

applications where the statistical evidence of predictability is typically weak.

To address this robustness issue, a natural approach is to develop more resistant versions of

the non-robust tests employed in our Monte Carlo exercise. However, achieving this task can

be challenging in general. Robustifying the bias-corrected procedure in Amihud, Hurvich, and

Wang (2008) would necessitate deriving an expression for the bias of robust estimators of regres-

sions and subsequently establishing the asymptotic distribution of such bias-corrected robust
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Figure 1: Power curves of bias-corrected and local-to-unity asymptotics. We plot the proportion of rejections of
the null hypothesis H0 : β0 = 0, when the true parameter value is β0 ∈ [0, 0.15]. In the left panel, we consider the bias-corrected
method proposed in Amihud, Hurvich and Wang (2008), while in the right panel we consider the Bonferroni approach for the
local-to-unity asymptotic theory introduced in Campbell and Yogo (2006). We consider non-contaminated samples (straight line)
and contaminated samples (dashed line).
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Figure 2: Power curves of block bootstrap and subsampling. We plot the proportion of rejections of the null hypothesis
H0 : β0 = 0, when the true parameter value is β0 ∈ [0, 0.15]. In the left panel, we consider the block bootstrap, while in the right
panel we consider the subsampling. We consider non-contaminated samples (straight line) and contaminated samples (dashed line).
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Figure 3: Power curves of robust block bootstrap and robust subsampling. We plot the proportion of rejections of
the null hypothesis H0 : β0 = 0, when the true parameter value is β0 ∈ [0, 0.15]. In the left panel, we consider our robust block
bootstrap, while in the right panel we consider our robust subsampling. We consider non-contaminated samples (straight line) and
contaminated samples (dashed line).

estimators. For nearly-integrated settings, robustifying the procedure proposed in Campbell

and Yogo (2006) would require a nontrivial extension of the robust local-to-unity asymptotics
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Figure 4: Sensitivity analysis of bias-corrected and local-to-unity asymptotics. We plot the percentage of increase of
the confidence interval lengths with respect to variation of ymax, in each Monte Carlo sample, within the interval [0, 5]. In the left
panel, we consider the bias-corrected method proposed in Amihud, Hurvich and Wang (2008), while in the right panel we consider
the Bonferroni approach for the local-to-unity asymptotic theory introduced in Campbell and Yogo (2006).
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Figure 5: Sensitivity analysis of block bootstrap and subsampling. We plot the percentage of increase of the confidence
interval lengths with respect to variation of ymax, in each Monte Carlo sample, within the interval [0, 5]. In the left panel, we
consider the block bootstrap, while in the right panel we consider the subsampling.

0 1 2 3 4 50

0.05

0.1

0.15

Contamination Value

%
 I

n
cr

e
a

se
 C

o
n

fid
e

n
ce

 
In

te
rv

a
l L

e
n

g
th

0 1 2 3 4 50

0.05

0.1

0.15

Contamination Value

%
 I

n
cr

e
a

se
 C

o
n

fid
e

n
ce

 
In

te
rv

a
l L

e
n

g
th

Figure 6: Sensitivity analysis of robust block bootstrap and robust subsampling. We plot the percentage of increase
of the confidence interval lengths with respect to variation of ymax, in each Monte Carlo sample, within the interval [0, 5]. In the
left panel, we consider our robust block bootstrap, while in the right panel we consider our robust subsampling.

developed in Lucas (1995, 1997) for the predictive regression model. A more general approach

to obtaining tests less susceptible to finite sample biases or assumptions on their asymptotic

distribution involves resampling methods, such as the bootstrap or subsampling.
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2.3 Bootstrap and Subsampling Tests

Bootstrap and subsampling, offer potential improvements in inferences for time series models

including predictive regression models, see Hall and Horowitz (1996) and Andrews (2002).

Moreover, as demonstrated by Choi and Chue (2007) and Andrews and Guggenberger (2010),

subsampling can produce accurate inferences in nearly integrated settings. To analyze these

methods, we introduce block bootstrap and subsampling procedures, focusing on the predictive

regression model (1)-(2). Subsequently, we employ Monte Carlo simulations to assess the degree

of resistance to anomalous observations exhibited by bootstrap and subsampling tests.

Consider a random sample X(n) = (X1, . . . , Xn) from a time series of random vectors Xi ∈

Rdx , dx ≥ 1, and a general statistic Tn := T (X(n)). Block bootstrap procedures involve dividing

the original sample X(n) into overlapping blocks of size m < n. Bootstrap samples X∗
(n) of size

n are then randomly generated from these blocks. Alternatively, nonoverlapping blocks can

be utilized. The empirical distribution of the statistic T (X(n)) is employed to estimate the

sampling distribution of T (X(n)). Similarly, the subsampling method applies the statistic T

directly to overlapping random blocks X∗
(m) of size m strictly less than n.

In the predictive regression model (1)-(2), the standard t-test statistic for the null of no

predictability is Tn = (β̂n−β0)/σ̂n. Thus, we define a block bootstrap test of the null hypothesis

using the block bootstrap statistic TB∗
n,m = (β̂B∗

n,m − β̂n)/σ̂B∗
n,m, where σ̂B∗

n,m is an estimate of

the standard deviation of the OLS estimator β̂B∗
n,m in a random bootstrap sample of size n,

constructed using blocks of size m. Similarly, a subsampling test of the same null hypothesis is

defined with the subsampling statistic T S∗n,m = (β̂S∗n,m − β̂n)/σ̂S∗n,m, where σ̂
S∗
n,m is an estimator of

the standard deviation of the OLS estimator β̂S∗n,m in a random overlapping block of size m < n.

Given the sensitivity of OLS estimators and empirical averages to even small fractions of

anomalous observations, and since block bootstrap and subsampling tests rely on such statistics,

inference based on resampling methods may inherit this lack of robustness. To validate this

intuition, we study the finite-sample properties of block bootstrap and subsampling tests of

predictability in the presence of anomalous observations through Monte Carlo simulations. For

comparison, we consider the same simulation setting as in the previous section, studying tests
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of the null hypothesis H0 : β0 = 0, using symmetric (bootstrap and subsampling) confidence

intervals for parameter β. Figure 2 displays the empirical frequencies of rejecting the null

hypothesis H0 for different values of the alternative hypothesis β0 ∈ [0, 0.15] with a nominal

significance level of 10%. In non-contaminated samples (solid line), the rejection frequency of

block bootstrap and subsampling tests closely mirrors that of the bias-corrected method and

the Bonferroni approach observed in the previous section, showing a size close to the nominal

level 10% for β0 = 0 and a power exceeding 95% for β0 = 0.15. However, contamination with

anomalous observations drastically reduces the power of the tests (dashed line), with a rejection

frequency consistently below 55% even for large values of β0. Particularly, when β0 = 0.15,

the difference in power for the subsampling applied to non-contaminated and contaminated

samples is larger than 50%.

The outcomes depicted in Figure 2 reveal that bootstrap and subsampling tests not only

inherit but also, to some extent, exacerbate the lack of robustness observed in OLS estimators

for predictive regressions. To enhance the robustness of the inferences derived from resampling

methods, a logical approach is to apply standard bootstrap and subsampling simulation proce-

dures to a more robust statistic, such as a robust linear regression estimator. Regrettably, as

demonstrated in Singh (1998), Salibian-Barrera and Zamar (2002), and Camponovo, Scaillet,

and Trojani (2012) for independent and identically distributed settings, resampling a robust

statistic does not guarantee robust inference due to the intrinsic non-resistance to outliers in

standard block bootstrap and subsampling procedures. This issue arises because the fraction

of anomalous observations generated in bootstrap and subsampling blocks often exceeds the

fraction of outliers in the data. Addressing this problem requires a more systematic analysis of

the robustness of bootstrap and subsampling methods specifically tailored for time series data.

3 Robust Resampling and Quantile Breakdown Point

We characterize theoretically the robustness of bootstrap and subsampling tests in predictive

regression settings. Section 3.1 introduces the notion of a quantile breakdown point, which is

a measure of the global resistance of a resampling method to anomalous observations. Section
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3.2 quantifies and illustrates the quantile breakdown point of standard bootstrap and sub-

sampling tests in predictive regression models. Finally, Section 3.3 derives explicit bounds for

quantile breakdown points, which quantify the degree of resistance to outliers of bootstrap and

subsampling tests for predictability, before applying them to the data.

3.1 Quantile Breakdown Point

Given a random sample X(n) from a sequence of random vectors Xi ∈ Rdx , dx ≥ 1, let

XB∗
(n,m) = (X∗

1 , . . . , X
∗
n) denote a block bootstrap sample, constructed using overlapping blocks

of size m. Similarly, let XS∗
(n,m) = (X∗

1 , . . . , X
∗
m) denote an overlapping subsampling block. We

denote by TK∗
n,m := T (XK∗

(n,m)), K = S,B, the corresponding block bootstrap and subsampling

statistics, respectively. We focus for brevity on one-dimensional real-valued statistics. However,

as discussed for instance in Singh (1998) in the iid context, our results for time series can be

naturally extended to multivariate and scale statistics.

For t ∈ (0, 1), the quantile QK∗
t,n,m of TK∗

n,m is defined by

QK∗
t,n,m = inf{x|P∗(TK∗

n,m ≤ x) ≥ t}, (4)

where P∗ is the probability measure induced by the block bootstrap or the subsampling method

and, by definition, inf(∅) = ∞.

Quantile QK∗
t,n,m is effectively a useful nonparametric estimator of the corresponding finite-

sample quantile of statistic T (X1, . . . , Xn). We characterize the robustness properties of block

bootstrap and subsampling by the breakdown point bKt,n,m of the quantile (4), which is defined

as the smallest fraction of outliers in the original sample such that QK∗
t,n,m diverges to infinity.

In Appendix A, we provide the formal definition of the breakdown point bKt,n,m.

Intuitively, when a breakdown occurs, inference about the distribution of T (X1, . . . , Xn)

based on bootstrap or subsampling tests becomes meaningless. Estimated test critical values

may be arbitrarily large and confidence intervals be arbitrarily wide. In these cases, the size and

power of bootstrap and subsampling tests can collapse to zero or one in presence of anomalous

observations, making these inference procedures useless. Therefore, quantifying bKt,n,m in general
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for bootstrap and subsampling tests of predictability, in dependence of the statistics and testing

approaches used, is key in order to understand which approaches ensure some resistance to

anomalous observations and which do not, even before looking at the data.

3.2 Quantile Breakdown Point and Predictive Regression

The quantile breakdown point of conventional block bootstrap and subsampling tests for pre-

dictability in Section 2.3 depends directly on the breakdown properties of OLS estimator β̂n.

The breakdown point b of a statistics Tn = T (X(n)) is simply the smallest fraction of outliers

in the original sample such that the statistic Tn diverges to infinity; see, e.g., Donoho and

Huber (1983) for the formal definition. We know b explicitly in some cases and we can gauge

its value most of the time, for instance by means of simulations and sensitivity analysis. Most

nonrobust statistics, like OLS estimators for linear regression, have a breakdown point b = 1/n.

Therefore, the breakdown point of conventional block bootstrap and subsampling quantiles in

predictive regression settings also equals 1/n. In other words, a single anomalous observation

in the original data is sufficient to produce a meaningless inference implied by bootstrap or

subsampling quantiles in standard tests of predictability.

It is straightforward to illustrate these features in a Monte Carlo simulation that quantifies

the sensitivity of block bootstrap and subsampling quantiles to data contaminations by a single

outlier, where the size of the outlier is increasing. We first simulate N = 1, 000 random samples

z(n) =
(
z1, . . . , zn

)
of size n = 120, where zt = (yt, xt−1)

′ follows model (1)-(2), vt ∼ N(0, 1),

et ∼ N(0, 1), ϕ = −1, α = µ = 0, ρ = 0.9, and β0 = 0. For each Monte Carlo sample, we define

in a second step

ymax = arg max
y1,...,yn

{w(yi)|w(yi) = yi − β0xi−1, underH0 : β0 = 0} , (5)

and we modify ymax over the interval [ymax, ymax + 5]. It means that we contaminate the

predictability relationship by an anomalous observation for only one single data point in the

full sample. We study the sensitivity of the Monte Carlo average length of confidence intervals

for parameter β, estimated by the standard block bootstrap and the subsampling. It is a
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natural exercise, as the length of the confidence interval for parameter β is in a one-to-one

relation with the critical value of the test of the null of no predictability (H0: β0 = 0). For

the sake of comparison, we also consider confidence intervals implied by the bias-corrected

testing method in Amihud, Hurvich and Wang (2008) and the Bonferroni approach proposed

in Campbell and Yogo (2006).

For all tests under investigation, Figure 4 and 5 plot the relative increase of the average

confidence interval length in our Monte Carlo simulations, under contamination by a single

outlier of increasing size. We find that all sensitivities are basically linear in the size of the

outlier, confirming that a single anomalous observation can have an arbitrarily large impact

on the critical values of those tests and make the test results potentially useless, as implied by

their quantile breakdown point of 1/n.

3.3 Quantile Breakdown Point Bounds

To achieve bootstrap and subsampling tests with improved breakdown properties, it is essential

to employ resampling procedures on a robust statistic with a nontrivial breakdown point (b >

1/n), such as a robust estimator of linear regression. Without loss of generality, let Tn = T (X(n))

be a statistic with a breakdown point of 1/n < b ≤ 0.5.

In Theorem 2 in Appendix A, we compute explicit quantile breakdown point bounds, which

characterize the resistance of bootstrap and subsampling tests to anomalous observations, in

dependence of relevant parameters, such as n, m, t, and b. Similar results can be obtained for

the subsampling and the block bootstrap based on nonoverlapping blocks. The results for the

block bootstrap can also be modified to cover asymptotically equivalent variations, such as the

stationary bootstrap of Politis and Romano (1994).

In our theorems, we show that bSt,n,m and bBt,n,m satisfy the following bounds,

⌈mb⌉
n

≤ bSt,n,m ≤ 1

n
·
[

inf
{p∈N,p≤r−1}

{
p · ⌈mb⌉

∣∣∣∣p > (1− t)(n−m+ 1) + ⌈mb⌉ − 1

m

}]
,

⌈mb⌉
n

≤ bBt,n,m ≤ 1

n
·
[

inf
{p1,p2}

{
p = p1 · p2

∣∣∣∣P(Z ≥
⌈
nb

p1

⌉)
> 1− t

}]
,
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where Z ∼ BIN
(
r, mp2−p1+1

n−m+1

)
, p1, p2 ∈ N, with p1 ≤ m, p2 ≤ r − 1. The term (1−t)(n−m+1)

m

represents the number of degenerated subsampling statistics necessary in order to cause the

breakdown of QS∗
t,n,m, while ⌈mb⌉

n
is the fraction of outliers which is sufficient to cause the

breakdown of statistic T in a block of size m. Note that the breakdown point formula for the

iid bootstrap in Singh (1998) emerges as a special case of the formula (22), for m = 1.

n = 120, b = 0.5 0.9 0.95
Subsampling (m = 10) [0.0417; 0.0833] [0.0417; 0.0417]
Subsampling (m = 20) [0.0833; 0.0833] [0.0833; 0.0833]
Subsampling (m = 30) [0.1250; 0.1250] [0.1250; 0.1250]
Bootstrap (m = 10) [0.0417; 0.3750] [0.0417; 0.3333]
Bootstrap (m = 20) [0.0833; 0.3333] [0.0833; 0.3333]
Bootstrap (m = 30) [0.1250; 0.3333] [0.1250; 0.2500]

Table 1: Subsampling and Block Bootstrap Lower and Upper Bounds for the Quantile Breakdown Point.
Breakdown point of the subsampling and the block bootstrap quantiles. The sample size is n = 120, and the block size is
m = 10, 20, 30. We assume a statistic with breakdown point b = 0.5 and confidence levels t = 0.9, 0.95. Lower and upper bounds
for quantile breakdown points are computed using Theorem 2.

n = 120 0.9 0.95
Subsampling (m = 10) 0.1750 0.1250
Subsampling (m = 20) 0.2500 0.2083
Subsampling (m = 30) 0.3250 0.2833
Bootstrap (m = 10) 0.5000 0.5000
Bootstrap (m = 20) 0.5000 0.5000
Bootstrap (m = 30) 0.4250 0.3583

Table 2: Robust Subsampling and Robust Block Bootstrap for the studentized Statistic Tn. Breakdown point of
the robust subsampling and the robust block bootstrap quantiles for the studentized statistic Tn, in the predictive regression model
(1)-(2). The sample size is n = 120, and the block size is m = 10, 20, 30. The quantile breakdown points are computed using
Theorem 5.

We quantify the implications of Theorem 2 by computing in Table 1 lower and upper bounds

for the breakdown point of subsampling and bootstrap quantiles, using a sample size n = 120,

and a maximal statistic breakdown point (b = 0.5). We find that even for a highly robust

statistic with maximal breakdown point (b = 0.5), the subsampling implies a very low quantile

breakdown point, which increases with the block size but is also very far from the maximal value

b = 0.5. For instance, for a block size m = 10, the 0.95-quantile breakdown point is between
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0.0417 and 0.0833. In other words, even though a statistic is resistant to large fractions of

outliers, the subsampling quantile can collapse with just 5 outliers out of 100 observations.

This breakdown point is also clearly lower than in the iid case; see Camponovo, Scaillet and

Trojani (2012). Since in a time series setting the number of possible subsampling blocks of size

m is typically lower than the number of iid subsamples of size m, the breakdown of a statistic in

one random block tends to have a larger impact on the subsampling quantile than in the iid case.

Similar results arise for the bootstrap quantiles. Even though the bounds are less sharp than

for the subsampling, quantile breakdown points are again clearly smaller than the breakdown

point of the statistic used. These quantile breakdown point bounds are again clearly lower than

in the iid setting. For instance, for m = 30, the 0.95-quantile breakdown point for time series

is less than 0.25, but it is 0.425 for iid settings, from the results in Camponovo, Scaillet and

Trojani (2012). Overall, the results in Theorem 2 imply that subsampling and bootstrap tests

for time series feature an intrinsic non-resistance to anomalous observations, which cannot be

avoided, simply by applying conventional resampling approaches to more robust statistics.

4 Robust Bootstrap and Subsampling

When using a robust statistic with large breakdown point, the bootstrap and the subsampling

still imply an important non-resistance to anomalous observations, which is consistent with our

Monte Carlo results in the predictive regression model. To address this issue, it becomes imper-

ative to introduce a novel class of robust bootstrap and subsampling tests within the context

of time series. We have developed such robust methods by drawing inspiration from the fast

resampling approaches discussed in works such as Davidson and McKinnon (1999), Andrews

(2002), Hong and Scaillet (2006), and Camponovo, Scaillet, and Trojani (2012). Section 4.1

introduces our robust bootstrap and subsampling approach, while Section 4.2 demonstrates

its favorable breakdown properties. Additionally, Section 4.3 introduces new robust bootstrap

and subsampling tests specifically tailored for predictive regression models.
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4.1 Definition

Given the original sample X(n) = (X1, . . . , Xn), we consider the class of robust M-estimators

θ̂n for parameter θ ∈ Rd, defined as the solution of the estimating equations

ψn(X(n), θ̂n) :=
1

n

n∑
i=1

g(Xi, θ̂n) = 0, (6)

where ψn(X(n), ·) : Rd → Rd depends on parameter θ and a bounded estimating function g.

Boundedness of function g is a characterizing feature of robust M-estimators.

Conventional bootstrap (subsampling) methods solve equation ψk(X
K∗
(n,m), θ̂

K∗
n,m) = 0, for each

bootstrap (subsampling) random sample XK∗
(n,m), which can be a computationally demanding

task. Instead, we consider a standard Taylor expansion of (6) around the true parameter θ0,

θ̂n − θ0 = −[∇θψn(X(n), θ0)]
−1ψn(X(n), θ0) + op(1), (7)

where ∇θψn(X(n), θ0) is the derivative of function ψn with respect to parameter θ. Based on

this expansion, we can use −[∇θψn(X(n), θ̂n)]
−1ψk(X

K∗
(n,m), θ̂n) as an approximation of θ̂K∗

n,m− θ̂n

in the definition of the resampling scheme estimating the sampling distribution of θ̂n−θ0. This

approach avoids computing θ̂K∗
n,m and [∇θψk(X

K∗
(n,m), θ̂n)]

−1 in each bootstrap or subsampling

sample, which is a markable computational advantage that produces a fast numerical procedure.

It is an important improvement over conventional resampling schemes, which can easily become

unfeasible when applied to robust statistics.

Definition 1 Given a normalization constant τn such that τn → ∞ as n → ∞, a robust fast

resampling distribution for τn(θ̂n − θ0) is defined by

LK∗
n,m(x) =

1

N

N∑
s=1

I
(
τk

(
− [∇θψn(X(n), θ̂n)]

−1ψk(X
K∗
(n,m),s, θ̂n)

)
≤ x

)
, (8)

where I(·) is the indicator function and s indexes the N possible random samples generated by

the bootstrap and subsampling procedures, respectively.
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General assumptions under which (8) consistently estimates the unknown asymptotic distribu-

tion of τn(θ̂n − θ0) in a time series context are given, e.g., in Hong and Scaillet (2006) for the

subsampling (Assumption 1) and in Goncalves and White (2004) for the bootstrap (Assumption

A and Assumptions 2.1 and 2.2).

4.2 Robust Resampling Methods and Quantile Breakdown Point

In the computation of the resampling distribution (8), we only need consistent point estimates

for parameter vector θ0 and matrix −[∇θψn(X(n), θ0)]
−1, based on the original sample X(n). A

closer inspection of quantity −[∇θψn(X(n), θ̂n)]
−1 ψk(X

K∗
(n,m),s, θ̂n) in Definition 1 reveals impor-

tant implications for the breakdown properties of the robust fast resampling distribution (8).

Indeed, this quantity can degenerate only when either (i) matrix ∇θψn(X(n), θ̂n) is singular

or (ii) estimating function g is not bounded. However, since we are making use of bounded

estimating function g, situation (ii) cannot arise. Intuitively, we expect the breakdown of the

quantiles of robust fast resampling distribution (8) to arise only when condition (i) is met.

In Corollary 3 in Appendix A, we compute the quantile breakdown point bKt,n,m of the robust

fast resampling distribution (8), which depends only on the breakdown properties of θ̂n and

−[∇θψn(X(n), θ̂n)]
−1. Given a concrete model setting, the characterization of the breakdown

properties of our robust bootstrap and subsampling approaches is often straightforward.

4.3 Robust Predictive Regression and Hypothesis Testing

We develop a new class of easily applicable robust bootstrap and subsampling tests for the

null hypothesis of no predictability in predictive regression models. To this end, consider the

predictive regression model

yt = θ′wt−1 + ut , t = 1, . . . , n , (9)

with θ = (α, β)′ and wt−1 = (1, xt−1)
′, and denote by z(n) = (z1, . . . , zn) an observation sample

generated according to (9), where zt = (yt, w
′
t−1)

′.
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According to Definition 1, a robust estimator of predictive regression is needed, featuring

a nontrivial breakdown point b > 1/n and a bounded estimating function g, in order to ob-

tain robust bootstrap and subsampling tests with our approach. Several such estimators are

available in the literature, which imply corresponding robust bootstrap and subsampling pro-

cedures. Among those estimators, a convenient choice is the Huber estimator of regression,

which ensures together good robustness properties and moderate computational costs.

Given a positive constant c, θ̂Rn is the M -estimator that solves the equation

ψn,c(z(n), θ̂
R
n ) :=

1

n

n∑
t=1

(yt − w′
t−1θ̂

R
n )wt−1 · hc(zt, θ̂Rn ) = 0, (10)

where the function hc is defined as

hc(zt, θ) := min

(
1,

c

∥(yt − w′
t−1θ)wt−1∥

)
. (11)

In Equation (10), we can write the Huber estimator θ̂Rn as a weighted least square estimator with

data-driven weights hc defined by (11). By design, the Huber weight 0 ≤ h(zt, θ) ≤ 1 reduces

the influence of potential anomalous observations on the estimation results. Even if the weights

in (11) are nonlinear, the underlying model is still the linear model (9). Equation (10) is an

estimating function and not the way we define the predictive relationship. Weights below one

indicate a potentially anomalous data-point, while weights equal to one indicate unproblematic

observations for the postulated model. Therefore, the value of weight (11) provides a useful

way for highlighting potential anomalous observations that might be influential for the fit of

the predictive regression model; see, e.g., Hampel, Ronchetti, Rousseeuw and Stahel (1986).

Constant c > 0 is useful in order to tune the degree of resistance to anomalous data

of estimator θ̂Rn in relevant applications and can be determined in a fully data-driven way.

Appendix C presents in detail the data-driven method for the selection of the tuning constant

c. Note that, as required by our robust resampling approach, the norm of function ψn,c in

Equation (10) is bounded (by constant c), and the breakdown point of estimator θ̂Rn is maximal

(b = 0.5, see, e.g., Huber, 1981).
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4.3.1 Robust Resampling Tests

By applying the robust fast approach in Definition 1 to the estimating function (10), we can

estimate the sampling distribution of the nonstudentized statistic TNSn =
√
n
(
θ̂Rn − θ0

)
, using

the following robust fast resampling distribution:

LNS,K∗
n,m (x) =

1

N

N∑
s=1

I
(√

k

(
− [∇θψn,c(z(n), θ̂n)]

−1ψk,c(z
K∗
(n,m),s, θ̂n)

)
≤ x

)
, K = B, S, (12)

where θ0 = (α0, β0)
′ and k = n for the block bootstrap (k = m for the subsampling).

A key property of resampling distribution (12) is that it implies a maximal quantile break-

down point, i.e., the largest achievable degree of resistance to anomalous observations, inde-

pendent of the probability level t and the selected block size m, both for the bootstrap and

the subsampling. This feature follows directly from the breakdown point of the robust Hu-

ber estimator (10) b = 0.5, and ∇θψn,c(z(n), θ̂n) possessing maximal breakdown properties, as

established in Corollary 4 of Appendix A.

Using nonstudentized statistics, robust resampling distribution (12) provides consistent es-

timators of the sampling distribution of TNSn =
√
n
(
θ̂Rn − θ0

)
in stationary time series settings.

With slight modifications we can also apply our robust approach to approximate the sampling

distribution of the studentized statistic Tn =
√
n[Σ̂R

n ]
−1/2(θ̂Rn − θ0), where Σ̂R

n is an estimator

of the asymptotic variance of θ̂Rn . In Appendix A, we discuss robust resampling approxima-

tions for the sampling distribution of Tn. Moreover, we analyze their robustness properties by

deriving quantile breakdown point formulas.

While the quantile breakdown points of these latter robust resampling distributions are

clearly larger than those of the conventional bootstrap and subsampling derived in Section 3.3,

they are instead typically smaller than the maximal breakdown point quantiles implied by the

robust resampling distribution (12). Therefore, we perform our robust empirical analysis based

of the distribution (12).
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4.3.2 Monte Carlo Evidence

To quantify the implications of Corollary 4, we can study the sensitivity of confidence intervals

estimated by the robust block bootstrap and the robust subsampling distributions (12), with

respect to contaminations by anomalous observations of increasing size. To this end, we consider

the same Monte Carlo setting of Section 3.2. We plot in Figure 6 the percentage increase of

the length in the average estimated confidence interval, with respect to contaminations of the

available data by a single anomalous observation of increasing size. In evident contrast to the

findings for conventional bootstrap and subsampling tests, Figure 6 shows that the inference

implied by our robust approach is largely insensitive to outliers, with a percentage increase in

the average confidence interval length that is less than 1%, even for an outliers of size ymax+5.

The robustness exhibited by the resampling distribution (12) holds promising implications

for the power of bootstrap and subsampling tests in the presence of anomalous observations.

In the same Monte Carlo setting as discussed in Sections 2.2 and 2.3, Figure 3 illustrates that

under non-contaminated samples (depicted by the straight line), the rates of null hypothesis

rejections for robust resampling approaches closely align with those observed for non-robust

methods. Specifically, for instances like β0 = 0, the rejection frequency approximates the nom-

inal level of 10%, while the power exceeds 95% for β0 = 0.15. It suggests that the asymptotic

efficiency loss of robust estimators, in the absence of anomalous observations, does not seem to

diminish the performance of robust resampling methods compared to non-robust procedures.

In the presence of anomalous observations (indicated by the dashed line), robust approaches

maintain an accurate empirical size close to the actual nominal level, along with a power curve

resembling that obtained in the non-contaminated Monte Carlo simulation. Notably, in contrast

to standard tests, both robust tests exhibit a power exceeding 90% for β0 = 0.15. Additionally,

unreported Monte Carlo results for the robust block bootstrap and subsampling distributions

of studentized tests (28) confirm the enhanced resistance properties of our approach.
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5 Empirical Evidence of Return Predictability

Using our robust bootstrap and subsampling tests, we revisit the recent empirical evidence on

return predictability for US stock market data from a robustness perspective. We study single-

predictor and multi-predictor settings, using several well-known predictive variables suggested

in the literature, such as the lagged dividend yield, the difference between option-implied

volatility and realized volatility and the share of labor income to consumption. We compare

the evidence produced by our robust bootstrap and subsampling tests of predictability with the

results of recent testing methods proposed in the literature, including the bias-corrected method

in Amihud, Hurvich and Wang (2008), the Bonferroni approach for local-to-unity asymptotics

in Campbell and Yogo (2006), and conventional bootstrap and subsampling tests.

The empirical study is articulated in three parts. Section 5.1 studies the forecast ability

of the lagged dividend yield for explaining monthly S&P 500 index returns, in a predictive

regression model with a single predictor. This study allows us to compare the results of our

methodology with those of the Bonferroni approach for local-to-unity asymptotics, which is

applicable to univariate regression settings. Section 5.2 considers models with several predictive

variables. In Section 5.2.1, we test the predictive power of the dividend yield and the variance

risk premium, for quarterly S&P 500 index returns sampled at a monthly frequency in periods

marked by a financial bubble and a financial crisis. Section 5.2.2 tests the predictive power of

the dividend yield and the ratio of labor income to consumption for predicting quarterly value-

weighted CRSP index returns. We also consider regressions with three predictive variables that

additionally incorporate interest rate proxies. Below, we discuss the main results.

5.1 Single-Predictor Model

We consider monthly S&P 500 index returns from Shiller (2000), Rt = (Pt+dt)/Pt−1, where Pt

is the end of month real stock price and dt the real dividend paid during month t. Consistent

with the literature, the annualized dividend series Dt is defined as

Dt = dt + (1 + rt)dt−1 + (1 + rt)(1 + rt−1)dt−2 + · · ·+ (1 + rt) . . . (1 + rt−10)dt−11, (13)
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where rt is the one-month maturity Treasury-bill rate. We estimate the predictive regression

model

ln(Rt) = α + β ln

(
Dt−1

Pt−1

)
+ ϵt ; t = 1, . . . , n, (14)

and test the null of no predictability, H0 : β0 = 0.

We collect monthly observations in the sample period 1980-2010 and estimate the predictive

regression model using rolling windows of 180 observations. Figure 7 plots the 90%-confidence

intervals for parameter β in the sample period 1980-2010.

We find that while the robust bootstrap and subsampling tests always clearly reject the

hypothesis of no predictability at the 5%-significance level, the conventional testing approaches

produce a weaker and more ambiguous predictability evidence. For instance, the bootstrap and

subsampling tests cannot reject H0 at the 10% significance level in subperiod 1984-1999, while

the bias-corrected method and the Bonferroni approach fail to reject H0 at the 10% significance

level in the subperiod 1995-2010.

It is interesting to study to which extent anomalous observations in sample periods 1984-

1999 and 1995-2010 might have caused the diverging conclusions of robust and nonrobust

testing methods. We exploit the properties of our robust testing method to identify such data

points. Figure 8 plots the time series of Huber weights estimated by the robust estimator (10)

of the predictive regression model (14).

We find that subperiod 1998-2002 is characterized by a cluster of infrequent anomalous

observations, which are likely related to the abnormal stock market performance during the

NASDAQ bubble in the second half of the 1990s. Similarly, we find a second cluster of anoma-

lous observations in subperiod 2008-2010, which is linked to the extraordinary events of the

recent financial crisis. Overall, anomalous observations are less than 4.2% of the whole data

sample, and they explain the failure of conventional testing methods in uncovering hidden

predictability structures in these sample periods.

We find that the most influential observation before 1995 is November 1987, following the

Black Monday on October 19 1987. During the subperiod 1998-2002, the most influential

observation is October 2001, reflecting the impact on financial markets of the terrorist attack
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Figure 7: Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of the 90%
confidence intervals for the parameter β in the predictive regression model (14). We consider rolling windows of 180 observations
for the period 1980-2010. In the first line, we present the bias-corrected method (left panel) and the Bonferroni approach (right
panel). In the second line, we consider the classic bootstrap (left panel) and the classic subsampling (right panel), while in the
third line we consider our robust bootstrap (left panel) and our robust subsampling (right panel).

on September 11 2001. Finally, the most anomalous observation in the whole sample period

1980-2010 is October 2008, following the Lehman Brothers default on September 15 2008. The

impact on the test results of the Lehman Brothers default emerges also in Figure 7, where

nonrobust resampling methods no longer reject H0 in 2009. In contrast, robust tests still find
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Figure 8: Huber Weights under the Predictive Regression Model (14). We plot the Huber weights for the predictive
regression model (14) in the period 1980-2010.

significance evidence in favor of predictability.

Finally, we study the out-of-sample accuracy of predictive regressions estimated by non-

robust and robust methods. Borrowing from Goyal and Welsh (2003) and Campbell and

Thompson (2008), we introduce the out-of-sample R2
OS statistics, defined as

R2
OS = 1−

∑t2
t=t1+1(yt − ŷt,ROB)

2∑t2
t=t1+1(yt − ŷt,OLS)2

, (15)

where ŷt,ROB and ŷt,OLS are the fitted values from a predictive regression estimated up to period

t1 for the out-of-sample forecast periods t1+1, . . . , t2, using the robust Huber estimator and the

OLS estimator, respectively. Whenever statistic R2
OS is positive, the robust approach yields

a lower average mean squared prediction error than the nonrobust method, providing more

accurate out-of-sample forecasts. As reported in Table 3, we obtain R2
OS = 0.51%. Therefore,

besides the more robust in-sample results, our robust approach also yields better out-of-sample

predictions. To compare the out-of-sample accuracy of the nonrobust and robust approaches

with respect to the simple forecast based on the sample mean of market returns, we consider

also the out-of-sample R2
OS,K statistic, defined as

R2
OS,K = 1−

∑t2
t=t1+1(yt − ŷt,K)

2∑t2
t=t1+1(yt − ȳt)2

, (16)

where ȳt is the historical average return estimated through period t1, and K = ROB,OLS.
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As reported in Table 3, we obtain R2
OS,ROB = 4.04%, and R2

OS,OLS = 3.51%. Therefore, both

nonrobust and robust methods provide more accurate out-of-sample predictions than simple

forecast based on the sample mean of market returns.

R2
OS R2

OS,OLS R2
OS,ROB

Shiller 0.0051 0.0351 0.0404
Bollerslev et al. 0.0140 0.0437 0.0570
Santos and Veronesi 0.0113 −0.0389 −0.0273

Table 3: Out-of-Sample R2 Statistics. We report the out-of-sample R2 statistics for the single predictor model introduced in
Section 5.1 (Shiller), and the two-predictor models analyzed in Sections 5.2.1 and 5.2.2 (Bollerslev et al., and Santos and Veronesi),
respectively.

5.2 Two-Predictor Model

We extend our empirical study to two-predictor regression models. This approach has several

purposes. First, we can assess the incremental predictive ability of the dividend yield, in relation

to other well-known competing predictive variables. Second, we can verify the power properties

of robust bootstrap and subsampling tests in settings with several predictive variables.

Section 5.2.1 borrows from Bollerslev, Tauchen and Zhou (2009) and studies the joint pre-

dictive ability of the dividend yield and the variance risk premium. Section 5.2.2 follows the

two-predictor model in Santos and Veronesi (2006), which considers the ratio of labor income

to consumption as an additional predictive variable to the dividend yield.

5.2.1 Bollerslev, Tauchen and Zhou

We consider again monthly S&P 500 index and dividend data between January 1990 and

December 2010, and test the predictive regression model:

1

k
ln(Rt+k,t) = α + β1 ln

(
Dt

Pt

)
+ β2V RPt + ϵt+k,t, (17)

where ln(Rt+k,t) := ln(Rt+1)+· · ·+ln(Rt+k) and the variance risk premium V RPt := IVt−RVt is

defined by the difference of the S&P 500 index option-implied volatility at time t, for one month
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maturity options, and the ex-post realized return variation over the period [t−1, t]. Bollerslev,

Tauchen and Zhou (2009) show that the variance risk premium is the most significant predictive

variable of market returns over a quarterly horizon. Therefore, we set k = 4.

Let β01 and β02 denote the true values of parameters β1 and β2, respectively. Using the

conventional bootstrap and subsampling tests, as well as our robust tests, we first test the null

hypothesis of no return predictability by the dividend yield, H01 : β01 = 0.

Figure 9 plots the 90%-confidence intervals for parameter β1, based on rolling windows of

180 monthly observations in sample period 1990-2010. We find again that the robust tests

always clearly reject the null of no predictability at the 5%-significance level. In contrast, the

conventional bootstrap and subsampling tests produce weaker and more ambiguous results,

with uniformly lower p-values (larger confidence intervals) and a non-rejection of the null of no

predictability at the 5%−level in period 1994-2009. Since the Bonferroni approach in Campbell

and Yogo (2006) is defined for single-predictor models, we cannot apply this method in model

(17). Unreported results for the multi-predictor testing method in Amihud, Hurvich and Wang

(2008) show that for data windows following window 1993-2008 the bias-corrected method

cannot reject null hypothesis H01 at the 10% significance level.

By inspecting the Huber weights (11), implied by the robust estimation of the predictive

regression model (17), we find again a cluster of infrequent anomalous observations, both

during the NASDAQ bubble and the recent financial crisis. In this setting, the most influential

observation is still October 2008, reflecting the Lehman Brothers default on September 15

2008. The impact of these anomalous observations emerges also in Figure 9, explaining the

large estimated confidence intervals of nonrobust tests in subperiod 1994-2009.

We also test the hypothesis of no predictability by the variance risk premium, H02 : β02 = 0.

Figure 10 plots the resulting confidence intervals for parameter β02. In contrast to the previous

evidence, we find that all tests under investigation clearly reject H02 at the 5%-significance

level, thus confirming the remarkable return forecasting ability of the variance risk premium

noticed in Bollerslev, Tauchen and Zhou (2009), as well as the international evidence reported

in Bollerslev, Marrone, Xu and Zhou (2014). Finally, for this predictive regression model,

we obtain out-of-sample statistics R2
OS = 1.40% and R2

OS,ROB = 5.70%, indicating again an
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Figure 9: Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of the 90%
confidence intervals for the parameter β1 in the predictive regression model (17). We consider rolling windows of 180 observations
for the period 1990-2010. In the top line, we present the classic bootstrap (left panel) and the classic subsampling (right panel),
while in the bottom line we consider our robust bootstrap (left panel) and our robust subsampling (right panel).

2005 2006 2007 2008 2009 20101

0.5

0

0.5

1

Year

C
on

fid
en

ce
 In

te
rv

al
 B

ou
nd

s

2005 2006 2007 2008 2009 20101

0.5

0

0.5

1

Year

C
on

fid
en

ce
 In

te
rv

al
 B

ou
nd

s

2005 2006 2007 2008 2009 20101

0.5

0

0.5

1

Year

C
on

fid
en

ce
 In

te
rv

al
 B

ou
nd

s

2005 2006 2007 2008 2009 20101

0.5

0

0.5

1

Year

C
on

fid
en

ce
 In

te
rv

al
 B

ou
nd

s

Figure 10: Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of the 90%
confidence intervals for the parameter β2 in the predictive regression model (17). We consider rolling windows of 180 observations
for the period 1990-2010. In the top line, we present the classic bootstrap (left panel) and the classic subsampling (right panel),
while in the bottom line we consider our robust bootstrap (left panel) and our robust subsampling (right panel).

improved out-of-sample predictive power for our robust approach.
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Figure 11: Huber Weights under the Predictive Regression Model (17). We plot the Huber weights for the predictive
regression model (17) in the period 1990-2010.

Besides the two-predictor model (17), we also consider the three-predictor model

1

k
ln(Rt+k,t) = α + β1 ln

(
Dt

Pt

)
+ β2V RPt + β3LTYt + ϵt+k,t, (18)

where LTYt is the detrended long-term yield, defined as the ten-year Treasury yield minus its

trailing twelve-month moving averages. Again, using the nonrobust bootstrap, the nonrobust

subsampling, the robust bootstrap and the robust subsampling, we find evidence in favor of

predictability at 5% significance level for the variance risk premium for the sample period

1990-2010. In contrast, all tests do not reject the null hypothesis of no predictability at 10%

significance level for the detrended long-term yield. Finally, both conventional and robust

tests reject the null hypothesis of no predictability at the 5% significance level for the dividend

yield. The comparison of these empirical results with those obtained in the two-predictor model

(17) again confirms the reliability of our robust tests and the (possible) failure of nonrobust

procedures in uncovering predictability structures in presence of anomalous observations.

5.2.2 Santos and Veronesi

We finally focus on the two-predictor regression model proposed in Santos and Veronesi (2006):

ln(Rt) = α + β1 ln

(
Dt−1

Pt−1

)
+ β2st−1 + ϵt, (19)
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where st−1 = wt−1/Ct−1 is the share of labor income to consumption. We make use of quarterly

returns on the value weighted CRSP index, which includes NYSE, AMEX, and NASDAQ

stocks, in the sample period Q1,1955-Q4,2010. The dividend time-series is also obtained from

CRSP, while the risk free rate is the three-months Treasury bill rate. Labor income and

consumption are obtained from the Bureau of Economic Analysis. As in Lettau and Ludvigson

(2001), labor income is defined as wages and salaries, plus transfer payments, plus other labor

income, minus personal contributions for social insurance, minus taxes. Consumption is defined

as non-durables plus services.

Let β01 and β02 denote the true values of parameters β1 and β2, respectively. Using bootstrap

and subsampling tests, as well as our robust testing method, we first test the null hypothesis

of no predictability by the dividend yield, H01 : β01 = 0. Figure 12 plots the 90%-confidence

intervals for parameter β01 based on rolling windows of 180 quarterly observations in sample

period 1950-2010. We find again that our robust tests always clearly reject H01 at the 5%-

significance level. In contrast, conventional tests produce more ambiguous results, and cannot

reject at the 10%-significance level the null hypothesis H01 for subperiod 1955-2000.

Figure 13 reports the 90%-confidence intervals estimated in tests of the null hypothesis of no

predictability by the labor income proxy, H02 : β02 = 0. While the conventional tests produce

a weak and mixed evidence of return predictability using labor income proxies, e.g., by not

rejecting H02 at the 10%-level in subperiod 1950-1995, the robust tests produce once more a

clear and consistent predictability evidence for all sample periods.

The clusters of anomalous observations (less than 4.6% of the data in the full sample), high-

lighted by the estimated weights in Figure 14, further indicate that conventional tests might

fail to uncover hidden predictability structures using samples of data that include observations

from the NASDAQ bubble or the recent financial crisis, a feature that have already noted

also in Santos and Veronesi (2006) and Lettau and Van Nieuwerburgh (2007) from a differ-

ent angle. In such contexts, the robust bootstrap and subsampling tests are again found to

control well the potential damaging effects of anomalous observations, by providing a way to

consistently uncover hidden predictability features also when the data may only approximately

follow the given predictive regression model. We do not find evidence of structural breaks at

30



1995 2000 2005 20100.2

0.1

0

0.1

0.2

Year

C
on

fid
en

ce
 In

te
rv

al
 B

ou
nd

s

1995 2000 2005 20100.2

0.1

0

0.1

0.2

Year

C
on

fid
en

ce
 In

te
rv

al
 B

ou
nd

s
1995 2000 2005 20100.2

0.1

0

0.1

0.2

Year

C
on

fid
en

ce
 In

te
rv

al
 B

ou
nd

s

1995 2000 2005 20100.2

0.1

0

0.1

0.2

Year
C

on
fid

en
ce

 In
te

rv
al

 B
ou

nd
s

Figure 12: Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of the 90%
confidence intervals for the parameter β1 in the predictive regression model (19). We consider rolling windows of 180 observations
for the period 1950-2010. In the top line, we present the classic bootstrap (left panel) and the classic subsampling (right panel),
while in the bottom line we consider our robust bootstrap (left panel) and our robust subsampling (right panel).
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Figure 13: Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of the 90%
confidence intervals for the parameter β2 in the predictive regression model (19). We consider rolling windows of 180 observations
for the period 1950-2010. In the top line, we present the classic bootstrap (left panel) and the classic subsampling (right panel),
while in the bottom line we consider our robust bootstrap (left panel) and our robust subsampling (right panel).

the 10% significance level, while we obtain an out-of-sample statistic R2
OS = 1.13%, indicating

that our robust approach improves the out-of-sample predictions of classical predictive regres-
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sion methods. However, in this case the out-of-sample statistic R2
OS,ROB = −2.73% shows no

improvement over quarterly forecasts provided by standard sample mean of market returns.
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Figure 14: Huber Weights under the Predictive Regression Model (19). We plot the Huber weights for the predictive
regression model (19) in the period 1950-2010.

6 Conclusion

Extensive research examines the predictive capabilities of various economic variables concern-

ing future market returns. Several testing approaches have been proposed to assess the null

hypothesis of no predictability in predictive regressions featuring correlated errors and nearly

integrated regressors. These approaches include resampling methods, such as bootstrap and

subsampling, which demonstrate improvements over conventional asymptotic tests. However,

Monte Carlo analysis reveals that even minor violations of strict model assumptions can sig-

nificantly compromise the reliability of these tests.

To comprehensively understand the issue, we theoretically characterize the robustness prop-

erties of bootstrap and subsampling tests in a time series context, using the concept of quantile

breakdown point as a measure of the global resistance of a testing procedure to outliers. We

derive general quantile breakdown point formulas, highlighting the limited resistance of these

tests to anomalous observations that may sporadically contaminate the predictive regression

model. It confirms the fragility identified in our Monte Carlo study.

In response, we propose a more robust testing method for predictive regressions with cor-

related errors and nearly integrated regressors. It involves introducing a novel class of fast
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and robust bootstrap and subsampling procedures for time series, applicable to both linear

and nonlinear predictive regression models at sustainable computational costs. The new tests

exhibit resistance to anomalous observations in the data, leading to more robust confidence

intervals and inference results. Monte Carlo simulations demonstrate their strong resistance to

outliers and improved finite-sample properties in the presence of anomalous observations.

In an empirical study using US stock market data, we investigate single-predictor and

multi-predictor models employing well-known predictive variables from the literature, such as

dividend yield, difference between implied volatility and realized volatility, interest rate, and

share of labor income to consumption. Empirical analysis reveals robust evidence of return

predictability, previously obscured by anomalous observations, both in- and out-of-sample.
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Appendix A: Quantile Breakdown Points

We first introduce formally the breakdown point bKt,n,m of the quantile QK∗
t,n,m of the bootstrap

(K = B) and subsampling (K = S) distributions of statistic TK∗
n,m defined in (4). Then, we

derive upper and lower bounds for bKt,n,m as a function of the sample size n, the block size m, the

quantile t, and the breakdown point b of statistic Tn. Finally, we also consider robust bootstrap

and robust subsampling distributions, and compute their quantile breakdown points.

Definition

The breakdown point of quantile (4) is the smallest fraction of outliers in the original sample

such that QK∗
t,n,m diverges to infinity. Borrowing the notation in Genton and Lucas (2003), we

formally define the breakdown point of the t-quantile QK∗
t,n,m := QK∗

t,n,m(X(n)) as,

bKt,n,m :=
1

n
·

[
inf

{1≤p≤⌈n/2⌉}

{
p
∣∣there exists Zζ

n,p ∈ Zζ
n,p such that QK∗

t,n,m(X(n) + Zζ
n,p) = +∞

}]
,

(20)

where ⌈x⌉ = inf{n ∈ N|x ≤ n}, and Zζ
n,p denotes the set of all n-samples Zζ

n,p with exactly

p non-zero components that are dx-dimensional outliers of size ζ ∈ R̄dx . When p > 1, we

do not necessarily assume outliers ζ1, . . . , ζp to be all equal to ζ, but we rather assume exis-

tence of constants c1, . . . , cp, such that ζi = ciζ. To better capture the presence of outliers in

predictive regression models, our definitions for the breakdown point and the set Zζ
n,p of all

n-components outlier samples are slightly different from those proposed in Genton and Lucas

(2003) for general settings. However, we can modify our results to cover alternative definitions

of breakdown point and outlier sets Zζ
n,p. Literally, b

K
t,n,m is the smallest fraction of anomalous

observations of arbitrary size, in a generic outlier-contaminated sample X(n) + Zζ
n,p, such a

quantile QK∗
t,n,m, estimated by a bootstrap or a subsampling Monte Carlo simulation scheme,

can become meaningless.
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Quantile Breakdown Point Bounds

In Theorem 2, we compute explicit quantile breakdown point bounds as a function of the

sample size n, the block size m, the quantile t, and the breakdown point b of statistic Tn.

Theorem 2 Let b be the breakdown point of Tn and t ∈ (0, 1). The quantile breakdown point

bSt,n,m and bBt,n,m of subsampling and block bootstrap procedures, respectively, satisfy following

bounds,

⌈mb⌉
n

≤ bSt,n,m ≤ 1

n
·
[

inf
{p∈N,p≤r−1}

{
p · ⌈mb⌉

∣∣∣∣p >
(1− t)(n−m+ 1) + ⌈mb⌉ − 1

m

}]
, (21)

⌈mb⌉
n

≤ bBt,n,m ≤ 1

n
·
[

inf
{p1,p2}

{
p = p1 · p2

∣∣∣∣P(Z ≥
⌈
nb

p1

⌉)
> 1− t

}]
, (22)

where Z ∼ BIN
(
r, mp2−p1+1

n−m+1

)
, p1, p2 ∈ N, with p1 ≤ m, p2 ≤ r − 1.

Proof of Theorem 2. We first consider the subsampling and focus on formula (21). The

value ⌈mb⌉
n

is the smallest fraction of outliers, that causes the breakdown of statistic T in a

block of size m. Therefore, the first inequality is satisfied.

For the second inequality of formula (21), we denote by XN
(m),i = (X(i−1)m+1, . . . , Xim), i =

1, . . . , r andXO
(m),i = (Xi, . . . , Xi+m−1), i = 1, . . . , n−m+1, the nonoverlapping and overlapping

blocks of size m, respectively. Given the original sample X(n), for the first nonoverlapping block

XN
(m),1, consider the following type of contamination:

XN
(m),1 = (X1, . . . , Xm−⌈mb⌉, Zm−⌈mb⌉+1, . . . , Zm), (23)

where Xi, i = 1, . . . ,m− ⌈mb⌉ and Zj, j = m− ⌈mb⌉+ 1, . . . ,m, denote the noncontaminated

and contaminated points, respectively. By construction, the first m − ⌈mb⌉ + 1 overlapping

blocks XO
(m),i, i = 1, . . . ,m− ⌈mb⌉+ 1, contain ⌈mb⌉ outliers. Consequently, T (XO

(m),i) = +∞,

i = 1, . . . ,m − ⌈mb⌉ + 1. Assume that the first p < r − 1 nonoverlapping blocks XN
(m),i,

i = 1, . . . , p, have the same contamination as in (23). Because of this contamination, the

number of statistics TOS∗n,m which diverge to infinity is mp− ⌈mb⌉+ 1.

QOS∗
t,n,m = +∞, when the proportion of statistics TOS∗n,m with TOS∗n,m = +∞ is larger than (1−t).
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Therefore,

bOSt,n,m ≤ inf
{p∈N,p≤r−1}

{
p · ⌈mb⌉

n

∣∣∣∣mp− ⌈mb⌉+ 1

n−m+ 1
> 1− t

}
.

Finally, we consider formula (22). The proof of the first inequality in formula (22) follows

the same lines as the proof of the first inequality in the formula (21). We focus on the second

inequality.

Consider XN
(m),i, i = 1, . . . , r. Assume that p2 of these nonoverlapping blocks are contami-

nated with exactly p1 outliers for each block, while the remaining (r−p2) are noncontaminated

(0 outlier), where p1, p2 ∈ N and p1 ≤ m, p2 ≤ r − 1. Moreover, also assume that the contam-

ination of the p2 contaminated blocks has the structure defined in (23). The block bootstrap

constructs a n-sample randomly selecting with replacement r overlapping blocks of size m. Let

X be the random variable which denotes the number of contaminated blocks in the random

bootstrap sample. It follows that X ∼ BIN(r, mp2−p1+1
n−m+1

).

By Equation (20), QOB∗
t,n,m = +∞, when the proportion of statistics TOB∗

n,m with TOB∗
n,m = +∞

is larger than (1 − t). The smallest number of outliers such that TOB∗
n,m = +∞ is by definition

nb. Let p1, p2 ∈ N, p1 ≤ m, p2 ≤ r − 1. Consequently,

bOBt,n,m ≤ 1

n
·
[

inf
{p1,p2}

{
p = p1 · p2

∣∣∣∣P(Z ≥
⌈
nb

p1

⌉)
> 1− t

}]
,

where Z ∼ BIN
(
r, mp2−p1+1

n−m+1

)
. It concludes the proof of Theorem 2.

Robust Subsampling and Robust Bootstrap Distributions

After the definition of quantile breakdown point and the robustness analysis of the conventional

bootstrap and subsampling, we consider robust subsampling and robust bootstrap distributions.

In the next Corollary, we compute the quantile breakdown point of the robust fast resampling

distribution LK∗
n,m introduced in Definition 1.

Corollary 3 Let b be the breakdown point of the robust M-estimator θ̂n defined in (6). The
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t-quantile breakdown point of resampling distribution (8) equals bKt,n,m = min(b, b∇ψ), where b∇ψ

is the breakdown point of matrix ∇θψn(X(n), θ̂n), defined by:

b∇ψ =
1

n
· inf
1≤p≤⌈n/2⌉

{
p
∣∣there exists Zζ

n,p ∈ Zζ
n,p such that det(∇θψn(X(n) + Zζ

n,p, θ̂n)) = 0
}
.

(24)

Proof of Corollary 3. Consider the robust fast approximation of θ̂K∗
n,m − θ̂n given by:

−[∇θψn(X(n), θ̂n)]
−1ψk(X

K∗
(n,m),s, θ̂n), (25)

where k = n or k = m, K = B, S. Assuming a bounded estimating function, Expression (25)

may degenerate only when either (i) θ̂n /∈ R or (ii) matrix [∇θψn(X(n), θ̂n)] is singular, i.e.,

det([∇θψn(X(n), θ̂n)]) = 0. If (i) and (ii) are not satisfied, then, quantile QK∗
t,n,m is bounded, for

all t ∈ (0, 1). Let b be the breakdown point of θ̂n and b∇ψ the smallest fraction of outliers in

the original sample such that condition (ii) is satisfied. Then, the breakdown point of QK∗
t,n,m is

bKt,n,m = min(b, b∇ψ).

Using the results in Corollary 3, we analyze the robustness properties of the robust sub-

sampling and robust bootstrap for predictive regression model. In particular, in Corollary 4,

we compute the quantile breakdown point of the robust subsampling and robust bootstrap for

the sampling distribution of the nonstudentized statistic TNSn =
√
n
(
θ̂Rn − θ0

)
defined in (12).

Corollary 4 Let t ∈ (0, 1). The t-quantile breakdown point of the resampling distribution (12)

is bKt,n,m = 0.5, K = B, S.

Proof of Corollary 4. First note that the breakdown point of the robust estimator θ̂Rn defined

in (10) is b = 0.5; see, e.g., Huber (1984). Therefore, we have only to focus on the breakdown

point of matrix ∇θ(ψn,c(z(n), θ̂
R
n )). Without loss of generality, assume that θ = (α, β) ∈ R2.

Consider the function

gc(yt, wt−1, θ) = (yt − θ′wt−1)wt−1 ·min

(
1,

c

||(yt − θ′wt−1)wt−1||

)
. (26)
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Using some algebra, we can show that

∇θgc(yt, wt−1, θ) =

 −(1, xt−1)
′(1, xt−1), if ||(yt − θ′wt−1)wt−1|| ≤ c,

O2×2, if ||(yt − θ′wt−1)wt−1|| > c,
(27)

where O2×2 denotes the 2 × 2 null matrix. It turns out that by construction the matrix

∇θ(ψn,c(z(n), θ̂
R
n )) is semi-positive definite, and in particular det(∇θ(ψn,c(z(n), θ̂

R
n )) = 0, only

when ||(yt − θ̂′Rn wt−1)wt−1|| > c, for all the observations (yt, wt−1)
′, i.e., b∇ψc = 1. Therefore,

using Corollary 3 we obtain that bKt,n,m = min(0.5, 1) = 0.5, K = B, S.

Finally, consider the studentized statistic Tn =
√
n[Σ̂R

n ]
−1/2(θ̂Rn − θ0). Here, we can use

the robust fast approach introduced in Definition 1 with minor modifications. In particular,

we propose to estimate the sampling distribution of statistic Tn by the following robust fast

resampling distribution:

LK∗
n,m(x) =

1

N

N∑
s=1

I
(√

k

(
− [Σ̂R∗

k,s]
−1/2[∇θψk,c(z

K∗
(n,m),s, θ̂n)]

−1ψk(z
K∗
(n,m),s, θ̂n)

)
≤ x

)
, (28)

where k = n for the block bootstrap (k = m for the subsampling) and Σ̂R∗
k,s = Σ̂R

n (z
K∗

(n,m),s) is an

estimate of the asymptotic variance of the robust M-estimator (10) based on the s−th block

bootstrap (subsampling) random block.

The quantile breakdown point properties of resampling distribution (28) are more complex

than those obtained in the unstudentized case, and are summarized in the next Theorem.

Theorem 5 For simplicity, let r = n/m ∈ N. The t-quantile breakdown points bBt,n,m and bSt,n,m

of the robust block bootstrap and robust subsampling distributions (28), respectively, are given

by

bSt,n,m =
1

n

[
inf

{p∈N,p≤n−m+1}

{
m+ p

∣∣∣∣ p > (1− t)(n−m+ 1)− 1

}]
, (29)

bBt,n,m =
1

n

[
inf

{p∈N,p≤n−m+1}

{
m+ p

∣∣∣∣P(Z = r

)
> 1− t

}]
, (30)
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where Z ∼ BIN
(
r, p+1

n−m+1

)
and q ∈ (0, 1).

Proof of Theorem 5. Consider the resampling distribution (28). Let zK∗
(n,m),s = (z∗1 , . . . , z

∗
k)

denote a random bootstrap (K = B and k = n) or subsampling (K = S and k = m) sample.

Since the estimating function ψn,c is bounded, it turns out that

TK∗
n,m,s := [Σ̂R∗

k,s]
−1/2[∇θψk,c(z

K∗
(n,m),s, θ̂

R
n )]

−1ψk,c(z
K∗
(n,m),s, θ̂

R
n ), (31)

may degenerate when (i) det
(
Σ̂R∗
k,s

)
= 0 or (ii) det

(
∇θψk,c(z

K∗
(n,m),s, θ̂

R
n )
)
= 0. Moreover, also

note that Σ̂R∗
k,s = Ĵ ′R∗

k,s V̂
R∗
k,s Ĵ

R∗
k,s , where Ĵ

R∗
k,s =

[
∇θψk,c(z

K∗
(n,m),s, θ̂

R
n )
]−1

. Because of Equations (38),

(39), (27), it turns out that cases (i) and (ii) can be satisfied only when ||(y∗t−θ̂′Rn w∗
t−1)w

∗
t−1|| > c

for all random observations z∗i = (y∗i , w
∗
i−1)

′, i = 1, . . . , k, where k = n,m, for the bootstrap

and subsampling, respectively.

For the original sample, consider following type of contamination

z(n) = (z1, . . . , zj, Cj+1, . . . , Cj+p, zj+p+1, . . . , zn), (32)

where zi, i = 1, . . . , j and i = j + p + 1, . . . , n and Ci, i = j + 1, . . . , j + p, denote the

noncontaminated and contaminated points, respectively, where p ≥ m. It turns out that all

the p−m+ 1 overlapping blocks of size m

(Cj+i, . . . , Cj+i+m−1), (33)

i = 1, . . . , p−m+ 1 contain only outliers. Therefore, for these p−m+ 1 blocks we have that

det
(
∇θψm,c(Cj+i, . . . , Cj+i+m−1, θ̂

R
n )
)
= 0, i.e., some components of vector (31) may degenerate

to infinity. Moreover, QS∗
t,n,m = +∞ when the proportion of statistics T S∗n,m with T S∗n,m = +∞ is

larger than (1 − t). Therefore, bSt,n,m = inf{p∈N,m≤p≤n−m+1}

{
p
n

∣∣∣∣ p−m+1
n−m+1

> 1 − t

}
, which proves

the result in Equation (29).

For the result in Equation (30), note that because of the contamination defined in (32),

by construction we have p − m + 1 overlapping blocks of size m with exactly m outliers,
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and n − (p − m + 1) blocks with less than m outliers. Let X be the random variable which

denotes the number of full contaminated blocks in the random bootstrap sample. It follows

that X ∼ BIN
(
r, p−m+1

n−m+1

)
. To imply (i) or (ii), all the random observations (z∗1 , . . . , z

∗
k) have

to be outliers, i.e., X = r. By Equation (20), QB∗
t,n,m = +∞, when the proportion of statistics

TB∗
n,m with TB∗

n,m = +∞ is larger than (1− t). Consequently,

bBt,n,m =
1

n
·
[

inf
{p∈N,p≤n−m+1}

{
p

∣∣∣∣P(Z = r

)
> 1− t

}]
,

where Z ∼
(
r, p−m+1

n−m+1

)
. It concludes the proof.

Formulas (29) and (30) improve on the results in Equations (21) and (22) for the conven-

tional subsampling and bootstrap, respectively. The quantile breakdown point of the robust

block bootstrap and subsampling approach is often much higher than the one of conventional

resampling methods. Table 2 quantifies these differences. For instance, form = 10, 20, the 0.95-

quantile of the robust block bootstrap is maximal. Similarly, the robust subsampling quantile

breakdown points in Table 2 are considerably larger than those in Table 1 for conventional

subsampling methods, even if they do not always attain the upper bound of 0.5.

In contrast to the unstudentized case, the quantile breakdown point of robust resam-

pling distribution (28) is not always maximal, because we need to compute matrices Σ̂R∗
k and

∇θψk,c(z
K∗
(n,m), θ̂

R
n ) in each bootstrap or subsampling block. While this approach can yield con-

sistency also in nonstationary settings and a potentially improved convergence, the additional

estimation step can imply a loss in the resistance of the whole procedure to anomalous obser-

vations. Thus, a tradeoff arises between resistance to anomalous observations and improved

finite-sample inference, which has to be considered and evaluated case-by-case in applications.
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Appendix B: Robust Bootstrap and Subsampling Tests of

Predictability

We present in more details how to compute the robust resampling distribution (28) and

construct robust confidence intervals for the components of a general d-dimensional parameter

β, where d ≥ 1. The extension to the nonstudentized distributions (12) is straightforward.

We construct symmetric resampling confidence intervals for the parameter of interest. Indeed,

Hall (1988) and more recent contributions, as for instance Politis, Romano and Wolf (1999),

highlight a better accuracy of symmetric confidence intervals, which even in asymmetric settings

can be shorter than asymmetric confidence intervals. Mikusheva (2007) and Andrews and

Guggenberger (2010) also show that because of a lack of uniformity in pointwise asymptotics,

nonsymmetric subsampling confidence intervals for autoregressive models can imply a distorted

asymptotic size, which is instead correct for symmetric confidence intervals.

Let θ = (α, β′)′ and let z(n) = (z1, . . . , zn) be an observation sample generated according to

the multi-predictor regression model

yt = α + β′xt−1 + ut,

xt = Φ+Rxt−1 + Vt,

where zt = (yt, w
′
t−1)

′, wt−1 = (1, x′t−1)
′, Φ is a d-dimensional parameter vector and R is a

d× d parameter matrix. First, we compute the robust Huber estimator θ̂Rn = (α̂Rn , β̂
R′
n )′ as the

solution of ψn,c(z(n), θ̂
R
n ) = 0, where the estimating function ψn,c is defined in (10) and c > 0 is

a tuning constant selected through the data-driven method introduced in Appendix C below.

Note that the asymptotic variance of the robust M-estimator θ̂Rn is given by

ΣR = J ′RV RJR, (34)

where JR =
(
limn→∞E

[
∇θψn,c(z(n), θ0)

])−1
, V R = limn→∞ V ar

[
1√
n

∑n
i=1 gc(z(i), θ0)

]
, and

41



∇θψn,c(z(n), θ0) denotes the derivative of function ψn,c with respect to parameter θ with θ0 =

(α0, β
′
0)

′. We compute the estimator Σ̂R
n = Ĵ ′R

n V̂
R
n Ĵ

R
n of the asymptotic variance ΣR where

ĴRn =
[
∇θψn,c(z(n), θ̂

R
n )
]−1

, (35)

V̂ R
n =

1

n

n∑
i=1

gc(zi, θ̂
R
n )gc(zi, θ̂

R
n )

′, (36)

respectively. For the sake of brevity, we assume that E[gc(zi, θ0)gc(zj, θ0)
′] = 0, i ̸= j, and

consequently we consider V̂ R
n as estimator of V R. However, if this assumption is not satisfied,

then V̂ R
n has to be replaced with the Newey-West covariance estimator. Let (p)(j) denotes the

j-th component of a d-dimensional vector p, 1 ≤ j ≤ d. To construct symmetric confidence

intervals for each j-th component of the parameter β, we compute an estimator of the sampling

distribution of
(
Tn,|·|

)(j+1)
:=

√
n

(σ̂R
n )(j+1)

∣∣∣∣(θ̂Rn − θ0)
)(j+1)

∣∣∣∣, by applying our robust resampling ap-

proach, where the subscript | · | indicates that we consider the absolute value of each component

of the statistic Tn, and
(
σ̂Rn
)(j+1)

is the square root of the (j + 1)-th diagonal component of

matrix Σ̂R
n .

More precisely, let zK∗
(n,m) be a block bootstrap (K = B) or subsampling (K = S) random

sample based on blocks of size m, where m is selected through the data-driven method in-

troduced in Appendix C below. For each component 1 ≤ j ≤ d, we estimate the sampling

distribution of
(
Tn,|·|

)(j+1)
through the robust resampling distribution

(
LK∗
n,m,|·|(x)

)(j+1)
=

1

N

N∑
s=1

I
( √

k(
σ̂R∗
k,s

)(j+1)

∣∣∣∣([∇θψk,c(z
K∗
(n,m),s, θ̂

R
n )]

−1ψk,c(z
K∗
(n,m),s, θ̂

R
n )
)(j+1)

∣∣∣∣ ≤ x

)
,

(37)

where k = n for the block bootstrap (K = B), while k = m for the subsampling (K = S),(
σ̂R∗
k,s

)(j+1)
is the square root of the (j + 1)-th diagonal component of matrix Σ̂R∗

k,s, and Σ̂R∗
k,s =
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Ĵ ′R∗
k,s V̂

R∗
k,s Ĵ

R∗
k,s with

ĴR∗
k,s =

[
∇θψc,c(z

K∗
(n,m),s, θ̂

R
n )
]−1

, (38)

V̂ R∗
k,s =

1

k

k∑
i=1

gc(z
K∗
i,s , θ̂

R
n )gc(z

K∗
i,s , θ̂

R
n )

′. (39)

Finally, let t ∈ (0, 1), and let
(
QK∗
t,n,m

)(j+1)
be the t-quantile of the block bootstrap or subsam-

pling empirical distribution (37), K = B, S, respectively. Then, the symmetric t-confidence

interval for the j-th component (β0)
(j) of β0 is given by

(CIt)
(j) =

[(
θ̂Rn

)(j+1)

−
(
σ̂Rn
)(j+1) (

QK∗
t,n,m

)(j+1)
,
(
θ̂Rn

)(j+1)

+
(
σ̂Rn
)(j+1) (

QK∗
t,n,m

)(j+1)
]
, (40)

We summarize our robust approach in the following algorithm.

(1) Compute θ̂Rn = (α̂ROB, β̂
′
ROB)

′, as the solution of (10), where c is selected using the

data-driven method introduced in Appendix C below.

(2) Compute Σ̂R
n = Ĵ ′R

n V̂
R
n Ĵ

R
n , where Ĵ

′R
n and V̂ R

n are defined in (35) and (36), respectively.

(3B) For the robust block bootstrap, generate BB = 999 random bootstrap samples based on

the overlapping blocks (zi, . . . , zi+m−1), i = 1, . . . , n−m+1, wherem is selected according

to the data-driven method introduced in Appendix C below.

(3S) For the robust subsampling, consider theBS = n−m+1 overlapping blocks (zi, . . . , zi+m−1),

i = 1, . . . , n−m+1, where m is selected according to the data-driven method introduced

in Appendix C below.

(4) Compute the robust resampling distribution (37).

(5) The robust symmetric t-confidence interval for the j-th component (β0)
(j) of β0 is is given

by (40).
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Appendix C: Data-Driven Selection of the Block Size and

the Robust Estimating Function Bound

The implementation of our robust resampling methods requires the selection of the block

size m and the degree of robustness c of the estimating function (10). To this end, we propose

a data-driven procedure for the choice of the block size m and the estimating function bound

c, by extending the calibration method (CM) discussed in Romano and Wolf (2001) in relation

to subsampling procedures.

Let MC := {(m, c)|m ∈ M, c ∈ C}, where M := {mmin < · · · < mmax} and C :=

{cmin < · · · < cmax} are the sets of admissible block sizes and estimating functions bounds,

respectively. Let TNSn =
√
n
(
θ̂Rn − θ0

)
be the nonstudentized statistic of interest, where θ̂Rn

is the robust Huber estimator solution of Equation (10) with c = c1 fixed, as preliminary

value of the estimating function bound. Furthermore, let (X∗
1 , . . . , X

∗
n) be a block bootstrap

sample generated from (X1, . . . , Xn), with the block size m ∈ M. For each bootstrap sample,

compute a t-subsampling (or bootstrap) confidence interval CIt,(m,c) as described in Appendix

B according to block size m ∈ M and bound c ∈ C. The data-driven block size and estimating

function bound according to the calibration method are defined as

(m, c)CM := arg inf
(m,c)∈MC

{∣∣∣t− P∗
[
θ̂Rn ∈ CIt,(m,c)

]∣∣∣} , (41)

where, by definition, arg inf(∅) := ∞, and P ∗ denotes the probability with respect to the

bootstrap distribution. By definition, (m, c)CM is the pair for which the bootstrap probability of

the event {θ̂Rn ∈ CIt,(m,c)} is as near as possible to the nominal level t of the confidence interval.

The extension to the studentized statistic Tn =
√
n
(
[Σ̂R

n ]
−1/2(θ̂Rn − θ0)

)
is straightforward.

We summarize the calibration method for the selection of the block size m and estimating

function bound c in the following steps.

(1) Compute θ̂Rn = (α̂Rn , β̂
R
n )

′, as the solution of (10), with c = c1 as preliminary value of the

estimating function bound.
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(2) For eachm ∈ M, generateK random bootstrap samples (z∗1 , . . . , z
∗
n) based on overlapping

blocks of size m.

(3) For each random bootstrap sample (z∗1 , . . . , z
∗
n) and c ∈ C, compute confidence intervals

CIt,(m,c) for the parameter β̂Rn , by applying steps (1)-(5) of the algorithm in the previous

Appendix A.

(4) For each pair (m, c) ∈ MC compute h(m, c) = ♯{β̂Rn ∈ CIt,(m,c)}/K.

(5) The data-driven block size and estimating function bound according to the calibration

method are defined as (m, c)CM := arg inf(m,c)∈MC {|t− h(m, c)|}.
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