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Abstract

We analyze the problem of real optimal asset allocation for a pension
fund maximising the expected CRRA utility of its real disposable wealth.
The financial horizon of the analysis coincides with the random death
time of a representative subscriber. We consider a very general setting
where there exists a stochastic investment opportunity set together with
stochastic contributions and pensions and we derive a quasi-explicit solu-
tion. When the market price of risk is independent of the state variables
we are also able to compute a closed-form solution. Numerical simula-
tions provide useful practical guidelines regarding the optimal investment
strategy.
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1 Introduction
As recalled by James and Vittas (1999), when a new system of pension funds is
activated in a country, policy-makers need to ensure that this system is efficient,
or at least does not collapse. Early failures of participating institutions through
misuse of funds is likely to cause a major setback to the whole reform program
and to discourage older workers to join the new system.
Even if old age pensions will not arise for many years, both accumulation

and decumulation phases need to be well organized and efficient to guarantee
full success of a new pension system. Indeed, the failure or not of a new pension
system depends on its ability to use whatever capital has been amassed at
the end of the active life of covered workers to supply them with a reasonably
sufficient regular income.
The importance of finding a suitable way for managing both phases is further

supported by the figures provided by the United Nations population division
(2002). In 2000, about 0.6 billion people, 10 percent of world population, were
over 60 years of age. By 2025, the number will nearly double to reach 1.18
billion, around 15 percent of the world population, and by 2050, the number
will be 1.96 billion, around 21.1 percent of world population. Almost half of
the world population is now in countries which are under the replacement rate
fertility level (less than 2.1 children per woman). The life expectancy has been
rising too. It is estimated that worldwide life expectancy at birth for men will
rise from 61 in 1998 to 67 in 2025, and for women from 65 to 72. In high income
countries, life expectancy of women may soon be above 80 years of age.
Furthermore, as it can be seen in Figures 1 1 and 2 2 for the United States

and the United Kingdom, respectively, dollars and pounds invested in the pen-
sion fund industry are significant. In the United States, the total amount of
contributions to pension and welfare funds has been increasing at an average
rate of about 4.2% per year from 1987 to 2001, while, during the same period,
the total benefits paid by pension and welfare funds have been increasing of
about 6.7% per year. In 2001 contributions were around 567 billions of dollars
while pensions were around 923 billions of dollars. In the United Kingdom, the
amount of assets held in English pension fund portfolios has been growing of
around 14% per year passing from 4.6 billions of pounds in 1987 to more than
713 billions of pounds in 2001. The need to find an optimal rule for allocating
such a huge amount of money among financial assets clearly arises.

[Fig. 1 here]
[Fig. 2 hete]

Up to now, most countries that have undertaken a reform of their pension
system have primarily focused on the accumulation phase and paid less attention

1The US data have been downloaded from the “National Income and Product Accounts
Tables” provided by the BEA National Economic Accounts (http://www.bea.gov/).

2The UK data have been downloaded from the “National Statistics” website
(http://www.statistics.gov.uk/). Crown copyright material is reproduced with the permis-
sion of the Controller of HMSO.
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to the decumulation phase. This is also true in the academic literature (see
for instance, Deelstra et al., 2000, Boulier et al., 2001, and Battocchio and
Menoncin, 2002). There are only few works dealing with the decumulation
phase (see for instance, Charupat and Milevsky, 2002, and Battocchio et al.,
2003).
In this work, we present a closed-form solution for optimal asset allocation

during the accumulation and decumulation phases under mortality risk and
inflation risk. The main difficulty in designing a dedicated framework for pension
funds is the presence of nontradeable endowment processes. Some closed-form
solutions without any nontradeable income sources have already been derived in
the literature. After the seminal papers of Merton (1969, 1971), we mainly refer
to the works of Kim and Omberg (1996), Chacko and Viceira (1999), Deelstra
et al. (2000), Boulier et al. (2001), and Wachter (2002). In these papers the
market structure is as follows: (i) there exists only one stochastic state variable
(the riskless interest rate or the risk premium) following the Vasiček (1977)
model or the Cox et al. (1985) model, (ii) there exists only one risky asset, (iii)
a discount bond may exist. Some works consider a complete financial market
(Deelstra et al., 2000, Boulier et al., 2001, and Wachter, 2002) while others deal
with an incomplete market (Kim and Omberg, 1996, and Chacko and Viceira,
1999).
In a very general setting, El Karoui and Jeanblanc-Picqué (1998) analyze the

case of a constrained investor who cannot borrow against the future and whose
wealth cannot therefore be negative. They show that the optimal constrained
solution consists in investing a part of the wealth in the unconstrained strategy
and spending the remainder for financing an American put written on the free
wealth, in order to provide an insurance against the constraint.
Also Cuoco (1997) offers an existence result for the optimal portfolio for a

constrained investor who is endowed with a stochastic labor income flow. The
type of constraint he analyzes is sufficiently general for describing the case of:
(i) nontradeable assets (i.e. incomplete markets), (ii) short-sale constraints, (iii)
buying constraints, (iv) portfolio-mix constraints, and (v) minimal capital re-
quirements. The last three constraints are relevant for banks and other financial
institutions whose portfolios are affected by regulation of an authority (like a
central bank).
In this work, instead, we assume that the pension fund is able to borrow

against its prospective mathematical reserve. Thus, its objective is to maxi-
mize the intertemporal utility of its real wealth, augmented by the expected
value of all the future contributions and diminished by the expected value of
all the future pensions (let us call this modified wealth as “disposable wealth”).
Furthermore, the objective function takes the form of a HARA (Hyperbolic
Absolute Risk Aversion index) utility function which coincides with the power
of fund disposable wealth. This assumption allows us to reach a closed-form
solution that will be used in numerical simulations to provide useful guidelines
for optimal asset allocation in a pension fund context.
For a theoretical justification of risk aversion for banks and other institu-

tional investors the reader is referred to Koehn and Santomero (1980), Kim and
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Santomero (1988), and Keeley (1990).
We use the setting described in Merton (1990) and Bodie et al. (1992)

where a non-financial income flow is taken into account. Furthermore, in order
to obtain a closed form solution, we assume that the stochastic contributions and
pensions can be spanned in the financial market. Note however, that the case
of a pension fund is different from the standard case of an investor having labor
income. Indeed, the revenues (contributions) and expenses (pensions) of the
fund must be linked by a condition (“feasibility condition”) guaranteeing that it
is profitable to contract for both the subscriber and the pension fund. To further
enrich our framework, we introduce a deterministic profit sharing rule. This
means that a proportion of the fund nominal surplus (i.e. the difference between
the managed wealth and the contributions) is redistributed to the members, who
thus share profits induced by the exposure to the risky assets.
Moreover, the link between contributions and pensions can be established

inside one of the two following frameworks: the so-called defined-benefit pension
plan (hereafter DB) or the so-called defined-contribution pension plan (hereafter
DC). In a DB plan benefits are fixed in advance by the sponsor and contributions
are initially set and subsequently adjusted in order to maintain the fund in bal-
ance. In a DC plan contributions are fixed and benefits depend on the returns on
the fund portfolio. In particular, DC plans allow contributors to know, at each
time, the value of their retirement accounts. Historically, fund managers have
mainly proposed DB plans, which are definitely preferred by workers. Indeed,
the financial risks associated with DB plans are supported by the plan sponsor
rather than by individual members of the plan. Nowadays, most of the pro-
posed pension plans are based on DC schemes involving a considerable transfer
of risks to workers. Accordingly, DC pension funds provide contributors with
a service of savings management, even if they do not guarantee any minimum
performance. As we have already highlighted, only contributions are fixed in
advance, while the final state of the retirement account depends fundamentally
on the administrative and financial skills of the fund manager. Therefore, an
efficient financial management is essential to gain contributor trust.
The continuous time model studied in this paper is able to describe both

DB and DC pension plans since we take into account two different stochastic
variables for contributions and pensions. Note that we do not require one of
them to be necessarily deterministic. In order to reduce the model to a pure
DB plan it is sufficient to equate the diffusion term of pensions to zero, while in
a pure DC plan it is the diffusion term of contributions which must be equated
to zero.
An approach related to ours is presented in Sundaresan and Zapatero (1997)

where the asset allocation for a pension plan is analyzed from the point of view
of a firm which must pay both wages (before its workers retire) and pensions
(after they retire). In this case the link between the accumulation and the decu-
mulation phases is provided by equating the total expected value of wages and
pensions paid with the total expected value of worker productivity (according to
the usual economic rule equating the optimal wage with the marginal product
of labor). Furthermore, Sundaresan and Zapatero (1997) solve for an optimal
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stopping time for workers who must decide when to retire. In this paper, in-
stead, we suppose the pension date to be determined by law and thus, to be an
exogenous deterministic time. Also Rudolf and Ziemba (2003) study a frame-
work which is very similar to ours. Nevertheless, the points that distinguish our
work are the following ones: (i) we analyze the inflation impact on the optimal
asset allocation, (ii) we study the effect of the mortality risk by explicitly tak-
ing into account a mortality law, (iii) we disentangle the impact on the asset
allocation of the accumulation and decumulatio phases.
In the case of pension funds, the optimal asset-allocation problem involves a

rather long period, generally from 20 to 40 years. Therefore, the usual nominal
setting cannot provide a fully adequate paradigm for yielding a good benchmark
to pension fund managers. For this reason we explicitly introduce inflation risk
in our analysis as in the extension of Merton’s problem presented by Brennan
and Xia (2002). As a consequence, the objective for the pension fund corre-
sponds to the maximization of the expected utility of its real disposable wealth,
namely the sum between its real wealth and its prospective mathematical re-
serve. Indeed, the contributions to the pension fund are akin to the labor income
for a single investor, and thus the objective function should take into account
not only the fund real wealth but also the expected value of future incomes. This
expected value coincides with the so-called “human capital” when a labour in-
come for the investor-consumer is present (see Bodie et al., 1992) and with the
prospective mathematical reserve of the actuarial literature in our case.
In our setting the usual discount factor in the optimization problem is re-

placed by an actuarial discount factor taking into account the mortality risk.
The introduction of this risk complicates the solution of the Hamilton-Jacobi-
Bellman equation. Basically, the solution cannot be led back to a parabolic par-
tial differential equation as in Zariphopoulou (2001). Young and Zariphopoulou
(2002), like Merton (1990, Theorem 5.6) and Richard (1975), assume that the
event of death at each instant of time is an independent Poisson process. If the
parameter characterizing this process is constant, then the age of death is an
exponentially distributed random variable. Instead, in this work we follow the
approach after Charupat and Milevsky (2002) where a more general surviving
probability is considered. Furthermore, we present an explicit solution of the
Hamilton-Jacobi-Bellman equation when the market price of risk is independent
of the state variables.
This paper generalizes the nominal setting presented in Battocchio et al.

(2003). These authors deal with a very simple market structure with only
stocks, a constant riskless interest rate, and deterministic contributions and
pensions. Our model is much more general since we take into account: (i)
a set of stochastic investment opportunities, (ii) a set of risky assets whose
prices follow general Itô processes, (iii) a stochastic riskless interest rate, (iv) a
stochastic inflation risk, (v) stochastic contributions and pensions. Features (i)
and (ii) allow us to account for most common market structures existing in the
literature. For instance, the works after Deelstra et al. (2000), Boulier et al.
(2001), and Battocchio and Menoncin (2002), only take into account the case
of a stochastic interest rate and two risky assets: a bond and a stock.
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Along the paper we consider agents trading continuously in a frictionless,
arbitrage-free and complete market.
The paper is structured as follows. In Section 2 we first outline the general

economic background and give the stochastic differential equations describing
the dynamics of asset prices, state variables, contributions, and pensions. Then,
we determine the evolution of the fund real wealth, and present the objective
function to be maximized. The impact of a profit sharing rule between the fund
and its members is further analyzed. In Section 3 the optimal portfolio allocation
is computed. There we also present our main result: a closed-form solution of
the problem if the financial market is complete and the market price of risk is
independent of the state variables. Section 4 provides a numerical illustration
based on a simple market structure. Practical implications for pension fund
investment strategy are discussed in detail. Section 5 concludes.

2 The model

2.1 The nominal financial market

In the following, asset prices depend on a set of s stochastic state variables whose
dynamics are described by the multivariate stochastic differential equation

dX
s×1

= f (X, t)
s×1

dt+ g (X, t)
0

s×m
dW
m×1

, X (t0) = X0, (1)

where W is a m−dimensional Wiener process, and the prime denotes transposi-
tion. The drift and diffusion terms f (X, t) and g (X, t) are supposed to satisfy
the usual Lipschitz conditions guaranteeing that Equation (1) has a unique
strong solution (see Karatzas and Shreve, 1991). Furthermore, f and g are
Ft-measurable, where Ft is the σ−algebra through which the Wiener processes
are measured on the complete probability space (Ω,F ,P). All processes below
are supposed to satisfy the same properties as those stated for Equation (1).
Values of all state variables are known at the initial date t0 and are equal to the
non-stochastic variable X0.
In the literature on optimal portfolio allocation there generally exists only

one state variable coinciding either with the riskless interest rate (e.g. Deelstra
et al., 2000, and Boulier et al., 2001) or with a random market price of risk (e.g.
Kim and Omberg, 1996, and Chacko and Viceira, 1999). Furthermore, when a
closed-form solution is found, this state variable follows the dynamics used in
the Vasiček (1977) model or the Cox et al. (1985) model. Our framework is
much more general since we deal with a set of state variables and we do not
specify any particular functional form for the drift and the diffusion terms in
(1). The particular case of a riskless interest rate following a Vasiček (1977)
model or a Cox et al. (1985) model can be easily obtained by putting X = r,
f = ar (br − r), and g = σr or g = σr

√
r, respectively.
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On the financial market there are n risky assets and one riskless asset whose
(nominal) prices are driven by the stochastic differential equations

dS
n×1

= µ (S,X, t)
n×1

dt+Σ (S,X, t)0
n×m

dW
m×1

, S (t0) = S0, (2)

dG = Gr (X, t) dt, G (t0) = G0, (3)

where r (X, t) is the instantaneous riskless interest rate. The set of risk sources
(W ) for the risky assets coincides with the one used for the state variables. This
assumption is not restrictive because of potential handling of various situations
via the matrices g and Σ.
We have already mentioned that we will work in a complete market setting.

Thus, the rank of the matrix Σmust be maximum and the number of risk sources
(its rows) cannot be higher than the number of risky assets (its columns). If
there are less assets than risk sources (n < m) on the market, then the market
cannot be complete. In this work we assume that n = m and that the rank of the
matrix Σ is maximum. This means that we suppose the following assumption
to hold in our work.

Assumption 1 The asset diffusion matrix is invertible (i.e. ∃Σ−1).

The set of risky assets S may contain stocks and bonds. Hence, our market
structure given by Equations (1), (2), and (3) also accounts for the typical (and
simpler) market structure generally taken into account in the literature about
pension fund asset allocation (e.g., Deelstra et al., 2000, Boulier et al., 2001,
and Battocchio and Menoncin, 2002). Such a structure contains: (i) a single
state variable given by the riskless interest rate, (ii) a stock, (iii) a bond, and
(iv) a money market account. For instance, the model after Boulier et al. (also
studied in Battocchio and Menoncin, 2002), can be represented as follows:

dr = ar (br − r) dt− σrdWr,
dS = S (r + σ1λ1 + σ2λr) dt+ Sσ1dWS + Sσ2dWr,

dB = B
³
r +

¡
1− ear(H−t)

¢
λrσr
ar

´
dt+B

¡
1− ear(H−t)

¢
σr
ar
dWr,

dG = Grdt,

where all parameters take positive values and B is the value of a bond with
maturity H.

2.2 The inflation

As in Menoncin (2002) the vector X is supposed to contain the consumption
price process P whose behavior can be represented as

dP

P
= µπ (X,P, t) dt+ σπ (X,P, t)

0
1×m

dW
m×1

, P (t0) = 1. (4)
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The initial value of the price consumption index is conventionally put equal
to 1 without loss of generality because prices can always be normalized. For the
sake of generality we do not specify any particular form for the drift and the
diffusion coefficients of this process (see below for particular choices of inflation
dynamics).
Even if the inflation risk is generally neglected in the literature about optimal

asset allocation, we prefer to explicitly introduce it in our framework since we
study the investment strategy for a pension fund. This kind of institutional
investor has typically a long financial horizon which corresponds to the expected
lifetime of the subscriber. It is true that the inflation risk can be passed over
by the short run investor, but this is no more reasonable for an investor having
a long expected financial horizon, more than 40 years. Actually, during such
a length of time, consumption prices can vary a lot. For instance, as clearly
indicated by Table 1, the US inflation rate has been widely fluctuating during
the past 45 years. Inflation risk can thus heavily affect investment decision.
This explains why the objective function of the pension fund is based on real
quantities.

[Table 1 here]

We recall that Cox et al. (1985) propose the following stochastic differential
equation for the price level

dP = Pπdt+ PσP
√
πdWP ,

where σP is a constant and π is the inflation rate which is supposed to behave
according to one of the two following stochastic differential equations:

dπ = k1π (π̄1 − π) dt+ σ1π
3
2 dWπ,

dπ = k2 (π̄2 − π) dt+ σ2
√
πdWπ,

where ki, π̄i, and σi, i ∈ {1, 2} are all positive constant.
Brennan and Xia (2002) and Munk et al. (2003) use a simpler framework

where

dP = Pπdt+ PσPdWP ,

dπ = k (π̄ − π) dt+ σπdWπ.

In all these models WP and Wπ may be correlated. Nevertheless, we recall
that a set of correlated Wiener processes can always be transformed into a set
of uncorrelated Wiener processes through a Cholesky decomposition. Hence, we
will always deal with uncorrelated risks in our analysis.
As Brennan and Xia (2002) recall, dP/P can be interpreted as the realized

rate of inflation while π can be thought of as the expected rate of inflation. The
authors also argue that if the expected rate of inflation is not observable but
must be inferred from observation of the price level itself then the change in
the expected rate of inflation will be perfectly correlated with the realized rate
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of inflation. This last case is the only one compatible with the hypothesis of a
complete financial market (for further explanation we refer the interested reader
to Brennan and Xia, 2002).
In a complete market setting, our general model is able to account for all

the particular specifications recalled above. Here, the drift of the price level is
assumed to depend on a set of state variables that may contain also the inflation
rate.

2.3 The contributions and the pensions

As already mentioned the lifetime of a pension fund can be conveniently divided
into two different phases: (i) the accumulation phase (hereafter APh) when the
subscribers pay the contributions to the fund, and (ii) the decumulation phase
(hereafter DPh) when the fund pays back these contributions in the form of
pensions. We suppose here that the retirement date T is a deterministic and
exogenous variable.
A first contribution to the analysis of the optimal asset allocation during the

APh and the DPh has been given by Charupat and Milevsky (2002) who show
that, under particular conditions, the investment strategy is the same during
the two phases. Nevertheless, Battocchio et al. (2003), under similar conditions,
find different portfolios for APh and DPh. The difference can be explained as
follows. Charupat and Milevsky solve for two different dynamic optimization
problems: (i) during the APh the pension fund maximizes the expected utility
of its terminal wealth, while (ii) during the DPh a similar problem (with a
stochastic time horizon) is solved by the pensioner who wants to optimize his
consumption path. Instead, in Battocchio et al. (2003) the optimal allocation is
simultaneously solved in both phases from the point of view of the pension fund
which must manage some wealth even after the retirement of its subscribers.
Here, we use the latter approach and we define both accumulated contribu-

tions and accumulated pensions through the same stochastic variable L,3 whose
dynamic behavior is given by the following stochastic differential equation:

dL = µL (L,X, t) dt+ Λ (L,X, t)0
1×m

dW
m×1

, L (t0) = L0, (5)

where

µL (L,X, t) = µA (L,X, t) It<T + µD (L,X, t) (1− It<T ) ,
Λ (L,X, t) = ΛA (L,X, t) It<T + ΛD (L,X, t) (1− It<T ) ,

3Observe that we indicate with L the accumulated contribution and pension process. This
means that L (t) is the sum of all contributions paid until time t, reduced by the amount of
all pensions paid until time t. Accordingly, the balance of subscriber account between time
t1 and time t2 (t2 > t1) can be represented as L (t2)− L (t1) =

t2
t1

dL (t). Analogously, the
contribution instantaneously paid (or the pension instantaneously received) between time t
and time t+ dt is given by dL (t).
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and IC is the indicator function whose value is 1 when condition C holds and
0 otherwise. Thus, we suppose that the drift and diffusion terms of L can
suddenly change once the retirement date T is reached. Obviously, the two drift
components should have opposite signs. The first component µA is positive
because contributions increase the fund wealth, and the second component µD
is negative since pension payments decrease fund wealth.
In Battocchio et al. (2003) L is deterministic (ΛA = ΛD = 0), and µA,

µD are two constants. Instead, in Battocchio and Menoncin (2002) a stochastic
contribution process is analyzed but the problem is limited to the accumulation
phase.
The stochastic behavior of L during the APh comes from the randomness of

the subscriber wages which contributions are paid on. Instead, during the DPh,
L can be stochastic because pensioners can choose to receive a fixed immediate
annuity or a variable immediate annuity (or a combination of them) as stated
in Charupat and Milevsky (2002).
The m risk sources which affect the behaviour of L are the same as those

affecting the behaviour of asset prices (in a complete market). This means that,
in our framework, the contributions and pensions can be spanned. We will use
this property in the following subsection for deriving the so-called feasibility
condition linking contributions and pensions.
Our model is able to account for both a defined contribution (DC) and a

defined benefit (DB) pension plan:

1. in a DC plan contributions µA are previously fixed and pensions µD are
chosen according to a “feasibility condition”. In this case, since contribu-
tions are not stochastic, it is sufficient to put ΛA = 0;

2. in a DB plan pensions µD are fixed in advance and contributions µA must
be paid according to a “feasibility condition”. Thus, pensions are not
stochastic, and we put ΛD = 0.

Furthermore, our framework is general enough to accommodate three most
common forms of old age retirement benefits (i.e. µD). We recall here the main
characteristic of these three forms (for a more comprehensive analysis the reader
is referred to James and Vittas, 1999).

1. Lump sum payments.4 In this case µD = 0, for t > T , and ΛD = 0.
The lump sum payments are easy to operate as they do not require any of
the complex calculations involved in scheduled withdrawals and annuities
(see the two following points). In fact, since the value of all µD after T
is zero, there is no need to take into account the mortality risk after T .
Nevertheless, it happens that some workers use part of their lump sums to
purchase annuities. In most OECD countries, company pension schemes
allow partial commutation of future benefits into a lump sum. This varies

4These are extensively used in many countries: Australia, New Zealand, South Africa,
Malaysia, Singapore, and Sri Lanka.
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between 25% and 33% of the discounted present value of benefits. Avail-
able evidence suggests that most workers opt for this facility.

2. Scheduled (or programmed) withdrawals.5 In this case the drift compo-
nent µD is not weighted by the survival probability since, in the event
of early death, remaining account balances are inherited by dependents,
accommodating a bequest motive. Unfortunately, these withdrawals are
exposed to fluctuating payments as a result of the volatility of pension
fund returns (i.e. ΛD 6= 0). In Latin American countries, scheduled
withdrawals are recalculated each year on the basis of the remaining life
expectancy of the family of covered workers and a stipulated rate of re-
turn. By regulation, the rate of return is equal to the average real return
achieved by the pension fund concerned over the past 10 years. The life
table to be used is also set by the regulators.

3. Life annuities. In this case µD (L,X, t) = µD (L, t) and ΛD = 0. That is,
life annuities are paid until subscriber death time and they do not depend
on fund performances. Among countries with mandatory second pillars,
only Switzerland and Bolivia impose the use of annuities. Eastern Euro-
pean countries are also leaning towards compulsory annuitization. Com-
pulsory annuitization is often advocated in order to avoid the problems
caused by adverse selection. If it were not compulsory, only subscribers
who know to have a long life expectancy would choose it. Accordingly,
the annuity market would be greater and better developed if all workers
were forced to purchase an annuity.

2.4 The fund real wealth

If we denote by w (t) ∈ Rn×1 and wG (t) ∈ R the number of risky assets and
the number of riskless asset held in the portfolio, respectively, then the fund
nominal wealth RN can be written as

RN (t) = w (t)
0
S + wG (t)G, (6)

since the fund invests the total value of its portfolio at each instant t.
The Itô differential of (6) is

dRN = w0dS + wGdG| {z }
dR1

+ dw0 (S + dS) + dwGG| {z }
dR2

,

where two sources of change have been identified: the change in asset values
(dR1) and the change in portfolio composition (dR2). The self-financing con-
dition implies that this last source of variations must at least finance L made

5These are available in many Latin American countries: Chile, Argentina, El Salvador,
Mexico, and Peru, though not in Bolivia where mandatory annuitization is imposed.
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of accumulated contributions and pensions. To further enrich our framework,
we introduce a deterministic profit sharing rule φ(t) where 0 ≤ φ(t) < 1. This
means that a proportion φ(t) of the fund nominal surplus RN − L is redistrib-
uted to the members, who thus share profits induced by the exposure to the
risky assets. The proportion may for example be: φ(t) = 0 (no profit sharing)
or φ (t) = (1− It<T ) φ̄ with 0 ≤ φ̄ < 1 (constant profit sharing only during
the decumulation phase). Hence, the self-financing condition in our case must
ensure that the changes in portfolio composition dR2 must finance L as well as
the percentage φ(t) of fund surplus paid to the members.
Thus, the dynamic budget constraint can be written as

dRN = w0dS + wGdG+ dL− φd (RN − L) ,

where d (RN − L) is the differential of the nominal surplus. Accordingly, the
fund nominal wealth follows the differential equation

dRN =
1

1 + φ
w0dS +

1

1 + φ
wGdG+ dL

=

µ
1

1 + φ
(w0µ+ wGGr) + µL

¶
dt+

µ
1

1 + φ
w0Σ0 + Λ0

¶
dW.

Now, the fund is supposed to maximize the expected value of a suitable
function of its real wealth that is defined as the ratio between the nominal
wealth and the price level (RN/P ). By applying Itô’s Lemma we have6

dR = −RN

P
(µπ − σ0πσπ) dt+

1

P

µ
1

1 + φ
w0µ+

1

1 + φ
wGGr + µL

¶
dt

− 1
P

µ
1

1 + φ
w0Σ0σπ + Λ0σπ

¶
dt+

1

P

µ
1

1 + φ
w0Σ0 + Λ0 −RNσ

0
π

¶
dW,

which can be written, after substituting for the value of wGG given in Equation
(6), as

dR = (Rρ+ w0M + k) dt+ (w0Γ0 +K0 −Rσ0π) dW, (7)

where

Γ ≡ 1

P

1

1 + φ
Σ, M ≡ 1

P

1

1 + φ
(µ− Sr − Σ0σπ) ,

k ≡ 1

P
(µL − Λ0σπ) , K ≡ 1

P
Λ, ρ ≡ 1

1 + φ
r − µπ + σ0πσπ.

6We recall that the Jacobian of the real wealth is:

∇RN ,PR = 1
P

−RN
P2

0
,

while its Hessian is:

∇2RN ,PR =
0 − 1

P2

− 1
P2

2RN
P3

.
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We see that the market parameters µ, Σ, and r are all multiplied by (1 + φ)−1.
Nevertheless, the profit sharing rule φ (t) does not alter in any way the algebraic
solution of the optimization problem. In fact, the fund real wealth always follows
a stochastic differential equation having the same form as in (7). This means
that there exists no deterministic profit sharing rule that alters the structure of
the fund optimal portfolio (while, of course, the amount of wealth that must be
invested in each asset is modified by φ).

2.5 The feasibility condition

Obviously, there exists a link between contributions and pensions that makes
the writing of the contract convenient for both the pension fund and the worker.
In Battocchio et al. (2003) a feasible condition is found by imposing that the ex-
pected discounted value of all contributions is equal to the expected discounted
value of all pensions. A similar condition is imposed in Josa-Fombellida and
Rincón-Zapatero (2001). Also Sundaresan and Zapatero (1997) present what
they call a “fairness rule”. This fairness rule equates the total amount of salaries
and pensions paid by a firm to its workers to the total amount of workers mar-
ginal productivity.
In order to write down a suitable feasibility condition in our framework,

the balance of all contributions and pensions can be interpreted as an asset
(and it can be priced like an asset since both contributions and pensions can
be spanned). From the point of view of the fund member, this particular asset
has the following form: until time T the instantaneous amount µA must be paid
in order to have the right, after T , to receive the instantaneous amount µD.
Since subscribing a pension contract has to be convenient for both the pension
fund and the worker, the initial balance of all contributions and pensions has
to be zero. In other words, the expected discounted flow of all pensions must
compensate the expected discounted flow of all contributions (in absolute value).
Only in this way, we can obtain what Sundaresan and Zapatero (1997) call a
“fairness rule” and what Battocchio et al. (2003) call a “feasibility condition”.
It is well known that, in a complete market, an asset can be priced by taking

the expectation of its discounted cashflows under a suitable probability measure.
In the usual nominal approach, asset prices are martingales if they are evaluated
under the risk neutral probability and measured in terms of the riskless asset
which can be thought of as the numéraire of the economy.7 When inflation risk
enters the analysis, the suitable numéraire making asset prices martingales, is
the riskless asset value computed in real terms. In order to show this property,
let us introduce a probability measure called “real risk neutral probability”
which can be defined as follows (see also Menoncin, 2002, Definition 1).

7Formally, this property can be written as

EQNt
S (T )

G (T )
=

S (t)

G (t)
,

where the expectation is taken with respect to the (nominal) risk neutral probability QN .
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Definition 1 Given Equations (1), (2), (3), and the historical probability P,
under Assumption 1 a “real risk neutral probability” Q satisfies

dQ = exp

Ã
−
Z H

t0

ξ0dWt − 1
2

Z H

t0

ξ0ξdt

!
dP,

if

E
h
e
1
2

H
t0

ξ0ξdt
i
<∞.

Then
dWQ = ξdt+ dW,

is a Wiener process with respect to Q, where

ξ = Γ0−1M ≡ Σ0−1 (µ− Sr − Σ0σπ) ,
is the (unique) real market price of risk.

We just recall that the nominal market price of risk is usually defined as

ξN = Σ
0−1 (µ− Sr) ,

and so the real market price of risk coincides with the nominal market price of
risk after deducting the inflation risk

ξ = ξN − σπ.

Furthermore, neither the real nor the nominal market prices of risk are affected
by the profit sharing rule (φ).
If we suppose that Σ is positive definite then, given the form of ξ, we can

conclude that:

1. when the inflation risk is positively correlated with asset prices (i.e. the
elements of σπ are positive) then the real market price of risk is lower than
the nominal one;

2. when the inflation risk is negatively correlated with asset prices (i.e. the
elements of σπ are negative) then the real market price of risk is higher
than the nominal one.

Under the real risk neutral probability, all the asset prices have the same
return which coincides with the return on the riskless asset (in real term). In
fact, a straightforward application of Itô’s lemma allows us to write

dĜ ≡ d

µ
G

P

¶
=

G

P
(r − µπ + σ0πσπ + σ0πξ) dt−

G

P
σ0πdW

Q,

dŜ ≡ d

µ
S

P

¶
=

S

P
(r − µπ + σ0πσπ + σ0πξ) dt+

1

P
(Σ0 − Sσ0π) dW

Q.
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Accordingly, it is evident that the suitable numéraire for the real market is
the riskless asset value computed in real terms.
Now, we come back to the problem of determining the feasibility condition.

The suitable measure of contributions and pensions and the suitable interest
rate for discounting them are both suggested by the differential equation of real
wealth computed under the probability Q:

dR = (R (ρ+ σ0πξ) + k −K0ξ) dt+ (w0Γ0 +K0 −Rσ0π) dW
Q. (8)

Hence in the feasibility condition we must compute, under Q, the expected
value of k−K0ξ discounted at the interest rate ρ+σ0πξ. So, if we indicate with
τ the stochastic death time, the feasibility condition can be written as

0 = EQ,τt0

·Z τ

t0

(k −K0ξ) e−
s
t0
(ρ+σ0πξ)dθds

¸
, (9)

where the expectation is taken with respect to the martingale equivalent measure
Q and to the death time τ . In a nominal framework, where σπ = 0, µπ = 0,
and P (t) = 1,∀t, the feasibility condition is

0 = EQ,τt0

·Z τ

t0

(µL − Λ0ξN ) e−
1

1+φ
s
t0
rdθ

ds

¸
, (10)

where we compute the expected value of the sum of all the future contributions
and pensions diminuished by their price of risk and discounted with a modified
riskless interest rate for taking into account the profit sharing rule. This is the
case analyzed in Battocchio et al. (2003) where contributions, pensions, and
the riskless interest rate are not stochastic (i.e. dL = µL (t) dt, and Λ = 0).
Furthermore, in their model there is no profit sharing (i.e. φ = 0). Thus, the
feasibility condition is simply8

0 = Eτt0

·Z τ

t0

µL (s) e
−r(s−t0)ds

¸
.

Condition (9) implies that at t0 (when the contract is written) the real dis-
counted value of all contributions received must compensate the real discounted
value of all pensions paid. The expected value in Condition (9) is computed
with respect to the joint distribution of all the involved stochastic processes and
τ . Now, we use the independence between τ and the joint distribution of the
other processes for writing (as in Charupat and Milevsky, 2002)

EQ,τt0

·Z τ

t0

(k −K0ξ) e−
s
t0
(ρ+σ0πξ)dθds

¸
= EQ,τt0

·Z ∞
t0

Is<τ (k −K0ξ) e−
s
t0
(ρ+σ0πξ)dθds

¸
= EQt0

·Z ∞
t0

(s−t0pt0) (k −K0ξ) e−
s
t0
(ρ+σ0πξ)dθds

¸
,

8The probability measure Q does not play any role since both µL and r are two deterministic
functions.

15



where It<τ is the indicator function for the event that death occurs after t, and
t−t0pt0 is the conditional probability that an individual of age t0 will survive for
another t − t0 years.9 Accordingly, during our work we will use the following
definition.

Definition 2 A pair of contribution and pension rates (µA, µD) is said to be
feasible if it satisfies Equation (9).

Before showing the form of the objective function in the following section,
let us have a closer look at the feasibility condition. Given the value of k and
K defined in (7), it can also be written as

EQ,τt0

·Z τ

t0

(k −K0ξ) e−
s
t0
(ρ+σ0πξ)dθds

¸
= EQ,τt0

·Z τ

t0

e
− s

t0
(ρ+σ0πξ)dθd

µ
L (s)

P (s)

¶¸
−EQ,τt0

·Z τ

t0

L (s) e
− s

t0
(ρ+σ0πξ)dθd

µ
1

P (s)

¶¸
,

where the second term in the right hand side captures the modification in the
nominal condition due to the introduction of inflation. In fact, when there is
no inflation risk, then P (t) does not change over time and d (1/P ) = 0. So, the
second term disappears.

2.6 The objective function

Our problem is akin to the asset allocation problem when a labor income is
present. Indeed, the contributions to the pension fund can be assimilated to
the labor income of a single investor. As Merton (1990) and Bodie et al. (1992)
show, an investor endowed with a non-financial income flow behaves as if his
wealth were augmented by the expected discounted value of all his future in-
comes.
Even if the single investor can be restricted in his ability to borrow against

his future income (the constrained consumption-investment problem is studied
in El Karoui and Jeanblanc-Picqué, 1998), an investment fund or a pension
fund are generally less constrained. Thus, the objective function we consider

9Formally t−t0px = exp − x+t−t0
x λ (s) ds , where λ (s) is the instantaneous hazard rate.

As Merton (1990, Section 18.2) underlines, λ (t) takes the usual interpretation of the force
measuring the probability that the person will die between t and t+ dt.
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does not contain only the fund real wealth but also the expected value of all fu-
ture incomes. This expected value coincides with the prospective mathematical
reserve. This reserve denoted by ∆ (t) can be written as

∆ (t) = EQ,τt

·Z τ

t

(k −K0ξ) e−
s
t (ρ+σ

0
πξ)dθds

¸
, (11)

and the feasibility condition implies ∆ (t0) = 0. In fact, the right hand side of
the feasibility condition (9) is nothing but the prospective mathematical reserve
computed in t0.
Finally, if we assume that the fund is characterized by a HARA utility func-

tion,10 the fund will maximize the expected value of

U (R, t) =
1

1− β
(R (t) +∆ (t))

1−β
, (12)

which is strictly increasing and concave with respect to R for β > 0. In the
financial literature (see for instance Merton, 1990, Section 6.4) a utility function
of the form (12) is known as a “state-dependent” utility. In fact, it depends on
the wealth as well as on other state variables (in this case contributions and
pensions).
The marginal utility corresponding to (12) is

∂U

∂R
= (R (t) +∆ (t))

−β
,

and, since β > 0, then R (t) will never fall below the value −∆ (t). This means
that the fund can borrow against its prospective mathematical reserve. From
this point of view we can think of the sum R+∆ as a “disposable wealth”.
We underline that the introduction of a bequest function is not necessary

in our framework. We just need the limit of the indirect utility function to
go to zero while the time goes to infinity. In a finite horizon framework Cuoco
(1997) argues that the existence result of an optimal portfolio with labor income
“does not require the somewhat artificial (although customary) introduction of
a bequest function for final wealth with infinite marginal utility at zero.”

10For a theoretical justification of risk aversion for banks and other institutional investors
the reader is referred to Koehn and Santomero (1980), Kim and Santomero (1988), and Keeley
(1990).

17



3 The optimal portfolio
The optimization problem for a pension fund can be written as11

maxw Et0
hR∞

t0
f (t) 1

1−β (R+∆ (z, t))
1−β

dt
i

s.t.
·

dz
dR

¸
=

·
µz

Rρ+ w0M + k

¸
dt+

·
Ω0

w0Γ0 +K0 −Rσ0π

¸
dW,

R (t0) = R0, z (t0) = z0, ∀t0 < t < H,

(13)

where

z
(s+n+1+l)×1

≡


X
G
S
L

 , µz
(s+n+1+l)×1

≡


f
Gr
µ
µL

 , Ω0
(s+n+1+l)×k

≡


g0

0
Σ0

Λ

 ,
and f (t) is the actuarial discount factor

f (t) = (t−t0pt0) e
−ρ(t−t0).

The Hamiltonian of Problem (13) is

H = f (t)
1

1− β
(R+∆ (z, t))1−β + µ0zJz + JR (Rρ+ w0M + k)

+
1

2
tr (Ω0ΩJzz) + (w0Γ0 +K0 −Rσ0π)ΩJzR

+
1

2
JRR

¡
w0Γ0Γw + 2w0Γ0K − 2Rw0Γ0σπ +K0K − 2RK0σπ +R2σ0πσπ

¢
,

and J (z,R, t) is the value function solving the optimization problem. The
subscripts on J indicate partial derivatives.
The first order conditions on H give the following (implicit) optimal asset

allocation:
∂H
∂w

= JRM + Γ0ΩJzR + JRR (Γ
0Γw + Γ0K −RΓ0σπ) = 0

⇒ w∗ = RΓ−1σπ − Γ−1K| {z }
w∗
(1)

− JR
JRR

(Γ0Γ)−1M| {z }
w∗
(1)

− 1

JRR
Γ−1ΩJzR| {z }
w∗
(2)

. (14)

After substituting w∗ into the Hamiltonian, the Hamilton-Jacobi-Bellman
(hereafter HJB) equation is

0 = Jt + f (t)
1

1− β
(R+∆ (z, t))

1−β
+ µ0zJz + JRR (ρ+ σ0πξ)

+JR (k −K0ξ)− 1
2

J2R
JRR

ξ0ξ − JR
JRR

ξ0ΩJzR

+
1

2
tr (Ω0ΩJzz)− 1

2

1

JRR
J 0zRΩ

0ΩJzR,

11With a slight twist of language, we will call z the “state variables” associated to Problem
(13). Note that the literature sometimes gathers the original state variables X under the name
“investment opportunity set” (see for instance Merton, 1990).
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whose transversality condition is

lim
t→∞J (z,R, t) = 0.

Since it is well known that the value function usually inherits its functional
form from the utility function, we try

J (R, z, t) =
1

1− β
F (z, t) (R+∆ (z, t))

1−β
,

where F (z, t) is a function whose value must be determined. This yields the
following system of PDEs:

0 = Ft + f (t) +

µ
µ0z +

1− β

β
ξ0Ω
¶
Fz +

1

2

1− β

β
Fξ0ξ +

1

2
tr (Ω0ΩFzz)

+
1

2

1− β

β

1

F
F 0zΩ

0ΩFz + F (1− β) (ρ+ σ0πξ) ,

0 = ∆t +
¡
µ0z − ξ0Ω

¢
∆z +

1

2
tr (Ω0Ω∆zz)−∆ (ρ+ σ0πξ) + (k −K0ξ) .

The second one is solved by the value of ∆ (z, t) in (11). This can be easily
checked via the Feynman-Kač Theorem. Consequently, we can formulate an
implicit solution of optimal portfolio as in the following proposition.

Proposition 1 Under Assumption 1 the portfolio solving Problem (13) is

w∗ = w∗(1) + w∗(2) + w∗(3),

where

w∗(1) ≡ Γ−1 (Rσπ −K) ,

w∗(2) ≡
1

β
(R+∆) (Γ0Γ)−1M,

w∗(3) ≡
1

β
(R+∆)

1

F
Γ−1ΩFz − Γ−1Ω∂∆

∂z
,

and F (z, t) solves
0 = Ft + f (t) +

³
µ0z +

1−β
β ξ0Ω

´
Fz +

1
2 tr (Ω

0ΩFzz)

+ (1− β)
³
ρ+ σ0πξ +

1
2
1
β ξ

0ξ
´
F + 1

2
1−β
β

1
F F

0
zΩ

0ΩFz,
limt→∞ F (z, t) = 0.

(15)

Since values of L (t) differ during the APh and the DPh, also ∆ (t) does.
Thus, we confirm the result presented in Battocchio et al. (2003) where different
asset allocations are found in the two phases.
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The functions F (z, t) and ∆ (z, t) that affect the second and the third opti-
mal portfolio components, are the only portfolio parts depending on the retire-
ment date T . Thus, a study of their behaviour with respect to T can catch how
a modification in the retirement date (as planned nowadays in some European
countries) affects the investment strategies of pension funds.
>From Proposition 1 we can see that the optimal portfolio is actually formed

by five funds. This “high” number of funds with respect to the usual number of
three or four generally found in the literature, can be explained because of the
presence of the contributions and pensions processes.
Let us analyze the portfolio components closer.
The first part w∗(1) minimizes the instantaneous variance of fund wealth and

is potentially formed by a combination of all available assets. It is easy to check
this minimization property by computing the first (and second) derivative of
the wealth diffusion term in Equation (7).
The second component w∗(2) is the growth-optimal fund that remains un-

changed with respect to the Merton’s classical case but where the wealth level
R is augmented by the prospective mathematical reserve ∆.
The third optimal portfolio component w∗(3) arises because of the need to

hedge against the changes in the state variables values. In fact, it contains
the derivatives of two particular functions with respect to z. The value of
w∗(3) can be split into two components: (i) one depending on the derivative of
function F (z, t) with respect to z (we will show in the following subsections some
particular cases where the value of F (z, t) can be computed in closed form), and
(ii) the other one depending on the changes of the mathematical prospective
reserve with respect to the state variables (this component disappears when
there are no contributions nor pensions).
As Bajeux-Besnainou et al. (2001) notice, when there exist one stock and

one bond, and the single state variable is the riskless interest rate, the hedging
fund contains the bond only. These authors show that when the two fund
separation fails (as in our case), portfolio weights of risky assets are not the
same for investors with different risk aversions. In fact, since the first and third
funds of our structure may contain all assets, the composition of the optimal
risky portfolio also vary for investors with different risk aversions.
Finally, the fifth fund is given by the riskless asset whose value is computed,

by difference, from the static budget constraint.

3.1 Deterministic time horizon: a quasi-explicit solution

When the actuarial discount factor f (t) is always nil but for one value of t (let
us say H) which coincides with a deterministic time horizon, then we fall in the
case where the investor maximizes the expected value of his final wealth in H.
In this case, the differential equation (15) can be simplified by putting

F (z, t) = h (z, t)
β
,
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which yields

0 = ht +

µ
µ0z +

1− β

β
ξ0Ω
¶
hz +

1

2
tr (Ω0Ωhzz) +

1− β

β

µ
ρ+ σ0πξ +

1

2

1

β
ξ0ξ
¶
h,

(16)
whose boundary condition is

h (z,H) = 1.

The solution to Equation (16) can be represented through the Feynman-Kač
Theorem as follows

h (z, t) = EZt0

"
exp

(Z H

t

1− β

β

µ
ρ+ σ0πξ +

1

2

1

β
ξ0ξ
¶
ds

)#
, (17)

where

dZ =

µ
µz +

1− β

β
Ω0ξ
¶
dt+Ω0dW, Z (t) = z.

Once the computed value of h (z, t) is substituted in Proposition 1 we can
state what follows.

Proposition 2 Under Assumption 1, and if f (t) = 0, ∀t 6= H, the portfolio
maximizing the expected utility of investor’s final wealth (in H) is

w∗ = w∗(1) + w∗(2) + w∗(3),

where

w∗(1) ≡ Γ−1 (Rσπ −K) ,

w∗(2) ≡
1

β
(R+∆) (Γ0Γ)−1M,

w∗(3) ≡ (R+∆)
1

h
Γ−1Ωhz − Γ−1Ω∂∆

∂z
,

and h (z, t) is defined in (17).

>From the optimal asset allocation presented in Proposition 2 it is easy to
check that our result exactly matches the result presented in Brennan and Xia
(2002) when there are neither contributions nor withdrawals from the managed
fund. If we put ∆ = 0 and K = 0 in Proposition 2 we have

w∗ = Γ−1Rσπ +
1

β
R (Γ0Γ)−1M +R

1

h
Γ−1Ωhz.

Now, since the matrices Γ andM are divided by the consumption price level
P , we can define

Γ ≡ 1

P
eΓ, M ≡ 1

P
fM,
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and, if fM , eΓ, and Ω do not depend on P (as in Brennan and Xia, 2002), we can
finally write

R−1N w∗ = eΓ−1σπ + 1

β

³eΓ0eΓ´−1 fM +
1

h
eΓ−1Ωhz,

where also the function h (z, t) does not depend on P . In fact, under the previous
hypotheses ξ does not depend on P and the value of h (z, t) shown in Equation
(17) neither.
Thus, we are able to find the same type of result as Lemma 1 of Brennan

and Xia (2002), namely that the optimal proportions of wealth invested in risky
assets (i.e. R−1N w∗) is independent of both real wealth and price level. Nev-
ertheless, their result heavily depend on the choice of both the utility function
and the functional form chosen for the drift and diffusion terms of assets, price
level, and inflation.

3.2 An explicit solution

Now we go back to the general case where f (t) 6= 0. It is easy to check that
when neither the market price of risk ξ nor the real riskless interest rate ρ+σ0πξ
depend on the state variables z, then there exists a solution to PDE (15) for
F (z, t) which does not depend on z. A simple market structure where these
hypotheses hold is described in the example developed in the next section.

Assumption 2 Neither the market price of risk nor the real riskless interest
rate depend on the state variables (i.e. ∂ξ

∂z = 0, and
∂
∂z (ρ+ σ0πξ) = 0).

We acknowledge that the assumption of a deterministic market price of risk
may seem relatively strong with respect to the actual market structure. Nev-
ertheless, it is often used in the literature because it simplifies computations a
lot, and allows to obtain a closed form solution. This is the case, for instance,
in Boulier et al. (2001) and Brennan and Xia (2002). Furthermore, our analy-
sis where also the mortality risk is introduced, needs also the assumption of a
deterministic real riskless interest rate. Our exact solution can be thought of as
a benchmark that can give some practical insights for the actual investments of
pension fund managers.
So, under Assumption 2 the function F (t) must verify(

0 = Ft + f (t) + (1− β)
³
ρ+ σ0πξ +

1
2
1
β ξ

0ξ
´
F,

limt→∞ F (z, t) = 0,

whose solution is given by

F (t) =

Z ∞
t

f (s) e
s
t
(1−β)(ρ+σ0πξ+ 1

2
1
β ξ

0ξ)dθds.
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Accordingly, the result stated in Proposition 1 can be explicitly computed
as in the following corollary.

Corollary 1 Under Assumptions 1 and 2, the optimal portfolio solving Problem
(13) is

w∗ = w∗(1) + w∗(2) + w∗(3),

where

w∗(1) ≡ Γ−1 (Rσπ −K) ,

w∗(2) ≡
1

β
(R+∆) (Γ0Γ)−1M,

w∗(3) ≡ −Γ−1Ω∂∆
∂z

.

3.3 The time horizon

As shown in Menoncin (2002) for a CARA investor, when a background risk is
taken into account, the optimal portfolio hedging component is the only com-
ponent depending on the time horizon. Instead, in our framework, we use a
CRRA utility function whose argument contains the function ∆ (z, t) and, so,
depends on the (stochastic) time horizon τ . This means that, in some sense,
the risk aversion depends on the time horizon as well.
Let us further elaborate on the case presented in Corollary 1 where an explicit

solution for the optimal portfolio is found. Although the time horizon does not
affect the optimal portfolio first component w∗(1), it does affect the other two
components where the function ∆ (z, t) appears.
The second so-called speculative component is directly proportional to∆ and

so its behaviour with respect to time is governed by the behaviour of ∂∆/∂t.
Thus, if the real balance between future contributions and pensions follows the
same path as the nominal balance (i.e. it decreases till the retirement date
T and then increases), then also the speculative portfolio component becomes
lower and lower as time reaches T and increases again after. This means that
the speculative activity of the pension fund (i.e. investment in risky assets)
must decrease when the pension date approaches. Thus, investments should
be concentrated on the riskless asset in order to provide a safer revenue for
paying the pensions whose payments approach. Finally, after T , when the death
probability becomes higher and higher and the pensions start being paid, the
speculative investments increase since the relative weight of the total amount
of future pensions that must be faced by the fund becomes lower and lower.
Nevertheless, we underline that the speculative component w∗(2) in Corollary
1 also contains the wealth level R. Thus, the effect of the reduction in ∆
could be compensated by the increase in the managed wealth. In fact, after T ,
since the weight of the risky assets starts increasing also the portfolio return
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becomes higher and the wealth should grow at a higher rate. This could imply
a lower reduction in the relative weight of risky assets than those we have
presented above. This behaviour will be observed on a numerical simulation in
the following section.
The changes in the third optimal portfolio component w∗(3) due to time are

less easy to investigate since the term w∗(3) contains the derivative of ∆ with
respect to the state variables z. Thus, we refer the reader to the following
section where a numerical simulation is carried out.
Finally, observe that our setting can be used to catch the impact of an

extension of the retirement date (T ) in terms of loss of expected utility (see the
current political debate in Europe).

4 An example
In this section we fully solve the investment problem for a simplified market
structure, and aim to supply the reader with an effective prescription on how
to allocate a nominal wealth between three assets.
We take into account a market structure similar to the one presented in

Battocchio and Menoncin (2002). More precisely, we consider two independent
risk sources: one for the interest rate (Wr), and one for the stock (WS):

dW =
£
dWr dWS

¤0
.

This market structure can be summarized through the following stochastic
differential equations:

·
dr
dP
P

¸
=

·
η (r̄ − r)
r +mπ

¸
dt+

· −σr 0
σπr σπS

¸
dW,

dG = Grdt,·
dS
dB

¸
=

·
S (r +mS)

B (r + aKσrζ)

¸
dt+

·
SσSr SσS
BaKσr 0

¸
dW,

dL = (uIt<T − v (1− It<T )) dt,

(18)

where

aK =
1− e−ηTK

η
,

and all parameters are real constants.
The economic structure described by this system has the following charac-

teristics.

1. The riskless interest rate r follows a mean reverting process. The strength
of the mean reversion effect is measured by η while r̄ is the mean rate (as
in Vasiček, 1977).
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2. The drift of the realized rate of inflation (dP/P ) is supposed to follow the
riskless interest rate. The constant term mπ can be positive or negative.
Nevertheless, in a economic peaceful period, the inflation rate is less than
the nominal interest rate, thus mπ < 0. We have supposed that the price
process is affected by the risk sources of both the interest rate and the
stock.

3. There exists one bond whose price is derived from the behavior of the
riskless interest rate (see Vasiček, 1977). The bond is supposed to have a
constant time-to-maturity equal to TK and a constant price of risk ζ. As
shown in Boulier et al. (2001) there exists a suitable combination of this
bond and the riskless asset which is able to replicate a constant maturity
bond. Thus, the market structure with a constant time-to-maturity bond
can always be reformulated as a market structure with a constant maturity
bond and vice-versa.

4. There exists one stock whose price is affected by the interest rate risk
source and by a risk source of its own. Furthermore, its revenue is supposed
to be higher than the riskless interest rate (with mS strictly positive) to
avoid arbitrage opportunities.

5. We suppose, for the sake of simplicity, a deterministic nominal contribu-
tion flow (u) and a deterministic nominal pension flow (v). This is the
same assumption as in Battocchio et al. (2003), but we underline that
the stochastic nature of both the consumption price index and the riskless
interest rate makes our analysis much more complex.

6. We recall that the presence of a profit sharing rule φ (t) modifies the
functions r, µ, and Σ. Thus, the value of ρ is affected by φ via the
modification on the riskless interest rate. Given the form of P process the
value of ρ is given by

ρ = − φ

1 + φ
r −mπ + σ2πr + σ2πS .

Nevertheless, we have previously shown that our model displays a closed
form solution if Assumption 2 holds, that is if the value of ρ does not
depend on the state variables. Since r is a state variable in our example,
then Assumption 2 holds only if there is no profit sharing. Thus, during
our example, we will assume φ (t) = 0, ∀t ≥ t0.

The fundamental matrices as defined in (7) and (13) are as follows:

Γ0
2×2

=
1

P

·
S 0
0 B

¸ ·
σSr σS
aKσr 0

¸
,

M
2×1

=
1

P

·
S 0
0 B

¸ ·
mS − σSrσπr − σSσπS

aKσr (ζ − σπr)

¸
,

Ω
2×4

=

· −σr Pσπr SσSr BaKσr 0
0 PσπS SσS 0 0

¸
.
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Accordingly, the market price of risk has the following value:

ξ ≡ Γ0−1M =

·
ζ − σπr

1
σS
(mS − σSσπS − σSrζ)

¸
, (19)

which does not depend on the state variables L, P , r, or time.
In the next subsections we present the mortality law we are going to use and

we explicitly compute the feasibility condition in order to determine suitable
pairs (u, v).

4.1 The mortality law

For our example we assume that the remaining lifetime of a member follows the
popular Gompertz-Makeham distribution. Thus, the probability to be alive in
t for an individual aged of t0 is given by12

t−t0pt0 = exp
n
−λ (t− t0) + e

t0−m
b

³
1− e

t−t0
b

´o
, (20)

where λ is a positive constant measuring accidental deaths linked to non-age
factors, while m and b are modal and scaling parameters of the distribution,
respectively. When b tends to infinity we have the exponential distribution of
the form

t−t0pt0 = e−λ(t−t0),

whose force of mortality (λ) is constant.

[Fig. 3 here]

The behaviour of Function (20) through time is shown in Figure 3 where we
have supposed λ = 0 (the so-called pure Gompertz case). The parameter values
for (m, b) are (88.18, 10.5) for males (solid line) and (92.63, 8.78) for females
(dashed line). These values are presented in Milevsky (2001) where the author
prices all annuities using the Individual Annuity Mortality (IAM) 2000 table,
dynamically adjusted using scale G, published by the Society of Actuaries.
We can observe that the survival probability till 50 years for males and 60

years for females is very high and close to 1. Then there is a sudden decrease
and we reach a probability of surviving till 100 years that is almost zero for
males but still positive for females.

4.2 The feasibility condition

In our example the volatility of pensions and contributions are put equal to zero
(i.e. K = 0). Thus, the feasibility condition in (9) can be written as

0 = EQt0

·Z ∞
t0

(s−t0pt0) k (s) e
− s

t0
(r−µπ+σ0πσπ+σ0πξ)dθds

¸
,

12 It can be immediately checked that 0pt0 = 1, ∞pt0 = 0.
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and, since k (t) = (uIt<T − v (1− It<T )) /P (t) it can be further simplified as

v

u
=

R T
t0
(s−t0pt0)E

Q
t0

h
1

P (s)e
− s

t0
(r−µπ+σ0πσπ+σ0πξ)dθ

i
dsR∞

T
(s−t0pt0)E

Q
t0

h
1

P (s)e
− s

t0
(r−µπ+σ0πσπ+σ0πξ)dθ

i
ds

.

A straightforward application of Itô’s lemma and Girsanov’s theorem, allows
us to write

1

P (s)
=

1

P (t)
e−

s
t (µπ− 1

2σ
0
πσπ−σ0πξ)dθ− s

t
σ0πdW

Q
,

and so the ratio v/u simplifies to

v

u
=

R T
t0
(s−t0pt0)E

Q
t0

h
1

P (t)e
− s

t0
(r+ 1

2σ
0
πσπ)dθ− s

t0
σ0πdW

Qi
dsR∞

T
(s−t0pt0)E

Q
t0

h
1

P (t)e
− s

t0
(r+ 1

2σ
0
πσπ)dθ− s

t0
σ0πdWQ

i
ds

.

The computations of the expectations can be found in Appendix A where
we show that the feasible ratio v/u can be written as

v

u
=

R T
t0
(s−t0pt0) e

Φ(r(t0),s,t0)dsR∞
T
(s−t0pt0) eΦ(r(t0),,s,t0)ds

, (21)

where Φ (r (t0) , s, t0) is defined in (23), and (s−t0pt0) in (20). Unfortunately,
we cannot find a closed form solution for the feasible set of pairs (u, v). Note
however that the values of feasible v and u are positively correlated. When
higher contributions are paid, the fund can afford to supply its members with
higher pensions, and vice-versa.
If we assume that the death probability follows an exponential distribution

(i.e. b tends to infinity in (20)) and the interest rate r is deterministic and
constant (i.e. it coincides with er in Appendix A where σ = 0 and η tends to
infinity) Condition (21) can be simplified:

v

u
=

R T
t0
e−(λ+r)(s−t0)dsR∞

T
e−(λ+r)(s−t0)ds

= e(λ+r)(T−t0) − 1.

This simply shows that the value of pensions (v) is given by the capitalized value
of the contributions (u) where the rate of capitalization is given by the sum of the
riskless interest rate (r) and the force of mortality (λ). Under stochastic interest
rates, the value of the optimal ratio v/u given in (21) can be computed only
through numerical solutions. The behaviour of v/u for the pure Gompertz case
(i.e. λ = 0) with respect to T and t0 for both males and females is summarized
in Figure 4, where the following values of the interest rate parameters are taken:
η = 0.2, r̄ = 0.05, σr = 0.01, σπr = 0.016, ζ = 0.46, and r0 = 0.03.13 In the
simulations we will show in the course of our work, we will assume t0 = 25

13More explanations for the choice of these values will be supplied in the following subsec-
tions.
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and T = 65. This means that a member starts contributing when he is 25 and
he retires when he is 65. For those values of the parameters, the feasible ratio
v/u is given by 10.97, as reported in Table 2 where all the parameter vales are
summarized.

[Fig. 4 here]

>From Figure 4 we see that the feasible ratio v/u is positively correlated
with time of retirement T and negatively correlated with the age at which the
member enters the fund. This behavior is very intuitive and does not require
extensive discussion. Once the pension date T has been fixed, the later a member
enters the fund, the lower the pension he will be able to accumulate. On the
contrary, given the initial age t0, the later the pension date T , the longer the
accumulation phase and the higher the pensions that will be paid.
Since females enjoy a longer lifetime than males, their feasible ratio v/u is

lower. Indeed, the pension must be paid to a female worker for a longer period
of time. From the two pictures, we can see that the pension rate v paid to
females should be around 80% less than the one paid to males for u hold fixed.

4.3 The optimal portfolio

In this subsection we exhibit a simple solution for the optimal asset allocation
under the market structure of the example presented above. Given the result
stated in Corollary 1, the optimal portfolio can be written as

w∗(1) ≡ RΓ−1σπ,

w∗(2) ≡
1

β
(R+∆) (Γ0Γ)−1M,

w∗(3) ≡ −Γ−1Ω∂∆
∂z

.

Now, the value of ∆ (as in Equation (11)) must be computed. As shown in
the previous subsection we can write

∆ (t) = EQt
·Z ∞

t

(s−tpt) ke−
s
t (r−µπ+σ0πσπ+σ0πξ)dθds

¸
=

Z ∞
t

(s−tpt) (uIs<T − v (1− Is<T ))

×EQt
·
1

P (t)
e−

s
t (r+

1
2σ

0
πσπ)dθ− s

t
σ0πdW

Q
¸
ds

=
1

P (t)

Z ∞
t

(s−tpt) eΦ(r(t),s,t) (uIs<T − v (1− Is<T )) ds,

where Φ (r (t) , s, t) is defined in (23) in Appendix A.
Consequently, ∆ can be split into two different equations according to the

value of t:
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1. when t < T we have

∆ (t) =
1

P (t)
u

Z T

t

(s−tpt) eΦ(r(t),s,t)ds

− 1

P (t)
v

Z ∞
T

(s−tpt) eΦ(r(t),s,t)ds,

2. when t ≥ T we have

∆ (t) = − 1

P (t)
v

Z ∞
t

(s−tpt) eΦ(r(t),s,t)ds.

The third optimal portfolio component is then given by

−Γ−1Ω∂∆
∂z

=

"
0 − P2

SσS
σπS −P 0 0

P
aKB

−P 2 σπrσS−σSrσπSaKσrσSB
0 −P 0

#
∆r

∆P = −∆P
∆S (= 0)
∆B (= 0)
∆L (= 0)


= P

·
S 0
0 B

¸−1 · σπS
σS
∆

1
aK
∆r +

σπrσS−σSrσπS
aKσrσS

∆

¸
,

where the subscripts on ∆ indicate partial derivatives.
After substituting all the simplifications done above, the optimal portfolio

can be written as·
S
P w
∗
S

B
P w
∗
B

¸
(22)

=

"
R+∆
βσ2S

(mS + σπSσS (β − 1)− σSrζ)
R+∆

aKβσ2Sσr

¡−σSrmS + σS (β − 1) (σSσπr − σSrσπS) +
¡
σ2S + σ2Sr

¢
ζ
¢
+ ∆r

aK

#
.

Finally, as it is easy to check, the optimal real wealth is given by

dR =

µ
R
¡
ρ+ ξ0σπ

¢
+
1

β
(R+∆) ξ0ξ + ξ0

·
σr∆r + σπr∆

σπS∆

¸
+ k

¶
dt

+

Ã
1

β
(R+∆) ξ0 +

·
σr∆r + σπr∆

σπS∆

¸0!
dW.

It is interesting to draw a parallel between the market structure studied
in Bajeux-Besnainou et al. (2001) and the one presented here. Even if these
authors do not take into account any contributions nor pensions, the comparison
can be easily made since contributions and pensions are not stochastic in our
example. In both models there exist a riskless asset, a stock, and a bond. The
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main difference is that in Bajeux-Besnainou et al. the only state variable is the
riskless interest rate while in our example we also have another state variable:
the inflation rate. The model presented in Bajeux-Besnainou et al. is based on
the following market structure:

dr = ar (br − r) dt− σrdWr,

dG = Grdt,

dS

S
= (r +mS) dt+ σ1dWS + σ2dWr,

dB

B
= (r + aKσrζ) dt+ aKσrdWr.

They find that only the bond and the riskless asset play a role in hedging the
risk source Wr. Our result, presented in (22), gives the same insight since only
the optimal bond allocation w∗B and, by difference, also the optimal riskless
asset allocation w∗G contain the term ∆r which measures the changes in the
expected value of all contributions and pensions due to the fluctuations in the
riskless interest rate r.

4.4 The parameter values

For the interest rate that follows a Vasiček structure a complete estimation of
the parameters (i.e. the volatility, the mean interest rate, and the strength of
the mean reverting effect) can be found in Babbs and Nowman (1998, 1999) who
construct zero-coupon yields. Their first work analyzes the data of the United
States while their second work estimates the parameters for a set of European
countries and Japan. The main results are summarized in Table 2. For the
(different) sample periods the reader is referred to Babbs and Nowman (1998,
1999).
Given the values exposed in Table 2, we have chosen the values r̄ = 0.05,

η = 0.2, and σr = 0.01.
Once the interest rate parameters have been estimated, the bond drift and

diffusion terms can be obtained by fixing a market price of risk ζ and a maturity
TK . The longest maturity taken into account in Babbs and Nowman (1998,
1999) is 10 years and so we put TK = 10. Now, since the interest rate on a bond
with 10 years maturity is around 7%, then we can compute ζ by solving

0.07 = r̄ +
1− e−ηTK

η
σrζ,

which immediately gives ζ = 0.46.

[Table 2 here]

The risk premium on the stock (mS) is chosen after the analysis of Mehra
and Prescott (1985). They found that the risk premium was approximately 0.06
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for the United States of America during the period 1889-1978. Thus, we put
mS = 0.06. The standard deviation of the market return was about 0.2 for
the same period. Hence, we put

p
σ2Sr + σ2S = 0.2. In this case we have one

degree of freedom. To the best of our knowledge, there are no works dedicated
to disentangle σSr and σS , that is the stock’s own volatility component and the
stock volatility due to the changes in the riskless interest rate. We have decided
to give more weight to the σS component by putting σS = 0.19 and σSr = 0.06.
As regards inflation, we refer to the US data summarised in Table 1. From

these values we infer that the inflation risk premium mπ has to be negative
(around −0.01). In fact, the inflation rate is lower than the riskless interest
rate. In our model, the inflation volatility is given by

p
σ2πr + σ2πS + σ2π which

is equated to 0.026. In this case we have two degrees of freedom. We suppose
half of the inflation volatility is explained by the inflation own diffusion term
σπ. Thus we put σπ = 0.013. Instead, the effect of interest rate volatility
and stock volatility are supposed to be equal σπr = σπS = 0.016. Finally, we
assume a member enters the pension fund when he is t0 = 25 and retires when
he is T = 65. We simulate the behaviour of the optimal fund portfolio during
a management period of 60 years (i.e., for the member, from the age of 25 till
the age of 85). Parameter values (which are also consistent with the numerical
analysis presented by Boulier et al., 2001) are gathered in Table 3. All initial
values are supposed to be equal: S (0) = B (0) = G (0) = L (0) = P (0) = 1.
Since we have chosen to put u = 1 (and L (0) = 1) we should not choose a too
high level of initial wealth. Indeed, a very high value for R (0) would mitigate
the effect of contributions and pensions on the optimal wealth and portfolio
composition. On the other hand, the initial value of wealth should not be
too low either since we risk to end up with a negative real wealth because of
the pension payments. After running some preliminary experiments, we have
chosen R (0) = 20 which allows: (i) to keep the optimal real wealth positive in
simulations, and (ii) to make effective the impact of contributions and pensions
on wealth.
The leve of risk aversion (β) is put equal to 10 accordingly to the analysis of

Mehra and Prescott (1985). Even if it seems quite high from the pint of view of
a pension fund, this level of risk aversion is consistent with the use of a HARA
non-time separable utility function.

[Table 3 here]

4.5 The numerical simulation

In this subsection we follow Stojanovic (2003) where the reader can find a com-
plete treatment of simulation techniques relevant to financial mathematics. In
particular, his Chapter 7 is dedicated to the study of optimal portfolio rules.
Results of a typical simulation are plotted in Figures 5 and 6. The graphs

represent the behaviour of the optimal portfolio compositions and of the optimal
wealth both in real and nominal terms, respectively.
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Other simulated paths are qualitatively similar in the sense that the behavior
of the portfolio weights are analogous, and their values are very close. The figure
represents the case of a male worker. The case of a female member presents
the same optimal percentages, but the real wealth then decreases less rapidly
during the decumulation phase (because of the lower level of v). The difference
of mortality risk between males and females does not seem to dramatically affect
the asset allocation of a pension fund.

[Fig. 5 here]
[Fig. 6 here]

On the x-axis the time is measured as t− t0. We recall that, in our example,
the member enters the fund at t0 = 25 while the simulation ends when the
member is 85. As shown in Figure 3, the survival probability after 85 years
becomes very small and so we can think of the end of simulation as the probable
death time. As already mentioned, the initial wealth level (R (0) = 20) has been
chosen in order to make more apparent the role of contributions and pensions in
the evolution of the optimal wealth. In Figure 5 we show the behavior of asset
allocations in percentage of the real wealth and the optimal real wealth itself.
Instead, in Figure 6, the optimal nominal wealth and the nominal amounts of
wealth invested in each asset are represented.
The investments in the riskless asset and the bond evolve in an opposite way.

The weight of the former increases while the weight of the latter decreases as
time goes on. The opposite behavior of riskless and bond percentages can be
explained as follows. The riskless asset supplies the investor with a short run
hedge while the bond offers a long run hedge (in our example TK = 10 years).
During the first years, the need of a long run hedge is higher than the need for
a short run hedge, and the demand for bond will thus be also higher. After a
while the need of a long run hedge diminishes and short run hedge gets priority
treatment. The riskless asset is gradually substituted for the bond.
The weight of the stock does not change a lot (it remains around the value of

19%). The stock has typically a speculative role in the optimal portfolio, without
supplying investors with any particular form of hedging. Actually, this hedging
need is satisfied by the riskless asset and the bond whose optimal percentages
change more widely through years. After fifty years of management, the optimal
percentage of wealth invested in stock falls sharply from a value of around 19%
to a value of around 16%.
As shown in Figure 6 the nominal amount of wealth invested in each asset

increases while the total nominal wealth increases and decreases while the wealth
decreases. Furthermore, the percentage of wealth invested in the risky assets
(the stock and the bond)14 decreases through time and, after the retirement
date, its negative slope becomes lower (in absolute value). This means that
while the retirement date approaches, the need to switch to a riskless portfolio
becomes higher and higher. This is due to the increasing need of paying the

14The behaviour of the ratio w∗S + w∗B /R can be easily derived by inverting the graph of
w∗G/R. In fact, w∗S +w∗B /R = 1− w∗G/R.
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pensions. While these pensions are being paid, this need becomes lower and so
the reduction in the portfolio riskiness.
It can be seen that the return on the pension fund investment is able to

keep the fund wealth positive during 20 years of pension payments even if these
pensions are more than ten times the contributions.

5 Conclusion
In this work we have analyzed the real asset allocation problem of a pension
fund. Our framework is akin to those taking into account a nontradeable en-
dowment process. Nevertheless, two main differences can be pointed out: (i)
the revenues (contributions) and expenses (pensions) of the fund must be linked
by a condition (“feasibility condition”) guaranteeing that it is profitable to sub-
scribe the pension contract for both the subscriber and the pension fund, (ii)
the financial horizon for fund investments is stochastic since it coincides with
the subscriber death time. The financial market underlying the study is very
general since the set of risky asset values is supposed to be driven by a set of
stochastic state variables. Thus, our model encompasses all previous simple
models proposed in the literature. Since the financial horizon for pension fund
investment is typically long, we also explicitly model the inflation risk.
In such a framework we are able to compute a solution based on a state

dependent utility function. Besides, when neither the market price of risk nor
the real riskless interest rate depend on the state variables, we are able to
compute a closed-form solution. In this case we carry out numerical experiments
for a simple market structure where there exist one nominal riskless asset, one
stock, and one bond. These numerical experiments have allowed us to provide
some practical investment strategy recommendations for pension funds.

A Feasibility condition
Since the riskless interest rate follows the process

dr = η (r̄ − r) dt+
£ −σr 0 0

¤
dW,

then under the real risk neutral probability Q it follows

dr = η (r̄ − r) dt+
£ −σr 0 0

¤ ¡
dWQ − ξdt

¢
=

¡
η (r̄ − r)− £ −σr 0 0

¤
ξ
¢
dt+

£ −σr 0 0
¤
dWQ,

and, after substituting the value of ξ computed in (19), we have

dr = (η (r̄ − r)− ζσrσπr) dt+
£ −σr 0 0

¤
dWQ.
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Accordingly, we can define

er ≡ r̄ − ζσrσπr
η

,

σ0 ≡ £ −σr 0 0
¤
,

and write
dr = η (er − r) dt+ σ0dWQ,

whose solution is

r (t) = (r (t0)− er) e−η(t−t0) + er + σ0
Z t

t0

e−η(t−s)dWQ
s .

The integral we want to compute is thus

−
Z t

t0

r (s) ds = −
Z t

t0

³
(r (t0)− er) e−η(s−t0) + er´ ds− Z t

t0

Z s

t0

e−η(s−i)σ0dWQ
i ds,

which can be written as

−
Z t

t0

r (s) ds = −
Z t

t0

³
(r (t0)− er) e−η(s−t0) + er´ ds− Z t

t0

Z j

t0

e−η(j−s)σ0dsdWQ
j .

The mean and variance of this integral are then very easy to compute:

EQt0

·
−
Z t

t0

r (s) ds

¸
= −

Z t

t0

³
(r (t0)− er) e−η(s−t0) + er´ ds

= − (r (t0)− er)Z t

t0

e−η(s−t0)ds− er (t− t0)

= − (r (t0)− er) 1− e−η(t−t0)

η
− er (t− t0) ,

VQt0

·
−
Z t

t0

r (s) ds

¸
= VQt0

·Z t

t0

Z j

t0

e−η(j−s)σ0dsdWQ
j

¸
=

Z t

t0

σ0σ
µZ j

t0

e−η(j−s)ds
¶2

dj

= σ0σ
Z t

t0

¡
1− e−η(j−t0)

¢2
η2

dj

=
σ0σ
2η3

³
−e−2η(t−t0) + 4e−η(t−t0) + 2η (t− t0)− 3

´
.

Now we define

N (t) ≡ −
Z t

t0

r (s) ds− 1
2
σ0πσπ (t− t0)− σ0π

Z t

t0

dWQ
s ,
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which is a normally distributed sotchastic variable. Thus, in order to compute
the expected value of its exponential, we just have to compute its mean and its
variance:

EQt0 [N (t)] = E
Q
t0

·
−
Z t

t0

r (s) ds

¸
− 1
2
σ0πσπ (t− t0) ,

and

VQt0 [N (t)] = VQt0

·
−
Z t

t0

r (s) ds− σ0π

Z t

t0

dWQ
s

¸
= VQt0

·
−
Z t

t0

r (s) ds

¸
+ σ0πσπ (t− t0)

+
1

2
CQt0

·
−
Z t

t0

r (s) ds,−σ0π
Z t

t0

dWQ
s

¸
,

shwere the covariance term can be simplified as follows:

CQt0

·
−
Z t

t0

r (s) ds,−σ0π
Z t

t0

dWQ
s

¸
= EQt0

·µ
−
Z t

t0

r (s) ds

¶µ
−σ0π

Z t

t0

dWQ
s

¶¸
−EQt0

·
−
Z t

t0

r (s) ds

¸
EQt0

·
−σ0π

Z t

t0

dWQ
s

¸
= EQt0

·µZ t

t0

r (s) ds

¶µ
σ0π

Z t

t0

dWQ
s

¶¸
= EQt0

·µZ t

t0

µ
(r (t0)− er) e−η(s−t0) + er + σ0

Z s

t0

e−η(s−τ)dWQ
τ

¶
ds

¶µZ t

t0

σ0πdW
Q
s

¶¸
= EQt0

·µZ t

t0

Z s

t0

e−η(s−τ)σ0dWQ
τ ds

¶µZ t

t0

σ0πdW
Q
s

¶¸
.

Now, since for any deterministic functions f (s) and g (s) we have

EQt0

·µZ t

t0

f (s)0 dWQ
s

¶µZ t

t0

g (s)0 dWQ
s

¶¸
=

Z t

t0

f (s)0 g (s) ds,

then we can write

CQt0

·
−
Z t

t0

r (s) ds,−σ0π
Z t

t0

dWQ
s

¸
=

Z t

t0

Z j

t0

e−η(j−s)σ0σπdsdj

=
σ0σπ
η2

³
e−η(t−t0) + η (t− t0)− 1

´
.
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Consequently, we have

EQt0 [N (t)] = − (r (t0)− er) 1− e−η(t−t0)

η
−
µer + 1

2
σ0πσπ

¶
(t− t0) ,

VQt0 [N (t)] = −σ
0σ
2η3

e−2η(t−t0) +
1

2η3
σ0 (4σ + ησπ) e

−η(t−t0)

+
1

2η2
¡
2σ0σ + 2η2σ0πσπ + ησ0σπ

¢
(t− t0)

− 1

2η3
σ0 (3σ + ησπ) .

Now, we can go back to

EQt0
h
eN(t)

i
= eE

Q
t0
[N(t)]+ 1

2V
Q
t0
[N(t)],

and we can write

Φ (r (t0) , t, t0) ≡ EQt0 [N (t)] +
1

2
VQt0 [N (t)] (23)

= −σ
0σ
4η3

e−2η(t−t0) +
µ
1

η
(r (t0)− er) + 1

4η3
σ0 (4σ + ησπ)

¶
e−η(t−t0)

+

µ
1

4η2
σ0 (2σ + ησπ)− er¶ (t− t0)

−1
η
(r (t0)− er)− 1

4η3
σ0 (3σ + ησπ) .
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Figure 1: Contributions and pensions for US pension and welfare funds
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Figure 2: Total identified assets in English pension funds balance sheet

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

900.000

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

M
ill

io
ns

 o
f p

ou
nd

s

.

41



Table 1: Consumption Price Index yearly growth rate for the USA
Period 15/02/1958-15/02/2003
Mean 4.23%
St. dev. 2.58%
Max 12.76%
Min 0.65%

.
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.

Figure 3: Survival probability for an individual aged of 20 (the pure Gompertz
case)
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Table 2: Interest rate parameters for ten countries
Mean 3-month Mean 10-year Mean Standard
rate % (r̄) rate % reversion (η) deviation (σ)

USD 6.170 8.090 0.1908 0.0132
BEF 4.372 7.162 0.1516 0.0096
DKK 5.155 7.774 0.2196 0.0128
FRF 6.870 7.341 0.2604 0.0139
DEM 6.598 7.274 0.2711 0.0150
ITL 9.762 9.919 0.0939 0.0154
JPY 2.600 4.458 0.1238 0.0097
NLG 5.799 7.033 0.3622 0.0091
CHF 4.663 5.357 0.2780 0.0011
GBP 9.249 9.453 0.2256 0.0168

.
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Figure 4: Feasible ratio v/u
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Table 3: Values of parameters

Interest rate Contrib./Pension process
Mean reversion, η 0.2 Contribution rate, u 1
Mean rate, r̄ 0.05 Pension rate, v 10.97
Volatility, σr 0.01
Initial rate, r0 0.03 Fix-maturity bond

Maturity, TK 10
Inflation process Market price of risk, ζ 0.46
Risk premium, mπ -0.01
Interest rate source risk, σπr 0.016 Stock
Stock source risk, σπS 0.016 Risk premium, mS 0.06
Non-hedgeable volatility, σπ 0.013 Interest rate source risk, σSr 0.06

Stock own volatility, σS 0.19
Mortality risk
Modal parameter, m 88.18 Demography
Scaling parameter, b 10.5 Initial age, t0 25
Makeham parameter, λ 0 Retirement age, T 65

.
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Figure 5: Optimal portfolio composition (in percentages) and the real wealth

.

47



Figure 6: Optimal portfolio composition (in levels) and nominal wealth
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