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Abstract
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1 Introduction

We consider estimation of the regression model Y = ϕ0(X) + U . The variable X has compact support

X = [0, 1] and is potentially endogenous. The instrument Z has compact support Z = [0, 1]. The parameter

of interest is the function ϕ0 defined onX which satisfies the nonparametric instrumental variable regression

(NPIVR):

E[Y − ϕ0(X)|Z] = 0. (1)

As shown in Example 1 of Gagliardini and Scaillet (2016), we do not need independence between the er-

ror U and the instrument Z. This exemplifies a difference between restrictions induced by a parametric

conditional moment setting and their nonparametric counterpart. NPIVR estimation has received consider-

able attention in the recent years building on a series of fundamental papers on ill-posed endogenous mean

regressions (Ai and Chen (2003), Newey and Powell (2003), Hall and Horowitz (2005), Blundell, Chen,

and Kristensen (2007), Darolles, Fan, Florens, and Renault (2011), Horowitz (2011)), and the review paper

by Carrasco, Florens, and Renault (2007). The main issue in nonparametric estimation with endogeneity

is overcoming ill-posedness of the associated inverse problem. It occurs since the mapping of the reduced

form parameter (that is, the distribution of the data) into the structural parameter (that is, the instrumental

regression function) is not continuous in the conditional moment E[Y |Z]. We need a regularization of the

estimation to recover consistency. Gagliardini and Scaillet (GS, 2012a) study a Tikhonov Regularized (TiR)

estimator (Tikhonov (1963a,b), Groetsch (1984), Kress (1999)). They achieve regularization by adding a

compactness-inducing penalty term, the Sobolev norm, to a functional minimum distance criterion. Chen

and Pouzo (2012) study nonparametric estimation of conditional moment restrictions in which the gener-

alized residual functions can be nonsmooth in the unknown functions of endogenous variables. For such a

nonparametric nonlinear instrumental variables problem, they propose a class of penalized sieve minimum

distance estimators (see Chen and Pouzo (2015) for inference in such a setting). As discussed in Matzkin

(1994), in nonparametric models, we can use economic restrictions, as in parametric models, to reduce the

variance of estimators, to falsify theories, and to extrapolate beyond the support of the data. But, in addi-

tion, we can use some economic restrictions to guarantee the identification of some nonparametric models

and the consistency of some nonparametric estimators. Economic theory often provides shape restrictions
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on functions of interest in applications, such as monotonicity, convexity, non-increasing (non-decreasing)

returns to scale but economic theory does not provide finite-dimensional parametric models. This motivates

nonparametric estimation under shape restrictions. Since nonparametric estimates are often noisy, shape

restrictions helps to stabilize nonparametric estimates without imposing arbitrary restrictions (see the recent

works of Blundell, Horowitz, and Parey (2012), Horowitz and Lee (2015)). Following that line of thought,

we could hope that adding monotonicity or convexity constraints on the regression function would help to

restore well-posedness in nonparametric instrumental variable regression. The next section shows that this

is unfortunately not the case since the minimum distance problem without regularisation is still locally ill-

posed. Chetverikov and Wilhelm (2015) look at imposing two monotonicity conditions: (i) monotonicity of

the regression function ϕ0 and (ii) monotonicity of the reduced form relationship between the endogenous

regressor X and the instrument Z in the sense that the conditional distribution of X given Z corresponding

to higher values of Z first-order stochastically dominates the same conditional distribution corresponding

to lower values of Z (the monotone IV assumption). They show that these two monotonicity conditions to-

gether significantly change the structure of the NPIV model, and weaken its ill-posedness. In particular they

point out that, even if well-posedness is not restored, those two monotonicity constraints improve the rate of

convergence in shrinking neighborhoods of the constraint boundary and can have a significant impact on the

estimator finite sample behavior. Chen and Christensen (2013) show that imposing shape restrictions only

is not enough to improve convergence rates as long as the derivative constraints hold with strict inequality

(i.e., in the interior of the constraint space). There may be rate improvements when the constraint is binding.

2 Ill-posedness with convexity constraints

The functional parameter ϕ0 belongs to a subset Θ of L2(X ), where L2(X ) denotes the L2 space of square

integrable functions of X defined by the scalar product 〈ϕ,ψ〉 =
´
ϕ(x)ψ(x)dx, and we write ‖ϕ‖ for the

L2 norm 〈ϕ,ϕ〉1/2.

We assume the following identification condition.

Assumption 1: ϕ0 is the unique function ϕ ∈ L2(X ) that satisfies the conditional moment restriction (1).

We refer to Newey and Powell (2003), Theorems 2.2-2.4, for sufficient conditions ensuring Assumption 1.
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Let us consider a nonparametric minimum distance approach to obtain ϕ0. This relies on ϕ0 minimizing

Q∞(ϕ) := E
[
m (ϕ,Z)2

]
, ϕ ∈ L2(X ), (2)

where m (ϕ,Z) = E[Y − ϕ(X)|Z]. We can write the conditional moment function m (ϕ, z) as:

m (ϕ, z) = (Aϕ) (z)− r (z) = (A∆ϕ) (z) , (3)

with ∆ϕ := ϕ − ϕ0, and where the linear operator A is defined by (Aϕ) (z) :=ˆ
ϕ(x)fX|Z(x|z)dx and r (z) :=

ˆ
yfY |Z(y|z)dy, where fX|Z and fY |Z are the conditional densities

of X given Z, and Y given Z. Assumption 1 on identification of ϕ0 holds if and only if operator A is injec-

tive. Further, we assume that A is a bounded operator from L2(X ) to L2(Z), where L2(Z) denotes the L2

space of square integrable functions of Z defined by the scalar product 〈ψ1, ψ2〉L2(Z) = E [ψ1 (Z)ψ2 (Z)] .

The limit criterion (2) becomes

Q∞(ϕ) = 〈A∆ϕ,A∆ϕ〉L2(Z), (4)

Assumption 2: The linear operator A from L2(X ) to L2(Z) is compact.

Assumption 2 on compactness of operator A holds under mild conditions on the conditional density fX|Z

(see e.g. GS). In the proof of Proposition 1 below, we also need the regularity conditions: supz |fZ(z)| <∞

and supx,z |fX|Z(x|z)| <∞.

Proposition 1 shows that the minimum distance problem above is locally ill-posed (see e.g. Definition

1.1 in Hofmann and Scherzer (1998)) even if we consider monotonicity, monotonicity nonnegativity, or

convexity constraints. There are sequences of increasingly oscillatory functions arbitrarily close to ϕ0 that

approximately minimize Q∞ while not converging to ϕ0. In other words, function ϕ0 is not identified in

Θ as an isolated minimum of Q∞. Therefore, ill-posedness can lead to inconsistency of the naive analog

estimators based on the empirical analog of Q∞. In order to rule out these explosive solutions, we can use

penalization as in GS (see Gagliardini and Scaillet (2012b) and Chen and Pouzo (2012) for the quantile

regression case). Under a stronger assumption than Assumption 1, namely local injectivity of A, the defini-

tion of local ill-posedness is equivalent to A−1 being discontinuous in a neighborhood of A(ϕ0) (see Engl,

Hanke, and Neubauer (2000, Chapter 10)).
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Proposition 1 Let ϕ0 satisfy monotonicity, monotonicity nonnegativity, or convexity constraints. Then,

under Assumptions 1 and 2, the minimum distance problem is locally ill-posed, namely for any r > 0 small

enough, there exist ε ∈ (0, r) and a sequence (ϕn) ⊂ Br(ϕ0) := {ϕ ∈ L2(X ) : ‖ϕ − ϕ0‖ < r} such that

‖ϕn − ϕ0‖ ≥ ε, Q∞(ϕn)→ Q∞(ϕ0) = 0, and such that ϕn satisfies the same constraints as ϕ0.

Proof: The proof of Proposition 1 gives explicit sequences (ϕn) generating ill-posedness when ϕ0

satisfies monotonicity, monotonicity nonnegativity, or convexity constraints.

Let us build ϕn = ϕ0 + εψn, ε > 0, where ψn(x) := −(2n + 1)1/2(1 − x)n and ϕ0 is monotone

and increasing. Then ϕn ∈ L2(X ) and the first detivative ∇ϕn ≥ 0. Since ‖ψn‖ = 1, when we choose

ε > 0 sufficiently small, we have (ϕn) ⊂ Br(ϕ0), and ϕn 9 ϕ0. We also have that Aϕn
w→ Aϕ0,

where w→ denotes weak convergence. Indeed, for q ∈ L2(Z), we get 〈q, Aϕn〉L2(Z) = 〈q, Aϕ0〉L2(Z) +

ε〈q,Aψn〉L2(Z), and 〈q,Aψn〉L2(Z) → 0, since |Aψn| ≤ C(2n+1)1/2
1

n+ 1
forC > 0. SinceA is compact

and (ϕn) is bounded, the sequence Aϕn admits a convergent subsequence Aϕm(n) → ξ. Since the weak

limit is unique, we have ξ = Aϕ0. Thus Aϕm(n) → Aϕ0 and Q∞
(
ϕm(n)

)
→ 0 but

∥∥ϕm(n) − ϕ0

∥∥ ≥ ε,

hence the stated result follows.

The above argument works also with the function ψn(x) :=
(2n+ 1)1/2

(22n+1 − 1)1/2
(1 + x)n, which yields a

monotone nonnegative function ϕn ∈ L2(X ) if ϕ0 ≥ 0 and is monotone. This shows that the positivity

constraint does not help here either.

Since the higher order derivatives∇mψn ≥ 0,m ≥ 1, this example also shows that positivity constraints

on the higher order derivatives∇mϕ0 ≥ 0, such as a convexity constraint∇2ϕ0 ≥ 0, does not restore well-

posedness of the estimation problem in the NPIVR setting.
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