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Abstract

We develop a penalized two-pass regression with time-varying factor loadings.
The penalization in the first pass enforces sparsity for the time-variation drivers
while also maintaining compatibility with the no-arbitrage restrictions by regular-
izing appropriate groups of coefficients. The second pass delivers risk premia esti-
mates to predict equity excess returns. Our Monte Carlo results and our empirical
results on a large cross-sectional data set of US individual stocks show that pe-
nalization without grouping can yield to nearly all estimated time-varying models
violating the no-arbitrage restrictions. Moreover, our results demonstrate that the
proposed method reduces the prediction errors compared to a penalized approach
without appropriate grouping or a time-invariant factor model.
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1 Introduction
Under the arbitrage pricing theory (Ross, 1976; Chamberlain and Rothschild, 1983),
we know that risk premia are drivers of expected excess returns. Hence, estimating
them should be useful for prediction of future equity excess returns. The workhorse
to estimate equity risk premia in a linear multi-factor setting is the two-pass cross-
sectional regression method developed by Black et al. (1972) and Fama and MacBeth
(1973). A series of papers address its large and finite sample properties for linear fac-
tor models with time-invariant coefficients; see, for example, Shanken (1985, 1992),
Jagannathan and Wang (1998), Shanken and Zhou (2007), Kan et al. (2013), and the
review paper of Jagannathan et al. (2010) (see Bryzgalova et al. (2019) for a recent
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Bayesian approach). In a time-varying setting, Gagliardini et al. (2016) (henceforth
referred as GOS) study how we can infer the dynamics of equity risk premia from
large stock return data sets under conditional linear factor models (see also Gagliardini
et al. (2020) for a review of estimation of large dimensional conditional factor models
in finance). They show how to explicitly account for the no-arbitrage restrictions re-
lating the time-varying intercept and the time-varying factor loadings when writing the
underlying linear regression to be estimated. In conditional factor models, we quickly
loose parsimony in terms of covariates because of the cross-products induced by the
no-arbitrage restrictions. Chaieb et al. (2021) show that a direct application of the GOS
methodology in an international setting is challenging because of the large number of
parameters needed to model the time-variations in factor exposures and risk premia.
Applying the GOS methodology off-the-shelf to an international setting results in few
or even zero stocks kept for several countries. To address this issue, they suggest to
rely on iteratively selecting for each stock the most important covariates driving the
dynamics of the factor loadings without violating the no-arbitrage restrictions.

The aim of this paper is to tackle this issue via LASSO-type penalisation tech-
niques (Tibshirani, 1996) to enforce sparsity for the time-variation drivers while also
maintaining compatibility with the no-arbitrage restrictions. The shrinkage targets the
time-invariant counterpart of the time-varying models. In a conditional factor setting,
we aim at addressing the “multidimensional challenge” of Cochrane (2011), namely se-
lect characteristics which really provide independent information about average excess
returns. More specifically, the penalized first-pass (time-series) regression selects and
estimates the regression coefficients ensuring a model specification compatible with
the no-arbitrage restrictions through the Overlap Group-LASSO (OGL) of Jacob et al.
(2009) and its adaptive version of Percival (2012), the aOGL, which extends the orig-
inal Group-LASSO of Yuan and Lin (2006) to groups of variables that may overlap.
Indeed, if we do not introduce a quadratic term (or cross-products) in the time-varying
intercept while the covariate is present in the time-varying factor loadings, we intro-
duce ex-ante a model with arbitrage (see (4) below, and the discussion in Gagliardini
et al., 2020). By definition, we cannot estimate a coefficient for which its covariate is
absent. On the contrary, if we delete a covariate in the time-varying factor loadings
and keep it in the time-varying intercept, then its corresponding coefficients could be
shrunk to zero by a standard LASSO for the first-pass regression, and thus could avoid
ex-post a model with arbitrage if the true model is sparse. In a standard Ordinary Least
Squares (OLS) first-pass procedure, those time-varying intercept coefficients could be
estimated close to zero if the true model does not include that covariate in the time-
varying factor loadings. By introducing groups based on finance theory derived from
assuming no asymptotic arbitrage opportunities in the economy, our aOGL approach
can only consider models compatible ex-ante with the no-arbitrage restrictions by con-
struction. The groups take explicitly into account the links between the time-varying
intercept and the time-varying loadings induced by the no-arbitrage restrictions. With
only models satisfying ex-ante the no-arbitrage restrictions, we can substantially re-
duce the set of possible models within our model selection procedure. We derive an
upper bound, and show that the number of possible models without grouping is di-
vided by 23, at least, and often by a much larger number in empirical applications. As
an example, for the model specifications with four factors used in Section 5, the set
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of possible models satisfying ex-ante the no-arbitrage restrictions is 297 times smaller
than the set of possible models without grouping. We exemplify this reduction with a
simple two-factor example in Section 3.1. It echoes the discussion in Giannone et al.
(2021) that, if a prediction model with many predictors “lacks any additional structure,
then there is no hope of recovering useful information about the [high-dimensional pa-
rameter] vector with limited samples” (Hastie et al., 2015, p. 290). Imposing some
constraints, hopefully driven by economic reasoning (as we promote here), should help
to extract relevant information in big data problems. As a consequence, the aOGL ap-
proach yields better performance in terms of covariate selection and estimated models
without arbitrage (see our Monte Carlo results in Section 4 and our empirical results
in Section 5). On our data for US single stocks, more than half of the stocks require
dynamics in their factor loadings, while penalization without (with) grouping yields to
100% (0%) of all estimated time-varying models violating the no-arbitrage restrictions.
Besides, the aOGL approach yields better in-sample and out-of-sample predictive per-
formance on an equally-weighted portfolio (see Sections 4 and 5). On our data for US
single stocks, prediction errors are located closer to zero and their scale is narrower.

LASSO type techniques have already been applied successfully to factor models
in finance. Bryzgalova (2015) develops a shinkrage-based estimator that identifies the
weak factors (i.e., factors that do not correlate with the assets) and ensures consis-
tent and normality of the estimates of the risk premia. Feng et al. (2020) propose a
model-selection method to evaluate the risk prices of observable factors. Freyberger
et al. (2020) propose a nonparametric method to determine which firm characteris-
tics provide incremental information for the cross section of expected excess returns.
Gu et al. (2020) and Chinco et al. (2019) use penalization techniques for prediction
purposes respectively at low and high-frequency. Alternatively, Fan et al. (2022) de-
velop a nonparametric methodology for estimating conditional asset pricing models
using deep neural networks, by employing time-varying conditional information on al-
phas and betas carried by firm-specific characteristics. Avramov et al. (2022) propose
a novel Bayesian approach to study time-series and cross-sectional effects in asset re-
turns, when the true factor model and its underlying parameters are uncertain. They use
macro predictors to model time-variation in the factor loadings and investigate poten-
tial mispricing. While their prior beliefs are weighted against mispricing, their analysis
shows that time-varying mispricing appears with a large probability. Chen et al. (2022)
use deep neural networks to estimate a stochastic discount factor model for individual
stock returns and exploit the fundamental no-arbitrage condition as criterion function,
to construct the most informative test assets with an adversarial approach. Cong et al.
(2022a) and Cong et al. (2022b) also use economic restrictions to enhance the perfor-
mance of machine learning techniques in asset pricing and portfolio management. Fan
et al. (2021) propose a new methodology that bridges the gap between sparse regres-
sions and factor models and evaluates the gains of increasing the information set via
factor augmentation to study asset returns. Finally, let us mention that there is also
work on inference for large dimensional models with observable and unobservable fac-
tors with high frequency data (Fan et al., 2016; Aït-Sahalia and Xiu, 2017; Pelger and
Xiong, 2019; Aït-Sahalia et al., 2020).

The outline of this paper is as follows. Section 2 describes the conditional linear
factor models with sparse time-varying coefficients, and how to implement the no-
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arbitrage restrictions in the specification of the random coefficient panel model. Sec-
tion 3 develops our penalized two-pass regression with time-varying factor loadings.
The penalization in the first-pass (time-series) regressions of Section 3.1 enforces spar-
sity for the time-variation drivers while also maintaining compatibility ex-ante with
the no-arbitrage restrictions through building appropriate groups of coefficients. We
explain in detail in Section 3.1 why we prefer the aOGL method over the original
Group-LASSO of Yuan and Lin (2006) for the first-pass regression. The second-pass
(cross-sectional) regression of Section 3.2 delivers risk premia estimates to predict eq-
uity excess returns. In Section 3.2, we show asymptotic consistency of our penalised
two-pass regression estimates under an adaptive estimation for the first-pass regression
coefficients. Section 4 reports our simulations results. Section 5 gathers our empirical
results. After describing our data on US single stocks in Section 5.1, we present our
empirical results on in-sample and out-of-sample prediction performances and variable
selection in Sections 5.2 and 5.3. We investigate 13 characteristics and 6 common in-
struments for the dynamics of factor loadings, and use the four-factor model of Carhart
(1997) and the five-factor model of Fama and French (2015). Section 6 concludes.
We list regularity conditions in Appendix A, the proofs of our theoretical results in
Appendices B and C, and a description on how to construct groups for the numerical
optimisation in Appendix D.

2 Model specification
In this section, we consider a conditional linear factor model with time-varying coeffi-
cients as in GOS (see Gagliardini et al. (2020) for a review). From their Assumptions
APR.1, APR.2, and APR.3, the time-varying factor model for assets belonging to the
continuum of assets γ ∈ [0, 1] is

Rt(γ) = at(γ) + bt(γ)
⊤ft + εt(γ), (1)

where Rt(γ) denotes the excess return on asset γ at period 1, . . . , T , vector ft ∈ RK

gathers the values of the factors at date t. From Assumption APR.1 of GOS, the inter-
cept at(γ) ∈ R and factor loadings bt(γ) ∈ RK are Ft−1-measurable, where the filtra-
tion process Ft−1 is the information available to all investors at time t − 1. The error
terms have mean zero E[εt(γ)|Ft−1] = 0 and are uncorrelated with the factors condi-
tionally on information Ft−1, Cov(εt(γ), ft,k|Ft−1) = 0, k = 1, ...,K. Assumption
APR.2 of GOS gathers standard measurability conditions for a stochastic process, and
requires that the process βt(γ) = (at(γ), bt(γ)

⊤)⊤ ∈ RK+1 is a bounded aggregate
process as defined in Al-Najjar (1995), as well as the nondegeneracy in the factor load-
ings across assets. Assumption APR.3 of GOS imposes an approximate factor structure
in (1) such that, for any sequence γi ∈ [0, 1], i = 1, . . . , n, with Σεt,t,n ∈ Rn×n being
the conditional variance-covariance matrix of the vector (εt(γ1), . . . , εt(γn))⊤ know-

ing Zt−1, there exists a set such that n−1 eigmax(Σεt,t,n)
L2

−→ 0 as n → ∞, where

eigmax(Σεt,t,n) denotes the largest eigenvalue of Σεt,t,n, and where L2

−→ denotes con-
vergence in the L2-norm. Under Assumptions APR.4 of GOS, the following asset
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pricing restriction holds:
at(γ) = bt(γ)

⊤νt, (2)

for all γ ∈ [0, 1], at any date t = 1, 2, . . . where random vector νt ∈ RK is unique and
is Ft−1-measurable, which can also be written as

E [Rt(γ)|Ft−1] = bt(γ)
⊤λt, (3)

with λt = νt + E[ft|Ft−1] ∈ RK . Equation (3) shows the link between expected
excess returns and the product of the time-varying factor loadings and risk premia.
Below, we rely on that link to predict excess returns. Assumption APR.4 of GOS
excludes asymptotic arbitrage opportunity, such that there is no portfolio sequence with
zero cost and positive payoff. The conditioning information Ft−1 contains Zt−1 and
Zt−1(γ), where Zt−1 ∈ Rp is a vector of lagged instruments common to all stocks,
Zt−1(γ) ∈ Rq , for γ ∈ [0, 1], is a vector of lagged characteristics specific to stock γ,
and Zt = {Zt, Zt−1, ...} denotes the set of past realizations. Vector Zt−1 may include
past observations of the factors and some additional variables such as macroeconomic
variables. Vector Zt−1(γ) may include past observations of firm characteristics and
stock returns. We define the dynamics of the factor loadings bt(γ) as a sparse linear
function of Zt−1 (Shanken, 1990; Ferson and Harvey, 1991) and Zt−1(γ) (Avramov
and Chordia, 2006).

ASSUMPTION A.1: (Sparse time-varying factor loadings)
The factor loadings are such that bt(γ) = A(γ) + B(γ)Zt−1 + C(γ)Zt−1(γ), where
A(γ) ∈ RK correspond to a time-invariant model, and B(γ) ∈ RK×p, C(γ) ∈ RK×q

are sparse matrices of coefficient for any γ ∈ [0, 1] and any t.

Moreover, we define the vector of risk premia as a sparse linear function of lagged
instruments Zt−1 (Cochrane, 1996; Jagannathan and Wang, 1996) and specify the con-
ditional expectation of the factor E [ft|Ft−1] given the filtration process Ft−1.

ASSUMPTION A.2: (Sparse time-varying risk premia)
The risk premia vector is such that

(i) λt = Λ0 + Λ1Zt−1, where Λ0 ∈ RK correspond to a time-invariant model and
Λ1 ∈ RK×p is a sparse matrix for any t.
The conditional expectation of the factor is such that

(ii) E [ft|Ft−1] = F0 + F1Zt−1, where F0 ∈ RK corresponds to a time-invariant
model and F1 ∈ RK×p is a sparse matrix for any t.

Assumptions A.1 and A.2 differ from Assumptions FS.1 and FS.2 of GOS. Indeed,
we consider here the matrices B(γ), C(γ),Λ1 and F1 of coefficients as sparse, meaning
that only a small fraction of the Zt−1 or Zt−1(γ) for γ ∈ [0, 1] are useful to describe
the dynamics of the factor loadings, risk premia, and conditional expectation of the
factors. Building on the sampling scheme from Assumptions SC.1 and SC.2 of GOS,
we define the indicator variable It(γ), for all γ ∈ [0, 1], such that It(γ) = 1 if the
return on asset γ is observable at time t, and 0 if not. Assumption SC.1 ensures that
It(γ), εt(γ) and variables in Ft−1 are independent, while Assumption SC.2 ensures
that the random variables γi, i = 1, ..., n, are i.i.d. indices, independent of εt(γ),

5



It(γ), and Ft−1. From the above sampling scheme, we can now use the following
notation: Ii,t = It(γi), Ri,t = Rt(γi), βi,t = βt(γi), εi,t = εt(γi), Ai = A(γi), Bi =
B(γi), Ci = C(γi) and Zi,t−1 = Zt−1(γi) as well as ai,t = at(γi) and bi,t = bt(γi).
Hence, from Assumptions A.1 and A.2, we can express (1) using the asset pricing
restriction in (2) as the following Data Generating Process (DGP):

Ri,t = A⊤
i (Λ0 − F0) +A⊤

i (Λ1 − F1)Zt−1 + Z⊤
t−1B

⊤
i (Λ0 − F0)

+ Z⊤
t−1B

⊤
i (Λ1 − F1)Zt−1 + Z⊤

i,t−1C
⊤
i (Λ0 − F0)

+ Z⊤
i,t−1C

⊤
i (Λ1 − F1)Zt−1 +A⊤

i ft + Z⊤
t−1B

⊤
i ft + Z⊤

i,t−1C
⊤
i ft + εi,t.

(4)

We see that the first term A⊤
i (Λ0 − F0) corresponds to the time-invariant part in the

time-varying intercept ai,t, while the term A⊤
i ft corresponds to the time-invariant part

of the time-varying factor loadings bi,t. To separate the time-invariant part from the
time-varying part, we make the following assumption on the model specification.

ASSUMPTION A.3: (Non sparse time-invariant contribution)
We define the time-invariant contribution as A⊤

i (Λ0 − F0) + A⊤
i ft. We require that

the vectors Ai ∈ RK ,Λ0 ∈ RK , and F0 ∈ RK have a full vector specification, i.e., do
not contain null-elements.

Assumption A.3 ensures that the time-invariant part of a factor loading is always
included in the model specification, so that we can distinguish a factor with a time-
invariant loading from a factor with a time-varying loading for asset i. This assump-
tion is key to analyze which instrument Zt−1 and characteristic Zi,t−1, if needed,
drive the dynamics of the factor loadings bi,t for asset i, and impact on the prediction
E[Ri,t|Ft−1] via (3). Since implementing a penalized two-pass regression given on (4)
is difficult (due to the quadratic form in lagged instruments Zt−1 and Zi,t−1), we rede-
fine the regressors and coefficients, as a generic panel model. Beforehand, let us define
the vector of lagged instruments including the intercept as Z̃t−1 = (1, Z⊤

t−1)
⊤ ∈ Rp̃,

where p̃ = p + 1, and the new matrices B̆i = [Ai|Bi] ∈ RK×p̃ and Λ − F =
[(Λ0 − F0)|(Λ1 − F1)] ∈ RK×p̃ that stack respectively column-wise the elements
of Ai, Bi, and (Λ0 − F0), (Λ1 − F1). The linear transformed regressors are

x2,i,t =
(
x⊤
21,i,t, x

⊤
22,i,t

)⊤
=
(
f⊤
t ⊗ Z̃⊤

t−1, f
⊤
t ⊗ Z⊤

i,t−1

)⊤
∈ Rd2 ,

where d2 = d21 + d22 = Kp̃+Kq, and

x1,i,t =
(
x⊤
11,i,t, x

⊤
12,i,t

)⊤
=
(
vech [Xt]

⊤
, Z̃⊤

t−1 ⊗ Z⊤
i,t−1

)⊤
∈ Rd1 ,

where d1 = d11+d12 = (p̃+1)p̃/2+ p̃q and the symmetric matrix Xt = (Xt,k,l)k,l ∈
Rp̃×p̃ is such that Xt,k,l = Z̃2

t−1,k, if k = l, and Xt,k,l = 2Z̃t−1,kZ̃t−1,l, other-
wise, for k, l = 1, . . . , p̃, where Z̃t,k denotes the k-th component of the vector Z̃t.
The vector-half operator vech [·] stacks the elements of the lower triangular part of a
p̃ × p̃ matrix as a p̃ (p̃+ 1) /2 vector. The first element of vech (Xt) is related to the
time-invariant coefficients A⊤

i (Λ0 − F0), whereas the elements 2, . . . , p̃ are related
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to A⊤
i (Λ1 − F1)Zt−1 + Z⊤

t−1B
⊤
i (Λ0 − F0). Through the above redefinitions of the

regressor, we can write (4) as

Ri,t = β⊤
i xi,t + εi,t, (5)

where xi,t = (x⊤
1,i,t, x

⊤
2,i,t)

⊤ is of dimension d = d1 + d2 and βi = (β⊤
1,i, β

⊤
2,i)

⊤ is
defined as

β1,i =
(
β⊤
11,i, β

⊤
12,i

)⊤ ∈ Rd1 ,

β11,i = Np̃

[
(Λ− F )

⊤ ⊗ Ip̃

]
vec[B̆⊤

i ] ∈ Rd11 ,

β12,i = Wp̃,q

[
(Λ− F )

⊤ ⊗ Iq

]
vec[C⊤

i ] ∈ Rd12 ,

Np̃ =
1

2
D+

p̃ (Wp̃ + Ip̃2) ∈ R[(p̃+1)p̃/2+p̃q]×p̃2

,

β2,i =
(
β⊤
21,i, β

⊤
22,i

)⊤
=
(
vec[B̆⊤

i ]⊤, vec[C⊤
i ]⊤

)⊤
∈ Rd2 ,

and where Wp̃,q is the commutation matrix such that vec[M⊤] = Wp̃,q vec[M ]. More-
over, D+

p̃ denotes the ((p̃+1)p̃/2+ p̃q)× p̃2 Moore-Penrose inverse of the duplication
matrix Dp̃ such that vech[M ] = D+

p̃ vec[M ], for any matrix p̃ × p̃ matrix M . The
following section describes the selection and estimation part of the model.

3 Estimation and selection
This section implements the two-pass regression of Black et al. (1972) and Fama and
MacBeth (1973), while selecting the contributing variables in the time-varying factor
loadings. The penalized first-pass (time-series) regression selects and estimates the
non-zero coefficients βi for i = 1, . . . , n, ensuring a model specification compatible ex-
ante with the no-arbitrage restrictions through the aOGL approach of Percival (2012).
The second-pass regression relies on the Weighted Least-Square (WLS) estimator of
GOS to estimate the vector ν, and takes the adaptive LASSO (aLASSO) estimator
of Zou (2006) to select and estimate the matrix F of coefficients of the conditional
expectation of the factors.

3.1 First-pass regression
The goal of the penalized first-pass regression is to select and estimate the factor load-
ings for each asset i = 1, . . . , n, while keeping their respective time-invariant contri-
bution fully specified as described in Assumption A.3. Moreover, it aims at selecting
variables ensuring a proper model specification consistent ex-ante with the no-arbitrage
restrictions for each stock. A possible solution to ensure that these restrictions are sat-
isfied while allowing to select variables in the first-pass regression is to consider a
LASSO-type estimator based on appropriate predefined sets of indices corresponding
to groups of variables. We define G ⊂ P({1, . . . , d}) as the set of indices corre-
sponding to all possible (potentially overlapping) groups in line with the no-arbitrage
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restrictions, where P({1, . . . , d}) denotes the power set of {1, . . . , d}. Moreover, we
let g ∈ G denote a possible group and we require that the indices associated to all co-
variates belong to at least one group. Under the framework discussed in the previous
sections, we define below the restrictions on G such that a model selection procedure
based on G satisfies ex-ante the no-arbitrage restrictions by construction.

RESTRICTION R.1: The time-invariant coefficients belong to a single group, where no
amount of shrinkage is applied.

RESTRICTION R.2: Each covariate related to the non-diagonal elements of Xt belongs
to a single group.

RESTRICTION R.3: For instrument Z̃t−1,l, for l = 1, . . . , p̃, if all its correspond-
ing Z̃t−1,lft,k, for k = 1, . . . ,K, in x2,i,t are not included in the estimated model,
only the regressors Z̃2

t−1,l, related to the diagonal element of Xt, in x1,i,t should not
be included. For characteristic Zi,t−1,m, for m = 1, . . . , q, if all its corresponding
Zi,t−1,mft,k for k = 1, . . . ,K, in x2,i,t are not included in the estimated model, only
the regressors Zi,t−1,m in x1,i,t should not be included.

RESTRICTION R.4: For instrument Z̃t−1,l, for l = 1, . . . , p̃, if at least one of its cor-
responding Z̃t−1,lft,k, for k = 1, . . . ,K, in x2,i,t are included in the estimated model,
only the regressors Z̃2

t−1,l, related to the diagonal element of Xt, in x1,i,t should be
included. For characteristic Zi,t−1,m, for m = 1, . . . , q, if at least one of its corre-
sponding Zi,t−1,mft,k, for k = 1, . . . ,K, in x2,i,t are included in the estimated model,
only the regressors Zi,t−1,m in x1,i,t should be included.

These restrictions ensure that Assumption A.3 is satisfied and that a model selec-
tion procedure guarantees that the instrument Z̃t−1,l or characteristic Zi,t−1,m exist
in either both x1,i,t and x2,i,t, or neither. More specifically, Restriction R.1 is related
to Assumption A.3, which requires the coefficients in βi related to the time-invariant
contribution to be always included in the selected model. Restriction R.2 is related to
Assumption A.1 and Assumption A.2. Under the DGP in (4), and from the definition of
vech(Xt), we can see that the off-diagonal of Xt in vech[Xt] cannot be assigned to any
groups. We cannot assign 2Z̃t−1,sZ̃t−1,l to a group a priori, since its contribution can
come from either the specification in Assumption A.1 or A.2. Restriction R.2 reflects
this point, and imposes no specific group-structure to those covariates which are pe-
nalized individually. Restrictions R.3 and R.4 are critical in the model building. They
constrain the set of possible models only to those compatible with the no-arbitrage re-
strictions, so that we do not introduce arbitrage ex-ante in the model specified in (5).
We want to avoid that the no-arbitrage restriction ai,t = b⊤i,tνt is violated by construc-
tion ex-ante in the specification.

To satisfy the above restrictions, the Group-LASSO of Yuan and Lin (2006) con-
strains the set of possible models. For its implementation, we need to create a group
with all scaled factors and their corresponding terms in the intercept, hence it implies
that we select either all scaled factors (keep the group) or none of them (delete the
group). To illlustrate this point, let us consider the following simple case with one
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common instrument, say inflation, and the Fama-French five-factor model (Fama and
French, 2015). The Group-LASSO would force us to select either all scaled factors
(product between lagged inflation and the factors), or none of them. It removes the
possibility that only a subset of them is relevant; for example, only the product of in-
flation and the market factor matters for the dynamics of excess returns. Besides, we
could think of using multiple groups, each one containing one scaled factor and its as-
sociated instrument. Jacob et al. (2009) investigate such a proposal and show that this
approach is not appropriate as the Group-LASSO removes all groups if at least one of
those groups is not selected.

To tackle this problem, Jacob et al. (2009) propose the OGL, or latent Group-
LASSO. They introduce the latent variables vg ∈ Vg = {x ∈ Rd| supp(x) = g},
for g ∈ G and where supp(x) denotes the support of x, i.e., the set of indices i ∈
{1, . . . , d} such that xi ̸= 0. Moreover, we define vg = (v⊤g1 , . . . , v

⊤
gJ )

⊤ ∈ Rd,V(β) =
{vg : g ∈ G}, s.t. β =

∑
g∈G vg , and J = |G|, | · | denotes the cardinality of a set and

gj , j = 1, . . . , J , denotes the j-th element of G. Hence, the OGL estimator is the
solution of the following optimization problem:

β̂i = argmin
βi∈Rd

1

Ti

∑
t

(
Ii,tRi,t − β⊤

i Ii,txi,t

)2
+ 2δ∥βi∥2,1,G , (6)

with the penalty term ∥βi∥2,1,G defined as

∥βi∥2,1,G = min
V(β)

∑
g∈G

∥vg∥, (7)

where ∥ · ∥ denotes the l2-norm. In this work, we consider the adaptive version of OGL
(aOGL) studied by Percival (2012), for which the estimator is described as follow:

β̂i = argmin
βi∈Rd

 1

Ti

∑
t

(
Ii,tRi,t − β⊤

i Ii,txi,t

)2
+ 2δmin

V(β)

∑
g∈G

δg∥vg∥

 , (8)

where δg ≥ 0 denotes the data-dependent (adaptive) weight associated to group g, and
δ ≥ 0 corresponds to the overall amount of shrinkage. There are different strategies
available in the literature for the Group LASSO and OGL to get estimator consistency
and support selection consistency. They are based on the irrepresentable condition
(Bach, 2008; Jacob et al., 2009), adaptive shrinkage (Nardi and Rinaldo, 2008; Percival,
2012) and group sparsity (Lounici et al., 2011). We choose adaptive shrinkage since it
simplifies the presentation and derivation of our asymptotic results in a random design
setting. Since our goal is to shrink toward the model that includes only the time-
invariant contribution of the covariates, the weight associated with the first element
of δg is equal to zero. The penalty term in (7) leads to a solution which is a union
of the groups due to the latent variables vg . One strategy to solve the minimization
problem given in (6) and (8) is the duplication of covariates put forward in Jacob et al.
(2009), that we adapt to our setting. In line with Restrictions R.1 to R.4, we consider
4 different group types. The first group includes the time-invariant intercept and time-
invariant factors, and is not penalised. The second set of groups contains the covariates
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related to Restriction R.2, which are penalized individually. The next two sets of groups
consider Restrictions R.3 and R.4. They respectively group the terms in Z2

t−1 and
Zi,t−1 from x1,i,t with their corresponding scaled factors in x2,i,t. The columns of the
initial vector with the elements indexed by the group g, which need to be duplicated,
create a new vector of duplicated regressors. Then, we can solve the optimization
problem in (8) considering the duplicated regressors (instead of the initial ones), using
the existing standard algorithm for the Group-LASSO. Appendix D describes in detail
how to construct those groups complying with the no-arbitrage restrictions ex-ante, and
yielding the full vector of duplicated regressors used in the numerical optimisation.

Let us now compare the number of possible models under aOGL and aLASSO
methods. For the aOGL approach, we can associate a model to every subset of G. In-
deed, consider W ⊆ G, then this subset is associated to the set SW =

⋃|W|
l=1 Wl of

indices. It allows us to enumerate the number 2J−1 of possible models under appro-
priate grouping. That number is typically much lower in empirical applications than
the number 2d−n1 of possible models with a LASSO penalization, where n1 is the
number of covariates associated to the time-invariant contribution group. We get the
ratio 2J−1/2d−n1 = 2−(pq+p+q), and we can see that, for large p and q, the aLASSO
method examines many more possibilities. Besides, from Assumption A.1, we have
min(p, q) ≥ 1, and deduce the upper bound:

2J−1

2d−n1
≤ 1

8
. (9)

To further illustrate the grouping structure and the importance of Restrictions R.1
to R.4, let us consider the following simple two-factor model with a single common
instrument and a single characteristic. Here, we have K = 2, p̃ = 2, and q = 1, with
Z̃t−1 = (1, Zt−1)

⊤ ∈ R2, so that the regressors xi,t = (x⊤
1,i,t, x

⊤
2,i,t)

⊤ become

x1,i,t = (x1,i,t,1, x1,i,t,2, x1,i,t,3, x1,i,t,4, x1,i,t,5)
⊤

= (1, 2Zt−1, Z
2
t−1, Zi,t−1, Zt−1Zi,t−1)

⊤ ∈ R5,

and

x2,i,t = (x2,i,t,1, x2,i,t,2, x2,i,t,3, x2,i,t,4, x2,i,t,5, x2,i,t,6)
⊤

= (ft,1, Zt−1ft,1, ft,2, Zt−1ft,2, Zi,t−1ft,1, Zi,t−1ft,2)
⊤ ∈ R6,

with their respective coefficients β1,i = (β1,i,1, β1,i,2, β1,i,3, β1,i,4, β1,i,5)
⊤ and β2,i =

(β2,i,1, β2,i,2, β2,i,3, β2,i,4, β2,i,5, β2,i,6)
⊤. From the definition of grouping struc-

ture in Apprendix D, we construct the set of six groups made of the covariates:
(x1,i,t,1, x2,i,t,1, x2,i,t,3)

⊤ for the time-invariant contribution, (x1,i,t,2) for the co-
variate associtated to Restriction R.2, (x1,i,t,3, x2,i,t,2)

⊤ and (x1,i,t,3, x2,i,t,4)
⊤

grouping the covariates in Z̃t−1, and finally (x1,i,t,4, x1,i,t,5, x2,i,t,5)
⊤ and

(x1,i,t,4, x1,i,t,5, x2,i,t,6)
⊤ grouping the covariates in Z̃i,t−1. Stacking those vectors

row-wise in a single column defines the full vector of duplicated covariates for the nu-
merical optimisation in the aOGL estimation. Besides, we can use this simple example
to illustrate two possible manners to introduce ex-ante arbitrage through careless mod-
eling. Removing the covariates x2,i,t,2 = Zt−1ft,1 and x2,i,t,4 = Zt−1ft,2 from the
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x1,1 x1,2 x1,3 x1,4 x1,5 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

M17

M18

M19

M20

M21

M22

M23

M24

M25

M26

M27

M28

M29

M30

M31

M32

Table 1: Set of possible models according to Restrictions R.1-R.4 when K = 2, p̃ = 2,
and q = 1. A check denotes inclusion of a covariate in model Mj . A cross denotes
exclusion of a covariate in Mj . For notational simplicity, we remove i and t in the
column labeling such that xl,i,t,k = xl,k

.11



full model might introduce ex-ante arbitrage through x1,i,t,3 = Z2
t−1 since we miss its

associated scaled factors in x2,i,t. Here, the coefficient associated with x1,i,t,3 might
be shrunk to zero by the aLASSO estimator, avoiding ex-post a model with arbitrage.
On the contrary, removing the quadratic term x1,i,t,3, while keeping its corresponding
scaled factors x2,i,t,2 and x2,i,t,4, introduces ex-ante arbitrage in the model by con-
struction, since we cannot estimate the coefficient of x1,i,t,3, when that covariate is
absent from the model.

Table 1 lists the set M = {M1, . . . ,M32} of possible models that respect Re-
strictions R.1 to R.4 with M1 being the model with the time-invariant contribution
only (Assumption A.3). The aOGL method gives 25 possible models. It is consider-
ably smaller than the 28 = 256 possible models under the aLASSO method. Here, we
reach the upper bound (9) since p = q = 1. We can see that our regularization ap-
proach restricts the space of searched models, even in this simple time-varying setting,
and hence permits a sound exploration of the possible models consistent with finance
theory. Moreover, the two specifications with arbitrage described in the above lines are
not in the set M of models induced by the grouping structure of the aOGL approach,
strengthening conducive arguments for our proposed method.

Having showed the advantages of the aOGL in terms of model building, we
now state the asymptotic result of the first-pass regression. Beforehand, we intro-
duce some notations from Percival (2012). Let us define the two sets of indices
Hi = {l ∈ {1, . . . , d} : βi,l ̸= 0}, Hc

i = {l ∈ {1, . . . , d} : βi,l = 0}, correspond-
ing to the sets of non-zero and zero true coefficient βi. Moreover, we take

GHi = {g ∈ G : g ⊆ Hi},
GHc

i
= {g : g ⊆ Hc

i },
GH0,i

= {g : |g ∩Hi| > 0; |g ∩Hc
i | > 0},

the sets of groups in which the indices are respectively all non-zero, all zero and a mix
of zero and non-zero in βi. To investigate the asymptotic properties of the estimator in
(8), we make the following assumptions:

ASSUMPTION A.4: plimTi→∞ Q̂x,i = Qx,i, where Q̂x,i = 1
Ti

∑
t Ii,txi,tx

⊤
i,t and

Qx,i = E[xi,tx
⊤
i,t|γi] is positive definite.

ASSUMPTION A.5: E[εi,t|εi,t−1,Ft] = 0 with εi,t = {εi,t, εi,t−1, . . .} and there exists
a positive constant M such that for all n, T , 1

M ≤ σ2
i ≤ M, i = 1, ..., n, with

σ2
i = E[ε2i,t|γi].

ASSUMPTION A.6: There exists a neighborhood in Rd around βi such that the decom-
position of any vector b in the neighborhood has unique decomposition {vbi,g} min-
imizing the norm ∥βi∥2,1,G . In particular, the decomposition {vbi,g}, minimizing the
norm ∥βi∥2,1,G is unique. Further, this decomposition is such that {vbi,0} = 0, for all
g ∈ GH0,i .

Assumption A.4 is a usual assumption for the standard OLS solution to be consis-
tent (see Assumption B.1 in GOS), while Assumption A.5 allows for or a martingale
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difference sequence for the error terms (see Assumption A.1 in GOS). Assumption A.6
is discussed in Percival (2012) and addresses the uniqueness of decomposition of βi.
We now state the main result for the first-pass regression, which corresponds to Theo-
rem 2 derived by Percival (2012) in the fixed design framework.

LEMMA 1: (Asymptotic normality of β̂i)
Under Assumptions APR.1 to APR.3, SC.1 and SC.2 of GOS, Assumptions A.4 to A.6,
let βinit

i be an initial
√
Ti-consistent estimator and let {vinit

i,g} = V(βinit
i ) be any decom-

position minimizing the norm ∥βinit
i ∥2,1,G . For all i ∈ {1, . . . , n}, let δg = 1/∥vinit

i,g∥
γ̌ ,

for γ̌ > 0, such that T
(γ̌+1)/2
i δ → ∞. If

√
Tiδ → 0, then, as Ti → ∞, we get the

convergence in distribution: √
Ti

(
β̂i − βi

)
=⇒ Vi,

where the vector Vi has entries

VHi
∼ N(0, σ2

iQ
−1
Hi,x,i

),

VHc
i
= 0,

where QHi,x,i is the submatrix of Qx,i with indices in Hi.

For the above result to hold, the vector βinit
i needs to be

√
Ti-consistent. More

specifically, βinit
i is any aTi

-consistent estimator where aTi
→ ∞, and aγ̌Ti

√
Tiδ → ∞.

Moreover, in the context of the aOGL, the decomposition {vinit
i,g} must be unique.

Lemma 4 in Percival (2012) shows
√
Ti-consistency of the {vOLS

i,g }, which is a example
of a potential solution for {vinit

i,g} in the case of fixed covariates. In our framework, with
the uniqueness assumption of the decomposition, we can use the ridge regression esti-
mator as {vinit

i,g}. The distributional result of Lemma 1 is key in deriving the asymptotic
properties of the second-pass regression discussed in the next section.

To control for short sample size, and potentially numerical instability on the
inversion of matrix Q̂x,i, we consider the trimming device defined in GOS,
such that 1χ

i = 1{CN(Q̂x,i) ≤ χ1,T , τi,T ≤ χ2,T }, where CN(Q̂x,i) =√
eigmax(Q̂x,i)/ eigmin(Q̂x,i) is the condition number of the matrix Q̂x,i, eigmin(·)

denotes the minimum eigenvalue, and τi,T = T/Ti. The first trimming based on
CN(Q̂x,i) ≤ χ1,T selects the assets for which the time-series regression is not badly
conditioned, while the second trimming based on τi,T ≤ χ2,T keeps only the assets for
which samples are not too short.

3.2 Second-pass regression
The second-pass regression aims at computing the cross-sectional estimator of ν. For
that purpose, we implement the WLS estimator of GOS, while accounting for the sparse
model specification in the first-pass regression for all i = 1, . . . , n. For that purpose,
we introduce the indicator vector 1βi

∈ Nd, such that 1βi,l
= 1 if βi,l ̸= 0, and

0 otherwise, for l = 1, . . . , d, that we decompose in the following manner: 1βi =
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(1⊤
β11,i

,1⊤
β12,i

,1⊤
β21,i

,1⊤
β22,i

)⊤, where 1β11,i ∈ Nd11 , 1β12,i ∈ Nd12 , 1β21,i ∈ Nd21 and
1β22,i

∈ Nd22 . To implement the WLS estimator for the vector ν, we need to account
for the different number of regressors selected through the aOGL approach. Hence, in
the same spirit as in Chaieb et al. (2021), we introduce the following selection matrices
that help us transforming the xi,t into their sparse counterparts. The matrices D̃i and
Ẽi are the d11 × d11,i and d12 × d12,i such that columns with all zeros have been
removed in diag[1β11,i

] and diag[1β12,i
]. Similarly, the matrices B̃i and C̃i are the

d21,i × d21 and d22,i × d22 matrices such that rows with all zeros have been removed
in diag[1β21,i ] and diag[1β22,i ]. Moreover, we define xHi,i,t as the vector of regressors
indexed by Hi after the selection of the first pass.

Based on the selection matrices D̃i, Ẽi, B̃i, and C̃i , we rewrite the parameter re-
striction in (2) such that

β1,i =

(
D̃⊤

i Np̃

[
(Λ− F )

⊤ ⊗ Ip̃

]
B̃⊤

i B̃i vec
[
B̆⊤

i

]
,

Ẽ⊤
i Wp̃,q

[
(Λ− F )

⊤ ⊗ Iq

]
C̃⊤

i C̃i vec
[
C⊤

i

])⊤

,

β3,i =

([
D̃⊤

i Np̃

(
B̆⊤

i ⊗ Ip̃

)]⊤
,
[
Ẽ⊤

i Wp̃,q

(
C⊤

i ⊗ Ip
)]⊤)⊤

,

where Np̃ is defined in (2), yielding the asset pricing restrictions expressed in the newly
defined β1,i and β3,i as β1,i = β3,iν, ν = vec[Λ⊤ − F⊤]. We obtain β3,i from the
following identity,

vec[β⊤
3,i] = Ja,iβ2,i,

Ja,i =

(
J11,i 0
0 J22,i

)
,

J11,i = Wd11,i,Kp

[
IKp ⊗

(
D̃⊤

i Np̃

)]
{IK ⊗ [(Wp ⊗ Ip) (Ip ⊗ vec [Ip])]} B̃⊤

i ,

J22,i = Wd12,i,Kp

[
IKp ⊗

(
Ẽ⊤

i Wp,q

)]
{IK ⊗ [(Wp,q ⊗ Ip) (Ip ⊗ vec [Iq])]} C̃⊤

i .

We can now implement the following second-pass regression WLS estimator

ν̂ = Q̂−1
β3

1

n

∑
i

β̂⊤
3,iŵiβ̂1,i,

where ν̂ denotes the estimator of ν, Q̂β3 = 1
n

∑
i β̂

⊤
3,iŵiβ̂3,i , and weights are estimates

of wi = 1χ
i (diag [vi])

−1. Moreover, the vi are the asymptotic variances of the stan-
dardized errors

√
T (β̂1,i− β̂3,iν) in the cross-sectional regression for large T such that

vi = τiC
⊤
ν,1,iQ

−1
Hi,x,i

SiiQ
−1
Hi,x,i

Cν,1,i, where Sii = plimT→∞
1
T

∑
t σ

2
i xHi,i,tx

⊤
Hi,i,t

and Cν,1,i = (E⊤
1,i − (Id1,i

⊗ ν⊤)Ja,iE
⊤
2,i)

⊤, E1,i = (Id1,i
, 0d1,i×d2,i

)⊤, E2,i =

(0d2,i×d1,i
, Id2,i

)⊤. We use the estimates v̂i = τi,TC
⊤
ν̂1
Q̂−1

Hi,x,i
ŜiiQ̂

−1
Hi,x,i

Cν̂1
, where

Ŝii = 1
Ti

∑
t Ii,tε̂

2
i,txHi,i,tx

⊤
Hi,i,t

, ε̂i,t = Ri,t − β̂⊤
i xHi,i,t together with Cν̂,1,i =

(E⊤
1,i −

(
Id1,i

⊗ ν̂⊤1,i
)
Ja,iE

⊤
2,i)

⊤. To estimate Cν,1,i, we use the OLS estimator
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given by ν̂1,i = (
∑

i 1
χ
i β̂

⊤
3,iβ̂3,i)

−1
∑

i 1
χ
i β̂

⊤
3,iβ̂1,i. We estimates the weights with

ŵi = 1χ
i (diag [v̂i])

−1.
To study the asymptotic properties of the estimator ν̂, we consider the following

assumption on the size of the cross-section n.

ASSUMPTION A.7: The size of the cross-section is such that n = O(T γ̄) for γ̄ > 0.

Assumption A.7 puts a bound on the growth of the cross-section such that it does
not grow faster that some power of the sample size T . In Proposition 1, we provide the
consistency result for the estimator ν̂.

PROPOSITION 1: (Consistency of ν̂)
Under Assumptions APR.1 to APR.4, SC.1 and SC.2, B.1 of GOS and Assumptions A.1,
A.2, A.4 to A.7, and B.1 to B.5, we have that ∥ν̂ − ν∥ = op (1) , when n, T → ∞.

Assumptions B.1 to B.5 are discussed in Appendix A. This asymptotic property of
ν̂ is studied under the double asymptotics n, T → ∞ in GOS. They show consistency
of ν̂ under a full representation of βi, while we assume a sparse representation of βi.
Hence, our result differs in that respect.

Let us now recover the sparse structure of the conditional expectation of the factors
under Assumption A.2. For that purpose, we consider the aLASSO estimator of Zou
(2006) to select and estimate the matrix F of coefficients. We solve the following
minimization problem for all factor fk,t, k = 1, . . . ,K, such that the estimator of the
k-th row of the matrix F is given by:

(F̂0,k, F̂1,k) = argmin
(F0,k,F1,k)∈Rp̃

∑
t

(fk,t − F0,k − F1,kZt−1)
2
+ δ

p∑
j=1

ŵj |F1,k,j |, (10)

where δ accounts for the overall amount of shrinkage as in (8), and ŵj are data de-
pendent weights. Typically, the weights are defined as ŵj = 1/|F̂OLS

1,k,j |
γ̌ for γ̌ > 0,

where F̂OLS
1,k,j are the OLS estimates of F1,k,j , the true values in the vector parameter

F1,k. The estimate F̂ stacks row-wise the elements of (F̂0,k, F̂1,k) obtained from (10).
Under Assumption A.3, no amount of shrinkage is applied to F0 in F , to always keep
the time-invariant contribution in the model. We get the final estimates of the sparse
matrix Λ from the relationship vec[Λ̂⊤] = ν̂ +vec[F̂⊤], which yields λ̂t = Λ̂Zt−1. To
derive the asymptotic consistency of Λ̂, we rely on Proposition 1 for the estimator ν̂.
Let us consider the following assumption:

ASSUMPTION A.8: We have plimT→∞ 1/T
∑T

t=1 Z̃t−1Z̃
⊤
t−1 = E[Z̃t−1Z̃

⊤
t−1], where

E[Z̃t−1Z̃
⊤
t−1] is a positive definite matrix.

Assumptions A.8 is a standard regularity assumption on the design matrix for linear
regression model, in order to obtain a unique solution for (F0,k, F1,k). Under the above
Assumption A.8, and Proposition 1, the following proposition gives the consistency
result for the estimator Λ̂.

PROPOSITION 2: (Consistency of Λ̂)
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Under Assumptions APR.1 to APR.4, SC.1 and SC.2, B.1 of GOS, Assumptions A.1,
A.2, A.4 to A.8 and B.1 to B.6, we have that ∥Λ̂− Λ∥ = op (1) , when n, T → ∞.

Proof of Proposition 2 is direct since from the definition of Λ̂, ∥ vec[Λ̂⊤ − Λ⊤]∥ ≤
∥ν̂ − ν∥ + ∥ vec[F̂⊤ − F⊤]∥. From Proposition 1, we know that ∥ν̂ − ν∥ = op(1).
Moreover, the aLASSO estimator in (10) is a special case of the estimator in (8), where
each group is a singleton. Hence, considering Assumptions A.8 and B.6 which are the
counterpart of Assumptions A.4 and A.5 respectively, we get that the result of Lemma 1
applies to (10). Hence, ∥ vec[F̂⊤ − F⊤]∥ = op(1). Therefore, we get consistency of
λ̂t, supt ∥λ̂t − λt∥ = op(1), under Assumptions A.8 and B.6.

4 Simulation study
In this section, we study how the selection and estimation procedures of Section 3 per-
form in finite samples. This first simulation study aims at investigating the prediction
and selection performance of the aOGL method and at comparing it with the aLASSO
method in a very sparse environment (Assumptions A.1 and A.2). To that purpose, we
simulate 500 replicates from the DGP in (4) for a (randomly drawn) single asset i with
sample size Ti = 500. We split that full sample in a training subsample and a testing
subsample of 450 and 50 observations. The testing set is used for out-of-sample predic-
tion performance assessment, where we compare the realized excess returns Ri,t with
their predictions R̂i,t = b̂⊤i,tλ̂t under the model estimated on the training set. Errors in
(4) are i.i.d. such that εi,t ∼ N (0, σ2), where σ = 0.09. We match the model spec-
ification described in our empirical study (Section 5.1) for the common instruments
Zt−1 ∈ R6 and stock-specific instruments Zi,t−1 ∈ R13. For the factors, we use the
Fama-French five-factor model (Fama and French, 2015) described in the next section,
namely we condition w.r.t. the values ft observed in our empirical study for the five
factors. We also condition w.r.t. the observed Zt−1 and Zi,t for asset i of our empirical
study. We only draw the error terms as in a parametric bootstrap.

In accordance with sparsity in Assumptions A.1 and A.2 and non-sparse time-
invariant contribution in Assumption A.3, we set the matrices Ai, Bi, and Ci according
to their values for asset i in the empirical study, with one non-zero element in Bi and
two non-zero element for Ci. We keep the vector Ai full. We set the corresponding
ai,t in order to avoid ex-ante arbitrage. Since we take very sparse matrices Bi and Ci,
we can view the simulation study as conservative for selection performance assessment
(type of worst-case scenario). It is in line with the estimation outcome for some stocks
in our empirical application. The resulting βi has 28 non-zero coefficients (including
the 6 coefficients induced by the non-sparse time-invariant contribution) over a total of
219 coefficients. The matrices F and Λ are simply set to zero since they do not concern
the aOGL estimator.

The selection and prediction performance is measured through the average Root
Mean Squared Prediction Error (Av(RMSPER)), the average Root Mean Squared Er-
ror for parameter βi (Av(RMSEβ)), the proportion of times the model introduces ar-
bitrage (Arb. (%)), the average number of selected true non-zero coefficients (True+),
and average number of regressors in the selected model (NbReg). Table 2 summarizes
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the results. The aOGL method makes a better job at predicting out-of-sample with
a reduction of 1.7% w.r.t. the aLASSO method. The improvement in the average of
RMSE for βi is 109%. The standard errors are also much lower (reduction of 9.1%
and 91.0% for the Av(RMSPER) and Av(RMSEβ)). Contrary to the aLASSO method,
for which 98.2% of estimated models exhibit arbitrage, the aOGL method selects only
models without introducing ex-ante arbitrage by construction. Since we face less than
100% for the aLASSO method, it sometimes shrinks adequately to zero the coefficients
that should be. The large percentage of models with ex-ante arbitrage delivered by the
aLASSO method is explained by the difficulty of learning the no-arbitrage restrictions
from the finite sample information when we do not provide the grouping structure. The
aOGL method is able to recover in average the 11 true non-zero coefficients (11.26)
while the aLASSO method struggles (7.37). The aOGL method is also more parsi-
monious than the aLASSO method in terms of selected regressors (average of 14.75
versus 16.05).

Method Av(RMSPER) Av(RMSEβ) Arb. (%) True+ NbReg
aOGL 9.60 · 10−2 1.48 · 10−3 0.0 11.26 14.75

(4.38 · 10−4) (9.33 · 10−6) ( - ) (0.20) (0.31)
aLASSO 9.76 · 10−2 3.10 · 10−3 98.2 7.37 16.05

(4.82 · 10−4) (1.04 · 10−4) (1.12) (0.10) (0.61)

Table 2: Performance of estimation and model selection criteria. The methods include
the aOGL and aLASSO. We simulate 500 samples under the true sparse DGP. We
report the average Root Mean Squared Prediction Error (Av(RMSPER)), the average
Root Mean Squared Error for parameter βi (Av(RMSEβ)), the proportion of times the
model does not introduce arbitrage (Arb. (%)), the average number of selected true
non-zero coefficients (True+), and the average number of regressors in the selected
model (NbReg), with their respective standard errors in parenthesis.

Our second simulation set-up focuses on the out-of-sample prediction performance
of the aOGL method in a setting close to our empirical study of Section 5.3. We use a
training sample to estimate the model and a testing sample to gauge its out-of-sample
prediction performance on an equally-weighted portfolio. We consider the same model
specification in terms of ft, Zt−1 and Zi,t−1 as in the first study and implement the
following procedure. We sample randomly a subset of n = 500 assets from Section 5
(training sample), while keeping the same proportion of time-invariant models as in
Table 4. From each asset i in this subset, we simulate Ti observations from Ri,t =
ai,t+b⊤i,tft+εi,t with the coefficients ai,t and bi,t chosen as their aOGL corresponding
values for stock i. The 500× 1 error vector εt at date t is Gaussian with mean zero and
block-diagonal correlation matrix with 10 blocks of equal size 50, where, within each
block matrix, the correlation between εk,t and εl,t is set to corr(εk,t, εl,t) = 0.25|k−l|,
k, l = 1, ..., 50, l ̸= k. The variance of each error εi,t is set equal to 0.05. From
those 500 simulated paths, we implement the aOGL estimation procedure of Section 3,
and compare it with the same procedure, but using the aLASSO estimator instead of the
aOGL estimator to select the covariates in (5). To evaluate the out-of-sample prediction
performance, we simulate one new cross-sectional sample (testing sample) from the
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Methods Av(RMSPE) Av(MAPE)

aOGL 6.39 · 10−2 4.19 · 10−2

(2.18 · 10−3) (7.01 · 10−4)
aLASSO 9.89 · 10−2 4.87 · 10−2

(6.90 · 10−3) (4.30 · 10−3)

Table 3: Out-of-sample prediction performance of an equally-weighted portfolio. We
compare the aOGL and aLASSO methods. We simulate excess return paths for 500
assets under sparse DGPs. We report the average of Root Mean Squared Prediction
Error (Av(RMSPE)), and the average of Mean Absolute Prediction Error (Av(MAPE))
of an equally-weighted portfolio with their respective standard errors in parenthesis.

time-varying factor model for the 500 assets and each date t and compute the prediction
R̂i,t = b̂⊤i,tλ̂t for the 500 stocks and each date t based on the estimator computed
before through the aOGL and aLASSO methods. We finally compute the out-of-sample
Prediction Error (PE) for an equally-weighted portfolio through the difference between
the new simulated 1

500

∑
i Ri,t and its predicted value 1

500

∑
i R̂i,t. We compute the

Root Mean Squared Prediction Error (RMSPE), and the Mean Absolute Prediction
Error (MAPE) over the vector gathering the PE at each out-of-sample date. We repeat
this procedure 100 times to get an average and to compute a standard error. They are
reported in Table 3. We can see that the aOGL method is much better at out-of-sample
predicting excess returns of an equally-weighted portfolio both in terms of average of
MAPE (reduction by 14%) but also in terms of variability as measured by the standard
errors (reduction by 84%). The empirical distribution of the prediction errors is given
in Figure 1. We can see that the aOGL method is centered closer to zero and with a
lower dispersion when compared to the aLASSO method. Those second simulation
results again point in favor of our advocated estimation method.

5 Empirical results
This section investigates the predictive capacity of the aOGL estimator and compares
it with the aLASSO estimator. We also consider a pure time-invariant model, and a
(hybrid) model with constant ν and time-varying risk premia. We use the aLASSO
estimator to gauge the added value of incorporating the no-arbitrage restrictions in
the penalisation approach and the time-invariant models to gauge the added value of
allowing for full time-variation. The latter comparison checks that, when it comes to
return prediction, the complicated model does not necessarily outperform because of
potential overfitting.

5.1 Data description
We extract the stock returns from the CRSP database for US common stocks listed on
the NYSE, AMEX, and NASDAQ, and remove stocks with prices below 5 USD. We
exclude financial firms (Standard Industrial Classification Codes between 6000 and
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6999). The firm characteristics come from COMPUSTAT. The sample begins in July
1963 and ends in December 2019. It gives us T = 678 monthly observations. We
proxy the risk-free rate with the 1-month T-bill rate.

From Freyberger et al. (2020), we consider the following q = 13 firm level charac-
teristics Zi,t−1: change in share outstanding (∆ shrout), log change in the split adjusted
shares outstanding (∆ so), growth rate in total assets (Inv), size (LME), last month vol-
ume over shares outstanding (lturnover), adjusted profit margin (PM), momentum and
intermediate momentum (r12,2 and r12,7), short-term reversal (r2,1), closeness to 52-
week high (Rel_to_high), the ratio of market value of equity plus long-term debt minus
total assets to Cash and Short-Term Investments (ROC), standard unexplained volume
(SUV), and total volume (Tot_vol). We refer to Freyberger et al. (2020) for a detailed
description of those characteristics. We only retain stocks for which all 13 characteris-
tics are non-missing. It produces a sample of n = 6874. For each Zi,t−1, we follow
Freyberger et al. (2020) and compute the cross-sectional rank at each time t− 1 for all
observations (see also Chaieb et al., 2021). For the common instruments Zt−1, we con-
sider the p = 6 following variables: dividend yield (dp), net equity expansion (ntis),
inflation (infl), stock variance (svar), default spread (def_spread), and the term-spread
(term_spread). For each Zt−1, we center and standardize all observations.

We consider the two following sets of factors ft. The first set is the four-factor
model of Carhart (1997), such that ft = (fm,t, fhml,t, fsmb,t, fmom,t)

⊤, where fm,t

is the month t market excess return over the risk free rate, fhml,t, fsmb,t, fmom,t are
respectively the month t returns on zero investment factor-mimicking portfolio for size,
book-to-market, and momentum. Our second set of factors considers the profitability
factor frmw,t and the investment factor fcma,t as in the five-factor model of Fama and
French (2015), such that ft = (fm,t, fhml,t, fsmb,t, frmw,t, fcma,t)

⊤. Our choice for
a parsimonious specification in the factor space is justified by our goal of studying the
selection of common and idiosyncratic instruments Zt−1 and Zi,t−1 that have impacts
on the dynamics of the ai,t, bi,t, and λt. Gagliardini et al. (2019) and Gagliardini
et al. (2020) also report evidence that those factors with time-varying loadings are rich
enough to achieve a weak cross-sectional dependence in the error terms, namely there
are no remaining omitted factors in the error terms.

5.2 In-sample prediction performance and selection results
In this section, we investigate the selection results from the first-pass penalized regres-
sion. We compare the fit of the penalized two-pass procedure with aOGL described in
Section 3 to the aLASSO estimator, where we select the xi,t and estimate their coef-
ficients in the first-pass regression with the aLASSO estimator of Zou (2006) and fit
the WLS estimator for the ν described in Section 2. We compute the estimator F̂ as in
(10). The horse race starts from the same set of initial data described in the previous
section, and the comparison is thus made on the same initial full information. From
the characteristics and common instruments outlined in Section 5.1, under the Carhart
four-factor model, we have d = 5 for the time-invariant model and d = 199 for the
time-varying model. Regarding the five-factor model of Fama and French (2015), we
have d = 6 and d = 219 for the unconditional and conditional specifications. The
number of possible models under the aLASSO method is 2194 (2213) with K = 4
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(K = 5), while the number of possible models under the aOGL method is 297 (2116),
which gives the ratio 2−97, a much lower value than the upper bound 1/8 in (9).

We choose the regularisation parameter in a data dependent way for each stock to
minimize the Akaike Information Criterion (AIC) for both aOGL and aLASSO estima-
tor. As advocated in Greene (2008), we use χ1,T = 15, and require at least 5 years of
data such that χ2,T = 678/60. Because of the trimming, we do not keep the same set
of stocks for each method and each model. Indeed, due to the different models induced
by the first pass for each stock i, the trimming device 1{CN(Q̂x̌,i) ≤ χ1,T }, yields
a different set of stocks for each method. Since we do not wish to introduce multico-
linearity in the second-pass regression, we choose to stick with different sets for each
method. For the aOGL estimator, the aLASSO estimator, and the time-invariant estima-
tor, we end up with 4412, 2225, 4879 for the four-factor model, and 4441, 2097, 4879
for the five-factor model. We can observe that the trimming device for the aLASSO
method is more binding. As seen in the simulation results in Section 4 and in Table 4,
the aLASSO method tends to include more variables, and, as a consequence, increase
its associated condition number. Table 4 reports the percentage (TI (%)) of estimated
models shrunk towards the time-invariant models. For those estimates, we only select
the single group corresponding to Restriction R.1 related to Assumption A.3. Around
two thirds of the stocks require dynamics in their factor loadings. This new empir-
ical result based on a penalization approach illustrates the relevance of allowing for
potential time-variation in modelling excess returns of individual stocks with factor
models. Table 4 also reports the percentage (Arb. (%)) of estimated models with time-
varying loadings and presenting arbitrage, namely selecting covariates violating the
no-arbitrage restrictions. For that computation, both the time-invariant estimates and
aOGL estimates avoid ex-ante arbitrage by construction. In line with our Monte Carlo
results, the aLASSO procedure ends up with all the time-varying models estimated
with arbitrage for both factor specifications. We conclude that the aOGL estimation
achieves parsimony while avoiding arbitrage in time-varying factor models.

Carhart four-factor Fama-French five-factor

Methods TI (%) Arb. (%) Av NbReg TI (%) Arb. (%) Av NbReg

aOGL 38 0 13.24 35 0 14.15
aLASSO 36 100 33.45 31 100 37.20
time-invariant 100 0 5 100 0 6

Table 4: Percentage (TI (%)) of estimated models shrunk towards the time-invariant
specification, percentage (Arb. (%)) of estimated time-varying models presenting ar-
bitrage and average number of regressors selected (Av NbReg) with the Carhart four-
factor and Fama-French five-factor models for the aOGL, aLASSO, and time-invariant
methods. The sample of US equity excess returns begins in July 1963 and ends in De-
cember 2019.

In the three first lines of Tables 5 and 6, we investigate the type of stock excess
returns that exhibit time-variation in the their factor loadings. For both factor specifi-
cations, the longer the sample size, the more “action” is needed for the dynamics of the
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Carhart four-factor

Ti ≤ 6y 6y - 10y 20y - 30y 30y - 40y 40y - 50y ≥ 50y

Nber of stocks 480 1535 1542 921 393 406
Av. # of sel. var. 10.89 10.80 11.45 13.21 14.32 28.81
TI (%) 42.08 44.36 38.59 32.25 27.23 23.65
dp (%) 13.12 12.83 15.89 25.52 41.22 59.36
ntis (%) 16.04 17.79 27.89 40.61 46.06 40.89
infl (%) 27.71 26.58 25.88 32.25 39.44 40.39
svar (%) 21.04 18.76 18.94 15.20 6.87 30.79
def_spread (%) 22.08 23.71 31.97 34.96 42.24 49.51
term_spread (%) 34.58 31.73 29.83 35.94 31.04 27.59

∆ shrout (%) 0.21 0.26 0.39 0.54 0.25 10.34
∆ so (%) 0.00 0.13 0.32 0.98 0.51 10.34
Inv (%) 0.00 0.39 0.32 0.54 0.51 7.64
LME (%) 0.63 0.33 0.26 0.87 0.25 6.65
lturnover (%) 0.83 0.52 0.39 0.98 0.25 7.64
PM (%) 0.21 0.20 0.26 0.54 0.51 6.65
r12,2 (%) 0.63 0.59 0.26 0.87 0.51 10.59
r12,7 (%) 0.21 0.20 0.26 0.11 0.00 10.10
r2,1 (%) 0.00 0.13 0.19 0.76 0.51 7.39
Rel_to_high (%) 0.00 0.39 0.32 0.22 0.25 7.39
ROC (%) 0.63 0.33 0.19 0.76 0.25 6.16
SUV (%) 0.63 0.26 0.13 0.65 0.00 7.14
Tot_vol (%) 0.00 0.13 0.26 0.54 0.51 6.40

Table 5: Selection results sorted by sample size (Ti) for the Carhart four-factor speci-
fication. We first report the number of stocks (Nber of stocks), the average number of
selected variables (Av. # of sel. var.) and the percentage of estimated models shrunk
towards the time-invariant specification (TI (%)) per sample size range. Then we give
the percentage w.r.t. the total number of stocks of each of the 6 variables in Zt−1 and
the 13 variables in Zi,t−1 per stock excess return sample size. The sample of US equity
excess returns begins in July 1963 and ends in December 2019.
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Fama-French five-factor

Ti ≤ 6y 6y - 10y 20y - 30y 30y - 40y 40y - 50y ≥ 50y

Nber of stocks 480 1535 1542 921 393 406
mean # of sel. var. 12.71 12.46 12.88 14.14 15.09 24.76
TI (%) 39.79 40.59 36.12 32.46 30.79 19.70
dp (%) 15.00 13.29 15.30 22.80 32.32 49.26
ntis (%) 18.12 20.91 29.57 39.31 45.04 51.97
infl (%) 31.46 30.81 26.07 33.33 36.64 48.28
svar (%) 24.79 21.50 18.74 15.20 6.87 24.63
def_spread (%) 25.62 25.86 32.49 36.26 40.20 46.80
term_spread (%) 35.83 34.40 32.04 36.48 34.61 40.64

∆ shrout (%) 0.42 0.33 0.65 0.98 0.51 4.93
∆ so (%) 0.42 0.20 0.13 0.76 0.51 5.67
Inv (%) 0.42 0.33 0.52 0.43 0.25 4.68
LME (%) 0.42 0.39 0.32 0.98 0.51 4.19
lturnover (%) 0.63 0.39 0.58 1.09 0.51 0.23
PM (%) 0.00 0.00 0.65 0.65 0.51 3.69
r12,2 (%) 1.04 0.46 0.84 0.76 0.25 5.17
r12,7 (%) 0.21 0.20 0.52 0.65 0.25 4.43
r2,1 (%) 0.42 0.20 0.06 0.43 0.25 4.19
Rel_to_high (%) 0.42 0.33 0.52 0.33 0.25 4.68
ROC (%) 0.42 0.33 0.32 0.98 0.51 3.94
SUV (%) 0.42 0.26 0.39 0.98 0.25 5.17
Tot_vol (%) 0.00 0.00 0.58 0.54 0.51 3.69

Table 6: Selection results sorted by sample size (Ti) for the Fama-French five-factor
specification. We first report the number of stocks (Nber of stocks), the average number
of selected variables (Av. # of sel. var.) and the percentage of estimated models shrunk
towards the time-invariant specification (TI (%)) per sample size range. Then, we give
the percentage w.r.t. the total number of stocks of each of the 6 variables in Zt−1 and
the 13 variables in Zi,t−1 per stock excess return sample size. The sample of US equity
excess returns begins in July 1963 and ends in December 2019.
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Carhart four-factor

fm fhml fsmb fmom

dp (%) 18.44 14.66 15.41 14.59
ntis (%) 23.19 19.28 17.59 22.12
infl (%) 20.68 20.59 17.27 24.82
svar (%) 12.67 10.23 9.22 12.48
def_spread (%) 24.43 20.78 19.93 24.82
term_spread (%) 23.52 20.94 20.52 25.70

∆ shrout (%) 0.88 0.75 0.68 0.78
∆ so (%) 1.07 1.14 0.94 1.11
Inv (%) 0.75 0.62 0.65 0.65
LME (%) 0.62 0.42 0.46 0.39
lturnover (%) 1.11 0.85 0.88 0.85
PM (%) 0.59 1.10 0.62 0.55
r12,2 (%) 1.17 0.85 0.85 0.85
r12,7 (%) 1.01 0.88 0.85 2.73
r2,1 (%) 0.98 0.62 0.59 0.98
Rel_to_high (%) 0.75 0.85 1.51 1.37
ROC (%) 0.88 0.82 0.75 0.91
SUV (%) 0.94 0.78 0.75 0.88
Tot_vol (%) 0.81 0.72 0.65 0.72

Table 7: Selection results for the Carhart four-factor specification. For stocks exhibit-
ing time variation in their factor loadings, we report the percentage of each of the 6
variables in Zt−1 and the 13 variables in Zi,t−1 selected per factor. The sample of US
equity excess returns begins in July 1963 and ends in December 2019.

Carhart four-factor

fm fhml fsmb fmom

dp
ntis
infl
svar
def_spread
term_spread

Table 8: Selection results for the drivers of E[ft|Ft−1] for the Carhart four-factor spec-
ification. A check denotes inclusion of a covariate in Zt−1. The sample begins in July
1963 and ends in December 2019.
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Fama-French five-factor

fm fhml fsmb frmw fcma

dp (%) 16.45 12.49 13.63 8.48 8.95
ntis (%) 23.43 17.87 18.34 13.14 13.09
infl (%) 22.71 18.41 17.84 15.08 14.20
svar (%) 13.73 7.56 9.65 5.21 7.05
def_spread (%) 24.95 19.51 20.34 12.83 15.15
term_spread (%) 26.88 19.51 21.47 14.90 15.18

∆ shrout (%) 0.66 0.51 0.44 0.40 0.32
∆ so (%) 0.73 0.51 0.60 0.40 0.47
Inv (%) 0.32 0.44 0.35 0.23 0.32
LME (%) 0.32 0.16 0.22 0.05 0.19
lturnover (%) 0.44 0.35 0.33 0.25 0.28
PM (%) 0.47 0.37 0.33 0.44 0.32
r12,2 (%) 0.89 0.54 0.51 0.48 0.38
r12,7 (%) 0.63 0.51 0.54 0.44 0.47
r2,1 (%) 0.47 0.35 0.38 0.51 0.19
Rel_to_high (%) 0.60 0.57 0.57 0.66 0.41
ROC (%) 0.73 0.40 0.66 0.37 0.19
SUV (%) 0.85 0.48 0.47 0.55 0.41
Tot_vol (%) 0.51 0.22 0.40 0.33 0.51

Table 9: Selection results for the Fama-French five-factor specification. For stocks
exhibiting time variation in their factor loadings, we report the percentage of each of
the 6 variables in Zt−1 and the 13 variables in Zi,t−1 selected per factor. The sample
of US equity excess returns begins in July 1963 and ends in December 2019.

Fama-French five-factor

fm fhml fsmb frmw fcma

dp
ntis
infl
svar
def_spread
term_spread

Table 10: Selection results for the drivers of E[ft|Ft−1] for the Fama-French five-factor
specification. A check denotes inclusion of a covariate in Zt−1. The sample begins in
July 1963 and ends in December 2019.
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factor loadings. Indeed, the aOGL method selects a time-invariant model for more than
50% of the stocks excess returns exhibiting historical data smaller than 10 years, and
this for both factor specifications. On the contrary, 80% of the models with the longest
sample size (≥ 50 years) need time-variation in their factor loadings.

In the next lines of Tables 5 and 6, we further look at the selected variables among
the 6 in Zt−1 and the 13 in Zi,t−1. Across all sample sizes Ti, the percentages of se-
lected variables in Zt−1 are much higher than the percentages of selected variables in
Zi,t−1. For smaller time spans, some characteristics are never selected. Therefore, it
seems that the common instruments Zt−1 are key drivers of the time variation of the
factor loadings. It is particularly true for the range ≥ 50y. It shows the need of includ-
ing common instruments that pick up the influence of the business cycles on the factor
loading dynamics in larger time spans. For those sample sizes, the higher selection rate
of Zt−1 and Zi,t−1 is not automatically due to the choice of tuning parameters, but to
the higher complexity of the dynamics of factor loading. In long time spans, we need
to capture the heterogeneity of the different states of the economy and of the firms
through time by using additional Zt−1 and Zi,t−1. Further investigation shows that
stock-specific instruments Zi,t−1 are more often selected for small-cap stocks, while
common instruments Zt−1 are more often selected for large-cap stocks. Large-cap
stocks are more homogeneous and so firm characteristics matter less than common in-
struments. While there are no common instruments that are never selected, and this
across all time spans, the proportions far below 100% demonstrate the need to select
instruments in a data-driven way.

In Tables 7 and 9, we report the percentage that the 6 variables in Zt−1 (scaled
factors) and the 13 variables in Zi,t−1 are selected through the aOGL method for both
factor specifications. The percentages of selected common instruments are similar for
the factors fm, fhml, and fsmb shared between the two models. With the Carhart four-
factor specification, we need more variables in Zi,t−1 to describe the dynamics of the
factor loadings in comparison with the Fama-French five-factor specification. In line
with Chaieb et al. (2021), the characteristics are not necessarily paired more often with
their corresponding factors. The size characteristic LME is more often paired with
the market factor fm than with the size factor fsmb. On the contrary, the momentum
characteristics r12,7 and r2,1 are often associated with its corresponding factor fmom.
Finally, Tables 8 and 10 show that the conditional expectations of the factors frmw

and fcma in the Fama-French five-factor specification need less covariates than for the
other factors. The variables ntis and def_spread are selected for all factors.

Let us now investigate in-sample predictability performance. As, in Chaieb et al.
(2021), we decompose the conditional expected return of asset i for month t for both
time-varying factor specifications, as:

E [Ri,t|Ft−1] = ai,t − b⊤i,tνt + b⊤i,tλt = ai,t + b⊤i,tE[ft|Ft−1]. (11)

For such time-varying specifications, the contribution of the pricing errors ai,t − b⊤i,tνt
is often small, revealing that the no-arbitrage restrictions are met for a vast majority of
dates. When they are not, Chaieb et al. (2021) show that incorporating pricing errors,
instead of only relying on b⊤i,tλt in (11), helps to predict future equity excess returns.
Similarly, for the time-invariant models, we decompose the unconditional expected

25



return as:
E [Ri,t] = ai − b⊤i ν + b⊤i λ = ai + b⊤i E[ft]. (12)

For such time-invariant specifications, the contribution of the pricing errors ai − b⊤i ν
is often large. We also consider the case of constant ν and time-varying risk premia λt

(λt&ν), for which we decompose the conditional expected return as

E [Ri,t|Ft−1] = ai − b⊤i ν + b⊤i λt = ai + b⊤i E[ft|Ft−1]. (13)

In such a hybrid model (Avramov, 2004), the time-variation in E[Ri,t|Ft−1] only
comes from the time-variation in E[ft|Ft−1] since ν is constant because of the no-
arbitrage restrictions with constant bi and ai.

To compare the prediction performance of the four estimation approaches, we com-
pute the RMSPE of an equally-weighted portfolio for the Carhart four-factor model and
Fama-French five-factor model. Equal weighting corresponds to cross-sectional aver-
aging. Chaieb et al. (2021) also uses this weighting scheme. For that portfolio, we
compute the PE by comparing the prediction made at time t by each model ((11), (12)
and 13) to the forward 12-months realized excess returns, namely the average of the
realized excess returns over the next 12 months. Table 11 reports the RMSPE, as well
as the Av(|PE|) and Std(|PE|) for the Carhart four-factor model and Fama-French five-
factor model specifications. The aOGL method performs better than its natural com-
petitor, the aLASSO, even for that very diversified stable portfolio, where we expect
differences in prediction performance to be attenuated. It is comparable in terms of the
RMSPE to the λt&ν method, with a lower Std(|PE|). Figure 2 displays the correspond-
ing boxplots of the PE computed at each month for each method. The boxplots for the
aOGL method in Figure 2 are narrower than for the aLASSO method, and comparable
for the two other methods. Those predictability improvements against the aLASSO
approach provide further evidence in support for the aOGL approach advocated for
the first-pass regression, so that we can incorporate model parameter restrictions to
get models compatible ex-ante with the no-arbitrage restrictions. To further investi-
gate time-varying predictability, Figures 4 to 7 show the forward 12-months realized
excess returns for the equally-weighted portfolio and compare them with the predicted
excess returns computed from (11) and (12) for the two methods with penalisation,
respectively for the Carhart four-factor and Fama-French five-factor specifications. In
both Figures 4 and 6, the aOGL predicted excess return paths (red plain line) overall
reconcile well with the realized excess returns (black dashed line). On the contrary,
the aLASSO method in Figures 5 and 7 does not reconcile well the predicted excess
returns with the realized excess returns and sometimes predicts large negative excess
returns, which is at odd with a positive reward expected from taking risks. The ob-
served differences in the decomposition between estimates of ai,t (orange shaded area)
and of b⊤i,tE[ft|Ft−1] (blue shaded area) come from the selected regressors in the first
pass. Since the aLASSO penalization ends up with time-varying models presenting ar-
bitrage, we observe larger values for estimated âi,t, especially during the recession pe-
riods (gray areas) determined by the National Bureau of Economic Research (NBER).
The aOGL method avoids putting covariates in estimated âi,t that should not be there
because of the no-arbitrage restrictions. Besides, the estimated path for ai,t is close to
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zero with the aOGL method as it should be if we believe that the factors are most of
the time fully tradable.

Carhart four-factor Fama-French five-factor

Methods RMSPE Av(|PE|) Std(|PE|) RMSPE Av(|PE|) Std(|PE|)

aOGL 1.46 · 10−2 1.12 · 10−2 0.93 · 10−2 1.49 · 10−2 1.16 · 10−2 0.93 · 10−2

aLASSO 1.62 · 10−2 1.27 · 10−2 1.01 · 10−2 2.14 · 10−2 1.67 · 10−2 1.35 · 10−2

TI 1.79 · 10−2 1.36 · 10−2 1.18 · 10−2 1.37 · 10−2 1.02 · 10−2 0.91 · 10−2

λt&ν 1.45 · 10−2 1.08 · 10−2 0.97 · 10−2 1.46 · 10−2 1.08 · 10−2 0.98 · 10−2

Table 11: Root Mean Squared Prediction Error (RMSPE), Mean Absolute Prediction
Error (Av(|PE|)) and Standard Deviation of the Absolute Prediction Error (Std(|PE|))
of an equally-weighted portfolio with the Carhart four-factor and Fama-French five-
factor models for the aOGL, aLASSO, time-invariant (TI) and λt&ν methods. The
sample of US equity excess returns begins in July 1963 and ends in December 2019.

5.3 Out-of-sample prediction performance
In this section, we compare the out-of-sample prediction performance for the same
methods used in the previous section. Here, we compute PE but for data that never
enter into model estimation. We follow a similar approach to Gu et al. (2020). We
split the sample into two subsamples, one for training and one for testing. We estimate
the models from July 1963 to December 2009 and compute PE from January 2010 to
December 2019 (recent period). We repeat the same analysis for a training period from
July 1963 to December 1999 and a testing period from January 2000 to December 2009
(older period). We closely follow the same setting as in the previous section, the only
difference being that we separate the subsample used for estimation from the one used
for prediction performance assessment.

Carhart four-factor

Jan. 2000 to Dec. 2009 Jan. 2010 to Dec. 2019

Methods RMSPE Av(|PE|) Std(|PE|) RMSPE Av(|PE|) Std(|PE|)

aOGL 1.58 · 10−2 1.23 · 10−2 1.00 · 10−2 1.34 · 10−2 1.06 · 10−2 0.83 · 10−2

aLASSO 2.43 · 10−2 2.03 · 10−2 1.37 · 10−2 7.44 · 10−2 6.17 · 10−2 4.18 · 10−2

TI 1.70 · 10−2 1.32 · 10−2 1.08 · 10−2 1.70 · 10−2 1.32 · 10−2 1.08 · 10−2

λt&ν 1.57 · 10−2 1.24 · 10−2 0.96 · 10−2 1.79 · 10−2 1.31 · 10−2 1.22 · 10−2

Table 12: Out-of-sample Root Mean Squared Prediction Error (RMSPE), Mean Ab-
solute Prediction Error (Av(|PE|)) and Standard Deviation of the Absolute Prediction
Error (Std(|PE|)) of an equally-weighted portfolio with the Carhart four-factor model
for the aOGL, aLASSO, time-invariant (TI) and λt&ν methods. The testing periods are
Jan. 2000 to Dec. 2009 and Jan. 2010 to Dec. 2019. Their associated training periods
precede them and start in July 1963.
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Fama-French five-factor

Jan. 2000 to Dec. 2009 Jan. 2010 to Dec. 2019

Methods RMSPE Av(|PE|) Std(|PE|) RMSPE Av(|PE|) Std(|PE|)

aOGL 1.86 · 10−2 1.38 · 10−2 1.24 · 10−2 1.26 · 10−2 0.99 · 10−2 0.77 · 10−2

aLASSO 9.05 · 10−2 5.11 · 10−2 7.49 · 10−2 6.63 · 10−2 5.99 · 10−2 2.86 · 10−2

TI 1.70 · 10−2 1.32 · 10−2 1.07 · 10−2 1.69 · 10−2 1.32 · 10−2 1.07 · 10−2

λt&ν 1.56 · 10−2 1.24 · 10−2 0.96 · 10−2 1.79 · 10−2 1.32 · 10−2 1.21 · 10−2

Table 13: Out-of-sample Root Mean Squared Prediction Error (RMSPE), Mean Ab-
solute Prediction Error (Av(|PE|)) and Standard Deviation of the Absolute Prediction
Error (Std(|PE|)) of an equally-weighted portfolio with the Fama-French five-factor
model for the aOGL, aLASSO, time-invariant (TI) and λt&ν methods. The testing pe-
riods are Jan. 2000 to Dec. 2009 and Jan. 2010 to Dec. 2019. Their associated training
periods precede them and start in July 1963.

Carhart four-factor

Jan. 2000 to Dec. 2009 Jan. 2010 to Dec. 2019

Year aOGL aLASSO TI λt&ν aOGL aLASSO TI λt&ν

1 0.72 0.46 0.87 0.89 0.72 0.35 0.87 0.89
2 0.50 0.41 0.84 0.83 0.71 0.28 0.85 0.92
3 0.20 0.32 0.66 0.70 0.74 0.40 0.67 0.53
4 0.37 0.41 0.60 0.65 0.63 0.37 0.61 0.66
5 0.41 0.42 0.61 0.64 0.63 0.32 0.62 0.68
6 0.40 0.40 0.23 0.40 0.57 0.27 0.23 0.12
7 0.38 0.40 0.18 0.35 0.60 0.08 0.18 0.05
8 0.23 0.19 0.24 0.38 0.62 -0.81 0.24 0.13
9 -0.19 -1.85 0.18 0.35 0.61 -0.86 0.18 0.07

Table 14: Out-of-sample R2 of an equally-weighted portfolio with the Carhart four-
factor model for the aOGL, aLASSO, time-invariant (TI) and λt&ν methods. The
out-of-sample R2 are computed for each year of the testing periods from Jan. 2000 to
Dec. 2009 and from Jan. 2010 to Dec. 2019. Their associated training periods precede
them and start in July 1963.

We see that the aOGL method performs better than the aLASSO method in all cases
as shown in Tables 12 to 13. Furthermore, the aOGL method often performs better
than a time-invariant method as exhibited by the RMSPE and the lower Std(|PE|).
Such an advantage over time-invariant alternatives is less clear for the out-of-sample
R2 computed each year on the whole testing periods in Tables 14 and 15. We follow
Gu et al. (2020) (see also Gu et al. (2021)), and compute the out-of-sample R2 as:

R2 = 1−
∑

i,t(Ri,t−R̂i,t)
2∑

i,t R
2
i,t

, where the Ri,t and R̂i,t are the out-of-sample observed and
predicted returns of each stock in the equally-weighted portfolio for the dates in each
testing period.

On the contrary, the aOGL method keeps a strong advantage over the aLASSO
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Fama-French five-factor

Jan. 2000 to Dec. 2009 Jan. 2010 to Dec. 2019

Year aOGL aLASSO TI λt&ν aOGL aLASSO TI λt&ν

1 0.69 0.32 0.86 0.89 0.72 0.25 0.87 0.87
2 0.50 0.31 0.84 0.83 0.74 0.20 0.84 0.91
3 0.16 0.17 0.66 0.70 0.79 0.07 0.66 0.50
4 0.35 0.19 0.60 0.65 0.67 -0.06 0.60 0.65
5 0.39 0.22 0.61 0.65 0.65 -0.20 0.61 0.68
6 0.38 0.23 0.23 0.40 0.60 -0.29 0.23 0.11
7 0.35 0.23 0.18 0.35 0.64 -0.57 0.18 0.05
8 0.30 0.38 0.24 0.38 0.60 -0.19 0.24 0.13
9 0.09 0.30 0.18 0.34 0.58 -1.17 0.18 0.07

Table 15: Out-of-sample R2 of an equally-weighted portfolio with the Fama-French
five-factor model for the aOGL, aLASSO, time-invariant (TI) and λt&ν methods. The
out-of-sample R2 arew computed for each year of the testing periods from Jan. 2000 to
Dec. 2009 and from Jan. 2010 to Dec. 2019. Their associated training periods precede
them and start in July 1963.

method, especially for the years closer to the training periods. The deterioration in
terms of prediction performance at the end of the first testing period is explained by
the aftermath of the 2008 financial crisis. The good prediction performance at the
beginning of the second testing period is explained by incorporating the 2008 financial
crisis in the estimation sample. The reported out-of-sample R2 are in the same range as
the ones given by Gu et al. (2021) for managed portfolios. For both testing periods, the
boxplots in Figure 3 show that out-of-sample PE related to the portfolio excess returns
for the aOGL method are located closer to zero, more symmetrically distributed, and
narrower. As observed in the in-sample analysis, the aOGL method seems to perform
better in terms of out-of-sample predictability as shown by the distributional behavior
of the PE. We believe that the good out-of-sample performance for the portfolio comes
from the diversification of the prediction errors among the single assets. We observe a
similar phenomenon in forecast combinations (Timmermann, 2006).

We provide a decomposition of the importance of each variable for the out-of-
sample prediction performance in Figure 8. We delete one Zt−1 at a time in the two
testing periods for both factor specifications. A negative difference shows a deterio-
ration of predictability measured by the out-of-sample R2 on the whole testing period
when a particular Zt−1 is taken out when forming out-of-sample predictions. The 95%
confidence intervals built by a percentile block bootstrap approach give the informa-
tion on whether the difference is significantly different from zero at a 5% significance
level. We see that the confidence intervals are wide in the first testing period. The
most important Zt−1 in terms of out-of-sample predictability is term_spread, and then
we have infl and ntis for the Carhart four-factor model. The most important Zt−1 in
terms of out-of-sample predictability is ntis, and then we have def_spread and infl for
the Fama-French five-factor model. In the second testing period, we observe only a
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slight deterioration, the largest one being for term_spread, albeit not significant for all
variables with narrow confidence intervals.

6 Conclusions
Our empirical results show that taking explicitly into account the no-arbitrage restric-
tions coming from the Arbitrage Pricing Theory do help in predictive modeling of large
cross-sectional equity data sets with penalisation methods. We view this approach as
an example of a structural approach to big data where incorporating finance theory
improves on the prediction performance of the estimated quantities. It resonates with
structural approaches in panel econometrics guided by economic theory (Bonhomme
and Shaikh, 2017). In asset management and risk management, a better predictive per-
formance of excess returns should help to better gauge time-variation in the risk-reward
trade-off. In asset selection, it should help to improve performance of time-varying
portfolio allocation when we use predicted excess returns as inputs. From our simula-
tion and empirical results, we expect our procedure to perform well in out-of-sample
prediction for portfolio building.
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Figure 1: Empirical distribution of out-of-sample Prediction Error (PE) of an equally-
weighted portfolio. We compare the aOGL and aLASSO methods. We simulate excess
return paths for 500 assets under sparse DGPs.
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Figure 2: Empirical distribution of in-sample Prediction Error (PE) of an equally-
weighted portfolio. We compare the aOGL, aLASSO, time-invariant (TI) and λt&ν
methods. The left panel corresponds to the Carhart four-factor model. The right panel
corresponds to the Fama-French five-factor model. The sample of US equity excess
returns begins in July 1963 and ends in December 2019.
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Figure 3: Empirical distribution of out-of-sample Prediction Error (PE) of an equally-
weighted portfolio. We compare the aOGL, aLASSO, time-invariant (TI) and λt&ν
methods for the Carhart four-factor and Fama-French five-factor models. The upper
panels are for the testing period 2000-2009. The lower panels are for the testing period
2010-2019. Their associated training periods precede them and start in July 1963.

33



A
n
n
u
al
iz
ed

re
tu
rn

(%
)

Predicted vs Realized Returns aOGL

1970 1980 1990 2000 2010 2020

-50

-30

-10

10

30

50

70

A
n
n
u
al
iz
ed

re
tu
rn

(%
)

Predicted Returns Decomposition aOGL

1970 1980 1990 2000 2010 2020

-50

-30

-10

10

30

50

70

Figure 4: Predicted excess returns, realized excess returns, and prediction decompo-
sition for the Carhart four-factor model and an equally-weighted portfolio with the
aOGL method. In the upper panel, the predicted excess return path corresponds to the
red plain line. The realized excess returns correspond to the black dashed line. In the
lower panel, the orange shaded area corresponds to estimates of ai,t. The blue shaded
area corresponds to estimates of b⊤i,tE[ft|Ft−1]. The gray shaded areas correspond
to the recession periods determined by the National Bureau of Economic Research
(NBER). The sample of US equity excess returns begins in July 1963 and ends in De-
cember 2019.
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Figure 5: Predicted excess returns, realized excess returns, and prediction decompo-
sition for the Carhart four-factor model and an equally-weighted portfolio with the
aLASSO method. In the upper panel, the predicted excess return path corresponds to
the red plain line. The realized excess returns correspond to the black dashed line.
In the lower panel, the orange shaded area corresponds to estimates of ai,t. The blue
shaded area corresponds to estimates of b⊤i,tE[ft|Ft−1]. The gray shaded areas corre-
spond to the recession periods determined by the National Bureau of Economic Re-
search (NBER). The sample of US equity excess returns begins in July 1963 and ends
in December 2019.
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Figure 6: Predicted excess returns, realized excess returns, and prediction decomposi-
tion for the Fama-French five-factor model and an equally-weighted portfolio with the
aOGL method. In the upper panel, the predicted excess return path corresponds to the
red plain line. The realized excess returns correspond to the black dashed line. In the
lower panel, the orange shaded area corresponds to estimates of ai,t. The blue shaded
area corresponds to estimates of b⊤i,tE[ft|Ft−1]. The gray shaded areas correspond
to the recession periods determined by the National Bureau of Economic Research
(NBER). The sample of US equity excess returns begins in July 1963 and ends in De-
cember 2019.
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Figure 7: Predicted excess returns, realized excess returns, and prediction decompo-
sition for the Fama-French five-factor model and an equally-weighted portfolio with
the aLASSO method. In the upper panel, the predicted excess return path corresponds
to the red plain line. The realized excess returns correspond to the black dashed line.
In the lower panel, the orange shaded area corresponds to estimates of ai,t. The blue
shaded area corresponds to estimates of b⊤i,tE[ft|Ft−1]. The gray shaded areas corre-
spond to the recession periods determined by the National Bureau of Economic Re-
search (NBER). The sample of US equity excess returns begins in July 1963 and ends
in December 2019.
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Figure 8: Out-of-sample variable importance for the Cahart four-factor model and
Fama-French five-factor model. We compute the difference in out-of-sample R2 be-
tween the full model and a model when one Zt−1 at a time is removed from the full
model. The orange dots show the point estimates while the orange lines show the 95%
confidence intervals computed by a percentile block bootstrap approach. The upper
panel presents the results for the Jan. 2000 - Dec. 2009 testing period, while the lower
panel shows the results for the Jan. 2010 - Dec. 2019 testing period.
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A Regularity conditions
This Appendix lists and comments the regularity conditions needed to derive the
asymptotic properties of the estimation procedure (see also Appendix A in GOS).
Beforehand, recall the following vector xi,t = (vech[Xt]

⊤, Z̃⊤
t−1 ⊗ Z⊤

i,t−1, f
⊤
t ⊗

Z̃⊤
t−1, f

⊤
t ⊗ Z⊤

i,t−1)
⊤ of dimension d.

ASSUMPTION B.1: There exists a constant M such that a) supi ∥xi,t∥ ≤ M , P -a.s..
Moreover, b) supi ∥Ai∥ < ∞, supi ∥Bi∥ < ∞, supi ∥Ci∥ < ∞.

ASSUMPTION B.2: infiE[Ii,t|γi] > 0 .

ASSUMPTION B.3: infi eigmin(E[xi,tx
⊤
i,t|γi]) > 0, where eigmin denotes the mini-

mum eigenvalue of E[xi,tx
⊤
i,t|γi].

ASSUMPTION B.4: The trimming constants satisfy χ1,T = O ((log T )κ1), χ2,T =
O ((log T )κ2), with κ1, κ2 > 0.

ASSUMPTION B.5: For all n ∈ N\{0}, there exist sub-Gaussian random variables
Yi,l ∼ subG(σ2), σ2 < ∞ such that E[maxi,l |

√
Ti(β̂i,l − βi,l)|] ≤ E[maxi,l |Yi,l|],

for i = 1, . . . , n, and l = 1, . . . , d.

ASSUMPTION B.6: We have that E[ut|ut−1,Ft] = 0 and there exists a constant
M > 0, such that ∥E[utu

⊤
t |Zt−1]∥ ≤ M , for all t, where ut = ft −E[ft|Ft−1].

Assumption B.1 eases the proofs and requires uniform upper bounds on the regres-
sor values, intercept, and model coefficients. Assumption B.2 implies that the fraction
of the time period in which an asset return is observed is bounded away from zero
asymptotically uniformly across assets, while Assumption B.3 bounds away from zero
the minimum eigenvalue of the population squared moment to exclude asymptotic mul-
ticolinearity problems uniformly across assets. Assumption B.4 gives an upper bound
on the divergence rate of the trimming constants such that logarithmic divergence rate
allows to control the aOGL estimation error in the second-pass regression. Assump-
tion B.5 is a technical requirement on E[maxi,l |

√
Ti(β̂i,l−βi,l)|]. From Lemma 1, we

have that β̂i,l are asymptotically normally distributed and we might think that Assump-
tion B.5 is directly satisfied due the properties of sub-Gaussian random variables. How-
ever, it is not the case due to our double asymptotics with n, T → ∞. To illustrate the
necessity of this requirement, we can consider the following example: let Zi ∼ U(0, 1)
and δi,T = i 1i≥T for i = 1, . . . , n. For all i, we have Xi,T = Zi + δi,T =⇒ U(0, 1)
as T → ∞. Suppose that n > T , then we have limT→∞ E[maxi=1,...,n |Zi|] ≤ 1
while limT→∞ E[maxi=1,...,n |Xi,T |] diverges. We can replace Assumption B.5 by
other requirements, for example, by considering sub-Gaussian error terms in the first-
pass regression. Sub-Gaussianity is often used in the literature on inference in high-
dimensions; see e.g. Das and Lahiri (2021), Chernozhukov et al. (2022), Lopes (2022).
Finally, Assumption B.6 allows for a martingale difference sequence and bounds the
conditional variance-covariance matrix for the linear innovation ut associated with the
factor process. This assumption helps to prove consistency of the aLASSO estimator
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F̂k using the same arguments as in Lemma 1.

B Proof of Lemma 1
We follow the proof strategy of Percival (2012) (see Nardi and Rinaldo (2008) for
related arguments for the Group-LASSO). Let β⋆

i = βi +
ui√
Ti

and {v⋆i,g} and {vi,g}
be decomposition of βi minimizing ∥β⋆

i ∥2,1,G and ∥βi∥2,1,G , respectively. Multiplying
(8) by Ti

2 , we have that

Q⋆(ui) =
1

2

∑
t

(
Ii,tRi,t −

(
βi +

ui√
Ti

)⊤

Ii,txi,t

)2

+δTi

∑
g

δg

∥∥∥∥vi,g + 1√
Ti

vui
i,g

∥∥∥∥ ,
where vui

i,g =
√
Ti(v

⋆
i,g − vi,g) is a decomposition of ui =

√
Ti(β

⋆
i − βi). We define

ûi = argmin
ui∈Rd

Q⋆(ui),

then we have β̂i = βi +
ûi√
Ti

. We write D⋆(ui) = Q⋆(ui)−Q⋆(0) and thus we obtain

D⋆(ui) =
1

2
u⊤
i Q̂x,iui −

1√
Ti

u⊤
i

∑
t

Ii,txi,tεi,t

+
√

Tiδ
∑
g

δg
√
Ti

(∥∥∥∥vi,g + 1√
Ti

vui
i,g

∥∥∥∥− ∥vi,g∥
)

= I1 +
∑
g

I2,g.

From Percival (2012), we know that, for g ∈ GHi
, I2,g vanishes to zero since δg

based on an initial
√
Ti-consistent estimator goes to ∥vi,g∥−γ̌ , from Assumption A.6,

the uniqueness of the decomposition of vi,g and
√
Tiδ = o(1). Moreover, for

g ∈ GHc
i
, I2,g diverges and, for g ∈ GH0,i

, I2,g diverges since T
γ̌/2
i ∥vinit

i,g∥γ̌ = Op(1)

and T
(1+γ̌)/2
i δ diverges, where vinit

i,g is the initial data dependent estimator of the latent
decomposition of βi. Moreover, under Assumption A.4 and A.5, using the CLT for
martingale difference sequences and Slutsky’s theorem, we have that

I1 =⇒ 1

2
u⊤
i Qx,iui − u⊤

i Wi,

where Wi ∼ N (0, σ2
iQx,i). It follows that

D⋆(ui) =⇒ D(ui),

with

D(ui) =

{
1
2u

⊤
i Qx,iui − u⊤

i Wi, if vui
i,g ̸= 0, for g ∈ GHi ,

∞, else.

Minimizing D(ui) and using the argmax theorem from van der Vaart and Wellner
(1998) conclude the proof as in Percival (2012).

□
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C Proof of Proposition 1
From Lemma 1, we have the convergence in distribution to a Gaussian random variable
for all i = 1, . . . , n: √

Ti

(
β̂i − βi

)
=⇒ Vi.

Next, we consider the expectation of supi 1
χ
i

∥∥β̂i − βi

∥∥:

E
[
sup

1≤i≤n
1χ
i

∥∥β̂i − βi

∥∥] = E

 max
1≤i≤n

1χ
i

√√√√ d∑
l=1

(
β̂i,l − βi,l

)2
≤

√
dE

 max
1≤i≤n
1≤l≤d

1χ
i

∣∣β̂i,l − βi,l

∣∣
=

√
d√
T
E

 max
1≤i≤n
1≤l≤d

1χ
i

√
T

Ti

√
Ti

∣∣β̂i,l − βi,l

∣∣
≤
√
dχ2,T√
T

E

 max
1≤i≤n
1≤l≤d

√
Ti

∣∣β̂i,l − βi,l

∣∣ .

From Assumption B.5, we have that√
dχ2,T√
T

E

 max
1≤i≤n
1≤l≤d

√
Ti

∣∣β̂i,l − βi,l

∣∣ ≤
√
dχ2,T√
T

E

 max
1≤i≤n
1≤l≤d

|Yi,l|


≤
√

2dχ2,T σ2 log(2nd)
√
T

.

Thus, by Assumption A.7 and B.4, there exist a positive constant C such that

E
[
sup

1≤i≤n
1χ
i

∥∥β̂i − βi

∥∥] ≤ C

√
log(T )1+κ2

T
,

and we have

lim
n→∞

√
T

log(T )1+κ2
E
[
sup

1≤i≤n
1χ
i

∥∥β̂i − βi

∥∥] ≤ C.

We have by Markov’s inequality that, for any ϵ > 0,

Pr

(√
T

log(T )1+κ2
sup

1≤i≤n
1χ
i

∥∥β̂i − βi

∥∥ ≥ ϵ

)

≤

√
T

ϵ2 log(T )1+κ2
E
[
sup

1≤i≤n
1χ
i

∥∥β̂i − βi

∥∥] ≤ C

ϵ
.
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Thus, we have

sup
1≤i≤n

1χ
i

∥∥β̂i − βi

∥∥ = Op

(√
log(T )1+κ2

T

)
,

implying that
sup

1≤i≤n
1χ
i

∥∥β̂i − βi

∥∥ = op(1).

The consistency of ν̂ then follows from the following results ii) supi ∥wi∥ = O(1), iii)
1/n
∑

i ∥ŵi − wi∥ = op(1) and iv) Q̂β3
− Qβ3

= op(1) of Lemma 3 of GOS under
Assumptions A.4 and B.1 to B.4. As in the proof of Proposition 3 of GOS, they ensure
∥ν̂ − ν∥ = op (1) , which concludes the proof.

□
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D No-arbitrage ex-ante grouping structure
This section is dedicated to describe how to construct the grouping structure needed to
create the vector x̃i,t of duplicated regressors from the original xi,t. We use the dupli-
cated regressors to implement the numerical optimisation of the aOGL method. From
the set of Restrictions R.1 to R.4, it appears that, for any element in x1,i,t related to a
specific element of Z̃t−1,l and Zi,t−1,m, there exist multiple corresponding regressors
in x2,i,t related to the same instrument l and characteristic m. To implement a shrink-
age estimator satisfying Restrictions R.1 to R.4, we define the following sets of indices.
The first group related to Restriction R.1 always includes all covariates corresponding
to the time-invariant contribution. Hence, we define x̃(1)

i,t = (xi,t,j)j∈ιg1
∈ Rn1 , where

n1 = K + 1, and ιg1 is a set of indices such that,

ιg1 = {1, d1 + 1, . . . , d1 + kp̃+ 1, . . . , d1 + (K − 1)p̃+ 1} ∈ NK+1
+ ,

for k = 1, . . . ,K − 1 and with N+ = N \ {0}. The next set of groups are related to
Restriction R.2, and we define x̃(2)

i,t = (xi,t,j)j∈ιg2
∈ Rn2 , where n2 = p̃(p̃−1)/2, and

the set ιg2 corresponds to the indices related to the non-diagonal elements of vech(Xt)
in xi,t. To characterize it, let us first define the set of indices related to the diagonal
elements in vech(Xt) (i.e., the squared elements Z2

t−1,l) and the index set related to all
elements in vech (Xt) as follows

D =

{
x ∈ N+ | x = 1 + (k − 1)(p̃+ 1)− (k − 1)k

2
, k ∈ {1, ..., p̃}

}
,

A =

{
x ∈ N+|x ≤ (p̃+ 1)p̃

2

}
,

such that the indices in A\D generate the set of indices:

ιg2 = {ιg2,1 , . . . , ιg2,n2
} ∈ Nn2

+ .

Let us describe the group structure needed within a regular Group-LASSO by repli-
cating our covariates to solve the original aOGL problem and ensuring that Restric-
tions R.3 and R.4 are met. First, the scalar ul, for l = 1, . . . , p, denotes the l-th element
of the set D\{1}, i.e., the index set of diagonal elements excluding the first entry equal
to 1, which belongs already to ιg1 . Second, we duplicate K times each ul such that
ul,k, k = 1, . . . ,K, is the k-th duplicated element of ul. Then, we can characterize
the set ιg3 of indices related to a scaled factor and its corresponding squared common
instruments in the intercept as

ιg3 = {ιg3,1 , . . . , ιg3,Kp
} ∈ NKp

+ ,

such that each set ιg3,j = {ul,k, d1 + k + (l − 1)p̃ + 1} ∈ N2
+, k = 1, . . . ,K, can

generate a single group containing two covariates and x̃
(3)
i,t = (xi,t,j)j∈ιg3

∈ Rn3 ,
where n3 = 2Kp. Finally, the last set ιg4 of indices collects the indices related to
Restrictions R.3 and R.4 for the stock-specific instruments Zi,t−1 such that

ιg4 = {ιg4,1 , . . . , ιg4,Kq
} ∈ NKq

+ ,
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where each element ιg4,j = {rm,k, d1+d21+k+(m−1)q+1} ∈ Np̃+1
+ ,m = 1, . . . , q,

k = 1, ...,K, and rm,k is the k-th duplicated set of indices

rm,k = {d11 +m, . . . , d11 + sq +m, . . . , d11 + pq +m} ∈ Np̃+1
+ ,

for s = 1, . . . , p̃, k = 1, ...,K. We define the last set of covariates groups as x̃
(4)
i,t =

(xi,t,j)j∈ιg4
∈ Rn4 , where n4 = Kq(p̃+ 1). Next, we define the column vector

x̃i,t =
(
x̃
(1)⊤
i,t , x̃

(2)⊤
i,t , x̃

(3)⊤
i,t , x̃

(4)⊤
i,t

)⊤
∈ Rd̃,

where d̃ =
∑4

j=1 nj = K(p̃(q + 2) + q − 1) + (p̃ − 1)p̃/2 + 1. Let g̃ ∈ G̃ denote a
possible set of indices of the duplicated covariates x̃i,t, where

G̃ =
{
ιg1 , ιg2,1 , . . . , ιg2,n2

, ιg3,1 , . . . , ιg3,Kp
, ιg4,1 . . . , ιg4,Kq

}
.

The sets G and G̃ are based on the original covariates xi,t for the former and the dupli-
cated covariates x̃i,t for the latter, and we have that J = |G| = |G̃| = 1+n2+Kp+Kq.
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