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Abstract

Applying tests for jumps to financial data sets can lead to an impor-

tant number of spurious detections. Bursts of volatility are often incor-

rectly identified as jumps when the sampling is too sparse. At a higher

frequency, methods robust to microstructure noise are required. We ar-

gue that whatever the jump detection test and the sampling frequency,

a large number of spurious detections remain because of multiple testing

issues. We propose a formal treatment based on an explicit thresholding

on available test statistics. We prove that our method eliminates asymp-

totically all remaining spurious detections. In Dow Jones stocks between

2006 and 2008, spurious detections can represent up to 90% of the jumps

detected initially. For the stocks considered, jumps are rare events, they

do not cluster in time, and no cojump affects all stocks simultaneously,

suggesting jump risk is diversifiable. We relate the remaining jumps to

macroeconomic news, prescheduled company-specific announcements, and

stories from news agencies which include a variety of unscheduled and un-

categorized events. The vast majority of news do not cause jumps but

may generate a market reaction in the form of bursts of volatility.
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1 Introduction

Evidence of stochastic skewness and kurtosis of asset return distributions has led

to the development of models with jumps to better incorporate these dynamics.

Jumps are rare and larger events than what a continuous diffusion process can

explain. Detecting jumps and studying their dynamics is important because

of the consequences in applications including derivatives pricing and risk man-

agement. However, determining from discrete observations whether we should

consider a large return as a jump is no trivial task1. Numerous statistical

methods to test for the presence of jumps in high-frequency data have been

introduced in recent years. When studying the dynamics of jump arrivals, the

jump detection tests have to be applied over a period of time, i.e., over a series

of days simultaneously. Such a procedure results in performing multiple testing,

and leads by construction to making a significant number of spurious detections,

regardless of the underlying test. For instance, if the jump tests are carried out

at the 5% significance level over a one-year period (i.e., 252 trading days) with

no single jump, on average more than 12 days are still going to be erroneously

selected as containing a jump. As we show in a Monte Carlo study provided in

the supplemental file, the presence of spurious detections can seriously bias the

estimated proportion of jump days and results on jump dynamics, e.g., tests of

clustering of jump arrivals. In this paper, we propose a new formal methodology

to resolve such erroneous detection problems and show its good finite sample

performance with Monte Carlo simulations. Our thresholding technique reveals

a low frequency of jumps but more frequent bursts of volatility. We study their

dynamics and investigate whether news (including stories from news agencies)

can explain them.

Our first contribution is to propose a method to eliminate spurious de-

tections due to multiple testing via an explicit thresholding on available test

statistics. We are the first to provide a formal treatment of the multiple testing

bias with double asymptotics when applying jump detection tests over a sam-

ple of many days. We prove that if we consider test statistics above a certain

threshold level only, the likelihood of making such spurious detections disap-

pears asymptotically. Monte Carlo results show that our approach behaves

well in finite samples. Our theoretical results legitimize the ad hoc response

to the multiple testing issue taken in some studies, which is to use very con-

servative critical values, e.g., at a 0.1% significance level for one-sided tests

1The recent literature, e.g., Aı̈t-Sahalia (2004) and Lee and Hannig (2010), distinguishes
between big Poisson-type jumps and small possibly infinite-activity jumps. We concentrate
on the first kind in order to study the relation with important news announcements.
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(Bollerslev, Law and Tauchen (2008), Giot, Laurent and Petitjean (2010)). In

our analysis, we focus on very liquid large-capitalization U.S. stocks. We col-

lect high-frequency returns from the Trades and Quotes (TAQ) database for

the Dow Jones Industrial Average Index (DJIA) constituents, over the three-

year period of January 2006 to December 2008. We also study the presence of

jumps in the index, which we proxy with the Diamonds exchange-traded fund

(ETF) and a price-weighted portfolio of the 30 Dow Jones constituents. We

consider 2 minutes and 10 seconds sampling frequencies, and use the adjusted

ratio statistic of Barndorff-Nielsen and Shephard (2006) (BNS) and the estima-

tor of Christensen, Oomen and Podolskij (2014) (COP) as the underlying tests

to detect jumps. Our method to eliminate spurious detections can be applied

just as easily on other existing jump detection techniques, such as Aı̈t-Sahalia

and Jacod (2009), or Andersen, Bollerslev and Dobrev (2007). To summarize

our analysis, first, we find significantly less jumps in the 10 seconds case than

in the 2 minutes case. This confirms the results of COP, who argue that stock

price processes exhibit bursts of volatility that are incorrectly captured as jumps

when the sampling grid is too sparse. Second, we find that up to 90% of the

jumps found at the 10 seconds frequency are spurious detections due to mul-

tiple testing2. This illustrates the important bias induced by multiple testing,

making our thresholding technique essential for a proper analysis of jumps. Our

results bring the high number of jumps detected by existing tests down to an

amount more in line with the intuition that jumps are rare events.

The second contribution is the investigation of the dynamic features of du-

rations between jumps in equity prices. As shown in our simulations, we can

only uncover true dynamics of jump arrivals once erroneous detections are re-

moved, e.g., using our thresholding technique. The empirical series do not

reveal a clustering in time of jump occurrences. Our results are in favor of

the hypothesis that jump arrivals follow a simple low intensity Poisson process

and, hence, support the jump process used by Merton (1976) to correct the

discrepancies between market prices and the Black-Scholes value of options.

During the three years of our study, we find no day where the 30 stocks all

jump simultaneously and we detect a jump in more than 20% of the stocks

only on two occasions. The absence of cojumps affecting all stocks supports

the assumption in Merton (1976) that the jump component is nonsystematic or

diversifiable. One consequence of the diversifiability is that the jump risk does

2We assess the robustness of our results by repeating the procedure at 5 minutes and 20
seconds sampling frequencies with the BNS and COP estimators, respectively. We obtain
similar results, but the effect of bursts of volatility is even more pronounced at a 5 minutes
frequency.
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not require a risk premium in principle. Also, we do not observe a number of

cojumps significantly larger than if the stocks jumped independently when we

consider industry sectors separately. Not commanding a risk premium seems

at odds with the findings of Bollerslev and Todorov (2011). They use 5-minute

S&P 500 futures prices and short-term deep out-of-the-money options to infer

the path of the equity jump risk premium. They find that the median of the

estimated equity jump risk premia is equal to 5.2%. Hence derivatives markets

seem to price jump risk significantly. An explanation for such a large value is

that to diversify away jump risk is too costly or impossible because of transac-

tion costs or other frictions. Another explanation is that the use of 5-minute

interval mistakes a volatility burst for a real jump (as documented in our re-

sults below). The use of only short-term deep out-of-the-money options might

also incorporate a liquidity or preferred habitat component. We definitely need

further research on jump risks to draw a definite conclusion, but we believe that

our paper does contribute to such a debate.

The third contribution of the paper is to relate the few jumps that remain

after we apply our thresholding technique to news announcements. Early pa-

pers have conjectured that jumps are caused by the arrival of important new

information, most often specific to the firm, and occasionally more general eco-

nomic or market news. A hypothesis is that market-level news can cause jumps

in many stocks simultaneously which can propagate even to a diversified index.

Examining what type of information is dynamically related to jumps helps bet-

ter explaining market phenomena and improving pricing models. We start by

investigating the effect of macroeconomic announcements and observe no sig-

nificant effect, even when accounting for the surprise component of the news.

Our results differ from the findings in other markets, e.g., Dungey, McKenzie

and Smith (2009) find that two thirds of cojumps in bond prices coincide with

a scheduled US news release, albeit the authors do not control for multiple

testing and do not consider the same frequency of sampling. Next, we look

at prescheduled announcements specific to each stock. We observe no increase

in the occurrence of jumps neither on quarterly earnings nor on dividend an-

nouncements. Finally, we consider stories from two news agencies: Reuters and

Dow Jones News Service. By examining the content of news stories, we can

analyze the impact of a variety of unscheduled and uncategorized events, and

are not limited to a predetermined set of event types such as earnings announce-

ments, mergers, or analyst recommendations. We use the Factiva database to

retrieve the news stories. To our knowledge, we are the first to perform an

extensive analysis (over several years and stocks) of the relation between sto-
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ries from news agencies and sudden market moves. Given the huge quantity

of information archived in the Factiva repository, one major challenge is to get

everything relevant while eliminating erroneous and unimportant stories. Our

results show that news releases are not likely to cause jumps either. Companies

purposefully shift most important announcements after the bell or early in the

morning in order to avoid uncontrolled investor reactions and the consequent

impact on the stock price. These results are consistent with our finding of a

very limited number of actual jumps once we correct for the different sources

of bias. Our conclusions differ from the findings of Lee and Mykland (2008)

who examine the association of news with jumps on a small sample of stocks

over only three months, and find a story for each jump they detect. They also

challenge the results of Lee (2012) which are based on the same underlying

test. However, both studies use a low sampling frequency of 15 minutes. If

we loosely define a burst of volatility as a jump detection at a relatively low

frequency that is not captured at high frequency as argued by COP, we also

identify a link between news and volatility. For instance, we find that the press

releases following scheduled Federal Open Market Committee (FOMC) meet-

ings increase the likelihood of bursts of volatility, although not to a statistically

significant extent. Also, announcements concerning share repurchase programs,

therefore directly related to the balance sheet of the company, have a significant

impact on the volatility of the share price.

2 Eliminating spurious jump detections

2.1 Setting and assumptions

The Black-Scholes option pricing model assumes that stock prices follow a

stochastic process that generates a continuous trajectory. This requirement im-

plies that over a short period of time, the stock price cannot suddenly change

by much. This assumption is challenged by the too many outliers observed in

empirical studies and the behavior of option prices3. One solution to capture

the skewness and kurtosis of asset returns is to include jumps, i.e., to allow

for stock price variations of extraordinary magnitude, no matter how small the

interval between successive observations. As explained by Merton (1976), in-

cluding jumps also allows to solve the discrepancy between market prices of

options and their Black-Scholes value. The stock price is then written as a

combination of two types of changes. The continuous part models normal vari-

3See Aı̈t-Sahalia (2002), Carr and Wu (2003), who test whether a diffusion is sensible to
model asset prices.
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ations in price. The jump part captures abnormal variations. In Merton (1976),

the latter are supposed to be due to the arrival of new important information

about the stock. Typically, such information is most often specific to the firm

or its industry.

Let Xt for continuous time t ≥ 0 denote the log-price of the asset. The

workhorse model of modern asset pricing theory assumes that the log-price

follows an Itô semimartingale. A semimartingale can be decomposed into the

sum of a drift, a continuous Brownian-driven part, and a discontinuous, or

jump, part:

dXt = btdt+ σtdWt + dJt,

where Wt denotes a standard Brownian motion and Jt is a pure jump pro-

cess. We follow the assumption that jumps are relatively rare and large events

(Merton (1976), Barndorff-Nielsen and Shephard (2006)), and do not consider

infinite-activity jumps (Aı̈t-Sahalia (2004)).

Identifying jumps empirically is difficult because only discretely sampled

data are available. In reality, detecting jumps amounts to answering the fol-

lowing question. Given that we observe in discrete data a change in the asset

return of a large magnitude, what does that tell us about the likelihood that

such a change involves a jump, as opposed to just a large realization of the

Brownian part?

2.2 Thresholding technique

Numerous jump detection methods have been developed since high-frequency

data have become easily available. In a typical empirical application, the jump

tests are applied to detect jump days over a sample period. For each day,

a test statistic S is computed to test the null hypothesis of no jump. The

performance of S is characterized by its ability to detect actual jumps, yet

avoiding rejecting when there is no jump, that is, making a type I error4. The

problem is that performing the tests for many days simultaneously results in

conducting multiple testing, which by nature leads to making a proportion of

spurious detections equal to the significance level of the individual tests. For

example, if the individual tests are performed at the 5% significance level during

4We cannot simultaneously minimize the probability of committing a type I error and
maximize the probability of detecting jumps. If the size decreases, the power of the test
deteriorates until it reaches zero. The power of a single test is one minus the probability
of committing a Type II error. There is nothing wrong per se in choosing a small size in a
frequentist world. It only means that we want to be conservative and this decision pertains
to the econometrician. The former discussion is well-known and concerns single testing proce-
dures (see, e.g., the review paper of Lehman (1993) on the Fisher, Neyman-Pearson theories
of testing hypotheses).
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a one-year period with no single jump, by construction on average more than

12 days are going to be erroneously selected as containing a jump. An ad hoc

response to this issue has been the use of critical values further in the tails, i.e.,

0.1% critical values in Bollerslev, Law and Tauchen (2008) and Giot, Laurent

and Petitjean (2010). However, in a multiple testing setting, the notion of size

is replaced by the Family Wise Error Rate (FWER, or another type I error

measures like the the False Discovery Rate (FDR)), which is the probability of

making one or more false rejection5. A multiple testing procedure has to achieve

a control of the FWER to avoid systematic spurious detections. This requires

that the FWER is no bigger than a probability level, at least asymptotically,

which is not the case of ad hoc approaches. We illustrate this notion in our

simulation experiments and show the importance of controlling the FWER when

studying the proportion of jump days and jump dynamics.

The major methodological contribution of the present paper is to propose a

formal treatment to the multiple testing issue with a double asymptotics theory.

Lee and Mykland (2008) and Lee and Hannig (2010) address the issue of mul-

tiple testing in their tests using a thresholding technique but their methods are

tailored made for their jump test strategy and are based on single asymptotics.

They control the total number of intraday tests on the whole time period. An-

dersen, Bollerslev and Dobrev (2007) control for the size of the multiple jump

tests using a Bonferroni correction. Lee and Mykland (2012) apply a sequen-

tial extension of the Bonferroni procedure (Holm (1979)) to control the FWER

in multiple tests on IBM stock trades during August 2007 in their empirical

section. Our approach separates the number of periods within a day from the

number of days, and focuses on the multiple testing control across days. It is

therefore more liberal when the sampling frequency is high or the number of

periods is large, allowing for more jump detections (see footnote 18 below for a

comparison with the conservative approach of Lee and Mykland (2208) based

on single asymptotics). To our knowledge, there is no empirical and theoretical

literature on the issues arising when applying a jump detection test on a sample

containing a large number of days with a double asymptotic analysis, and this

for several stocks and their related news.

Our thresholding technique allows to eliminate the spurious detections,

based on the following theoretical result developed in detail in the appendix.

Denote by N the number of days in the study, and by n the number of observa-

tions per day used to compute each individual test statistic. We obtain a series

of daily statistics which can be written as (Sn1 , . . . , S
n
N ). For most available tests,

5See, e.g., the review paper of Romano, Shaikh and Wolf (2008) on multiple testing proce-
dures and related tools and notions.
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under the null hypothesis of no jumps, the statistics converge to independent

standard normal random variables. Theorem 1 of the appendix states that, un-

der some technical conditions about the relative rate of convergence of n with

respect to N and about the underlying price process, we get, under the null

hypothesis of no jumps, P

[
sup
t
|Snt | ≤

√
2 logN

]
→ 1, as N,n → ∞. This

means that, if there are no jumps, the event that the largest and the smallest

of the entries of the vector (Sn1 , . . . , S
n
N ) stay within

[
−
√

2 logN,
√

2 logN
]

be-

comes certain for large n and N . The bound
√

2 logN is the so-called universal

threshold for a sample of size N . As explained in Donoho and Johnstone (1994),

it is asymptotically a common, i.e., universal, upper bound on the root mean

square error of thresholded estimates in multivariate normal decision theory.

Using the theorem, we obtain a method to eliminate spurious detections

that we can apply very easily on top of most existing jump detection tests. In

the first step, we compute the test statistics individually for each day. In the

second step, we discard statistics in the band
[
−
√

2 logN,
√

2 logN
]
. This way,

spurious detections of jumps become negligible with high probability. Our the-

oretical results legitimize the ad hoc choice of more conservative critical values.

The precise statement and the proof of the theorem are in the appendix, for a

general test statistic, as well as for the specific example of the BNS statistic.

The theorem provides a theoretically appropriate significance level, which de-

pends on the number N of tests, instead of an ad hoc one. Indeed, we can map

the universal threshold
√

2 logN into a significance level αN by using the char-

acterization of the quantile of a standard Gaussian. We just need to compute

αN/2 = (1− Φ(
√

2 logN)), where Φ is the cdf of a standard Gaussian random

variable. By solving 0.2%/2 = (1 − Φ(
√

2 logN)), we deduce that an a priori

ad hoc rule based on 0.2% for two-sided tests is misguided when N is differ-

ent from exp((Φ−1(1 − .002/2))2/2) ' 118, a little bit less than a half year of

data. If N > 118, we need to use a larger threshold
√

2 logN (larger bands), or

equivalently a smaller probability level αN , to get an adequate multiple testing

control. One-sided tests give the same size and power if you use half of the

significance level, for example 0.1%.

The universal threshold procedure corresponds to a two-sided test in which

the level αN = 2Φ(−
√

2 log(N)) as explained above. We can approximate this

level by αN ≈ (N
√
π logN)−1 because Φ(−x) ≈ φ(x)/x, when x is large, where

Φ and φ denote the cdf and pdf of standard normal distribution. The universal

thresholding is thus related to a Bonferroni-type test where the size of the single

test is set at (N
√
π logN)−1. By construction, it controls the probability of even

one erroneous inclusion of a jump, i.e., a false rejection, at level (
√
π logN)−1
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since the Bonferroni method does so. Indeed, when investigating the properties

of a multiple testing procedure, we need to check whether the suggested proce-

dure achieves a control of the FWER. The control of the FWER requires that

the FWER is no bigger than a probability level, at least asymptotically, when

all null hypotheses are true (weak control) or when some are true and some are

false (strong control). The Bonferroni method achieves a strong control at the

size used in each single test multiplied by the number of test. If we have 100

one-sided tests, and use a size equal to 0.1%, we get an asymptotic control of

the FWER at 10%, namely an upper bound on the FWER of 10%6. A multiple

testing procedure is considered to be optimal if it maximizes the number of true

discoveries, while keeping one of the type I error measures like FWER or FDR

at a certain, fixed level. The universal thresholding, the Bonferroni procedure,

and the FDR control are known to share such asymptotic optimality proper-

ties (see the detailed discussion in the recent paper by Bogdan, Chakrabarti,

Frommlet and Ghosh (2011), and the references therein). As in a single test

context, we cannot speak about power if we do not control size. A single test

with no correct asymptotic size is useless even if its power is large. This is also

true in a multiple testing problem.

2.3 FDR thresholding

In addition to the universal threshold, we also report results using the data-

adaptive thresholding scheme of Abramovich, Benjamini, Donoho and John-

stone (2006), based on the control of the false discovery rate (FDR). FDR

control is a relatively recent innovation in simultaneous testing, which ensures

that at most a certain expected fraction of the rejected null hypothesis cor-

respond to spurious detections. Barras, Scaillet and Wermers (2010) use the

FDR in the context of mutual fund performance assessment, and Bajgrowicz

and Scaillet (2012) to account for data snooping while assessing performance of

technical trading rules (see also Harvey, Liu and Zhu (2013) in the analysis of

the statistical relevance of newly discovered factors in empirical asset pricing).

Throughout the paper, we set the FDR target level at 10%, which results in

a less conservative threshold level than with the universal threshold, and elim-

inates fewer jump detections. When we set the control of the FDR at 10%,

we are more liberal and admit that 10% of the rejected null hypotheses, i.e.,

detected jump days, will be by construction spurious. We obtain qualitatively

similar results with an FDR level between 5% and 20%. Setting the FDR target

6For a one-sided test with an ad hoc choice of a 0.1% significance level, the Bonferroni
procedure only controls asymptotically the FWER at the level α = N × 0.1% = 75% for
N = 756, which is a very liberal level of control.
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level to zero is equivalent to using the universal threshold. The FDR approach

results in a threshold inherently adaptive to the data. The FDR threshold is

higher when there are few true jumps, i.e., the signal is sparse, and lower when

there are many jumps, i.e., the signal is dense.

The choice of which threshold to use—universal or FDR—depends on the

application. If, for example, we are interested in the probability of a jump

conditional on a news release, the FDR threshold is more appropriate as it

reduces the likelihood of missing true jumps. On the other hand, if the goal

is to study what kind of news cause jumps, it is better to apply the universal

threshold in order to avoid looking vainly for a news when in fact the detection

is spurious.

2.4 Jump detection techniques

Our thresholding technique can be applied to most existing jump detection

tests. In the present paper, we use the standard tests of BNS and COP, with

respective frequencies of 2 minutes and 10 seconds7.

The essence of the BNS jump detection method is to compare the real-

ized quadratic variation which incorporates volatility originating from jumps

(if present) to the realized bipower variation which is robust to jumps. Each

day t = 1, . . . , N , we observe the log-price process X at the discrete times

i∆n, i = 1, . . . , n + 1, where ∆n is the sampling interval and n is large.

We denote by Xt,i∆n the ith intraday price observation on day t, and by

∆Xn
t,i ≡ Xt,(i+1)∆n

− Xt,i∆n the ith intraday return on day t, i = 1, . . . , n.

The realized quadratic variation (RV ) and the realized bipower variation (BV )

of X are defined as follows and converge in probability to different quantities

of the underlying jump-diffusion process.

RV n
t ≡

n∑
i=1

(∆Xn
t,i)

2 p−−−→
n→∞

∫ t

t−1
σ2
sds+

Nt∑
i>Nt−1

c2
i ,

BV n
t ≡

n

n− 1

1

µ2
1

n∑
i=2

|∆Xn
t,i||∆Xn

t,i−1|
p−−−→

n→∞

∫ t

t−1
σ2
sds,

where µ1 =
√

2/
√
π, Nt is a simple counting process, and the ci are nonzero

7Determining from high-frequency data whether an asset return process has jumps has
been considered by a number of authors, see e.g., Carr and Wu (2003), Barndorff-Nielsen and
Shephard (2006), Andersen, Bollerslev, Diebold and Labys (2003), Andersen, Bollerslev and
Diebold (2007), Huang and Tauchen (2005), Andersen, Bollerslev and Dobrev (2007), Lee
and Mykland (2008), Fan and Wang (2007), Jiang and Oomen (2008), Aı̈t-Sahalia and Jacod
(2009), Andersen, Dobrev and Schaumburg (2012), Mancini (2009), Lee and Hannig (2010)
and Christensen, Oomen and Podolskij (2014).
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random variables so that Jt =
∑Nt

i=1 ci. If the jumps are of finite activity, the

probability of observing jumps in two consecutive returns approaches zero. Con-

sequently, the product of any two consecutive returns is asymptotically driven

by the diffusion component only and the contribution of jumps is eliminated in

the bipower variation. The assumption underlying the BNS test that jumps are

large and rare events makes it particularly well-suited for our analysis of the

impact of important news8.

One of the statistics we use is the adjusted ratio statistic of BNS defined

below. It is the preferred test in Huang and Tauchen (2005) who investigate

size, jump detection rate, and power properties. Up to a scaling factor, the

ratio
BV nt
RV nt
−1 converges in law to a standard normal random variable under the

null hypothesis of no jumps:

∆
−1/2
n√

ϑmax ((n∆n)−1, QV n
t /(BV

n
t )2)

(
BV n

t

RV n
t

− 1

)
d−→ N (0, 1),

where QV n
t ≡ n

n−3µ
−4
1 ∆−1

n

∑n
i=4 |∆Xn

t,i||∆Xn
t,i−1||∆Xn

t,i−2||∆Xn
t,i−3|, is the re-

alized quadpower variation, and ϑ = (π2/4) + π − 5.

COP show that low frequency analysis, i.e., when the sampling interval ∆n

is not sufficiently small, overestimate the number of jumps seriously because

of frequent bursts of volatility. They advocate the use of high frequency data

with an adequate estimator, which is robust to microstructure noise. The BNS

estimator does not have this robustness property and its size is biased at high

frequencies, in particular (see, e.g., Huang and Tauchen (2005)). We consider

noise-robust versions of RV and BV denoted by R̄V
n
t and B̄V

n
t , for which noise

is smoothed out with a pre-averaging technique.

We introduce the weighting function g : [0, 1] → R defined by g(x) ≡
min(x, 1− x), and set the pre-averaging horizon K such that K = dθ

√
ne with

a tuning parameter θ > 0. We model the noisy price process as Y ≡ X + u,

where u is an i.i.d. process with E[u] = 0 and E[u2] = ω2, ω > 0, and u is

independent of X. The noise process u stands for the microstructure noise. The

smooth version of the returns is then given by Ȳ n
t,i =

∑K−1
j=1 g

(
j
K

)
∆Y n

t,i+j−1,

where ∆Y n
t,i ≡ Yt,(i+1)∆n

− Yt,i∆n is the ith noisy intraday return on day t,

i = 1, . . . , n − K + 2. We also define the following constants depending on

8The intuition is as follows. Since the probability of contiguous jumps goes to zero as ∆n →
0, jump terms are always multiplied by another return not including a jump asymptotically.
These products do not play a role in the asymptotics since there are only a countable number of
jumps and each return without a jump goes to zero in probability. Consequently, the realized
bipower variation used in the BNS test converges to the integrated variance. For detailed
technical arguments, see the proof of Theorem 5 in Barndorff-Neilsen and Shephard (2004).
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the function g: ψ1 ≡
∫ 1

0 (g′(s))2 ds, ψ2 ≡
∫ 1

0 g
2(s)ds and compute these quan-

tities using the Riemann approximations ψK1 ≡ K
∑K

j=1

[
g
(
j
K

)
− g

(
j−1
K

)]2
,

ψK2 ≡ 1
K

∑K−1
j=1 g2

(
j
K

)
to improve finite sample accuracy. Next, we define the

robust versions of the RV and BV as

R̄V
n
t ≡ n

n−K + 2

1

KψK2

n−K+2∑
i=1

|Ȳ n
t,i|2 −

ψK1
θ2ψK2

ω̂2,

B̄V
n
t ≡ n

n− 2K + 2

1

KψK2

1

µ2
1

n−2K+2∑
i=1

|Ȳ n
t,i||Ȳ n

t,i+K | −
ψK1
θ2ψK2

ω̂2,

where ω̂2 = − 1
n−1

∑n
i=2 ∆Y n

t,i−1∆Y n
t,i estimates ω2, as in Oomen (2006). These

noise-robust estimators have the same respective probability limits as the noise-

free analogs RV n
t and BV n

t . For this reason, we can use the distance between

R̄V
n
t and B̄V

n
t to test for the presence of jumps. Precisely, COP show that, un-

der some regularity conditions, the following convergence in distribution holds:

n1/4√
Σ̄11 + Σ̄22 − 2Σ̄12/B̄V

n
t

ln

(
R̄V

n
t

B̄V
n
t

)
d−→ N (0, 1),

where
(
Σ̄ij

)
1≤i,j≤2

denote individual entries of the asymptotic covariance matrix

of the bivariate vector n1/4(R̄V
n
t −
∫ t
t−1 σ

2
sds, B̄V

n
t −
∫ t
t−1 σ

2
sds). In practice, this

matrix is not known and we estimate it using subsampling. Additionally, we

implement the threshold filter they detail in order to estimate B̄V
n
t . Our Monte

Carlo simulation study confirms that it is primordial to pre-trim the data to

reduce the small sample bias9.

3 Empirical results on true proportion of jump days

We conduct our analysis over the three-year period from January 2006 to De-

cember 2008, on the 30 stocks composing the Dow Jones Industrial Average

(DJIA) index between November 21, 2005 and February 19, 2008. Most stocks

are listed on the NYSE, except for Microsoft and Intel which are listed on

the NASDAQ. The cleaning of high-frequency data has been highlighted in

9We refer to COP for a detailed explanation of pre-averaging technique, the asymptotic
covariance matrix estimation as well as the threshold filter used to estimate the BV. In the
rest of the paper, we precisely follow their methodology. We set the pre-averaging parameter
to θ = 0.5 and take 20 subsamples of length 25 for the estimation of the covariance matrix.
We use the same parametrization as COP for data trimming. Podolskij and Vetter (2009a)
propose an alternative element-by-element estimator of the asymptotic covariance matrix, but
their approach does not guarantee positive semi-positiveness, which is particularly problematic
with small samples.
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e.g. Dacorogna, Gencay, Muller, Olsen and Pictet (2001), and Hansen and

Lunde (2006). We closely follow Barndorff-Nielsen, Hansen, Lunde and Shep-

hard (2009) and also discard ‘bounce back’ outliers as defined in Aı̈t-Sahalia,

Mykland and Zhang (2011). The supplemental file gives a detailed description

of the data and the cleaning procedure.

[Figure 1]

Table 1 shows the average number of detections per year for each stock

at 2 minutes and 10 seconds frequencies. For the latter, we give the results

respectively before thresholding, after applying the universal threshold, and

after applying the FDR threshold. The table reveals two different sources of

bias when we try to detect jumps. First, we find many less jumps at the

higher frequency than at the lower frequency. This result is consistent with

the findings of COP, who argue that the frequent bursts of volatility in asset

prices are incorrectly interpreted as jumps when the sampling grid is too sparse.

Indeed, financial series tend to have a highly dynamic conditional volatility,

which leads to fast but continuous price changes. A high frequency sampling

captures intermediary price steps and avoids these spurious detections. Second,

Table 1 reveals an even more severe source of spurious detections due to multiple

testing. In average, the FDR threshold removes more than 75% of the residual

jump dates of the 10 seconds case. The universal threshold gets rid of even more

jump dates. The average number of actual jumps per year amounts to less than

five10. We assess the robustness of this result by applying the alternative test

of Lee and Mykland (2012) on our 10-second data set. The authors propose to

identify jumps by comparing realized returns to corresponding estimated local

volatilities on sequential blocks of intraday returns. They use a pre-averaging

technique to correct for microstructure imperfections at high frequency, and

use the method of Holm (1979) to control the FWER. We slightly diverge

from their approach and experiment with the MedRV estimator of integrated

volatility of Andersen, Dobrev and Schaumburg (2012) and Andersen, Dobrev

and Schaumburg (2014). The estimator shows good finite-sample robustness

to jumps as confirmed by Dumitru and Urga (2012), making it ideal for local

volatility measures using short return blocks. We obtain an average number of

jumps of 4.8 per year with this approach11, validating the very small number

10Jump dates for PWI are the following: 06-Feb-2006 14:53, 20-Mar-2006 09:36, 24-Mar-
2006 14:17, 28-Apr-2006 09:43, 19-Sep-2006 09:45, 13-Feb-2007 09:59, 30-Mar-2007 09:42,
11-Jun-2007 11:40, 19-Jun-2007 14:31, 05-Oct-2007 14:00, 03-Dec-2007 10:56, 15-Feb-2008
09:45, 29-May-2008 10:37 and 15-Jul-2008 10:00. Full list of jump detection dates with COP
estimator at 5, 10 and 20 seconds frequency is available on request.

11The MedRV test gives respective minimum, 25%-quantile, median, 75%-quantile and max-
imum statistics of 0.3, 3.0, 4.3, 5.6 and 15.3 jump detections per year. We find no significant
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of jumps identified using the test of COP with our thresholding techniques.

Finally, we implement the local volatility MedRV with the more liberal FDR

threshold in place of the conservative technique of Holm (1979) used by Lee

and Mykland (2012). This approach allows for more spurious detections and

favors power rather than a strict control of the FWER. We still find less than

six jumps per year in average. This shows the scarcity of jumps when a properly

controlled multiple testing procedure is used.

The Monte Carlo study in the supplemental material also confirms the good

properties of the underlying jump detection method and of our thresholding

technique. Although the power deteriorates with diminishing jump size and

sampling frequency, the simulation results are convincing. In practice, the re-

sults can be heavily influenced by different phenomena acting simultaneously.

Not knowing which effect is stronger (e.g., very small jumps, microstructure

noise) renders the analysis of the results even more difficult. One illustration

of the difficulty to run the tests on real data is the low intersection between

jumps detected by different tests. For example, Gilder (2009) shows that the

methods of Andersen, Bollerslev and Dobrev (2007) and BNS agree on only

50% of detected jump days, and COP get very limited jump days in common

with BNS. Part of this discrepancy is due to erroneous detections.

[Table 1]

Consequently, we need to use high frequency sampling together with a con-

trol for spurious detections for a correct inference in jump analysis. In the

following, we consider a 10 seconds frequency and a FDR threshold. We always

present results at the 2 minutes frequency and without thresholding for com-

parison purpose. As an illustration, Figure 1 shows the thresholding process for

Boeing (BA) during the first six months of 2007. For each day in the sample, the

points show the value of the COP statistic at the 10 seconds frequency. Dashed

lines show the critical value of the individual tests, the FDR threshold, and the

universal threshold. The dates selected after applying the FDR threshold are

shown by asterisks, and the corresponding spurious detections are depicted by

circles.

4 Dynamics of jump occurrences

In this section, we study the dynamics of jump arrivals and show how impor-

tant it is to remove the spurious detections in order to obtain correct results.

difference using either MedRV or MinRV.
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Since the work of Merton (1976) on the application of jump processes in op-

tion pricing, the inclusion of jumps in financial modeling has gained a lot of

attention amongst academics and practitioners. The empirical literature shows

that deep in-the-money, deep out-of-the-money, and shorter-maturity options

tend to sell for more than their Black-Scholes price, and longer-maturity and

marginally in-the-money options sell for less. Merton (1976) suggests to cor-

rect the discrepancies between market prices and the Black-Scholes value of

options by including a jump component. For deep out-of-the-money call op-

tions, there is relatively little probability that the stock price exceeds the strike

price prior to expiration if we exclude the possibility of jumps. However, the

possibility of a jump in price significantly increases this probability, and hence,

makes the option more valuable. Similarly, for deep in-the-money call options,

there is little chance that the stock will decline below the exercise price prior

to expiration if the underlying process is continuous. However, this event be-

comes non-negligible if we allow for the possibility of jumps. The phenomenon

is exacerbated with short-maturity options

The widely used assumption is that jump arrival times follow a simple Pois-

son process, or equivalently that durations between successive jumps are inde-

pendent and exponentially distributed. In the present section, we study the

dynamics of jump arrivals to assess whether this assumption is realistic, or

whether there is a dependency between successive jump arrivals. The jump

tests of BNS and COP indicate whether one or more jumps occurred on a given

day but do not give the exact number of jumps. As a result, we cannot observe

the durations between successive jumps and are unable to test whether they

follow an exponential distribution. For the same reason, because we do not

know the probability of more than one jump in a day, we cannot use the stan-

dard methods to test whether jump occurrences are driven by a simple Poisson

process. To circumvent this difficulty, we use the runs test developed by Mood

(1940)12. As we show in the supplemental file by performing a Monte Carlo

study, the runs test is a powerful method to detect clustering of jumps in time.

Removing the spurious detections, e.g., with our thresholding technique, is es-

sential in order to get a correct picture of the jumps dynamics. Table 2 reports

12The runs test compares the number of sequences of consecutive days with jump and
without jump, or runs, against its sampling distribution under the hypothesis of random
arrival. For example, a particular sequence of 10 jump tests may be represented by 0011101001,
containing three runs of 1s, and three runs of 0s. In contrast, the sequence 1111100000 contains
the same number of 0s and 1s, but only two runs. Too few runs indicate the presence of
clustering. Too many runs indicate an oscillation. The runs test has been used in Fama
(1965) to test the random walk hypothesis of stock returns. See Section 2.2.2 of Campbell, Lo
and MacKinlay (1996) for details and the exact test statistic. We use the runstest function
from the MATLAB Statistics Toolbox.
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the results of the runs test for the 30 Dow Jones stocks over the period from

January 2006 to December 2008. With no account for spurious detections, ap-

proximately 10% of the stocks reveal clustering in jumps at both 2 minutes and

10 seconds frequencies but they do not agree on the stocks because of spurious

jump detections. In the 2 minutes case, American International Group, Mi-

crosoft and AT&T are rejected by the runs test, whereas Boeing and Procter &

Gamble are rejected at the 10 seconds frequency. This is not surprising as COP

show that the jump dates are very different depending on the estimator and

the frequency considered. Additionally, many detections are spurious because

of multiple testing. Applying the FDR threshold or the universal threshold in

the high frequency case corrects for these errors and removes remaining rejec-

tions of the runs test. Additionally, looking at our two index proxies, the runs

test indicates that neither DIA nor PWI do cluster in time. Since jump occur-

rences are very rare after controlling for multiple testing, we observe a strong

non-rejection of the null hypothesis of no clustering. Overall, our results do not

invalidate the assumption that jump are driven by a simple Poisson process.

[Table 2]

Even if we do not observe exactly the durations between successive jumps, in

particular if there are many jumps within the same day, we can still estimate the

parameters of the simple Poisson process that would have most likely generated

the observations. If we suppose that the durations between jumps follow an

exponential distribution with parameter λ, then the probability of one or more

jumps occurring on a given day is 1 − e−λ. Hence, even if we do not observe

the exact number of jumps within days, we can estimate λ as λ̂ = − ln(1− p̂),
where p̂ denotes the estimated probability of occurrence of a jump, obtained as

the ratio of the number of days with jumps over the total number of days. We

find intensities between 0.0040 and 0.0244, or equivalently average durations of

250.0 and 41.0 days.

5 Cojumps

Among other explanations, jumps in individual stocks can be due to stock-

specific news or common market-level news. Market-level news can cause jumps

in many stocks simultaneously, which can in theory propagate even to a diver-

sified index. In this section, we study simultaneous jumps (cojumps) in the

Dow Jones stocks and their relation to jumps in the index. We examine in

detail the relation between jumps and news announcements in the next section.
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Other empirical studies of cojumps include Bollerslev, Law and Tauchen (2008)

who examine the relationship between jumps in a sample of forty large-cap

U.S. stocks and the corresponding aggregate market index, Lahaye, Laurent

and Neely (2011a) who investigate cojumps between stock index futures, bond

futures, and exchange rates, and Dungey, McKenzie and Smith (2009) who

consider simultaneous jumps across the term structure.

We define cojumps with the univariate tests as simultaneous significant

jumps, i.e., occurring on the same day, rather than using the multivariate tests

proposed e.g. by Bollerslev, Law and Tauchen (2008), or Jacod and Todorov

(2009). We detect a jump in more than 20% of the stocks on only two occasions

when applying the FDR threshold or the universal threshold (February 15, 2008

and May 29, 2008). Those two events happen during the subprime crisis, but

interestingly, there appears to be no date where more than 20% of the stocks

jump together during the highly volatile second semester of 2008. Considering

a 2 minutes frequency with no thresholding gives a totally different picture of

the joint structure of jump events. Because of the positive bias inherent to this

method, the results incorrectly suggest that cojumps involving a large portion

of the market constituents are frequent. For instance, jumps occurring in more

than 40% of the data occur in 17% of the jump detection dates, whereas the

COP estimator corrected for multiple-testing detects no single cojump affecting

more than 40% of Dow Jones constituents during the three years of our study.

The same pattern is revealed when we group stocks by industry sectors.

Many cojumps are identified at a 2 minutes frequency without multiple testing

correction but disappear at higher frequency and with thresholding. Table 3

shows the repartition of our thirty stocks among the different Global Industry

Classification Standard13 (GICS) sectors, and Table 4 displays the number of

cojumps within each sector for respectively, no account for spurious detections

at 2 minutes and 10 seconds frequencies, and use of the universal threshold and

FDR threshold at 10 seconds frequency. An asterisk indicates that there are

significantly more cojumps than if the stocks jumped independently14. For all

but one sectors the number of cojumps is significant at a 2 minutes frequency.

However, correcting for both biases using the thresholded COP estimator at

a 10 seconds frequency again confirms that cojumps are extremely rare. The

data reveal no day where there are significantly more cojumps than if the stocks

13The Global Industry Classification Standard (GICS) is an industry taxonomy developed
by Morgan Stanley Capital International (MSCI) and Standard & Poor’s.

14Under the null hypothesis that stocks jump independently, the probability that the stocks
jump simultaneously on a given day is the product of the jump probabilities of the individ-
ual stocks. The distribution of the corresponding test statistic is obtained from a simple
application of the Central Limit Theorem and the Delta method.
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jump independently.

[Tables 3 and 4]

Then, we investigate the relation between jumps in our index proxies and

jumps in the individual Dow Jones stocks. Table 5 shows the likelihood of a

jump in DIA or PWI conditional on the proportion of stocks cojumping. We

find that cojumps affecting less than 10% of the stocks are very unlikely to have

a market-wide impact. DIA and PWI jump in 1.1% and 1.5% of these dates

when we apply the FDR threshold, respectively; the universal threshold is even

more severe as it detects less than 0.5% of market jumps in this case. This is

a significant result as it means that not only jumps are extremely rare events,

but they also generally do not induce market-wide jumps. This is a strong

argument in favor of diversifiability of the jump risk.

Table 6 displays information on the distribution of the proportion of stocks

jumping simultaneously, depending on whether or not there is a jump in the

index. When applying the FDR threshold, the average percentage of stocks

jumping raises from 1.0% to 3.3% when there is a jump in DIA, and can reach

23.3%. With no jump in the index, the percentage of stocks jumping on the

same day never exceeds 16.7%. Our results agree with the findings of Bollerslev,

Law and Tauchen (2008), who report that the index jumps less often than the

individual stocks, and conclude that the idiosyncratic jumps are diversified away

in the aggregate portfolio. They also examine the puzzling fact that jumps in

the index are uncorrelated with jumps in its constituents.

[Tables 5 and 6]

6 Relation to news releases

Having removed the spurious detections with our thresholding technique, we

now investigate to which extent the few residual jumps are caused by the ar-

rival of news. We cover three different categories of news. We first consider

macroeconomic news, which can in theory explain the rare simultaneous jumps

in multiple stocks. Next, we look at prescheduled announcements specific to

each stock. Finally, we analyze the impact of stories from news agencies, i.e.,

Reuters and Dow Jones News Service. We show thanks to our methodology that

the popular belief in a relationship between jumps and these three categories is

not supported by high-frequency data on the period considered.
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6.1 Relation to macroeconomic news release

In this section, we investigate the impact of macroeconomic announcements,

which are the most likely sort of news to cause simultaneous jumps among

many stocks. Our results confirm the findings of the previous section that co-

jumps are a very rare event. There is a long literature on the market reaction to

macroeconomic news. Cutler, Poterba and Summers (1989) estimate the frac-

tion of the variance in aggregate stock returns that can be attributed to various

kinds of news, including major political and world events. Ederington and Lee

(1993) and Ederington and Lee (1996) are the first to investigate the intraday

reaction of bond prices to macro announcements. More recently, Andersen,

Bollerslev, Diebold and Vega (2007) show using high-frequency data that reac-

tion times to news are very short, and Aı̈t-Sahalia, Andritzky, Jobst, Nowak and

Tamirisa (2012) examine the market response to policy initiatives during the

recent financial crisis. To our knowledge, however, the only papers studying the

link between jumps in assets and macroeconomic news are Dungey, McKenzie

and Smith (2009), Lahaye, Laurent and Neely (2011b), Huang (2007) and Lee

(2012). Numerous other studies which mention the relation of jumps to macroe-

conomic announcements merely investigate the timing of jumps to see whether

an unusual pattern corresponds to a regularly scheduled news announcement.

For all announcements except the target Fed funds rate, we use the Interna-

tional Money Market Services (MMS) data on expected (surveyed) and realized

(announced) macroeconomic fundamentals. MMS conducts a Friday telephone

survey of about 40 money managers, collects forecasts of all indicators to be

released during the next week, and reports the median forecasts from the sur-

vey. One of the first article to use the MMS survey data is Andersen, Bollerslev,

Diebold and Vega (2003). The authors study the effect of macro announcements

on U.S. dollar spot exchange rates but do not look at jumps. The target Fed

funds rate forecasts are obtained from Action Economics, which also gathers

estimates on economic data once a week from economists, strategists, and a few

traders. We obtain the data from Haver Analytics. As of December 16, 2008,

the funds target rate is a range, i.e., zero to 0.25%, rather than a specific rate.

The Federal Open Market Committee (FOMC) can also surprise the market by

changing the Fed funds target between scheduled meetings. In our sample, the

decisions following such unscheduled meetings are always released early on the

next morning and therefore do not cause jumps during market hours.

We consider only the announcements released during the trading hours. We

provide the list of the release times in the supplemental file. Table 7 presents

the results with the BNS estimator at 2 minutes frequency, and the COP es-
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timator at 10 seconds frequency with respectively no thresholding, use of the

universal threshold, and use of the FDR threshold. For each macroeconomic

news, the table displays the number of announcement days in our sample, the

average probability of a jump in individual stocks on an announcement day, the

probability of a jump in the Diamonds ETF, and the probability of a jump in

our PWI portfolio. The last row presents corresponding results based on all

days in our sample independently on the presence or absence of news.

[Table 7]

The impact of the sampling frequency is notable. At a 2 minutes frequency,

most macroeconomic news announcement types generate a significant probabil-

ity of jump in stocks and also at the index level. Hence, we confirm the finding

of Lee (2012) based on a 15 minutes frequency. On the contrary, the significance

disappears at a 10 seconds frequency even before correcting for multiple testing.

The FDR threshold and universal threshold only make this result stronger by

removing most of the residual jump detections on announcement days. This re-

sult suggests that macroeconomic news generate financial reactions of the form

of sudden rises of volatility, which are incorrectly interpreted as jumps when

the sampling is not fine enough. In order to go further with this intuition, we

define a burst of volatility as a jump that is identified at a relatively low fre-

quency but is not at a high frequency. This concept is already put forward by

COP. We consider the thresholded version of the BNS estimator at a 2 minutes

frequency and compare the jump dates with the thresholded version of COP at

a 10 seconds frequency. We find that the only announcement which actually

increases the likelihood of a burst of volatility is the target Fed funds rate.

It may not be the act of releasing information to the market itself that is im-

portant. Rather, it may be the extent to which the actual announcement differs

from the market expectation, i.e., the surprise content of each announcement,

that determines whether assets jump in reaction to the information release.

We capture the surprise content of the announcements using the survey data

from MMS and Action Economics. To account for the discrepancies across

the various news items, we compute the standardized surprise, defined as the

difference between expectations and realizations, divided by the standard de-

viation. We do not observe any effect caused by the surprise component of

macro news announcements, even if we consider separately surprises above and

below expectations. The detailed analysis of the above results is available upon

request.
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6.2 Relation to scheduled company-specific announcements

In this section, we look at two types of scheduled company-specific announce-

ments. First, we investigate whether dividends can cause the stock price to

jump. We obtain data from COMPUSTAT and CRSP (for the declaration

date). We do not observe significantly more jumps on the ex-dividend date.

This result is not surprising, given that companies usually commit to a divi-

dend policy for the long run, that the amounts are known in advance, and that

dividends are settled after the bell. The likelihood of a jump increases slightly

on the dividend declaration date, but this is not statistically significant. Pool-

ing all the stocks together, the observed probability of a jump on a dividend

declaration day is 2.0% against 1.2% when applying the FDR threshold.

Second, using data from I/B/E/S, we perform a similar analysis for quar-

terly earnings announcements. Patton and Verardo (2012) show that the beta

of individual stocks increases by an economically significant amount on quar-

terly earnings announcement days. We do not, however, detect any effect on the

likelihood of a jump in the price. This is explained by the fact that earnings are

most often published outside of the trading hours. Using the Factiva database,

Bagnoli, Clement and Watts (2005) find that between 2000 and 2003, only 27%

of earnings announcements occur during trading hours on the major New York

stock exchanges. That figure was higher in the past, i.e., 67% in the 1970s.

Managers choose the release time of news strategically to minimize the impact

of the news on share prices. Therefore, managers attempt to release bad news

when investors have limited opportunities to act on it. Another explanation is

that managers delay the release of bad news so investors anticipate it, thus mit-

igating the drop in stock price at the announcement itself. Finally, we focus on

the 15 announcements made during trading hours, which represent only 4.2%

of all the announcements for the 30 stocks during our three-year sample, and

find that it does not increase the likelihood of a jump neither. The detailed

analysis of the impact of dividends and quarterly earnings announcements is

available upon request.

6.3 Relation to stories from news agencies

We investigate whether jumps can be explained by news stories from two major

newswires, i.e., Dow Jones News Service (DJNS) and Reuters News. By ex-

amining the content of news stories, we can analyze the impact of a variety of

unscheduled and uncategorized events and are not limited to a predetermined

set of event types such as earnings announcements, mergers, or analyst recom-

mendations. To our knowledge, the present study is the first to perform an
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extensive study of news stories and investigate whether they can cause jumps

in stock prices. Previous attempts to study the impact of news are much less

detailed, e.g., Cutler, Poterba and Summers (1989) or Lee and Mykland (2008)

who consider a small sample of three stocks over three months. Tetlock (2007)

and Tetlock, Saar-Tsechansky and Macskassy (2008) also analyze financial news

stories, though their goal is to quantifying the language in an attempt to extract

investor sentiment. Lee (2012) does not consider news agencies.

We access the DJNS and Reuters News newswires through Factiva. Factiva

is a news database that aggregates content from thousands of leading news and

business sources. Retrieving information effectively from such a huge repository

is a difficult task. The perfect mix of getting everything and avoiding irrelevant

or erroneous stories is difficult to achieve. The technology to automatically

quantifying language content is not ripe for the scope of our study15. Therefore,

we rely on the taxonomy applied by Factiva which provides a hierarchy of

company names, industries, regions, and subjects. Such an indexing allows to

narrow search results on a specific topic, or retrieve stories which are actually

about a particular company, and not all the stories where the company name

merely occurs.

The Factiva web interface does not allow to perform queries on the “pub-

lication time” field, and it is not possible to automate or customize queries.

To circumvent this problem, we export all the news stories in XML format.

We then parse the XML files and reconstruct our own database. Although the

“publication time” field is not searchable using the web interface, it is encoded

properly when exporting documents in XML format. As we can download the

full articles with indexing, we do not loose any information. This process also

allows us to perform text analysis inside the articles, and run custom searches

efficiently. Keeping news published in the US only, we are left with 30,071

DJNS stories and 31,228 Reuters stories about our thirty companies during our

three-year sample16. The stocks we consider are large multinational companies

and are the subject of one or more important stories almost every day. We

further eliminate irrelevant stories by selecting news published during market

hours only and by requiring that the company name appears in the headline17.

15Tetlock (2007) and Tetlock, Saar-Tsechansky and Macskassy (2008) are only able to con-
struct a simple indicator of media pessimism, or look at the fraction of negative words. In the
industry, the Thomson Reuters News Analytics service claims to be able to interpret news by
providing sentiment analysis. However, each news is merely attributed a -1, 0, or 1 sentiment
indication and no study is available on how relevant this indication really is.

16These numbers are obtained by using the Factiva option to remove duplicates and ex-
clude republished news, recurring pricing and market data, and non-business stories such as
obituaries, sports or calendars.

17The Factiva indexing system does not solve the aboutness vs occurrence issue perfectly.
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This allows us to reduce the number of stories to 8,498 for DJNS and 6,520 for

Reuters News, which corresponds to around one story every three days for each

stock.

Having eliminated the irrelevant stories, we analyze the probability of jumps

occurring on specific news types using the Factiva indexing hierarchy. We also

investigate the impact of news flagged as “Dow Jones/Reuters Top Wire News”

in order to capture any uncategorized and unusual story. An important pro-

portion of the “Top Wire News” are stories about earnings. The majority of

them is discarded, however, when we eliminate news released outside market

hours. Table 8 presents results for a selection of news types susceptible to

cause jumps. Results for further kinds of news are available upon request. As

one additional precaution, we require that a particular news appears simul-

taneously on both the DJNS and Reuters News wires. For each news type,

the first two columns indicate the total number of stories and the number of

stories published during market hours. 78 percent of the announcements are

made outside market hours. Once again, only by importing the news stories

into our own database are we able to filter out news outside market hours auto-

matically. The remaining columns show the conditional pooled probability of a

jump on days a news is released, for each type of news. After applying the FDR

threshold, the unconditional probability of a jump computed over all days and

stocks is 1.4 percent. The news types for which we observe an increased prob-

ability of jumps are “Government Contracts” (4.5%), “Dividends” (2.2%) and

“Divestitures / Asset Sales” (7.1%) (a subcategory of “Ownership Changes”).

However, none of these increases are statistically significant, which shows that

news stories are not very likely to cause jumps. Companies purposefully shift

most important announcements after the bell or early in the morning in order

to avoid uncontrolled investor reactions and the consequent impact on the stock

price.

[Table 8]

In the preceding sections, we have investigated the likelihood that a news

release causes a jump, i.e., P(jump|news). In Table 9, we report what propor-

tion of jumps is associated with a particular type of news, i.e., P(news|jump).

When searching for news on jump days, we consider the news investigated in the

For instance, an article containing a “Top Wire News” story about Microsoft and secondarily
mentioning Intel will also be retrieved in a search for “Top Wire News” and Intel, although
the information might be not very important for Intel. When imposing that the headline
mentions the company name, we must account for the fact that one company can have different
denominations. For example, Bank of America appears as BofA, Bank of Amer, or B of A.
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preceding sections, i.e., macroeconomic announcements, eanrnings announce-

ments, dividend declaration dates, and Reuters or DJNS news. The number

of announcements corresponds to the total over the 30 stocks. Considering the

number of stocks affected, macroeconomic news are much more frequent than

other types of announcements. As a consequence, we find a macroeconomic

announcement on approximately 30% of jump days. However, no single type

of macroeconomic news we consider significantly increases the likelihood of a

jump.

Our findings differ from the conclusions of Lee and Mykland (2008) and the

results of Lee (2012) mainly for two reasons. First, we sample at a frequency of

10 seconds whereas the authors use a low 15 minutes frequency. As evidenced in

COP, our empirical application, and our Monte-Carlo simulations, it is crucial

to sample at a high frequency to discriminate between jumps and continuous

paths subject to bursts of volatility18. Second, the authors keep the opening

transactions, which leads them to systematically detect jumps in the first re-

turns of a day. The opening transactions of each day are erratic and do not

correspond to normal returns as they result from information accumulated over

the night. As the companies under consideration are subject to news articles

every day, it is not surprising that the authors are able to find a story for each

day they detect a jump. If all such events would systematically induce jumps,

we should observe jumps scattered across the day, and not just when the market

opens.

The belief in a relationship between jumps and the three categories of news

is not supported by the data on the period considered. The few remaining

jumps identified in Section 3 must be explained by other unpublished market

events. One possible research direction is to relate residual jumps to microstruc-

ture phenomenons. For instance, the impact of high frequency trading on the

stability of financial markets is largely unknown, and algorithmic traders are

regularly accused of playing a major role in flash crashes (see Kirilenko, Kyle,

Samadi and Tuzun (2014) for an extensive review and analysis). Also, an ex-

18Our multiple testing control has double asymptotics, that is, it separates n, the number
of periods in a day, from N , the number of days. Lee and Mykland (2008) control the total
number of intraday tests on the whole time period, whereas we only need to control multiple
testing across days. Our approach is less conservative when the sampling frequency is high
or the number of intervals is large. We investigate a period of three years at a 10-second
frequency, that is, more than 1.5 million test points per asset with the Lee and Mykland
(2008) approach. Lee and Mykland (2008) consider a period of three months at a 15-minute
frequency, or approximately two thousand test points. Because of the intrinsic link between
the number of tests and the sampling frequency of their approach, the multiple testing control
of Lee and Mykland (2008) is excessively conservative when applied to our data set. We would
get a bound of

√
2 logN = 5.33 with N = 1.5 million, which translates into a very conservative

probability level αN = 2(1− Φ(5.33)) = 9.65× 10−8 for their approach.
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cessive demand for trading in a relatively illiquid market with imbalanced order

books may cause jumps even in the absence of news. Yet, our preliminary re-

sults trying to relate jumps to illiquidity based on volume information only do

not seem to show an obvious relationship. Hence, we do not report them, and

we leave these aspects for further research.

[Table 9]

7 Conclusion

This paper introduces a method to eliminate spurious detections of jumps in

high-frequency data via an explicit thresholding on available test statistics. Our

theoretical result is the first to provide a formal treatment of the multiple test-

ing issue when identifying jumps over a long period of time. A Monte Carlo

study shows that our technique behaves well in finite sample, and illustrates

the importance of removing spurious detections when investigating the dynam-

ics of jump arrivals. Applying our method on high-frequency data for the 30

Dow Jones stocks over the three-year period between 2006 and 2008, we find

that up to 90% of days selected initially as containing a jump are spurious de-

tections. Overall, our tests do no detect time clustering phenomena of jumps

arrivals, and, hence, do not reject the hypothesis that jump arrivals are driven

by a simple Poisson process. We do not detect cojumps affecting all stocks

simultaneously, which supports the assumption in Merton (1976) that jump

risk is diversifiable. The main empirical contribution of the paper is to study

the relation between jumps and information arrival. We find that scheduled

macroeconomic announcements and company-specific announcements do not

increase the likelihood of a jump to a statistically significant extent. Using the

Factiva database, we also study the impact of Reuters and Dow Jones News

Service news and find that it does not cause jumps neither. Those results show

that the conjecture about jumps coming from announcements is not supported

by the data. This does not mean announcements have no market impact. Our

results indicate that they may induce bursts of volatility. We consider only U.S.

large capitalization stocks in our empirical study. It would be interesting to in-

vestigate the jump behavior of stocks with different characteristics, especially

when studying liquidity issues as an explanation for jumps.
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Appendix: Proof of asymptotic control

We prove Theorem 1 with BNS for simplicity here but it can be applied to

COP19. We can also apply it to other strategies yielding jump detection tests,

such as Aı̈t-Sahalia and Jacod (2009) in a similar way. The proof is available on

request. Under the null hypothesis of no jumps, Section 3 of BNS shows that the

asymptotic distribution of jump test statistics converges to independent stan-

dard normal random variables from a classical use of infill asymptotics. These

standard results follow from showing asymptotic negligibility of the drift contri-

butions and application of a CLT for triangular arrays of martingale differences

to derive the joint asymptotic behaviour of the realized quadratic variation and

the realized bipower variation.

For each integer n ≥ 1, let the real-valued random variables Y n
t,i, 1 ≤ t ≤ N ,

1 ≤ i ≤ n, form N square integrable martingale difference sequences w.r.t. the

σ-fields Fnt,0 ⊂ Fnt,1 ⊂ . . . ⊂ Fnt,n, that is, suppose that Y n
t,i is measurable w.r.t.

Fnt,i with E[(Y n
t,1)2] < ∞ and E[Y n

t,i|Fnt,i] = 0 a.s. for all n, i and t. We apply a

CLT to quantities written as Snt =
n∑
i=1

Y n
t,i. In the following theorem, we show

that the event that the largest and the smallest of the entries of the vector

(Sn1 , . . . , S
n
N ) stay within [−

√
2 logN,

√
2 logN ] becomes certain for large n and

N . We use two conditions on higher moments, which imply the conditions to

apply the CLT for triangular arrays of martingale differences when n goes to

infinity, and require that N is not too large w.r.t. the asymptotics in n.

Theorem 1. Let Snt =

n∑
i=1

Y n
t,i, 1 ≤ t ≤ N . If, for 0 < γ <∞,

Lnt,2γ = E

[
n∑
i=1

|Y n
t,i|2+2γ

]
→ 0, as n→∞, (1)

Mn
t,2γ = E

∣∣∣∣∣
n∑
i=1

E
[
(Y n
t,i)

2|Fnt,i
]
− 1

∣∣∣∣∣
1+γ
→ 0, as n→∞, (2)

19BNS and COP use the difference of the realized power and bipower variations in their
original tests. We use the adjusted ratio statistic of BNS and the log-ratio statistic of COP
in our empirical applications and Monte-Carlo simulations. These modified test statistics
are advocated by Huang and Tauchen (2005) and COP as they provide better finite sample
properties than the original difference statistics. They are respectively the same in the limit
as we can always apply the delta method to the modified version to get an asymptotically
equivalent linear test statistic (see, for example, BNS for an early application to realized
power and bipower variations). Hence, Theorem 1 holds for the linear, ratio, and log-ratio
test statistics of BNS and COP.
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and

(1 +
√

2 logN)3+6γN ≤ α(Lnt,2γ +Mn
t,2γ)−1, (3)

with α > 0. Then,

P

[
sup
t
|Snt | ≤

√
2 logN

]
→ 1, as N,n→∞. (4)

Proof. Conditions (1) and (2) imply the conditions of the CLT for triangu-

lar arrays of martingale differences, and we get the weak convergence of the

distribution P [Snt ≤ x] to the standard normal distribution Φ(x) as n → ∞.

Now P

[
sup
t
|Snt | ≤

√
2 logN

]
= P

[
|Sn1 | ≤

√
2 logN, . . . , |SnN | ≤

√
2 logN

]
=

N∏
t=1

P
[
|Snt | ≤

√
2 logN

]
by independence. We have independence since a mar-

tingale difference sequence has no serial correlation by construction (see e.g.

Hayashi (2000) p. 104 for a proof), the entries Snt are linear combinations

of Y n
t,i forming martingale difference sequences, all σ-fields indexed by i and

t are increasing, and the equivalence between zero correlation and indepen-

dence for Gaussian vectors. From Grama (1997) Theorem 2.1, Condition (3)

ensures that we can use exact bounds for the departure from normality of

P
[
Snt ≥

√
2 logN

]
and P

[
Snt ≤ −

√
2 logN

]
(see also Hauesler (1988) Theo-

rem 2 for exact uniform bounds, and Lipster and Shiryayev (1989) Section 5.7

Theorems 1 and 2 for uniform bounds, i.e., Berry-Esseen type bounds, instead

of the exact nonuniform bounds for moderate deviations that we use here). We

get
∏N
t=1 P

[
|Snt | ≤

√
2 logN

]
=
∏N
t=1

[
1− 2Φ(−

√
2 logN) {1 +Rt(α, γ,N)}

]
,

where Rt(α, γ,N) = θC(α, γ)
{

(1 +
√

2 logN)3+6γN(Lnt,2γ +Mn
t,2γ)

}1/(3+2γ)
is

the remainder term, with |θ| < 1 and C(α, γ) being a constant only depending

on α and γ. Using Φ(−
√

2 logN) ≤ φ(
√

2 logN)/
√

2 logN with φ denoting the

density of the standard normal distribution, we deduce the stated result from∏N
t=1

[
1− 2Φ(−

√
2 logN)

]
→ 1, as N →∞, and the asymptotic negligibil-

ity of the contribution of the remainder term as N,n→∞ since Rt(α, γ,N) is

bounded by θC(α, γ)α3+6γ because of (3).

Condition (3) is rather weak as clearly illustrated in the case of independent

random variables by Grama (1997). Let Y n
t,i = ηt,i/

√
n, where ηt,i form N

given independent sequences of i.i.d. random variables which satisfy E[ηt,1] = 0,

E[(ηt,1)2] = 1, m2γ = E[|ηt,1|2+2γ ] <∞ with 0 < γ <∞. In this case Mn
t,2γ = 0

and Lnt,2γ = n−γm2γ . Thus for standard Gaussian ηt,1, condition (3) is easily

met for various (n,m,α, γ) since m2γ = (2+2γ)!
21+γ(1+γ)!

.
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BNS test: We can write the linear test statistic of Barndorff-Nielsen and

Shephard (2006) (based on the difference µ−2
1 BV n

t − RV n
t ) in the above form

using Y n
t,i := (ϑµ−4

1 ∆nQV
n
t )−1/2

(
µ−2

1 |∆X
n
t,i||∆Xn

t,i−1| − |∆Xn
t,i|2
)
. Since

|Y n
t,i|2+2γ ≤ (ϑµ−4

1 ∆nQV
n
t )−(1+γ)

∞∑
l=0

(
2 + 2γ

l

)(
|∆Xn

t,i||∆Xn
t,i−1|

)2(2+2γ−l)

|∆Xn
t,i|2l,

where

(
2 + 2γ

l

)
=

1

l!

l−1∏
k=0

(2 + 2γ − k), Condition (1) holds from the con-

vergence of ∆−1/2
n ∆1−2(1+γ)

n

n∑
i=2

(
|∆Xn

t,i||∆Xn
t,i−1|

)2(2+2γ−l) |∆Xn
t,i|2l in law to

Gaussian variables for X continuous, the equality ∆
−(1+γ)
n = ∆

−1/2
n ∆

1−2(1+γ)
n

∆
2+γ−3/2
n , and ∆n → 0. Condition (2) holds since

n∑
i=2

E
[
(µ−2

1 |∆X
n
t,i||∆Xn

t,i−1|−

|∆Xn
t,i|2)2|Fnt,i

]
converges to

∫ t
t−1 σ

4
sds (see e.g. Barndorff-Nielsen, Graversen,

Jacod and Shephard (2006)). The reasoning is similar for the adjusted ratio

statistic of BNS and the log-ratio test statistic of COP.
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2-minute 10-second
No No Universal FDR

Ticker Company name thresholding thresholding threshold threshold
Dow Jones stocks:
AA Alcoa 73.3 16.3 2.0 1.7
AIG American International Group 75.3 21.3 3.7 4.3
AXP American Express 72.0 22.7 2.7 3.0
BA Boeing 57.7 21.7 5.0 6.0
C Citigroup 57.7 11.7 3.0 3.3
CAT Caterpillar 59.0 15.7 2.7 3.7
DD DuPont 81.0 19.7 4.3 5.7
DIS Walt Disney 86.7 20.0 3.7 4.0
GE General Electric 76.7 18.0 2.7 3.3
GM General Motors 77.0 31.0 2.7 4.3
HD The Home Depot 70.7 16.7 2.0 2.7
HON Honeywell 61.7 22.0 0.3 1.3
HPQ Hewlett-Packard 66.7 18.3 2.0 2.0
IBM IBM 55.0 22.3 2.7 2.7
INTC Intel 89.0 17.7 3.3 3.3
JNJ Johnson & Johnson 68.0 20.7 3.3 3.0
JPM JPMorgan Chase 60.0 15.0 1.0 1.0
KO Coca-Cola 73.7 19.3 1.3 1.3
MCD McDonald’s 75.7 22.3 1.7 2.0
MMM 3M 62.7 16.7 2.0 2.7
MO Altria Group 73.3 20.7 2.3 3.0
MRK Merck 69.3 21.3 2.7 2.3
MSFT Microsoft 94.0 20.0 2.7 2.0
PFE Pfizer 93.0 17.3 2.7 2.7
PG Procter & Gamble 61.0 19.0 2.0 1.7
T AT&T 82.0 20.7 3.3 4.0
UTX United Technologies Corporation 59.3 15.7 2.0 2.3
VZ Verizon Communications 75.0 19.0 3.0 3.0
WMT Wal-Mart 50.3 15.3 2.0 2.3
XOM ExxonMobil 43.7 15.7 3.0 4.7

Index:
DIA Diamonds Trust 91.7 18.3 1.3 3.0
PWI Price-weighted index 72.7 15.3 1.6 4.7

Summary for stocks:
Mean 70.0 19.1 2.7 4.7
Median 71.3 19.1 2.7 3.0
Minimum 43.7 11.7 0.3 1.0
Maximum 94.0 31.0 5.0 6.0

Table 1: Average number of jumps per year. This table reports the average
yearly number of jumps over the three-year period between 2006 and 2008, for
the 30 Dow Jones stocks, the Diamonds ETF (DIA), and a price-weighted index
portfolio of the 30 stocks (PWI). We use the BNS jump detection test at a 2-
minute sampling frequency and the COP test at a 10-second frequency. Results
for the latter are reported for respectively, no account for spurious detections,
use of the universal threshold, and use of the FDR threshold.
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2-minute 10-second
No No Universal FDR

Ticker Company name thresholding thresholding threshold threshold
Dow Jones stocks:
AA Alcoa 0.93 1.00 1.00 1.00
AIG American International Group 0.00∗ 0.63 1.00 1.00
AXP American Express 0.14 1.00 1.00 1.00
BA Boeing 0.89 0.03∗ 1.00 1.00
C Citigroup 0.08 0.34 1.00 1.00
CAT Caterpillar 0.49 0.35 1.00 1.00
DD DuPont 0.65 0.61 1.00 1.00
DIS Walt Disney 0.40 1.00 1.00 1.00
GE General Electric 0.40 0.44 1.00 1.00
GM General Motors 0.09 0.71 1.00 1.00
HD The Home Depot 0.15 0.45 1.00 1.00
HON Honeywell 0.14 0.70 1.00 1.00
HPQ Hewlett-Packard 0.55 0.73 1.00 1.00
IBM IBM 0.51 1.00 1.00 1.00
INTC Intel 0.23 1.00 1.00 1.00
JNJ Johnson & Johnson 0.36 0.24 1.00 1.00
JPM JPMorgan Chase 0.29 0.43 1.00 1.00
KO Coca-Cola 0.45 0.29 1.00 1.00
MCD McDonald’s 0.52 0.05 1.00 1.00
MMM 3M 0.70 0.84 1.00 1.00
MO Altria Group 0.16 0.77 1.00 1.00
MRK Merck 0.92 1.00 1.00 1.00
MSFT Microsoft 0.00∗ 0.50 1.00 1.00
PFE Pfizer 0.12 0.20 1.00 1.00
PG Procter & Gamble 0.49 0.01∗ 1.00 1.00
T AT&T 0.02∗ 1.00 1.00 1.00
UTX United Technologies Corporation 0.17 0.35 1.00 1.00
VZ Verizon Communications 0.49 0.50 1.00 1.00
WMT Wal-Mart 0.47 0.60 1.00 1.00
XOM ExxonMobil 0.35 0.66 1.00 1.00

Index:
DIA Diamonds Trust 0.10 0.14 1.00 1.00
PWI Price-weighted index 0.21 1.00 1.00 1.00

Summary for stocks:
Percentage of stocks with clustering 10.0 6.7 0.0 0.0

Table 2: Runs tests. This table reports p-values from the runs test of the
Null hypothesis that jump arrivals do not cluster in time. Results are presented
for the 30 Dow Jones stocks, the Diamonds ETF (DIA), and a price-weighted
index portfolio of the 30 stocks (PWI), over the three-year period between
2006 and 2008. We use the BNS jump detection test at a 2-minute sampling
frequency and the COP test at a 10-second frequency. Results for the latter are
reported for respectively, no account for spurious detections, use of the universal
threshold, and use of the FDR threshold.
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Industry sector Dow Jones constituents

Energy ExxonMobil
Materials Alcoa, DuPont
Industrials Boeing, Caterpillar, General Electric,

Honeywell, 3M, United Technologies Corporation
Consumer Discretionary Walt Disney, General Motors, The Home Depot,

McDonald’s
Consumer Staples Coca-Cola, Altria Group, Procter & Gamble,

Wal-Mart
Health Care Johnson & Johnson, Merck, Pfizer
Financials American International Group, American Express,

Citigroup, JPMorgan Chase
Information Technology Hewlett-Packard, IBM, Intel, Microsoft
Telecommunication Services AT&T, Verizon Communications

Table 3: Global Industry Classification Standard industry sectors. This
table shows the repartition of the 30 Dow Jones stocks among the different
sectors.

Number of cojumps
2-minute 10-second

Nb stocks No No Universal FDR
Sector in sector thresholding thresholding threshold threshold

Materials 2 76∗ 10∗ 1 1
Industrials 6 3∗ 0 0 0
Consumer Discretionary 4 9∗ 0 0 0
Consumer Staples 4 3 0 0 0
Health Care 3 31∗ 1 0 0
Financials 4 10∗ 1 0 1
Information Technology 4 18∗ 0 0 0
Telecom. Services 2 97∗ 12∗ 0 0

Table 4: Cojumps within industry sectors. This table shows the number
of cojumps within each industry sector. We use the BNS jump detection test
at a 2-minute sampling frequency and the COP test at a 10-second frequency.
Results for the latter are reported for respectively, no account for spurious
detections, use of the universal threshold, and use of the FDR threshold. An
asterisk indicates that there are significantly more cojumps than if the stocks
were independent.
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Proportion of stocks Number of P(jump in P(jump in
jumping simultaneously occurrences DIA) (%) PWI) (%)

2-minute, no thresholding:
0–10% 20 5.0 0.0
10–20% 128 15.6 10.9
20–40% 469 36.0 27.3
40–60% 121 63.6 55.4
60–80% 8 87.5 100.0
80–100% 1 100.0 100.0

10-second, no thresholding:
0–10% 438 3.2 1.6
10–20% 273 11.7 10.6
20–40% 35 22.9 25.7
40–60% 0 - -
60–80% 1 100.0 100.0
80–100% 0 - -

10-second, universal threshold:
0–10% 736 0.4 0.3
10–20% 9 0.0 11.1
20–40% 2 50.0 100.0
40–60% 0 - -
60–80% 0 - -
80–100% 0 - -

10-second, FDR threshold:
0–10% 733 1.1 1.5
10–20% 12 0.0 8.3
20–40% 2 50.0 100.0
40–60% 0 - -
60–80% 0 - -
80–100% 0 - -

Table 5: Probability of a jump in the index conditional on the propor-
tion of stocks jumping simultaneously. This table shows the probability
of a jump in the Diamonds ETF (DIA), and in the price-weighted index port-
folio of the 30 Dow Jones stocks (PWI), conditional on the proportion of stocks
jumping simultaneously. We use the BNS jump detection test at a 2-minute
sampling frequency and the COP test at a 10-second frequency. Results for the
latter are reported for respectively, no account for spurious detections, use of
the universal threshold, and use of the FDR threshold.
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Proportion of stocks Jump in DIA: Jump in PWI:
jumping simultaneously No Yes No Yes

2-minute, no thresholding:
Mean (%) 25.1 33.4 25.3 35.0
Median (%) 23.3 30.0 26.7 33.3
Maximum (%) 60.0 93.3 53.3 93.3

10-second, no thresholding:
Mean (%) 7.2 13.6 7.2 15.3
Median (%) 6.7 13.3 6.7 13.3
Maximum (%) 36.7 63.3 33.3 63.3

10-second, universal threshold:
Mean (%) 0.8 3.0 0.8 4.2
Median (%) 0.0 3.3 0.0 3.3
Maximum (%) 16.7 20.0 13.3 20.0

10-second, FDR threshold:
Mean (%) 1.0 3.3 1.0 4.3
Median (%) 0.0 3.3 0.0 3.3
Maximum (%) 16.7 23.3 13.3 23.3

Table 6: Proportion of stocks jumping simultaneously conditional on
a jump in the index. This table displays the distribution of the proportion
of stocks jumping simultaneously, depending on whether or not we detect a
jump in the index. Results are reported for the Diamonds ETF (DIA), and the
price-weighted index portfolio of the 30 Dow Jones stocks (PWI). We use the
BNS jump detection test at a 2-minute sampling frequency and the COP test
at a 10-second frequency. Results for the latter are reported for respectively, no
account for spurious detections, use of the universal threshold, and use of the
FDR threshold.
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Nb of P(jump P(jump P(jump
Announcement ann. in stocks) in DIA) in PWI)
2-minute, no thresholding:
Consumer credit 35 28.6 (7.6) 42.9 (8.4) 34.3 (8.0)
Construction spending 35 27.9 (7.6) 20.0 (6.8) 11.4 (5.4)
Factory orders 35 29.7 (7.7) 40.0 (8.3) 31.4 (7.8)
Business inventories 36 28.7 (7.5) 41.7 (8.2) 25.0 (7.2)
Government budget deficit 36 25.3 (7.2) 36.1 (8.0) 33.3 (7.9)
Consumer confidence index 36 24.6 (7.2) 33.3 (7.9) 27.8 (7.5)
ISM manufacturing composite index 35 28.4 (7.6) 34.3 (8.0) 25.7 (7.4)
Target federal funds rate 23 29.3 (9.5) 34.8 (9.9) 34.8 (9.9)

All days 747 28.1 (1.6) 36.9 (1.8) 29.2 (1.7)

10-second, no thresholding:
Consumer credit 35 6.0 (4.0) 11.4 (5.4) 2.9 (2.8)
Construction spending 35 6.9 (4.3) 5.7 (3.9) 8.6 (4.7)
Factory orders 35 7.6 (4.5) 2.9 (2.8) 5.7 (3.9)
Business inventories 36 9.1 (4.8) 5.6 (3.8) 11.1 (5.2)
Government budget deficit 36 7.0 (4.3) 2.8 (2.7) -
ISM manufacturing composite index 35 8.1 (4.6) 8.6 (4.7) 8.6 (4.7)
Target federal funds rate 23 3.9 (4.0) - -

All days 747 7.7 (1.0) 7.4 (1.0) 6.2 (0.9)

10-second, universal threshold:
Consumer credit 35 0.2 (0.7) - 2.9 (2.8)
Construction spending 35 1.0 (1.7) - -
Factory orders 35 1.1 (1.8) - -
Business inventories 36 1.4 (2.0) - 2.8 (2.7)
Government budget deficit 36 1.0 (1.7) - -
Consumer confidence index 36 0.9 (1.6) - -
ISM manufacturing composite index 35 1.0 (1.7) 2.9 (2.8) -
Target federal funds rate 23 0.4 (1.4) - -

All days 747 1.0 (0.4) 0.5 (0.3) 0.7 (0.3)

10-second, FDR threshold:
Consumer credit 35 0.3 (0.9) - 2.9 (2.8)
Construction spending 35 1.3 (1.9) - 2.9 (2.8)
Factory orders 35 1.3 (1.9) 2.9 (2.8) -
Business inventories 36 1.3 (1.9) - 2.8 (2.7)
Government budget deficit 36 1.5 (2.0) - -
Consumer confidence index 36 0.9 (1.6) - -
ISM manufacturing composite index 35 1.2 (1.9) 5.7 (3.9) 2.9 (2.8)
Target federal funds rate 23 0.4 (1.4) - -

All days 747 1.2 (0.4) 1.2 (0.4) 1.9 (0.5)

Table 7: Probability of a jump on macroeconomic news announce-
ments. This table presents the probability (%) of a jump on announcement
days for the 30 Dow Jones stocks, the Diamonds ETF (DIA), and the price-
weighted index portfolio of the 30 Dow Jones constituents (PWI). We use the
BNS jump detection test at a 2-minute sampling frequency and the COP test
at a 10-second frequency. Results for the latter are reported for respectively,
no account for spurious detections, use of the universal threshold, and use of
the FDR threshold. An asterisk indicates that the likelihood of a jump is sig-
nificantly larger after a news is released than on days with no news of the same
type. Numbers in parentheses correspond to standard deviations.
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Nb. of P(news if P(news if P(news if
Announcement ann. days jump in stocks) jump in DIA) jump in PWI)
2-minute, no thresholding:
Dividends declaration 329 1.2 (0.1) - -
Earnings announcements 15 0.1 (0.0) - -
Macroeconomic news 30×236? 31.4 (0.6) 32.4 (2.8) 32.6 (3.2)
Reuters/DJNS news 629 2.8 (0.2) - -

All news 1209? 33.9 (0.6) - -

10-second, no thresholding:
Dividends declaration 329 2.3 (0.4) - -
Earnings announcements 15 0.1 (0.1) - -
Macroeconomic news 236 29.1 (1.1) 25.5 (5.9) 23.9 (6.3)
Reuters/DJNS news 629 3.1 (0.4) - -

All news 1209 32.4 (1.1) - -

10-second, universal threshold:
Dividends declaration 329 2.1 (0.9) - -
Earnings announcements 15 0.0 (0.0) - -
Macroeconomic news 236 27.5 (2.9) 25.0 (21.7) 40.0 (21.9)
Reuters/DJNS news 629 5.2 (1.4) - -

All news 1209 32.6 (3.1) - -

10-second, FDR threshold:
Dividends declaration 329 2.6 (1.0) - -
Earnings announcements 15 0.0 (0.0) - -
Macroeconomic news 236 27.6 (2.7) 33.3 (15.7) 28.6 (12.1)
Reuters/DJNS news 629 4.9 (1.3) - -

All news 1209 32.5 (2.9) - -

Table 9: Probability (%) of finding a news story on jump days. This
table displays the probability that a jump is caused by one of the announcements
we consider. The table shows the number of announcement days, and the
probability of finding a news explaining jumps in the 30 Dow Jones stocks, the
Diamonds ETF (DIA), and the price-weighted index portfolio of the 30 Dow
Jones constituents (PWI). We use the BNS jump detection test at a 2-minute
sampling frequency and the COP test at a 10-second frequency. Results for the
latter are reported for respectively, no account for spurious detections, use of
the universal threshold, and use of the FDR threshold. A star highlights that,
except for macroeconomic news, the number of announcements corresponds to
the total over the 30 stocks. An asterisk indicates that the likelihood of a news
is significantly larger on days with jump than on days with no jump. Numbers
in parentheses correspond to standard deviations.
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Figure 1: Thresholding test statistics. This figure displays daily COP test
statistics (points) for Boeing, over the period between January and June 2007,
using a 10-second sampling frequency. The spurious detections and the true
jumps identified when applying the FDR threshold are depicted respectively by
circles and asterisks.
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