Technical Report

A Specification Test for Nonparametric Instrumental Variable Regression
P. Gagliardini and O. Scaillet

June 2016

This technical report contains the proofs of the technical Lemmas B.1-B.8, C.1-C.4, and D.1-D. 3 in the paper entitled "A Specification Test for Nonparametric Instrumental Variable Regression" and written by P. Gagliardini and O. Scaillet. Equations labelled as (n) refer to the paper, and Equations labelled as (TR. n) refer to the technical report. To simplify the proofs, we adopt a product kernel in the estimation of the density of (Y, X, Z). We use the generic notation K for both the 3-dimensional product kernel and each of its components.

1 Proof of Lemma B. 1

The result follows from (see decomposition (12)):

$$
\begin{aligned}
\left|\xi_{1, T}\right| \leq & \max _{t \in \mathcal{T}_{*}}\left|\frac{\left(T h_{T}\right)^{2} \Omega_{t}}{\left(\sum_{j} K_{j t}\right)^{2}}\right| \frac{K(0)^{2}}{\left(T h_{T}\right)^{2}} \frac{1}{T} \sum_{t}\left(\left|U_{t}\right|^{2}+\left|\mathcal{B}_{T}\left(X_{t}\right)\right|^{2}+\left|\mathcal{E}_{T}\left(X_{t}\right)\right|^{2}\right. \\
& \left.+2\left|U_{t}\right|\left|\mathcal{B}_{T}\left(X_{t}\right)\right|+2\left|U_{t}\right|\left|\mathcal{E}_{T}\left(X_{t}\right)\right|+2\left|\mathcal{B}_{T}\left(X_{t}\right)\right|\left|\mathcal{E}_{T}\left(X_{t}\right)\right|\right),
\end{aligned}
$$

and $\max _{t \in \mathcal{T}_{*}}\left|\frac{\left(T h_{T}\right)^{2} \Omega_{t}}{\left(\sum_{j} K_{j t}\right)^{2}}\right|=O_{p}(1), \frac{1}{T} \sum_{t}\left|U_{t}\right|^{2}=O_{p}(1), \frac{1}{T} \sum_{t}\left|\mathcal{B}_{T}\left(X_{t}\right)\right|^{2}=o_{p}(1)$, $\frac{1}{T} \sum_{t}\left|\hat{\varphi}\left(X_{t}\right)-\varphi_{\lambda_{T}}\left(X_{t}\right)\right|^{2}=o_{p}(1)$ and the Cauchy-Schwartz inequality (Assumptions A.1A.4, A. 5 (i), 3).

2 Proof of Lemma B. 2

We get from decomposition (12):

$$
\begin{aligned}
\xi_{3, T}= & \frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} U_{t} U_{s} K_{s t} I_{t}+\frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} \mathcal{B}_{T}\left(X_{t}\right) \mathcal{B}_{T}\left(X_{s}\right) K_{s t} I_{t} \\
& +\frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} \mathcal{E}_{T}\left(X_{t}\right) \mathcal{E}_{T}\left(X_{s}\right) K_{s t} I_{t}-2 \frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} U_{t} \mathcal{B}_{T}\left(X_{s}\right) K_{s t} I_{t} \\
& -2 \frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} U_{t} \mathcal{E}_{T}\left(X_{s}\right) K_{s t} I_{t}+2 \frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} \mathcal{B}_{T}\left(X_{t}\right) \mathcal{E}_{T}\left(X_{s}\right) K_{s t} I_{t} \\
=: \quad & \xi_{31, T}+\xi_{32, T}+\xi_{33, T}-2 \xi_{34, T}-2 \xi_{35, T}-2 \xi_{36, T} .
\end{aligned}
$$

We consider in details the first three terms (the bounds for the remaining terms are similar).
The term $\xi_{31, T}$ corresponds to statistic $\hat{T}_{3}^{(1)}$ of TK, p. 2082 (multiplied by T^{-1} and for a given weighting function). Along the lines of Lemma A. 4 in TK, we have $\xi_{31, T}=$
$O_{p}\left(\frac{1}{\left(T h_{T}\right)^{3 / 2}}\right) O_{p}\left(\sup _{z \in S_{*}}\left|\hat{f}(z)^{-1}-f(z)^{-1}\right|\right)$. From the uniform convergence of the kernel density estimator (Assumptions A.1, A.3, A.4) and $h_{T}=\bar{c} T^{-\bar{\eta}}$ with $\bar{\eta}<2 / 3$ (Assumption 3), we get $\xi_{31, T}=o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$.

Let us now consider the second term, $\xi_{32, T}$. Define $\eta_{s}:=\mathcal{B}_{T}\left(X_{s}\right)-E\left[\mathcal{B}_{T}\left(X_{s}\right) \mid Z_{s}\right]$ and $b_{s}:=E\left[\mathcal{B}_{T}\left(X_{s}\right) \mid Z_{s}\right]=\left(A \mathcal{B}_{T}\right)\left(Z_{s}\right)$. Then:

$$
\begin{aligned}
\xi_{32, T}= & \frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} b_{t} b_{s} K_{s t} I_{t}+\frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} \eta_{t} \eta_{s} K_{s t} I_{t} \\
& +\frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} b_{t} \eta_{s} K_{s t} I_{t}+\frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} \eta_{t} b_{s} K_{s t} I_{t} \\
= & : \xi_{321, T}+\xi_{322, T}+\xi_{323, T}+\xi_{324, T} .
\end{aligned}
$$

By the uniform convergence of the kernel density estimator, the dominant term in $\xi_{321, T}$ is

$$
\xi_{3211, T}=\frac{1}{T^{3} h_{T}^{2}} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{f\left(Z_{t}\right)^{2}} b_{t} b_{s} K_{s t} I_{t}=\frac{K(0)}{T^{2} h_{T}} \sum_{t} \frac{\Omega_{t}}{f\left(Z_{t}\right)^{2}} I_{t} b_{t}\left(\frac{1}{T h_{T}} \sum_{s \neq t} b_{s} K_{s t}\right) .
$$

Using that $E\left[\frac{\Omega_{t}}{f\left(Z_{t}\right)^{2}} I_{t} b_{t}\left(\frac{1}{T h_{T}} \sum_{s \neq t} b_{s} K_{s t}\right)\right]=E\left[\frac{\Omega_{t}}{f\left(Z_{t}\right)} I_{t} b_{t}^{2}\right](1+o(1))=$ $O\left(E\left[\Omega_{t} I_{t}\left(A \mathcal{B}_{T}\right)\left(Z_{t}\right)^{2}\right]\right), E\left[\Omega_{t} I_{t}\left(A \mathcal{B}_{T}\right)\left(Z_{t}\right)^{2}\right]=Q_{\lambda_{T}}=O\left(\lambda_{T}^{1+\beta}\right)$ (see Appendix A.2.3), and Assumption 3, it follows that $\xi_{321, T}=O_{p}\left(\frac{1}{T h_{T}} Q_{\lambda_{T}}\right)=o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$. The dominant term in $\xi_{322, T}$ is

$$
\xi_{3221, T}=\frac{1}{T^{3} h_{T}^{2}} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{f\left(Z_{t}\right)^{2}} \eta_{t} \eta_{s} K_{s t} I_{t}=\frac{1}{T^{3} h_{T}^{2}} \sum_{t} \sum_{s>t} a_{t s} \eta_{t} \eta_{s}=: \frac{1}{T^{3} h_{T}^{2}} J_{3221, T},
$$

where $a_{t s}=\frac{\Omega_{t} K(0)}{f\left(Z_{t}\right)^{2}} K_{s t} I_{t}+\frac{\Omega_{s} K(0)}{f\left(Z_{s}\right)^{2}} K_{t s} I_{s}$. Using that $E\left[\eta_{t} \mid \mathcal{I}\right]=0$ and $E\left[\eta_{t} \eta_{s} \mid \mathcal{I}\right]=0$ for $t \neq s$, from the independence of the observations, we have:

$$
E\left[J_{3221, T}^{2}\right]=\sum_{t} \sum_{s>t} E\left[a_{t s}^{2} \eta_{t}^{2} \eta_{s}^{2}\right]=\sum_{t} \sum_{s>t} E\left[a_{t s}^{2} \Gamma\left(Z_{t}\right) \Gamma\left(Z_{s}\right)\right],
$$

where $\Gamma\left(Z_{t}\right):=E\left[\eta_{t}^{2} \mid Z_{t}\right]=V\left[\mathcal{B}_{T}\left(X_{t}\right) \mid Z_{t}\right]$, and the cross-terms vanish because of the conditional independence property of the η_{t} variables. Then, we get $E\left[J_{3221, T}^{2}\right]=O\left(T^{2} h_{T}\right)$ and thus $\xi_{322, T}=O_{p}\left(\frac{1}{T^{2} h_{T}^{3 / 2}} E\left[\eta_{t}^{2}\right]\right)=o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$. The argument is similar for $\xi_{323, T}$ and $\xi_{324, T}$, and we deduce $\xi_{32, T}=o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$.

Let us finally consider the third term, $\xi_{33, T}$. We have

$$
\left|\xi_{33, T}\right| \leq \max _{t \in \mathcal{T}_{*}}\left|\frac{\left(T h_{T}\right)^{2} \Omega_{t}}{\left(\sum_{j} K_{j t}\right)^{2}}\right| \frac{K(0)}{T h_{T}} \frac{1}{T^{2} h_{T}} \sum_{t} \sum_{s \neq t}\left|\mathcal{E}_{T}\left(X_{t}\right)\right|\left|\mathcal{E}_{T}\left(X_{s}\right)\right| K_{s t} I_{t}
$$

Applying the Cauchy-Schwarz inequality twice, we deduce:

$$
\frac{1}{T^{2} h_{T}} \sum_{t} \sum_{s \neq t}\left|\mathcal{E}_{T}\left(X_{t}\right) \mathcal{E}_{T}\left(X_{s}\right)\right| K_{s t} I_{t} \leq \frac{1}{T} \sum_{t}\left|\mathcal{E}_{T}\left(X_{t}\right)\right|^{2} \sqrt{\frac{1}{T^{2} h_{T}^{2}} \sum_{t} \sum_{s \neq t} K_{s t}^{2} I_{t}} .
$$

From $E\left[\frac{1}{T^{2} h_{T}^{2}} \sum_{t} \sum_{s \neq t} K_{s t}^{2} I_{t}\right]=O\left(h_{T}^{-1}\right)$ we get $\xi_{33, T}=O_{p}\left(\frac{1}{T h_{T}^{1 / 2}} \frac{1}{h_{T}}\left(\frac{1}{T} \sum_{t}\left|\hat{\varphi}\left(X_{t}\right)-\varphi_{\lambda_{T}}\left(X_{t}\right)\right|^{2}\right)\right)$. It follows $\xi_{33, T}=o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$ from Assumptions A. 5 (i) and 3.

3 Proof of Lemma B. 3

Define $\eta_{s}:=\mathcal{B}_{T}\left(X_{s}\right)-E\left[\mathcal{B}_{T}\left(X_{s}\right) \mid Z_{s}\right]$ and $b_{s}:=E\left[\mathcal{B}_{T}\left(X_{s}\right) \mid Z_{s}\right]=\left(A \mathcal{B}_{T}\right)\left(Z_{s}\right)$. Split

$$
\mathcal{K}_{T}\left(\mathcal{B}_{T}(X), \mathcal{B}_{T}(X)\right)=\mathcal{K}_{T}(b, b)+2 \mathcal{K}_{T}(b, \eta)+\mathcal{K}_{T}(\eta, \eta)=: J_{11, T}+J_{12, T}+J_{13, T}
$$

Then, term $J_{11, T}$ can be written as

$$
\begin{aligned}
J_{11, T}= & \frac{1}{T} \sum_{t} \frac{\left(T h_{T}\right)^{2} \Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \frac{1}{T^{2} h_{T}^{2}}\left(\sum_{s \neq t} K_{s t} b_{s}\right)^{2}-\frac{1}{T} \sum_{t} \frac{\left(T h_{T}\right)^{2} \Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \frac{1}{T^{2} h_{T}^{2}} \sum_{s \neq t} K_{s t}^{2} b_{s}^{2} \\
=: & J_{111, T}-J_{112, T},
\end{aligned}
$$

where $J_{111, T}$ is the dominant term. Using

$$
\begin{gathered}
J_{111, T}=\frac{1}{T} \sum_{t} \frac{\Omega_{t} I_{t}}{f\left(Z_{t}\right)^{2}} \frac{1}{T^{2} h_{T}^{2}}\left(\sum_{s \neq t} K_{s t} b_{s}\right)^{2} \\
+\frac{1}{T} \sum_{t}\left[\frac{\left(T h_{T}\right)^{2}}{\left(\sum_{j} K_{j t}\right)^{2}}-\frac{1}{f\left(Z_{t}\right)^{2}}\right] \Omega_{t} I_{t} \frac{1}{T^{2} h_{T}^{2}}\left(\sum_{s \neq t} K_{s t} b_{s}\right)^{2} \\
E\left[\frac{\Omega_{t} I_{t}}{f\left(Z_{t}\right)^{2}} \frac{1}{T^{2} h_{T}^{2}}\left(\sum_{s \neq t} K_{s t} b_{s}\right)^{2}\right]=E\left[\Omega_{t} I_{t}\left[\left(A \mathcal{B}_{T}\right)\left(Z_{t}\right)\right]^{2}\right](1+o(1)), \\
\inf _{z \in S_{*}} \frac{\Omega_{0}(z)}{f(z)^{2}}>0, \sup _{t \in \mathcal{T}^{*}}\left|\frac{\left(T h_{T}\right)^{2}}{\left(\sum_{j} K_{j t}\right)^{2}}-\frac{1}{f\left(Z_{t}\right)^{2}}\right|=o_{p}(1), \text { we deduce } J_{111, T}=Q_{\lambda_{T}}\left(1+o_{p}(1)\right) .
\end{gathered}
$$

Terms $J_{12, T}$ and $J_{13, T}$ can be analyzed similarly, and we consider only $J_{13, T}$ in details. Write

$$
\begin{aligned}
J_{13, T}= & \frac{1}{T} \sum_{t} \frac{\Omega_{t} I_{t}}{f\left(Z_{t}\right)^{2}} \frac{1}{T^{2} h_{T}^{2}} \sum_{s \neq t} \sum_{u \neq t, s} K_{s t} K_{u t} \eta_{s} \eta_{u} \\
& \quad+\frac{1}{T} \sum_{t}\left[\frac{\left(T h_{T}\right)^{2}}{\left(\sum_{j} K_{j t}\right)^{2}}-\frac{1}{f\left(Z_{t}\right)^{2}}\right] \Omega_{t} I_{t} \frac{1}{T^{2} h_{T}^{2}} \sum_{s \neq t} \sum_{u \neq t, s} K_{s t} K_{u t} \eta_{s} \eta_{u} \\
=: & J_{131, T}+J_{132, T} .
\end{aligned}
$$

Note that $E\left[\eta_{s} \mid \mathcal{I}\right]=0$ and $E\left[\eta_{s} \eta_{u} \mid \mathcal{I}\right]=0$ for $s \neq u$, from the independence of the observations. Along the lines of Lemma A. 7 in TK, using Assumptions A.1-A. 4 and 3 we can prove that $J_{132, T}=o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$. Moreover, we have $J_{131, T}=\frac{1}{T} \frac{1}{T^{2} h_{T}^{2}} J_{1, T}^{*}$, where $J_{1, T}^{*}=\sum_{s} \sum_{u>s} c_{s u} \eta_{s} \eta_{u}$ and $c_{s u}:=2 \sum_{t \neq s, u} \frac{\Omega_{t} I_{t}}{f\left(Z_{t}\right)^{2}} K_{s t} K_{u t}$. Then, we get

$$
E\left[J_{1, T}^{* 2}\right]=\sum_{s} \sum_{u>s} E\left[c_{s u}^{2} \eta_{s}^{2} \eta_{u}^{2}\right]=\sum_{s} \sum_{u>s} E\left[c_{s u}^{2} \Gamma\left(Z_{s}\right) \Gamma\left(Z_{u}\right)\right],
$$

where $\Gamma\left(Z_{s}\right):=E\left[\eta_{s}^{2} \mid Z_{s}\right]=V\left[\mathcal{B}_{T}\left(X_{s}\right) \mid Z_{s}\right]$, and the cross-terms vanish because of the conditional independence property of the η_{s} variables. To compute $E\left[c_{s u}^{2} \Gamma\left(Z_{s}\right) \Gamma\left(Z_{u}\right)\right]$, we can use an argument similar to that in Lemma A. 8 of TK, to get $E\left[c_{s u}^{2} \Gamma\left(Z_{s}\right) \Gamma\left(Z_{u}\right)\right]=$ $O\left(T^{2} h_{T}^{3} E\left[\frac{\Omega_{0}\left(Z_{t}\right) I_{t}}{f\left(Z_{t}\right)} \Gamma\left(Z_{t}\right)\right]^{2}\right) . \quad$ Using Assumptions A.1, A.3, A.4, we have $E\left[\frac{\Omega_{0}\left(Z_{t}\right) I_{t}}{f\left(Z_{t}\right)} \Gamma\left(Z_{t}\right)\right] \leq$ const $\cdot b\left(\lambda_{T}\right)^{2}$, where $b\left(\lambda_{T}\right):=\left\langle\mathcal{B}_{T}, \mathcal{B}_{T}\right\rangle^{1 / 2}=o(1)$. Thus, we deduce that $J_{131, T}=o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$. The conclusion follows.

4 Proof of Lemma B. 4

With the notation in the proof of Lemma B. 3 we have

$$
\mathcal{K}_{T}\left(U, \mathcal{B}_{T}(X)\right)=\mathcal{K}_{T}(U, b)+\mathcal{K}_{T}(U, \eta)=: J_{21, T}+J_{22, T}
$$

Let us first consider $J_{21, T}$. By assumptions A.1-A.4, 3, and an argument similar to Lemma A. 7 of TK, we have

$$
\begin{aligned}
J_{21, T} & =\frac{1}{T} \frac{1}{T^{2} h_{T}^{2}} \sum_{t} \frac{\Omega_{t} I_{t}}{f\left(Z_{t}\right)^{2}} \sum_{s \neq t} \sum_{u \neq t, s} K_{s t} K_{u t} U_{s} b_{u}+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right) \\
& =\frac{1}{T^{3} h_{T}^{2}} \sum_{s} a_{s} U_{s}+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right) \quad=: \frac{1}{T^{3} h_{T}^{2}} J_{2, T}^{*}+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right),
\end{aligned}
$$

where $a_{s}=\sum_{t \neq s} \frac{\Omega_{t} I_{t}}{f\left(Z_{t}\right)^{2}} K_{s t} \sum_{u \neq t, s} K_{u t} b_{u}$. From the independence of the observations and the conditional moment restriction, $E\left[\left(J_{2, T}^{*}\right)^{2}\right]=\sum_{s} E\left[a_{s}^{2} U_{s}^{2}\right]=\sum_{s} E\left[a_{s}^{2} V_{0}\left(Z_{s}\right)\right]$. To compute the expectation $E\left[a_{s}^{2} V_{0}\left(Z_{s}\right)\right]$, we use

$$
\begin{aligned}
E\left[a_{s}^{2} V_{0}\left(Z_{s}\right)\right] & =\sum_{t \neq s} E\left[\frac{\Omega_{t}^{2} I_{t}}{f\left(Z_{t}\right)^{4}} V_{0}\left(Z_{s}\right) K_{s t}^{2}\left(\sum_{u \neq t, s} K_{u t} b_{u}\right)^{2}\right] \\
& +\sum_{t \neq s} \sum_{i \neq t, s} E\left[\frac{\Omega_{t} I_{t}}{f\left(Z_{t}\right)^{2}} \frac{\Omega_{i} I_{i}}{f\left(Z_{i}\right)^{2}} V_{0}\left(Z_{s}\right) K_{s t} K_{s i}\left(\sum_{u \neq t, s} K_{u t} b_{u}\right)\left(\sum_{m \neq i, s} K_{m i} b_{m}\right)\right]
\end{aligned}
$$

where the second term is the dominant one. Moreover, for $t \neq s \neq i \neq u \neq m$, $E\left[V_{0}\left(Z_{s}\right) K_{s t} K_{s i} K_{u t} K_{m i} b_{u} b_{m} \mid Z_{t}, Z_{i}\right]=O_{p}\left(h_{T}^{3} V_{0}\left(Z_{t}\right) f\left(Z_{t}\right)^{2} f\left(Z_{i}\right) K * K\left(\frac{Z_{i}-Z_{t}}{h_{T}}\right) b_{t} b_{i}\right)$.

Thus we get $E\left[a_{s}^{2} V_{0}\left(Z_{s}\right)\right]=O\left(T^{4} h_{T}^{4} E\left[\Omega_{t} I_{t} b_{t}^{2}\right]\right)$. We deduce

$$
J_{21, T}=O_{p}\left(\frac{1}{\sqrt{T}} E\left[\Omega_{t} I_{t}\left[\left(A \mathcal{B}_{T}\right)\left(Z_{t}\right)\right]^{2}\right]^{1 / 2}\right)+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)
$$

The second term $J_{22, T}$ can be analyzed along the same lines as term $J_{13, T}$ in the proof of Lemma B.3, using $E\left[\eta_{u} \mid \mathcal{I}, W_{s}\right]=0$, for $u \neq s$, and $E\left(\eta_{u}^{2}\right)=o(1)$. Hence $J_{22, T}=$ $o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$, and the conclusion follows.

5 Proof of Lemma B. 5

We give details for the bounds of terms $\mathcal{K}_{T}\left(\mathcal{E}_{T, k}(X), \mathcal{E}_{T, k}(X)\right), k=1,2$. The term $\mathcal{K}_{T}\left(\mathcal{E}_{T, 1}(X), \mathcal{E}_{T, 2}(X)\right)$ is bounded similarly.

5.1 Bound of $\mathcal{K}_{T}\left(\mathcal{E}_{T, 1}(X), \mathcal{E}_{T, 1}(X)\right)$

Write:

$$
\begin{aligned}
\hat{\psi}(z) & =\frac{\frac{1}{T h_{T}} \sum_{n} U_{n} K\left(\frac{Z_{n}-z}{h_{T}}\right)}{f(z)}+\frac{\frac{1}{T h_{T}} \sum_{n} G_{n, T} K\left(\frac{Z_{n}-z}{h_{T}}\right)}{f(z)} \\
& =: \frac{1}{T} \sum_{n} U_{n} \omega_{n}(z)+\frac{1}{T} \sum_{n} G_{n, T} \omega_{n}(z),
\end{aligned}
$$

where $G_{n, T}:=\int\left[\varphi_{0}\left(X_{n}\right)-\varphi_{0}\left(X_{n}+u h_{T}\right)\right] K(u) d u$. Then we have $\mathcal{E}_{T, 1}\left(X_{s}\right)=\frac{1}{T} \sum_{n} U_{n} \Psi_{s n}+$ $\frac{1}{T} \sum_{n} G_{n, T} \Psi_{s n}$, where $\Psi_{s n}:=\left(\left(\lambda_{T}+A^{*} A\right)^{-1} A^{*} \omega_{n}\right)\left(X_{s}\right)$. We get
$\mathcal{K}_{T}\left(\mathcal{E}_{T, 1}(X), \mathcal{E}_{T, 1}(X)\right)=\frac{1}{T^{3}} \sum_{t} \frac{\Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \sum_{n} \sum_{m} U_{n} U_{m}\left(\sum_{s \neq t} \sum_{u \neq s, t} K_{s t} K_{u t} \Psi_{s n} \Psi_{u m}\right)$

$$
+\frac{1}{T^{3}} \sum_{t} \frac{\Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \sum_{n} \sum_{m} G_{n, T} G_{m, T}\left(\sum_{s \neq t} \sum_{u \neq s, t} K_{s t} K_{u t} \Psi_{s n} \Psi_{u m}\right)
$$

$$
+2 \frac{1}{T^{3}} \sum_{t} \frac{\Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \sum_{n} \sum_{m} U_{n} G_{m, T}\left(\sum_{s \neq t} \sum_{u \neq s, t} K_{s t} K_{u t} \Psi_{s n} \Psi_{u m}\right)
$$

$$
=: \quad J_{31, T}+J_{32, T}+2 J_{33, T}
$$

Let us first consider term $J_{31, T}$. Define $Q_{s n}:=E\left[\Psi_{s n} \mid \mathcal{I}\right]=\left(A\left(\lambda_{T}+A^{*} A\right)^{-1} A^{*} \omega_{n}\right)\left(Z_{s}\right)$ and $V_{s n}:=\Psi_{s n}-Q_{s n}$. Then:

$$
\begin{align*}
J_{31, T}= & \frac{1}{T^{3}} \sum_{t} \frac{\Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \sum_{n} \sum_{m} U_{n} U_{m}\left(\sum_{s \neq t} \sum_{u \neq s, t} K_{s t} K_{u t} Q_{s n} Q_{u m}\right) \\
& +\frac{1}{T^{3}} \sum_{t} \frac{\Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \sum_{n} \sum_{m} U_{n} U_{m}\left(\sum_{s \neq t} \sum_{u \neq s, t} K_{s t} K_{u t} V_{s n} V_{u m}\right) \\
=: \quad & J_{311, T}+J_{312, T}+J_{313, T} \frac{\Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \sum_{n} \sum_{m} U_{n} U_{m}\left(\sum_{s \neq t} \sum_{u \neq s, t} K_{s t} K_{u t} Q_{s n} V_{u m}\right) \\
& \tag{TR.1}
\end{align*}
$$

We consider first term $J_{311, T}$. By the uniform convergence of the kernel density estimator and arguments similar to Lemmas A. 6 and A. 7 in TK, we have

$$
\begin{align*}
J_{311, T}= & \frac{1}{T^{3}} \sum_{t} H_{0}\left(Z_{t}\right)^{-1} I_{t} \sum_{n \neq t} \sum_{m \neq n, t} U_{n} U_{m}\left(\frac{1}{T^{2} h_{T}^{2}} \sum_{s \neq t} \sum_{u \neq s, t} K_{s t} K_{u t} Q_{s n} Q_{u m}\right)+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right) \\
=: & \frac{1}{T^{3}} J_{3, T}^{*}+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right) . \tag{TR.2}
\end{align*}
$$

Term $J_{3, T}^{*}$ can be written as $J_{3, T}^{*}=\sum_{n} \sum_{m>n} \gamma_{n m} U_{n} U_{m}$, where

$$
\gamma_{n m}:=2 \sum_{t \neq n, m} H_{0}\left(Z_{t}\right)^{-1} I_{t}\left(\frac{1}{T^{2} h_{T}^{2}} \sum_{s \neq t} \sum_{u \neq s, t} K_{s t} K_{u t} Q_{s n} Q_{u m}\right)
$$

By using that variables U_{n} and U_{m} are uncorrelated conditional on \mathcal{I}, we have

$$
E\left[J_{3, T}^{* 2}\right]=\sum_{n} \sum_{m>n} E\left[\gamma_{n m}^{2} U_{n}^{2} U_{m}^{2}\right]=\sum_{n} \sum_{m>n} E\left[\gamma_{n m}^{2} V_{0}\left(Z_{n}\right) V_{0}\left(Z_{m}\right)\right] .
$$

To compute the expectation, we use an argument similar to Lemma A. 8 in TK. To simplify let $\Omega_{0}(z)=V_{0}(z)^{-1}=1$. Then, $E\left[\gamma_{n m}^{2}\right]=O\left(\sum_{t=1, t \neq n, m}^{T} \sum_{i=1, i \neq n, m, t}^{T} R_{t i}\right)$, where

$$
R_{t i}:=E\left[I_{t} I_{i}\left(\frac{1}{T^{2} h_{T}^{2}} \sum_{s \neq t} \sum_{u \neq s, t} K_{s t} K_{u t} Q_{s n} Q_{u m}\right)\left(\frac{1}{T^{2} h_{T}^{2}} \sum_{p \neq i} \sum_{q \neq s, i} K_{p i} K_{q i} Q_{p n} Q_{q m}\right)\right] .
$$

Developing the sums, using $\frac{1}{h_{T}} E\left[K_{s t} Q_{s n} \mid Z_{t}, Z_{n}\right]=O_{p}\left(f\left(Z_{t}\right) Q_{t n}\right)$ for $s \neq t, n$, and the independence of observations, we get

$$
\begin{equation*}
R_{t i}=O\left(E\left[I_{t} I_{i} Q_{t n} Q_{t m} Q_{i n} Q_{i m}\right]\right)=O\left(E\left[I_{t} I_{i} E\left[Q_{t n} Q_{i n} \mid Z_{t}, Z_{i}\right]^{2}\right]\right) \tag{TR.3}
\end{equation*}
$$

To compute expectations involving $Q_{t n}$, we use a development of $\left(\lambda_{T}+A^{*} A\right)^{-1} A^{*} \omega_{n}$ w.r.t. the basis of eigenfunctions ϕ_{j} of $A^{*} A$ to eigenvalues ν_{j} :

$$
A\left(\lambda_{T}+A^{*} A\right)^{-1} A^{*} \omega_{n}=\sum_{j=1}^{\infty} \frac{1}{\lambda_{T}+\nu_{j}}\left\langle\phi_{j}, A^{*} \omega_{n}\right\rangle_{H} A \phi_{j}=\sum_{j=1}^{\infty} \frac{1}{\lambda_{T}+\nu_{j}}\left\langle A \phi_{j}, \omega_{n}\right\rangle_{L^{2}\left(F_{Z}\right)} A \phi_{j} .
$$

Thus $Q_{t n}=\sum_{j=1}^{\infty} \frac{1}{\lambda_{T}+\nu_{j}} c_{n j} A \phi_{j}\left(Z_{t}\right)$ where

$$
c_{n j}:=\left\langle A \phi_{j}, \omega_{n}\right\rangle_{L^{2}(\mathcal{Z})}=\frac{1}{h_{T}} \int A \phi_{j}(z) K\left(\frac{Z_{n}-z}{h_{T}}\right) d z=\int A \phi_{j}\left(Z_{n}-h_{T} u\right) K(u) d u
$$

Then

$$
\begin{equation*}
E\left[Q_{t n} Q_{i n} \mid Z_{t}, Z_{i}\right]=\sum_{j=1}^{\infty} \sum_{l=1}^{\infty} \frac{1}{\lambda_{T}+\nu_{j}} \frac{1}{\lambda_{T}+\nu_{l}} E\left[c_{n j} c_{n l}\right] A \phi_{j}\left(Z_{t}\right) A \phi_{l}\left(Z_{i}\right) \tag{TR.4}
\end{equation*}
$$

From the orthogonality of the eigenfunctions, and the independence of the observations, we get $E\left[E\left[Q_{t n} Q_{i n} \mid Z_{t}, Z_{i}\right]^{2}\right]=\sum_{j=1}^{\infty} \sum_{l=1}^{\infty} \frac{\nu_{j}}{\left(\lambda_{T}+\nu_{j}\right)^{2}} \frac{\nu_{l}}{\left(\lambda_{T}+\nu_{l}\right)^{2}} E\left[c_{n j} c_{n l}\right]^{2}$, for $t \neq i$. Moreover, from Assumptions A. 4 (i)-(ii) and A. 7 (ii) we have

$$
\begin{align*}
E\left[c_{n j} c_{n l}\right] & =E\left[A \phi_{j}\left(Z_{n}\right) A \phi_{l}\left(Z_{n}\right)\right]+O\left(h_{T}^{2}\right)\left(E\left[A \phi_{j}\left(Z_{n}\right)^{2}\right]^{1 / 2}+E\left[A \phi_{l}\left(Z_{n}\right)^{2}\right]^{1 / 2}\right)+O\left(h_{T}^{4}\right) \\
& =\nu_{j} \delta_{j l}+O\left(h_{T}^{2}\right)\left(\sqrt{\nu_{j}}+\sqrt{\nu_{l}}\right)+O\left(h_{T}^{4}\right), \tag{TR.5}
\end{align*}
$$

uniformly in j, l, where $\delta_{j l}$ is the Kronecker delta. Thus we get

$$
\begin{aligned}
R_{t i}= & O\left(\sum_{j=1}^{\infty} \frac{\nu_{j}^{4}}{\left(\lambda_{T}+\nu_{j}\right)^{4}}+h_{T}^{4} \sum_{j=1}^{\infty} \frac{\nu_{j}^{2}}{\left(\lambda_{T}+\nu_{j}\right)^{2}} \sum_{l=1}^{\infty} \frac{\nu_{l}}{\left(\lambda_{T}+\nu_{l}\right)^{2}}+h_{T}^{8}\left(\sum_{j=1}^{\infty} \frac{\nu_{j}}{\left(\lambda_{T}+\nu_{j}\right)^{2}}\right)^{2}\right) \\
=: & O\left(S\left(\lambda_{T}\right)\right) .
\end{aligned}
$$

Thus, $E\left[J_{3, T}^{* 2}\right]=O\left(T(T-1)(T-2)(T-3) S\left(\lambda_{T}\right)\right)$, which implies $T h_{T}^{1 / 2} J_{311, T}=$ $O_{p}\left(\sqrt{h_{T} S\left(\lambda_{T}\right)}\right)+o_{p}(1)$. Using that $\sum_{j=1}^{\infty} \frac{\nu_{j}}{\left(\lambda_{T}+\nu_{j}\right)^{2}}=O\left(\frac{1}{\lambda_{T}}\right)$ and $\sum_{j=1}^{\infty} \frac{\nu_{j}^{4}}{\left(\lambda_{T}+\nu_{j}\right)^{4}} \leq$ $\sum_{j=1}^{\infty} \frac{\nu_{j}^{2}}{\left(\lambda_{T}+\nu_{j}\right)^{2}} \leq \sum_{j=1}^{\infty} \frac{\nu_{j}}{\lambda_{T}+\nu_{j}}=O\left(\log \left(1 / \lambda_{T}\right)\right)$ under Assumption B. 7 (see GS, proof of Lemma A.6), we get $S\left(\lambda_{T}\right)=O\left(\log \left(1 / \lambda_{T}\right)\right)+O\left(h_{T}^{4} \frac{1}{\lambda_{T}} \log \left(1 / \lambda_{T}\right)\right)+O\left(h_{T}^{8} \frac{1}{\lambda_{T}^{2}}\right)$. Then, $S\left(\lambda_{T}\right)=O\left(\log \left(1 / \lambda_{T}\right)\right)$ follows from $\lambda_{T}=c T^{-\gamma}$ with $\gamma<4 \bar{\eta}$ (Assumption 4), and we get $J_{311, T}=o_{p}\left(1 /\left(T h_{T}^{1 / 2}\right)\right)$.

Let us now consider $J_{312, T}$ in (TR.1). By the uniform convergence of the kernel density estimator and arguments similar to Lemmas A. 6 and A. 7 in TK, we have

$$
\begin{aligned}
J_{312, T} & =\frac{1}{T^{5} h_{T}^{2}} \sum_{t} H_{0}\left(Z_{t}\right)^{-1} I_{t} \sum_{n \neq t} \sum_{m \neq n, t} \sum_{s \neq t} \sum_{u \neq s, t} K_{s t} K_{u t} U_{n} U_{m} V_{s n} V_{u m}+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right) \\
& =\frac{1}{T^{4}} \sum_{n} \sum_{m \neq n} \sum_{s} \sum_{u \neq s} \chi_{n m s u} U_{n} U_{m} V_{s n} V_{u m}+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)=: J_{312, T}^{*}+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right),
\end{aligned}
$$

where $\chi_{n m s u}:=\frac{1}{T h_{T}^{2}} \sum_{t \neq n, m, s, u} H_{0}\left(Z_{t}\right)^{-1} I_{t} K_{s t} K_{u t}$. Using that $E\left[U_{n} \mid \mathcal{I}, W_{m}\right]=0$ for $m \neq n$, $E\left[V_{s n} \mid \mathcal{I}, W_{u}\right]=0$ for $u \neq s$, and developing the expressions of the conditional variances, we deduce that $E\left[\left(J_{312, T}^{*}\right)^{2}\right]=O\left(1 /\left(T^{4} h_{T} \lambda_{T}^{2}\right)\right)$. From $\lambda_{T}=c T^{-\gamma}, \gamma<1$ (Assumption 4), it follows $J_{312, T}=o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$. Similar arguments apply for $J_{313, T}$, and from (TR.1) we get $J_{31, T}=o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$.

Let us now consider $J_{32, T}$. Similarly as in (TR.1) and (TR.2), we have $J_{32, T}=\frac{1}{T^{3}} J_{3, T}^{* *}+$ $o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$, where $J_{3, T}^{* *}=\sum_{n} \sum_{m \neq n} \gamma_{n m} G_{n, T} G_{m, T}$. From the above arguments we have $\gamma_{n m}=O_{p}\left(T \sqrt{S\left(\lambda_{T}\right)}\right)$ uniformly in n, m. Moreover, from Assumption A.8, $G_{n, T}=$ $O_{p}\left(h_{T}^{2}\right)$ uniformly in n. Thus, $J_{32, T}=O_{p}\left(h_{T}^{4} \sqrt{S\left(\lambda_{T}\right)}\right)+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$. Since $S\left(\lambda_{T}\right)=$ $O\left(\log \left(1 / \lambda_{T}\right)\right)$ (see above), $J_{32, T}=o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$ follows from Assumptions 3 and 4. Similar arguments apply to $J_{33, T}$, and the proof is concluded.

5.2 Bound of $\mathcal{K}_{T}\left(\mathcal{E}_{T, 2}(X), \mathcal{E}_{T, 2}(X)\right)$

We have

$$
\begin{align*}
\mathcal{E}_{T, 2}(x) & =\left(\lambda_{T}+A^{*} A\right)^{-1}\left(\hat{A}^{*} \hat{A}-A^{*} A\right) \mathcal{B}_{T}(x) \\
& =\sum_{j=1}^{\infty} \frac{1}{\lambda_{T}+\nu_{j}}\left\langle\phi_{j},\left(\hat{A}^{*} \hat{A}-A^{*} A\right) \mathcal{B}_{T}\right\rangle_{H} \phi_{j}(x) \\
& =\sum_{j=1}^{\infty} \frac{1}{\lambda_{T}+\nu_{j}}\left\langle\phi_{j},(\hat{\tilde{A}} A-\tilde{A} A) \mathcal{B}_{T}\right\rangle_{L^{2}(\mathcal{X})} \phi_{j}(x), \tag{TR.6}
\end{align*}
$$

and $(\hat{\tilde{A}} A-\tilde{A} A) \mathcal{B}_{T}(x)$

$$
\begin{align*}
& =\int\left[\frac{1}{T} \sum_{t=1}^{T} \hat{f}\left(x \mid Z_{t}\right) I_{t} \Omega_{t} \hat{f}\left(\xi \mid Z_{t}\right)-\int f(x \mid z) I\left(z \in S^{*}\right) \Omega_{0}(z) f(\xi \mid z) f(z) d z\right] \mathcal{B}_{T}(\xi) d \xi \\
& \quad=: \int I_{T}(x, \xi) \mathcal{B}_{T}(\xi) d \xi . \tag{TR.7}
\end{align*}
$$

From the uniform convergence of the kernel density estimator on S^{*}, and using the decomposition $\hat{f}(x, z)=\bar{f}(x, z)+\bar{b}(x, z)+f(x, z)$, where $\bar{f}(x, z):=\hat{f}(x, z)-E[\hat{f}(x, z)]$ and $\bar{b}(x, z)=E[\hat{f}(x, z)]-f(x, z)$, the dominant term in $I_{T}(x, \xi)$ is:

$$
\begin{aligned}
I_{T, 1}(x, \xi)= & \int \frac{\hat{f}(x, z) I\left(z \in S^{*}\right) \Omega_{0}(z) \hat{f}(\xi, z)}{f(z)} d z-\int f(x \mid z) I\left(z \in S^{*}\right) \Omega_{0}(z) f(\xi \mid z) f(z) d z \\
= & \int \bar{f}(x, z) I\left(z \in S^{*}\right) \Omega_{0}(z) f(\xi \mid z) d z+\int \bar{b}(x, z) I\left(z \in S^{*}\right) \Omega_{0}(z) f(\xi \mid z) d z \\
& +\int f(x \mid z) I\left(z \in S^{*}\right) \Omega_{0}(z) \bar{f}(\xi, z) d z+\int f(x \mid z) I\left(z \in S^{*}\right) \Omega_{0}(z) \bar{b}(\xi, z) d z \\
& +\int \frac{\Delta \hat{f}(x, z) I\left(z \in S^{*}\right) \Omega_{0}(z) \Delta \hat{f}(\xi, z)}{f(z)} d z \\
= & : I_{T, 11}(x, \xi)+I_{T, 12}(x, \xi)+I_{T, 13}(x, \xi)+I_{T, 14}(x, \xi)+I_{T, 15}(x, \xi) .
\end{aligned}
$$

Using (TR.6) and (TR.7), we get the decomposition $\mathcal{E}_{T, 2}(x)=\sum_{i=1}^{5} \mathcal{E}_{T, 2 i}(x)$. We focus on the contribution of $\mathcal{E}_{T, 21}$ to $\mathcal{K}_{T}\left(\mathcal{E}_{T, 2}(X), \mathcal{E}_{T, 2}(X)\right)$ (the other terms can be bounded similarly). Using

$$
\begin{aligned}
& \int I_{T, 11}(x, \xi) \mathcal{B}_{T}(\xi) d \xi \\
= & \frac{1}{T} \sum_{n=1}^{T} \int\left(K_{h_{T}}\left(x-X_{n}\right) K_{h_{T}}\left(z-Z_{n}\right)-E\left[K_{h_{T}}\left(x-X_{n}\right) K_{h_{T}}\left(z-Z_{n}\right)\right]\right) I\left(z \in S^{*}\right) \Omega_{0}(z)\left(A \mathcal{B}_{T}\right)(z) d z,
\end{aligned}
$$

the dominant term in $\mathcal{E}_{T, 21}\left(X_{t}\right)$ is

$$
\begin{aligned}
& \frac{1}{T} \sum_{n=1}^{T} \sum_{j=1}^{\infty} \frac{1}{\lambda_{T}+\nu_{j}}\left(\phi_{j}\left(X_{n}\right) I_{n} \Omega_{n}\left(A \mathcal{B}_{T}\right)\left(Z_{n}\right)-E\left[\phi_{j}(X) I\left(Z \in S^{*}\right) \Omega_{0}(Z)\left(A \mathcal{B}_{T}\right)(Z)\right]\right) \phi_{j}\left(X_{t}\right) \\
& =: \frac{1}{T} \sum_{n=1}^{T} \eta_{n, t} .
\end{aligned}
$$

Variable $\eta_{n, t}$ is such that

$$
\begin{equation*}
E\left[\eta_{n, t} \mid X_{t}, Z_{t}\right]=0 \tag{TR.8}
\end{equation*}
$$

for $n \neq t$. The contribution to $\mathcal{K}_{T}\left(\mathcal{E}_{T, 2}(X), \mathcal{E}_{T, 2}(X)\right)$ is

$$
\frac{1}{T} \sum_{t} \frac{\Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \sum_{s \neq t} \sum_{u \neq s, t} K_{s t} K_{u t}\left(\frac{1}{T} \sum_{n} \eta_{n, s}\right)\left(\frac{1}{T} \sum_{m} \eta_{m, u}\right)
$$

The dominant term is

$$
\begin{aligned}
& \frac{1}{T^{3} h_{T}^{2}} \sum_{t} \frac{\Omega_{t} I_{t}}{f\left(Z_{t}\right)^{2}} \sum_{s \neq t} \sum_{u \neq s, t} K_{s t} K_{u t}\left(\frac{1}{T} \sum_{n} \eta_{n, s}\right)\left(\frac{1}{T} \sum_{m} \eta_{m, u}\right) \\
= & \frac{1}{T^{5} h_{T}^{2}} \sum_{n} \sum_{m} \sum_{s} \sum_{u \neq s} a_{s u} \eta_{n, s} \eta_{m, u}=: I
\end{aligned}
$$

where

$$
a_{s u}=\sum_{t \neq s, u} \frac{\Omega_{t} I_{t}}{f\left(Z_{t}\right)^{2}} K_{s t} K_{u t} .
$$

To bound term I, let us compute

$$
E\left[I^{2}\right]=\frac{1}{T^{10} h_{T}^{4}} \sum_{n_{1}} \sum_{m_{1}} \sum_{s_{1}} \sum_{u_{1} \neq s_{1}} \sum_{n_{2}} \sum_{m_{2}} \sum_{s_{2}} \sum_{u_{2} \neq s_{2}} E\left[a_{s_{1} u_{1}} a_{s_{2} u_{2}} \eta_{n_{1}, s_{1}} \eta_{m_{1}, u_{1}} \eta_{n_{2}, s_{2}} \eta_{m_{2}, u_{2}}\right] .
$$

Consider first the terms such that $n_{1}, m_{1}, n_{2}, m_{2} \neq s_{1}, u_{1}, s_{2}, u_{2}$. From (TR.8),
$E\left[a_{s_{1} u_{1}} a_{s_{2} u_{2}} \eta_{n_{1}, s_{1}} \eta_{m_{1}, u_{1}} \eta_{n_{2}, s_{2}} \eta_{m_{2}, u_{2}}\right]=E\left[a_{s_{1} u_{1}} a_{s_{2} u_{2}} E\left[\eta_{n_{1}, s_{1}} \eta_{m_{1}, u_{1}} \eta_{n_{2}, s_{2}} \eta_{m_{2}, u_{2}} \mid X_{s_{1}}, Z_{s_{1}}, \ldots, X_{u_{2}}, Z_{u_{2}}\right]\right]$
is different from zero only if the indices $n_{1}, m_{1}, n_{2}, m_{2}$ are either all equal, or such that there exist two pairs of equal indices. Let us for instance consider the term with $n_{1}=n_{2}=: n$, $m_{1}=m_{2}=: m$ and $n \neq m$:

$$
\begin{aligned}
& E\left[a_{s_{1} u_{1}} a_{s_{2} u_{2}} E\left[\eta_{n, s_{1}} \eta_{n, s_{2}} \eta_{m, u_{1}} \eta_{m, u_{2}} \mid X_{s_{1}}, Z_{s_{1}}, \ldots, X_{u_{2}}, Z_{u_{2}}\right]\right] \\
= & E\left[a_{s_{1} u_{1}} a_{s_{2} u_{2}} E\left[\eta_{n, s_{1}} \eta_{n, s_{2}} \mid X_{s_{1}}, Z_{s_{1}}, X_{s_{2}}, Z_{s_{2}}\right] E\left[\eta_{m, u_{1}} \eta_{m, u_{2}} \mid X_{u_{1}}, Z_{u_{1}}, X_{u_{2}}, Z_{u_{2}}\right]\right] .
\end{aligned}
$$

The contribution to $E\left[I^{2}\right]$ is

$$
\begin{aligned}
J= & \frac{1}{T^{10} h_{T}^{4}} \sum_{n} \sum_{m} \sum_{s_{1}} \sum_{u_{1} \neq s_{1}} \sum_{s_{2}} \sum_{u_{2} \neq s_{2}} \\
& E\left[a_{s_{1} u_{1}} a_{s_{2} u_{2}} E\left[\eta_{n, s_{1}} \eta_{n, s_{2}} \mid X_{s_{1}}, Z_{s_{1}}, X_{s_{2}}, Z_{s_{2}}\right] E\left[\eta_{m, u_{1}} \eta_{m, u_{2}} \mid X_{u_{1}}, Z_{u_{1}}, X_{u_{2}}, Z_{u_{2}}\right]\right] .
\end{aligned}
$$

Let us bound this term. Then,

$$
E\left[\eta_{n, s_{1}} \eta_{n, s_{2}} \mid X_{s_{1}}, Z_{s_{1}}, X_{s_{2}}, Z_{s_{2}}\right]=\sum_{j=1}^{\infty} \sum_{l=1}^{\infty} \frac{1}{\lambda_{T}+\nu_{j}} \frac{1}{\lambda_{T}+\nu_{l}} c_{j l} \phi_{j}\left(X_{s_{1}}\right) \phi_{l}\left(X_{s_{2}}\right),
$$

where
$c_{j l}=E\left[\phi_{j}\left(X_{n}\right) \phi_{l}\left(X_{n}\right) I_{n} \Omega_{n}^{2}\left(A \mathcal{B}_{T}\right)\left(Z_{n}\right)^{2}\right]-E\left[\phi_{j}\left(X_{n}\right) I_{n} \Omega_{n}\left(A \mathcal{B}_{T}\right)\left(Z_{n}\right)\right] E\left[\phi_{l}\left(X_{n}\right) I_{n} \Omega_{n}\left(A \mathcal{B}_{T}\right)\left(Z_{n}\right)\right]$.
We get:

$$
\begin{aligned}
& E\left[a_{s_{1} u_{1}} a_{s_{2} u_{2}} E\left[\eta_{n, s_{1}} \eta_{n, s_{2}} \mid X_{s_{1}}, Z_{s_{1}}, X_{s_{2}}, Z_{s_{2}}\right] E\left[\eta_{m, u_{1}} \eta_{m, u_{2}} \mid X_{u_{1}}, Z_{u_{1}}, X_{u_{2}}, Z_{u_{2}}\right]\right] \\
= & \sum_{j=1}^{\infty} \sum_{l=1}^{\infty} \sum_{k=1}^{\infty} \sum_{p=1}^{\infty} \frac{1}{\lambda_{T}+\nu_{j}} \frac{1}{\lambda_{T}+\nu_{l}} c_{j l} \frac{1}{\lambda_{T}+\nu_{k}} \frac{1}{\lambda_{T}+\nu_{p}} c_{k p} \\
& \sum_{t_{1} \neq s_{1}, u_{1}} \sum_{t_{2} \neq s_{2}, u_{2}, t_{1}} E\left[\frac{\Omega_{t_{1}} I_{t_{1}}}{f\left(Z_{t_{1}}\right)^{2}} \frac{\Omega_{t_{2}} I_{t_{2}}}{f\left(Z_{t_{2}}\right)^{2}} K_{s_{1} t_{1}} K_{u_{1} t_{1}} K_{s_{2} t_{2}} K_{u_{2} t_{2}} \phi_{j}\left(X_{s_{1}}\right) \phi_{l}\left(X_{s_{2}}\right) \phi_{k}\left(X_{u_{1}}\right) \phi_{p}\left(X_{u_{2}}\right)\right] .
\end{aligned}
$$

Now, for a term with $s_{1} \neq s_{2} \neq u_{1} \neq u_{2}$ we have:

$$
\begin{aligned}
& E\left[\frac{\Omega_{t_{1}} I_{t_{1}}}{f\left(Z_{t_{1}}\right)^{2}} \frac{\Omega_{t_{2}} I_{t_{2}}}{f\left(Z_{t_{2}}\right)^{2}} K_{s_{1} t_{1}} K_{u_{1} t_{1}} K_{s_{2} t_{2}} K_{u_{2} t_{2}} \phi_{j}\left(X_{s_{1}}\right) \phi_{l}\left(X_{s_{2}}\right) \phi_{k}\left(X_{u_{1}}\right) \phi_{p}\left(X_{u_{2}}\right)\right] \\
= & E\left[\frac{\Omega_{t_{1}} I_{t_{1}}}{f\left(Z_{t_{1}}\right)^{2}} \frac{\Omega_{t_{2}} I_{t_{2}}}{f\left(Z_{t_{2}}\right)^{2}} K_{s_{1} t_{1}} K_{u_{1} t_{1}} K_{s_{2} t_{2}} K_{u_{2} t_{2}}\left(A \phi_{j}\right)\left(Z_{s_{1}}\right)\left(A \phi_{l}\right)\left(Z_{s_{2}}\right)\left(A \phi_{k}\right)\left(Z_{u_{1}}\right)\left(A \phi_{p}\right)\left(Z_{u_{2}}\right)\right] \\
= & O\left(h_{T}^{4} E\left[\Omega_{t_{1}} I_{t_{1}} \Omega_{t_{2}} I_{t_{2}} A \phi_{j}\left(Z_{t_{1}}\right) A \phi_{k}\left(Z_{t_{1}}\right) A \phi_{l}\left(Z_{t_{2}}\right) A \phi_{p}\left(Z_{t_{2}}\right)\right]\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& E\left[\Omega_{t_{1}} I_{t_{1}} \Omega_{t_{2}} I_{t_{2}} A \phi_{j}\left(Z_{t_{1}}\right) A \phi_{k}\left(Z_{t_{1}}\right) A \phi_{l}\left(Z_{t_{2}}\right) A \phi_{p}\left(Z_{t_{2}}\right)\right] \\
= & E\left[\Omega_{t_{1}} I_{t_{1}} A \phi_{j}\left(Z_{t_{1}}\right) A \phi_{k}\left(Z_{t_{1}}\right)\right] E\left[\Omega_{t_{2}} I_{t_{2}} A \phi_{l}\left(Z_{t_{2}}\right) A \phi_{p}\left(Z_{t_{2}}\right)\right]=\nu_{j} \nu_{l} \delta_{j k} \delta_{l p} .
\end{aligned}
$$

Therefore we get:

$$
J=O\left(T^{2} h_{T}^{4} \sum_{j=1}^{\infty} \sum_{l=1}^{\infty} \frac{\nu_{j}}{\left(\lambda_{T}+\nu_{j}\right)^{2}} \frac{\nu_{l}}{\left(\lambda_{T}+\nu_{l}\right)^{2}} c_{j l}^{2}\right) .
$$

By similar arguments for the other contributions to $E\left[I^{2}\right]$, we get:

$$
E\left[I^{2}\right]=O\left(\frac{1}{T^{2}} \sum_{j=1}^{\infty} \sum_{l=1}^{\infty} \frac{\nu_{j}}{\left(\lambda_{T}+\nu_{j}\right)^{2}} \frac{\nu_{l}}{\left(\lambda_{T}+\nu_{l}\right)^{2}} c_{j l}^{2}\right) .
$$

To bound the term in the RHS, we use that:

$$
\begin{aligned}
\left|c_{j l}\right| \leq & \sup _{j, l \in \mathbb{N}} \sup _{z \in S^{*}} E\left[\left|\phi_{j}(X) \phi_{l}(X)\right| \mid Z=z\right] \sup _{z \in S^{*}} \Omega(z) E\left[I_{n} \Omega_{n}\left(A \mathcal{B}_{T}\right)\left(Z_{n}\right)^{2}\right] \\
& +\left(\sup _{j \in \mathbb{N}} \sup _{z \in S^{*}} E\left[\left|\phi_{j}(X)\right| \mid Z=z\right] \sup _{z \in S^{*}} \Omega(z)^{1 / 2} E\left[I_{n} \Omega_{n}^{1 / 2}\left|\left(A \mathcal{B}_{T}\right)\left(Z_{n}\right)\right|\right]\right)^{2} \\
\leq & 2 \sup _{j \in \mathbb{N}} \sup _{z \in S^{*}} E\left[\phi_{j}(X)^{2} \mid Z=z\right] \sup _{z \in S^{*}} \Omega(z) Q_{\lambda_{T}}=O\left(\lambda_{T}^{1+\beta}\right)=O\left(\lambda_{T}\right),
\end{aligned}
$$

from Assumption A. 7 (iii) and Appendix A.2.3. Thus we get:

$$
\begin{aligned}
E\left[I^{2}\right] & =O\left(\frac{\lambda_{T}^{2}}{T^{2}}\left(\sum_{j=1}^{\infty} \frac{\nu_{j}}{\left(\lambda_{T}+\nu_{j}\right)^{2}}\right)^{2}\right)=O\left(\frac{1}{T^{2}}\left(\sum_{j=1}^{\infty} \frac{\nu_{j}}{\left(\lambda_{T}+\nu_{j}\right)}\right)^{2}\right) \\
& =O\left(\frac{1}{T^{2}} \log \left(1 / \lambda_{T}\right)^{2}\right)
\end{aligned}
$$

using an argument as in Section B.5.1. We deduce

$$
I=O_{p}\left(\frac{1}{T} \log \left(1 / \lambda_{T}\right)\right)=o_{p}\left(\frac{1}{T h_{T}^{1 / 2}}\right) .
$$

The conclusion follows.

6 Proof of Lemma B. 6

We provide a detailed proof for the bound of $\mathcal{K}_{T}\left(U-\mathcal{B}_{T}(X), \mathcal{E}_{T, 1}(X)\right)$. Using the notation in the proof of Lemma B.3, we have

$$
\mathcal{K}_{T}\left(U-\mathcal{B}_{T}(X), \mathcal{E}_{T, 1}(X)\right)=-\mathcal{K}_{T}\left(b, \mathcal{E}_{T, 1}(X)\right)+\mathcal{K}_{T}\left(U-\eta, \mathcal{E}_{T, 1}(X)\right)=:-J_{41, T}+J_{42, T} .
$$

Let us first consider $J_{41, T}$. Similar arguments as in the proof of Lemma B.5, Section B.5.1, show that

$$
\begin{aligned}
J_{41, T}= & \frac{1}{T^{2}} \sum_{t} H_{0}\left(Z_{t}\right)^{-1} I_{t} \sum_{n \neq t} U_{n}\left(\frac{1}{T^{2} h_{T}^{2}} \sum_{s \neq t} \sum_{u \neq t, s} K_{s t} K_{u t} b_{s} Q_{u n}\right) \\
& +\frac{1}{T^{2}} \sum_{t} H_{0}\left(Z_{t}\right)^{-1} I_{t} \sum_{n \neq t} G_{n, T}\left(\frac{1}{T^{2} h_{T}^{2}} \sum_{s \neq t} \sum_{u \neq t, s} K_{s t} K_{u t} b_{s} Q_{u n}\right)+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right) \\
=: \quad & \frac{1}{T^{2}} J_{41, T}^{*}+\frac{1}{T^{2}} J_{41, T}^{* *}+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right) .
\end{aligned}
$$

Furthermore, $J_{41, T}^{*}=\sum_{n} a_{n} U_{n}$ where

$$
a_{n}=\sum_{t \neq n} H_{0}\left(Z_{t}\right)^{-1} I_{t}\left(\frac{1}{T^{2} h_{T}^{2}} \sum_{s \neq t} \sum_{u \neq t, s} K_{s t} K_{u t} b_{s} Q_{u n}\right)
$$

We have $E\left[\left(J_{41, T}^{*}\right)^{2}\right]=\sum_{n} E\left[a_{n}^{2} U_{n}^{2}\right]=\sum_{n} E\left[a_{n}^{2} V_{0}\left(Z_{n}\right)\right]$. To simplify, let $\Omega_{0}(z)=$ $V_{0}(z)^{-1}=1$. Using an argument similar as for the derivation of (TR.3), $E\left[a_{n}^{2}\right]$ is asymptot-
ically equivalent to $\sum_{t \neq n} \sum_{i \neq t, n} E\left[I_{t} I_{i} b_{t} b_{i} E\left[Q_{n t} Q_{n i} \mid Z_{t}, Z_{i}\right]\right]$. Using (TR.4), (TR.5) and CauchySchwarz inequality, for $t \neq i$ we get

$$
\begin{aligned}
& E\left[I_{t} I_{i} b_{t} b_{i} E\left[Q_{n t} Q_{n i} \mid Z_{t}, Z_{i}\right]\right] \\
\leq & \left\{\sum_{j=1}^{\infty} \frac{\nu_{j}^{2}}{\left(\lambda_{T}+\nu_{j}\right)^{2}}+O\left(h_{T}^{2}\right) \sum_{j=1}^{\infty} \frac{\nu_{j}}{\lambda_{T}+\nu_{j}} \sum_{l=1}^{\infty} \frac{\sqrt{\nu_{l}}}{\lambda_{T}+\nu_{l}}+O\left(h_{T}^{4}\right)\left(\sum_{j=1}^{\infty} \frac{\sqrt{\nu_{j}}}{\lambda_{T}+\nu_{j}}\right)^{2}\right\} E\left[I_{t} b_{t}^{2}\right] \\
=: \quad & S_{1}\left(\lambda_{T}\right) E\left[I_{t} b_{t}^{2}\right] .
\end{aligned}
$$

Thus, $E\left[\left(J_{41, T}^{*}\right)^{2}\right]=O\left(T^{3} S_{1}\left(\lambda_{T}\right) E\left[I_{t} b_{t}^{2}\right]\right)$ and $\frac{1}{T^{2}} J_{41, T}^{*}=O_{p}\left(\frac{\sqrt{h_{T}^{1 / 2} S_{1}\left(\lambda_{T}\right)}}{\sqrt{T h_{T}^{1 / 2}}} E\left[I_{t} b_{t}^{2}\right]^{1 / 2}\right)$.
Similarly, writing $J_{41, T}^{* *}=\sum_{n} a_{n} G_{n, T}$ and using $a_{n}=O_{p}\left(T \sqrt{S_{1}\left(\lambda_{T}\right) E\left[I_{t} b_{t}^{2}\right]}\right), G_{n, T}=$ $O_{p}\left(h_{T}^{2}\right)$, uniformly in n, we get $\frac{1}{T_{1}^{2}} J_{41, T}^{* *}=O_{p}\left(h_{T}^{2} \sqrt{S_{1}\left(\lambda_{T}\right)} E\left[I_{t} b_{t}^{2}\right]^{1 / 2}\right)$. Now, using that $\sum_{l=1}^{\infty} \frac{\sqrt{\nu_{l}}}{\lambda_{T}+\nu_{l}} \leq\left(\sum_{l=1}^{\infty} \frac{\nu_{l} l^{2}}{\left(\lambda_{T}+\nu_{l}\right)^{2}}\right)^{1 / 2}\left(\sum_{l=1}^{\infty} \frac{1}{l^{2}}\right)^{1 / 2}=O\left(\frac{1}{\lambda_{T}^{1 / 2}} \log \left(1 / \lambda_{T}\right)\right)$ under Assumption B. 7 (i) (see Lemma A. 6 is GS) we get $S_{1}\left(\lambda_{T}\right)=O\left(\log \left(1 / \lambda_{T}\right)^{2}\right)$ from Assumption 4. Thus, $h_{T}^{2} \sqrt{S_{1}\left(\lambda_{T}\right)}=o\left(\frac{1}{\sqrt{T h_{T}^{1 / 2}}}\right)$ from Assumption 3, and $J_{41, T}=o_{p}\left(\frac{1}{\sqrt{T h_{T}^{1 / 2}}} Q_{\lambda_{T}}^{1 / 2}\right)+$ $o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$.

Let us now consider $J_{42, T}$. By similar arguments as above we have

$$
\begin{aligned}
& J_{42, T}= \frac{1}{T^{3} h_{T}} \sum_{t} H_{0}\left(Z_{t}\right)^{-1} I_{t} \sum_{s \neq t} \sum_{n \neq s, t}\left(U_{s}-\eta_{s}\right) U_{n}\left(\frac{1}{T h_{T}} \sum_{u \neq t, s} K_{s t} K_{u t} Q_{u n}\right)+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right) \\
&=: \quad \frac{1}{T^{3} h_{T}} J_{42, T}^{*}+o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right),
\end{aligned}
$$

where $J_{42, T}^{*}=\sum_{s} \sum_{n \neq s} d_{n s}\left(U_{s}-\eta_{s}\right) U_{n}$ and $d_{n s}:=\sum_{t \neq s, n} H_{0}\left(Z_{t}\right)^{-1} I_{t}\left(\frac{1}{T h_{T}} \sum_{u \neq t, s} K_{s t} K_{u t} Q_{u n}\right)$.
Using that $E\left[U_{s} \mid \mathcal{I}, W_{u}\right]=E\left[\eta_{s} \mid \mathcal{I}, W_{u}\right]=0$ for $s \neq u$, we get

$$
E\left[\left(J_{42, T}^{*}\right)^{2}\right]=\sum_{s} \sum_{n \neq s} E\left[d_{n s}^{2} \Psi_{1}\left(Z_{s}\right)\right]+\sum_{s} \sum_{n \neq s} E\left[d_{n s} d_{s n} \Psi_{2}\left(Z_{s}\right) \Psi_{2}\left(Z_{n}\right)\right]
$$

where $\Psi_{1}\left(Z_{s}\right):=E\left[\left(U_{s}-\eta_{s}\right)^{2} \mid Z_{s}\right], \Psi_{2}\left(Z_{s}\right):=E\left[\left(U_{s}-\eta_{s}\right) U_{s} \mid Z_{s}\right]$. Then, $E\left[d_{n s}^{2} \Psi_{1}\left(Z_{s}\right)\right]$ is asymptotically equivalent to $\sum_{t \neq s, n} \sum_{i \neq t, s, n} E\left[I_{t} I_{i} \Psi_{1}\left(Z_{s}\right) K_{s t} K_{s i} Q_{n t} Q_{n i}\right]$. Using (TR.4), (TR.5), $E\left[\Psi_{1}\left(Z_{s}\right) K_{s t} K_{s i} \mid Z_{i}, Z_{t}\right]=O_{p}\left(h_{T} K * K\left(\frac{Z_{i}-Z_{t}}{h_{T}}\right) f\left(Z_{t}\right) \Psi_{1}\left(Z_{t}\right)\right)$ and Cauchy-Schwarz
inequality, we get $E\left[d_{n s}^{2} \Psi_{1}\left(Z_{s}\right)\right]=O\left(T^{2} h_{T}^{2} S_{1}\left(\lambda_{T}\right)\right)$. A similar bound holds for $E\left[d_{n s} d_{s n} \Psi_{2}\left(Z_{s}\right) \Psi_{2}\left(Z_{n}\right)\right]$. Then, $J_{42, T}=o_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$ using the same arguments as for $J_{41, T}$.

7 Proof of Lemma B. 7

We have:

$$
\begin{aligned}
\mathcal{K}_{T}\left(\mathcal{R}_{T}(X), \mathcal{R}_{T}(X)\right)= & \frac{1}{T} \sum_{t} \frac{\Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \sum_{s \neq t} \sum_{u \neq t} K_{s t} K_{u t} \mathcal{R}_{T}\left(X_{s}\right) \mathcal{R}_{T}\left(X_{u}\right) \\
& -\frac{1}{T} \sum_{t} \frac{\Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \sum_{s \neq t} K_{s t}^{2} \mathcal{R}_{T}\left(X_{s}\right)^{2} \\
& =: I_{1, T}-I_{2, T}
\end{aligned}
$$

Let us first consider $I_{1, T}$. We have:
$I_{1, T}=\frac{1}{T} \sum_{t} \frac{\Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}}\left(\sum_{s \neq t} K_{s t} \mathcal{R}_{T}\left(X_{s}\right)\right)^{2} \leq \max _{t \in \mathcal{T}^{*}}\left|\frac{\left(T h_{T}\right)^{2} \Omega_{t}}{\left(\sum_{j} K_{j t}\right)^{2}}\right| \sup _{z \in S^{*}}\left(\frac{1}{T h_{T}} \sum_{s} K\left(\frac{Z_{s}-z}{h_{T}}\right) \mathcal{R}_{T}\left(X_{s}\right)\right)^{2}$.
Since $\max _{t \in \mathcal{T}^{*}}\left|\frac{\left(T h_{T}\right)^{2} \Omega_{t}}{\left(\sum_{j} K_{j t}\right)^{2}}\right|=O_{p}(1)$, we get $I_{1, T}=o_{p}\left(1 /\left(T h_{T}^{1 / 2}\right)\right)$ from Assumption A. 6 (i).
Let us now consider $I_{2, T}$. We have:

$$
I_{2, T} \leq \max _{t \in \mathcal{T}^{*}}\left|\frac{\left(T h_{T}\right)^{2} \Omega_{t} I}{\left(\sum_{j} K_{j t}\right)^{2}}\right| K(0) \frac{1}{T h_{T}} \sup _{z \in S^{*}}\left(\frac{1}{T h_{T}} \sum_{s \neq t} K\left(\frac{Z_{s}-z}{h_{T}}\right) \mathcal{R}_{T}\left(X_{s}\right)^{2}\right) .
$$

We get $I_{2, T}=o_{p}\left(1 /\left(T h_{T}^{1 / 2}\right)\right)$ from Assumptions A. 6 (ii) and 3. The conclusion follows.

8 Proof of Lemma B. 8

We provide detailed proofs for the bounds of $\mathcal{K}_{T}\left(\mathcal{R}_{T}(X), U-\mathcal{B}_{T}(X)\right)$ and $\mathcal{K}_{T}\left(\mathcal{R}_{T}(X), \mathcal{E}_{T, 1}(X)\right)$.
8.1 Bound of $\mathcal{K}_{T}\left(\mathcal{R}_{T}(X), U-\mathcal{B}_{T}(X)\right)$

Write $\mathcal{K}_{T}\left(\mathcal{R}_{T}(X), U-\mathcal{B}_{T}(X)\right)=\frac{1}{T} \sum_{t} \frac{\Omega_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \sum_{s \neq t} K_{s t} \mathcal{R}_{T}\left(X_{s}\right) \Phi_{t, s}$, where we set
$\Phi_{t, s}:=\sum_{u \neq t, s} K_{u t}\left(U_{u}-\mathcal{B}_{T}\left(X_{u}\right)\right)$. By applying twice the Cauchy-Schwarz inequality, we
get

$$
\begin{aligned}
& \left|\mathcal{K}_{T}\left(\mathcal{R}_{T}(X), U-\mathcal{B}_{T}(X)\right)\right| \\
\leq & \max _{t \in \mathcal{T}^{*}}\left|\frac{\left(T h_{T}\right)^{2} \Omega_{t}}{\left(\sum_{j} K_{j t}\right)^{2}}\right| \frac{1}{T^{3} h_{T}^{2}}\left(\sum_{t} \sum_{s \neq t} K_{s t} \mathcal{R}_{T}\left(X_{s}\right)^{2} I_{t}\right)^{1 / 2}\left(\sum_{t} \sum_{s \neq t} K_{s t} \Phi_{t, s}^{2} I_{t}\right)^{1 / 2} \\
\leq & \max _{t \in \mathcal{T}^{*}}\left|\frac{\left(T h_{T}\right)^{2} \Omega_{t}}{\left(\sum_{j} K_{j t}\right)^{2}}\right| \frac{1}{T h_{T}^{3 / 2}}\left(\sup _{z \in S^{*}} \frac{1}{T h_{T}} \sum_{s \neq t} K\left(\frac{Z_{s}-z}{h_{T}}\right) \mathcal{R}_{T}\left(X_{s}\right)^{2} I_{t}\right)^{1 / 2}\left(\frac{1}{T^{2}} \sum_{t} \sum_{s \neq t} K_{s t} \Phi_{t, s}^{2} I_{t}\right)^{1 / 2}
\end{aligned}
$$

Using $\max _{t \in \mathcal{T}^{*}}\left|\frac{\left(T h_{T}\right)^{2} \Omega_{t}}{\left(\sum_{j} K_{j t}\right)^{2}}\right|=O_{p}(1)$ and Assumption A. 6 (ii), $\mathcal{K}_{T}\left(\mathcal{R}_{T}(X), U-\mathcal{B}_{T}(X)\right)=$ $o_{p}\left(1 /\left(T h_{T}^{1 / 2}\right)\right)$ follows if we can show that $E\left[K_{s t} \Phi_{t, s}^{2} I_{t}\right]=O\left(T h_{T}^{2}\right)$, uniformly in $s \neq t$. By using the notation in the proof of Lemma B. 3 we have

$$
\Phi_{t, s}=\sum_{u \neq t, s} K_{u t}\left(U_{u}-\eta_{u}\right)-\sum_{u \neq t, s} K_{u t} b_{u}=: \Phi_{1, t s}-\Phi_{2, t s} .
$$

Since variables $U_{u}-\eta_{u}$ are uncorrelated conditionally on $\mathcal{I}, E\left[K_{s t} \Phi_{1, t s}^{2} I_{t}\right]=$ $\sum_{u \neq t, s} E\left[I_{t} K_{s t} K_{u t}^{2}\left(U_{u}-\eta_{u}\right)^{2}\right]=O\left(T h_{T}^{2}\right)$, uniformly in $s \neq t$. Furthermore, $E\left[K_{s t} \Phi_{2, t s}^{2} I_{t}\right]=$ $O\left(T^{2} h_{T}^{3} E\left[I_{t} b_{t}^{2}\right]\right)=O\left(T^{2} h_{T}^{3} Q_{\lambda_{T}}\right)=o\left(T h_{T}^{2}\right)$ by Assumptions 3 and 4 (see Appendix A.2.3).

8.2 Bound of $\mathcal{K}_{T}\left(\mathcal{R}_{T}(X), \mathcal{E}_{T, 1}(X)\right)$

By the same argument as in Section B.8.1, $\mathcal{K}_{T}\left(\mathcal{R}_{T}(X), \mathcal{E}_{T, 1}(X)\right)=o_{p}\left(1 /\left(T h_{T}^{1 / 2}\right)\right)$ follows if we can show that $E\left[K_{s t} \Phi_{3, t s}^{2} I_{t}\right]=O\left(T h_{T}^{2}\right)$, uniformly in $s \neq t$, where $\Phi_{3, t, s}:=$ $\sum_{u \neq t, s} K_{u t} \mathcal{E}_{T, 1}\left(X_{u}\right)$. As in the proof of Lemma B. 5 (see Section B.5.1) we have

$$
\begin{aligned}
\Phi_{3, t s}=h_{T} & \sum_{n} U_{n}\left(\frac{1}{T h_{T}} \sum_{u \neq t, s} K_{u t} Q_{u n}\right)+\frac{1}{T} \sum_{n} \sum_{u \neq t, s} K_{u t} U_{n} V_{u n} \\
& +h_{T} \sum_{n} G_{n, T}\left(\frac{1}{T h_{T}} \sum_{u \neq t, s} K_{u t} \Psi_{u n}\right)=: \quad \Phi_{31, t s}+\Phi_{32, t s}+\Phi_{33, t s}
\end{aligned}
$$

From (TR.4) and (TR.5), $E\left[\left(\frac{1}{T h_{T}} \sum_{u \neq t, s} K_{u t} Q_{u n}\right)^{2}\right]$ and $E\left[\left(\frac{1}{T h_{T}} \sum_{u \neq t, s} K_{u t} \Psi_{u n}\right)^{2}\right]$ are asymptotically equivalent to

$$
E\left[Q_{t n}^{2}\right]=\sum_{j=1}^{\infty} \frac{\nu_{j}^{2}}{\left(\lambda_{T}+\nu_{j}\right)^{2}}+O\left(h_{T}^{2}\right) \sum_{j=1}^{\infty} \frac{\nu_{j}^{3 / 2}}{\left(\lambda_{T}+\nu_{j}\right)^{2}}+O\left(h_{T}^{4}\right) \sum_{j=1}^{\infty} \frac{\nu_{j}}{\left(\lambda_{T}+\nu_{j}\right)^{2}}=: S_{2}\left(\lambda_{T}\right) .
$$

Using Cauchy-Schwarz inequality, Assumptions A. 7 and 4, and similar arguments as in the proof of Lemma B. 5 we get $S_{2}\left(\lambda_{T}\right)=O\left(\log \left(1 / \lambda_{T}\right)\right)$. Thus, $E\left[\Phi_{31, t s}^{2} K_{s t} I_{t}\right]=O\left(T h_{T}^{2} \log \left(1 / \lambda_{T}\right)\right)$ and $E\left[\Phi_{33, t s}^{2} K_{s t} I_{t}\right]=O_{p}\left(T h_{T}^{3} \sqrt{\log \left(1 / \lambda_{T}\right)}\right)$. Moreover, $E\left[\Phi_{32, t s}^{2} K_{s t} I_{t}\right]=O\left(h_{T}^{2} / \lambda_{T}\right)$. From Assumptions 3 and 4, the conclusion follows.

9 Proof of Lemma C. 1

The proof is similar to the one of Lemma B.1, by using the split (15) and $\frac{1}{T} \sum_{t} v_{t}^{2}=$ $O_{p}\left(E\left[v^{2}\right]\right), E\left[v^{2}\right]^{1 / 2} \leq E\left[\left|Y-\varphi_{\lambda_{T}}(X)\right|^{m}\right]^{1 / m}+E\left[|Y-r(Z)|^{m}\right]^{1 / m}=O(1)$ from Assumption A. 2 (ii).

10 Proof of Lemma C. 2

By a similar argument as in the proof of Lemma B. 2 and using the split (15), the dominant contribution in $\xi_{3, T}$ is given by

$$
\xi_{32, T}^{*}=\frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} v_{t} v_{s} K_{s t} I_{t}
$$

Define $\bar{\eta}_{s}:=v_{s}-\bar{b}_{s}$ and $\bar{b}_{s}:=E\left[v_{s} \mid Z_{s}\right]=b_{s}$. Then:

$$
\begin{aligned}
\xi_{32, T}^{*}= & \frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} \bar{b}_{t} \bar{b}_{s} K_{s t} I_{t}+\frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} \bar{\eta}_{t} \bar{\eta}_{s} K_{s t} I_{t} \\
& +\frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} \bar{b}_{t} \bar{\eta}_{s} K_{s t} I_{t}+\frac{1}{T} \sum_{t} \sum_{s \neq t} \frac{\Omega_{t} K(0)}{\left(\sum_{j} K_{j t}\right)^{2}} \bar{\eta}_{t} \bar{b}_{s} K_{s t} I_{t} \\
= & : \xi_{321, T}^{*}+\xi_{322, T}^{*}+\xi_{323, T}^{*}+\xi_{324, T}^{*} .
\end{aligned}
$$

From the proof of Lemma B.2, $\xi_{321, T}^{*}=\xi_{321, T}=O_{p}\left(\frac{1}{T h_{T}} Q_{\lambda_{T}}\right)$. Similarly, $\xi_{322, T}^{*}=$ $O_{p}\left(\frac{1}{T^{2} h_{T}^{3 / 2}} E\left[\bar{\eta}_{t}^{2}\right]\right)=O_{p}\left(\frac{1}{T^{2} h_{T}^{3 / 2}} E\left[\varphi_{\lambda_{T}}\left(X_{t}\right)^{2}\right]\right)$. Using $E\left[\varphi_{\lambda_{T}}(X)^{2}\right]^{1 / 2} \leq E\left[\varphi_{0}(X)^{2}\right]^{1 / 2}+$ $E\left[\left|Y-\varphi_{0}(X)\right|^{m}\right]^{1 / m}+E\left[\left|Y-\varphi_{\lambda_{T}}(X)\right|^{m}\right]^{1 / m}=O(1)$ from Assumptions A. 1 and A. 2 (ii), we get $\xi_{322, T}^{*}=O_{p}\left(\frac{1}{T^{2} h_{T}^{3 / 2}}\right)$. The other terms are bounded similarly, and the conclusion follows.

11 Proof of Lemma C. 3

By using the split (15) and the definitions $\bar{\eta}_{s}:=v_{s}-\bar{b}_{s}$ and $\bar{b}_{s}:=E\left[v_{s} \mid Z_{s}\right]=b_{s}$, we have:

$$
\mathcal{K}_{T}(v, v)=\mathcal{K}_{T}(\bar{b}, \bar{b})+2 \mathcal{K}_{T}(\bar{b}, \bar{\eta})+\mathcal{K}_{T}(\bar{\eta}, \bar{\eta})=: J_{11, T}^{*}+J_{12, T}^{*}+J_{13, T}^{*} .
$$

From the proof of Lemma B.3, $J_{11, T}^{*}=J_{11, T}=Q_{\lambda_{T}}\left(1+o_{p}(1)\right)$ and $J_{13, T}^{*}=O_{p}\left(\frac{1}{T h_{T}^{1 / 2}} E\left[\bar{\eta}_{t}^{2}\right]\right)=O_{p}\left(\frac{1}{T h_{T}^{1 / 2}} E\left[\varphi_{\lambda_{T}}\left(X_{t}\right)^{2}\right]\right)=O_{p}\left(\frac{1}{T h_{T}^{1 / 2}}\right)$. Term $J_{12, T}^{*}$ is bounded similarly, and the conclusion follows.

12 Proof of Lemma C. 4

Using the same notation as in the proof of Lemma C.3, we have:

$$
\mathcal{K}_{T}\left(U^{*}, v\right)=\mathcal{K}_{T}\left(U^{*}, \bar{b}\right)+\mathcal{K}_{T}\left(U^{*}, \bar{\eta}\right)=: J_{21, T}^{*}+J_{22, T}^{*} .
$$

By the same argument as for term $J_{21, T}$ in the proof of Lemma B.4, we have $J_{21, T}^{*}=$ $O_{p}\left(\frac{1}{\sqrt{T}} Q_{\lambda_{T}}\right)$. The term $J_{22, T}^{*}$ can be bounded by a similar argument as term $J_{13, T}^{*}$ in the proof of Lemma C.3. We get $J_{13, T}^{*}=O_{p}\left(\frac{1}{T h_{T}^{1 / 2}} E\left[\varphi_{\lambda_{T}}\left(X_{t}\right)^{2}\right]^{1 / 2}\right)=O_{p}\left(\frac{1}{T h_{T}^{1 / 2}}\right)$. The conclusion follows.

13 Proof of Lemma D. 1

From Cauchy-Schwarz inequality,

$$
\left|\hat{V}\left(Z_{t}\right)-V_{0}\left(Z_{t}\right)\right| \leq\left|\sum_{j} w_{t j} U_{j}^{2}-V_{0}\left(Z_{t}\right)\right|+2 A\left(Z_{t}\right)+B\left(Z_{t}\right)
$$

where $A\left(Z_{t}\right)=\left(\sum_{j} w_{t j} U_{j}^{2}\right)^{1 / 2}\left(\sum_{j} w_{t j}\left|\Delta \bar{\varphi}\left(X_{j}\right)\right|^{2}\right)^{1 / 2}, B\left(Z_{t}\right)=\sum_{j} w_{t j}\left|\Delta \bar{\varphi}\left(X_{j}\right)\right|^{2}$, and $\Delta \bar{\varphi}=\bar{\varphi}-\varphi_{0}$. As in the proof of Lemma C. 2 in TK and using $h_{T}=\bar{c} T^{-\bar{\eta}}$ with $\bar{\eta}<1-4 / m$, $\sup _{Z_{t} \in S_{*}}\left|\sum_{j} w_{t j} U_{j}^{2}-V_{0}\left(Z_{t}\right)\right|=O_{p}\left(\sqrt{\frac{\log T}{T h_{T}}}+h_{T}^{2}\right)$. Further, from Lemma C. 6 of TK and Assumption A. 2 (i), $\sup _{Z_{t} \in S_{*}} \sum_{j} w_{t j} U_{j}^{2}=o_{p}\left(T^{2 / m}\right)$. Then, (i) follows from Assumption A. 10 and uniform convergence of $\hat{f}(z)$ over S_{*}. Points (ii) and (iii) follow from (i), Assumption A.9, and uniform convergence of $\hat{f}(z)$ over S_{*}.

14 Proof of Lemma D. 2

The structure of the proof is the same as for the proof of Proposition 2 in Appendix 3. We highlight the major changes. Let us first consider the asymptotic behavior of $\bar{\xi}_{5, T}^{*}=\frac{1}{T} \sum_{t} \frac{\hat{\Omega}_{t} I_{t}}{\left(\sum_{j} K_{j t}\right)^{2}} \sum_{s \neq t} \sum_{u \neq t, s} K_{s t} K_{u t} U_{s}^{*} U_{u}^{*}$. We have $\bar{\xi}_{5, T}=\frac{1}{T^{3} h_{T}^{2}} \sum_{t} H_{\lambda_{T}}\left(Z_{t}\right)^{-1} I_{t}$
$\sum_{s \neq t} \sum_{u \neq t, s} K_{s t} K_{u t} U_{s}^{*} U_{u}^{*}+O_{p}\left(\frac{\log T}{T h_{T}} \sup _{z \in S_{*}}\left|\hat{H}(z)^{-1}-H_{\lambda_{T}}(z)^{-1}\right|\right)$, where $H_{\lambda_{T}}(z)=V_{\lambda_{T}}(z) f(z)^{2}$. The first term is $O_{p}\left(\left(T h_{T}^{1 / 2}\right)^{-1}\right)$ from Assumption A.11. Using the uniform convergence of the kernel estimator \hat{f}, Assumptions A. 11 and A.13, and $\inf _{S^{*}} \Omega_{0}>0$, we get $\sup _{z \in S_{*}}\left|\hat{H}(z)^{-1}-H_{\lambda_{T}}(z)^{-1}\right|=O_{p}\left(\sqrt{\frac{\log T}{T h_{T}}}+h_{T}^{2}\right)+o_{p}\left(T^{-1 / 6}\right)$. Then, from $h_{T}=\bar{c} T^{-\bar{\eta}}$ with $2 / 9<\bar{\eta}<\min \{1-4 / m, 1 / 3\}$, we get $T h_{T}^{1 / 2} \bar{\xi}_{5, T}^{*}=O_{p}(1)$. Let us now consider the proof of the technical Lemmas C.1-C.4. These proofs are virtually unchanged, and rely on the uniform convergence of $\hat{\Omega}(z)$ to $\Omega_{\lambda_{T}}(z)$ (Assumptions A. 11 and A.13), and on the uniform bound $\Omega_{\lambda_{T}}(z) \leq c_{2} \Omega_{0}(z)$ (Assumption A.13).

15 Proof of Lemma D. 3

Since $\operatorname{ker}\left(A^{*}\right)^{\perp}=\overline{\operatorname{Range}(A)}$, and the norms $L^{2}(\mathcal{Z})$ and $L_{\lambda_{T}}^{2}(\mathcal{Z})$ are equivalent under Assumption A.11, the conclusion follows.

