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A Specification Test for Nonparametric Instrumental Variable Regression

Abstract

We consider testing for correct specification of a nonparametric instrumental variable

regression. First we study the notion of correct specification, misspecification and overiden-

tification in this ill-posed inverse problem setting. Second we study a test statistic based

on the empirical minimum distance criterion corresponding to the conditional moment re-

striction evaluated with a Tikhonov Regularized estimator of the functional parameter. The

test statistic admits an asymptotic normal distribution under the null hypothesis, and the

test is consistent under global alternatives. A bootstrap procedure is available to get simu-

lation based critical values. Finally, we explore the finite sample behavior with Monte Carlo

experiments, and provide an empirical illustration for an estimated Engel curve.
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1 Introduction

Testing for correct specification of a relationship that is written as a moment restriction has

a long history in econometrics. At the end of the 50’s Sargan suggests a specification test

for an instrumental variable (IV) linear model (Sargan (1958)), and its generalization for

a nonlinear-in-parameters IV model (Sargan (1959)). Hansen (1982) extends this type of

specification test to the general nonlinear framework known as the Generalized Method of

Moments (GMM). These tests are known as Hansen-Sargan tests or “J-tests”, and are part

of standard software reports on IV and GMM estimation.

In this paper, we consider testing for correct specification of a nonparametric instrumental

variable regression defined by the conditional moment restriction

E0 [Y − ϕ0 (X) |Z] = 0, (1)

where E0 [·|Z] denotes expectation with respect to the true conditional distribution F0 of

W = (Y,X) given Z, and the parameter of interest ϕ0 is a function in a suitable Sobolev

space supported on X ⊂ R. There has recently been much interest in nonparametric es-

timation of ϕ0 in (1) (see, e.g., Ai and Chen (2003), Newey and Powell (2003), Hall and

Horowitz (2005), Darolles, Fan, Florens, and Renault (2011), Horowitz(2011)), and testing

a parametric specification in (1) (see, e.g., Donald, Imbens, and Newey (2003), Tripathi and

Kitamura (2003, TK), Horowitz (2006)). Equation (1) is a linear integral equation of the first

kind in ϕ0, and we face an ill-posed inverse problem. In a different ill-posed setting, namely

parametric GMM estimation with a continuum of moment conditions, Carrasco and Florens
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(2000) also study specification testing, and show the asymptotic normality of their J-test

statistic. Below we often refer to the handbook chapter by Carrasco, Florens and Renault

(2007, CFR) for background on ill-posed problems in econometrics. This paper is related to

Horowitz (2012) and Breunig (2015). We depart from Horowitz (2012) who concentrates on

testing the null hypothesis that a smooth solution exists in L2-spaces. We depart from Bre-

unig (2015) who uses series estimators in L2-spaces in linear models with both endogenous

and exogenous regressors. In the terminology below, both papers investigate power against

close specifications only, and they achieve uniform consistency for the maintained hypothesis

of smoothness. We also investigate power against separated misspecifications. We explicitly

discuss the role of the assumed smoothness when we derive consistency against alternatives

in suitable regularity spaces in Section 3.3. The test also bears similarities with the test

of exogeneity of Blundell and Horowitz (2007). In their case, the null hypothesis is the

exogeneity of X, which allows to get rid of the ill-posedness.

Section 2 outlines the specification testing problem. Section 2.1 describes the null hypoth-

esis of correct specification, the alternative hypothesis of misspecification, and the concept of

overidentification in a nonparametric IV setting. We clarify these notions with two Gaussian

examples in Section 2.2. In Section 2.3, we introduce appropriate regularity spaces to derive

the asymptotics of the test statistic under the null and the alternative hypotheses. Section

3 describes the testing procedure and its asymptotic properties. We give the test statistic in

Section 3.1, establish its asymptotic normality under the null hypothesis in Section 3.2, and

show consistency of the test under global alternatives in Section 3.3. Results are first given
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under a known weighting function in the construction of the test statistic before discussing

the extension to an estimated weighting function in Section 3.4. We further explain how to

implement a bootstrap procedure to get simulation based critical values in Section 3.5. Sec-

tion 4 explores the finite sample behavior with Monte Carlo experiments. Section 5 provides

an empirical illustration for an estimated Engel curve. In Appendices 1-5, we gather the list

of regularity conditions and the technical arguments justifying the asymptotic distribution

under the null hypothesis and consistency of the test under the alternative hypothesis. We

collect all omitted proofs of technical Lemmas in a Technical Report, which is available

online at our web pages.

2 The specification testing problem

2.1 The null hypothesis and overidentification

Let L2(X ) and L2(Z) be the L2-spaces w.r.t. the scalar products 〈ϕ1, ϕ2〉L2(X ) =

∫
X
ϕ1(x)ϕ2(x)

ΠX (dx) and 〈ψ1, ψ2〉L2(Z) =

∫
Z
ψ1(z)ψ2(z)ΠZ(dz), respectively, where ΠX and ΠZ are given

measures on the supports X ⊂ R of X, and Z ⊂ R of Z. The parameter set is the Sobolev

space H2(X ), which is the completion of the linear space {ϕ ∈ L2(X ) | ∇ϕ ∈ L2(X )} w.r.t.

the scalar product 〈ϕ1, ϕ2〉H := 〈ϕ1, ϕ2〉L2(X ) + 〈∇ϕ1,∇ϕ2〉L2(X ). The Sobolev space H2(X )

is an Hilbert space w.r.t. the scalar product 〈., .〉H , and the corresponding Sobolev norm is

denoted by ‖ϕ‖H = 〈ϕ, ϕ〉1/2H .
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The conditional moment restriction (1) corresponds to the linear integral equation

AF0ϕ0 = rF0 , (2)

for ϕ0 ∈ H2(X ), with AFϕ(z) =

∫
f (w|z)ϕ(x)dw, rF (z) =

∫
yf(w|z)dy, and f the pdf of

W given Z.

Assumption 1: F0 ∈ F , where F denotes the set of conditional distributions F of W given

Z such that rF ∈ L2 (Z) and AF is a compact linear operator from H2(X ) into L2 (Z).

The assumption of compactness of the operator AF0 implies that (2) is an integral equation

of the first kind which yields an ill-posed inverse problem (see CFR, Sections 3 and 5.5).

The modelM⊂ F is the subset of distributions F such that equation AFϕ = rF admits

a solution, that is

M = {F ∈ F : rF ∈ Range (AF )} , (3)

where Range(AF ) denotes the range of operator AF on H2(X ). The null hypothesis of

correct specification is

H0 : F0 ∈M, (4)

while the alternative hypothesis is H1 : F0 ∈ M̄ := F \M. The definition (3) clarifies that

the null hypothesis depends on the function space on which AF operates, and thus on the

postulated smoothness of the functional regression parameter.

Identification is a maintained hypothesis.

Assumption 2: F0 ∈ {F ∈ F : ker (AF ) = {0}} .
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Assumption 2 ensures that, under the null hypothesis H0, the solution ϕ0 of (2) is unique,

since the condition ker (AF ) = {0} on the null space of operator AF is equivalent to the

injectivity of AF (see CFR, Section 3.1). Primitive assumptions on the distribution F that

ensure the identification condition ker (AF ) = {0} are derived, e.g., in Newey and Powell

(2003).

It is well-known that in the standard parametric GMM setting, the test of correct specifi-

cation is meaningful only in an overidentified case, that is, when the number of unconditional

moment restrictions is larger than the number of parameters. In our functional setting with

conditional moment restrictions, the definition of overidentification is less straightforward,

since the number of moment restrictions is infinite and the parameter is infinite dimensional.

The model is overidentified ifM & F . Otherwise, ifM = F a unique solution of AFϕ = rF

always exists for any F ∈ F . In this case, the conditional moment restriction (1) has no

informational content for the true conditional distribution of W given Z since (4) does not

imply a constraint on F0. This is the analogue of the just identified case in the standard

parametric GMM setting.

It turns out that the nonparametric instrumental variable regression model is overiden-

tified by construction: M cannot be equal to F . More precisely, M is a strict subset of F

that we can explicitly characterize by Picard Theorem. Let us introduce the singular system{
φj, ψj, ωj; j = 1, 2, . . .

}
of operator AF , 1 defined by AFφj = ωjψj and A∗Fψj = ωjφj,

where φj ∈ H2(X ), ψj ∈ L2 (Z), ωj ≥ 0, and A∗F is the adjoint operator of AF w.r.t. the

1 To simplify the notation, we omit the index F in φj , ψj and ωj .

6



scalar products 〈., .〉H and 〈., .〉L2(Z) (e.g., Kress (1999), Theorem 15.16, and CFR, Section

2.3). Functions φj are an orthonormal basis of eigenfunctions of the operator A∗FAF in

H2(X ) to the eigenvalues νj = ω2
j . Functions ψj are an orthonormal basis of ker (A∗F )⊥,

that is the linear subspace of L2(Z) orthogonal to ker (A∗F ) w.r.t. 〈., .〉L2(Z). Then, Picard

Theorem (e.g., Kress (1999), Theorem 15.18) states that:

M =

F ∈ F : rF ∈ ker (A∗F )⊥ and
∞∑
j=1

〈
rF , ψj

〉2

L2(Z)

νj
<∞

 . (5)

For the compact operator AF , we have ker (A∗F )⊥ = Range (AF ), that is the closure of Range

(AF ) in L2 (Z) (e.g., Kress (1999), Theorem 15.8). Thus, the setM consists of the distribu-

tions F such that function rF ∈ Range (AF ) and such that the basis coefficients
〈
rF , ψj

〉
L2(Z)

weighted by the inverse eigenvalues νj satisfy a summability condition. This summability

condition alone is not an equivalent characterization of (3) even under Assumption 2. The

set M̄ characterizing the alternative hypothesis of misspecification can be decomposed as:

M̄ =

F ∈ F : rF ∈ ker (A∗F )⊥ and
∞∑
j=1

〈
rF , ψj

〉2

L2(Z)

νj
=∞


∪
{
F ∈ F : rF /∈ ker (A∗F )⊥

}
=: M̄c ∪ M̄s.

For F ∈ M̄c, we have rF ∈ Range (AF ), while, for F ∈ M̄s, we have rF /∈ Range (AF ).

Thus, the alternatives in M̄c are “arbitrarily close” to correct specification, while the alter-

natives in M̄s can be “separated” from the set of correctly specified models. We call the

former close misspecifications, and the latter separated misspecifications.
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2.2 Examples

In light of definition (3), the notion of misspecification in a nonparametric IV regression

setting is intimately linked with the properties of Range (AF ). To illustrate this point,

we develop two simple examples based on the regression model Y = m(X) + U, where

E [U |Z = z] = ρ(z) for m ∈ H2 (X ) and ρ ∈ L2(Z). Then, rF is such that rF = AFm + ρ,

and F ∈M if and only if

ρ ∈ Range (AF ) . (6)

Example 1: Let (X,U,Z) be jointly normal with zero means, unit variances, Cov (X,Z) =

ρXZ 6= 0, and Cov (U,Z) = ρUZ under F . Then, ρ(z) = ρUZz and we have ρ = AF∆ϕ

where ∆ϕ(x) =
ρUZ
ρXZ

x. Thus, ρ ∈ Range (AF ).

In Example 1, the moment restriction is correctly specified, even when the innovation and

the instrument are correlated (ρUZ 6= 0). This exemplifies a difference between restrictions

induced by a parametric conditional moment setting and their nonparametric counterpart.

In the finite-dimensional setting with E0[Y −ϕ(X, θ0)|Z] = 0, we get a correct specification

in Example 1 if and only if there exists θ0 such that ϕ(x, θ0) = m(x) +
ρUZ
ρXZ

x, ∀x ∈ X .

For the second example, assume that operator AF is such that the functions in its range

are continuous, i.e., Range (AF ) ⊂ C(Z). Then, for a discontinuous function ρ we have

ρ 6∈ Range (AF ) and F ∈ F\M.

Example 2: Let (X,Z) be as in Example 1 and U = V + η, where V is independent of Z,

and η = aI{Z ≤ 0} − aI{Z > 0}, with a 6= 0. Using the smoothness of fX|Z(x|z) w.r.t. z

and the Lebesgue Theorem, it follows that Range (AF ) ⊂ C(Z). Thus, ρ 6∈ Range (AF ).
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A similar argument is possible when Range (AF ) ⊂ C1(Z), and function ρ is not dif-

ferentiable. In the Monte Carlo section, we consider discontinuous and non-differentiable

functions ρ to investigate the power of our testing procedure.

In light of definition (5), we can also revisit Examples 1 and 2 through the character-

ization of the set M in terms of the singular system of operator AF . Let us derive the

singular value decomposition when the distribution F is such that (X,Z) is jointly normal,

with zero means, unit variances and correlation ρXZ 6= 0, and when ΠX and ΠZ are the

standard Gaussian measure on X = Z = R. The singular system of operator AF is given by

φj(x) =
1√
j
Hj−1(x), ψj(z) = Hj−1(z) and ωj =

1√
j
ρj−1
XZ , where the Hj are the Hermite poly-

nomials (see CFR, Section 2.3, for the case of AF operating on L2(R) instead of H2(R)). The

adjoint operator is A∗F = D−1Ã (see Gagliardini and Scaillet (2012a, GS)), where Ã is the

conditional expectation operator for Z given X defined by Ãψ(x) =

∫
Z
f (z|x)ψ(z)dz, and

D−1 is the inverse of the differential operator D = 1−∇2 + x∇. Moreover ker (A∗F ) = {0},

and thus M̄s is empty. We deduce that F ∈M if and only if
∞∑
j=1

j

ρ
2(j−1)
XZ

〈rF , Hj−1〉2L2(Z) <∞

and the alternative M̄ consists of close misspecifications only: M̄ = M̄c.

Examples 1 and 2 (Cont.): The condition for correct specification becomes
∞∑
j=1

j

ρ
2(j−1)
XZ

〈ρ,Hj−1〉2L2(Z) <∞. In Example 1, the condition is satisfied since ρ(z) = ρUZH1(z),

and the series equals
2ρ2

UZ

ρ2
XZ

. In Example 2, the condition is not satisfied since ρ(z) = aI{z ≤

0} − aI{z > 0}, 〈ρ,Hj−1〉2L2(Z) ≥ C/(j − 1) for j > 1 and some constant C > 0, and the

series diverges.
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2.3 Regularity spaces

In this section, we introduce a sequence of function spaces, that characterize either the

smoothness of the function ϕ0 under the null hypothesis H0 of correct specification, or the

strength of a close misspecification under the alternative hypothesis H1. These regularity

spaces coincide with those introduced in Darolles, Fan, Florens, Renault (2011) and CFR,

Section 3.2, under the null hypothesis H0. We use these regularity spaces in Section 3 to

derive the large sample properties of the test statistic. The postulated smoothness drives the

rate of convergence to zero of the regularization bias under the null hypothesis (Section 3.2),

and the rate of divergence of the noncentrality parameter under the alternative hypothesis

(Section 3.3).

Let us define the sets for β ≥ 0:

Mβ=

F ∈ F : rF ∈ ker (A∗F )⊥ and
∞∑
j=1

〈
rF , ψj

〉2

L2(Z)

ν1+β
j

<∞

 .

The sequence of sets Mβ is decreasing w.r.t. the parameter β, that is Mβ1
⊂ Mβ2

for

β1 ≥ β2. We have M0 = M when β = 0. The condition F0 ∈ Mβ for β ≥ 0 implies the

null hypothesis H0 of correct specification, and the parameter β characterizes the regularity

of function ϕ0 ∈ H2(X ). More precisely, since
〈
rF0 , ψj

〉2

L2(Z)
=

1

νj

〈
AF0ϕ0, AF0φj

〉2

L2(Z)
=

νj
〈
ϕ0, φj

〉2

H2(X )
, the condition F0 ∈ Mβ is equivalent to the source condition ϕ0 ∈ Φβ :={

ϕ ∈ H2(X ) :
∞∑
j=1

〈
ϕ, φj

〉2

H

νβj
<∞

}
introduced in Darolles, Fan, Florens, Renault (2011).

The sets Φβ, β ≥ 0, are dense in H2(X ) (CFR, Proposition 3.5), and the regularity of

ϕ0 ∈ Φβ increases as β increases.
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Similarly, let us define the sets for −1 < β̄ ≤ 0:

M̄c,β̄=

F ∈ F : rF ∈ ker (A∗F )⊥ and
∞∑
j=1

〈
rF , ψj

〉2

L2(Z)

ν1+β̄
j

=∞

 .

The sequence of sets M̄c,β̄ is increasing w.r.t. the parameter β̄. We have M̄c,0 = M̄c when

β̄ = 0. The condition F0 ∈ M̄c,β̄ for −1 < β̄ ≤ 0 implies the alternative hypothesis H1

in the form of a close misspecification. The parameter β̄ characterizes the strength of the

misspecification, in terms of a lack of regularity of rF , that increases as β̄ decreases.

Examples 1 and 2 (Cont.): In Example 1, F ∈ Mβ for all β ≥ 0. In Example 2,

F ∈ M̄c,β̄ for all −1 < β̄ ≤ 0.

3 The test statistic and its asymptotic properties

3.1 The test statistic

Estimation of functional parameter ϕ0 from conditional moment restriction (1) is an ill-posed

inverse problem. Different estimation procedures have been proposed in the literature (see

Ai and Chen (2003), Newey and Powell (2003), Hall and Horowitz (2005), Darolles, Fan, Flo-

rens, and Renault (2011)). They differ according to the definition of the operators, the scalar

products, and the regularization scheme. Ideally we would like to develop a testing theory

as versatile as possible irrespective of the chosen estimator. Unfortunately the asymptotic

properties and the regularity conditions under the null and alternative hypotheses are much

affected by these differences, and it is difficult to provide a unified treatment independent

of how ϕ0 is estimated. Here we focus on the approach of GS designed for functions in

H2[0, 1] (see also Gagliardini and Scaillet (2012b) for the quantile case). The assumption of
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a compact support X = [0, 1] greatly simplifies the derivation of the asymptotic properties.

By the same token, we set ΠX (dx) = dx and ΠZ(dz) = Ω0(z)I {z ∈ S∗}FZ(dz), where Ω0

is a given positive function on Z with Ω0(z) = 1/V0(z), and V0(z) = V0 [Y − ϕ0 (X) |Z = z]

under H0, set S∗ ⊂ Z is compact, and FZ is the true cdf of Z. The choice of V0(z) as

weighting function makes the proofs easier; we do not motivate it with a notion of efficiency

as in a parametric setting. We consider the Tikhonov Regularized (TiR) estimator defined

by

ϕ̂ = arg min
ϕ∈H2[0,1]

QT (ϕ)+λT ‖ϕ‖2
H , where QT (ϕ) =

1

T

T∑
t=1

Ω0(Zt)I {Zt ∈ S∗}
[
r̂(Zt)− Âϕ(Zt)

]2

,

(7)

r̂(z) =

∫
yf̂ (w|z) dw, Âϕ(z) =

∫
f̂ (w|z)ϕ(x)dw, and f̂ is a kernel estimator of f . The

minimum distance criterion QT (ϕ) is penalized by a term that involves the squared Sobolev

norm ‖ϕ‖2
H (see Gagliardini and Scaillet (2012b) for a theoretical underpinning for including

a derivative term in a penalization approach). Penalization is required to overcome ill-

posedness and is tuned by regularization parameter λT > 0, which converges to 0 as T →∞.

The TiR estimator is given in closed form by ϕ̂ = (λT + Â∗Â)−1Â∗r̂, where Â∗ = D−1 ̂̃A and

̂̃A denotes the linear operator defined by ̂̃Aψ(x) =
1

T

T∑
t=1

f̂ (x|Zt) I {Zt ∈ S∗}Ω0 (Zt)ψ (Zt),

for ψ ∈ L2(Z). The linear operator Â∗ is an estimator of A∗F0
. In λT + Â∗Â, we use the

standard convention that identifies λT with λT times the identity operator. As discussed in

Gagliardini and Scaillet (2012b, p. 1537), we work with a function space-based estimator as

in Horowitz and Lee (2007) (see also the suggestion in Newey and Powell (2003, p. 1573)).

In Section 4.2, we compute the estimator based on a finite large number of polynomials. The
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discrepancy between the function space-based estimator and the implemented estimator is

of a numerical nature, since our type of asymptotics does not rely on a sieve approach.

Following Sargan (1958), (1959) and Hansen (1982), the testing procedure is based on

the minimized criterion value QT (ϕ̂). The value QT (ϕ̂) is an empirical counterpart of

QλT := E0

[
Ω0(Z)I {Z ∈ S∗} [MλT rF0(Z)]2

]
= ‖MλT rF0‖

2
L2(Z) , where MλT rF0 :=[

1− AF0

(
λT + A∗F0

AF0

)−1
A∗F0

]
rF0 is the residual in the theoretical Tikhonov regression of Y

onX with instrument Z. Indeed, MλT rF0 = rF0−AF0ϕλT , where ϕλT =
(
λT + A∗F0

AF0

)−1
A∗F0

rF0

is the TiR solution, namely the population counterpart of the TiR estimator ϕ̂ for given reg-

ularization parameter λT and the minimizer of the penalized criterion ‖rF0 − AF0ϕ‖
2
L2(Z) +

λT ‖ϕ‖2
H . The interpretation of QT (ϕ̂) as an empirical analog of the “weighted variance of

residuals” QλT applies under both H0 and H1, and remains valid no matter the function

space on which AF operates. Under H0 the TiR solution ϕλT converges to ϕ0 as T goes to

infinity. Under H1, it may converge to a pseudo-true value, but it may also not converge

(see Section 3.3 and CFR, Section 3.1, for a discussion).

We build the test statistic from QT (ϕ̂) after appropriate redefinition of the smooth-

ing, recentering and scaling. Specifically, we first replace the integrals w.r.t. kernel den-

sity estimator f̂ with kernel regression estimators which are easier to compute. Namely,

we use the asymptotic equivalence (see Appendix 2.1) between QT (ϕ̂) and the statistic
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ξT =
1

T

T∑
t=1

(
T∑
s=1

ψts

)2

,with

ψts =

Ω0(Zt)
1/2 (Ys − ϕ̂(Xs))K

(
Zs − Zt
hT

)
I {Zt ∈ S∗}

T∑
j=1

K

(
Zj − Zt
hT

) , (8)

where K is a kernel and hT is a bandwidth. Then, as in TK we recenter the statistic ξT by

subtracting the diverging term ξ2,T =
1

T

T∑
t=1

T∑
s=1,s 6=t

ψ2
ts to allow for a well-defined asymptotic

distribution under the null hypothesis. After recentering, we can exploit the Central Limit

Theorem (CLT) for generalized quadratic forms in de Jong (1987), which is a generalization

of the CLT for degenerate U -statistics in Hall (1984). The test statistic is

ζT := Th
1/2
T

ξT − ξ2,T

σ
,

where σ2 = 2K∗∗vol(S∗), vol(S∗) :=

∫
S∗

dz, K∗∗ :=

∫
(K ∗K) (x)2dx, and (K ∗K) (x) =∫

K(y)K(x− y)dy.

Finally, note that the trimming is based on a fixed support S∗. This is standard in

nonparametric specification testing for technical and practical reasons. As in TK, the use

of a fixed support implies that the test is consistent only against alternatives for which (1)

is violated on S∗. To get a coherent and simplified exposition, we have introduced the same

fixed trimming in the definition of the norm L2(Z) and of the estimator ϕ̂, although this is

not required by fundamental reasons.
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3.2 The asymptotic distribution under the null hypothesis

Let us assume that the null hypothesis H0 of correct specification holds and F0 is in a

regularity space introduced in Section 2.3: F0 ∈ Mβ for a given 0 ≤ β ≤ 1. The restriction

β ≤ 1 comes from a saturation effect: we cannot exploit a stronger regularity with β > 1

to reduce the bias contribution in a Tikhonov regularization setting (see CFR, Section 3.3).

Suppose that the bandwidth hT and the regularization parameter λT converge to zero as

T →∞ with rates described next.

Assumption 3: hT = c̄T−η̄ with: (i) 2/9 < η̄; (ii) η̄ < min {1− 4/m, 1/3}, where m > 4

is defined in Assumption A.2 .

Assumption 4: λT = cT−γ with: (i)
1− η̄/2
1 + β

< γ; (ii) γ < min {4η̄, 1} .

Proposition 1: Under the null hypothesis H0 for F0 ∈ Mβ with 0 ≤ β ≤ 1, Assumptions

1-4 and A.1-A.8, we have ζT
d−→ N(0, 1).

Proof: See Appendix 2.

The proof of Proposition 1 builds on TK, and consists in first isolating the impact of the

estimation of ϕ0 on the test statistic, and then applying the CLT for generalized quadratic

forms in de Jong (1987) to the test statistic based on QT (ϕ0). Under Assumptions 3 and 4

on the interplay between the bandwidth and the regularization parameter, the asymptotic

distribution under H0 is unaffected by the use of estimate ϕ̂ instead of the true function

ϕ0 in the criterion QT (ϕ). This explains why the asymptotic distribution of ζT under H0

is N(0, 1) as for the specification test of parametric conditional moment restrictions in TK.
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Assumption 3(ii) on the bandwidth corresponds to the condition in Theorem 4.1 of TK for a

linear-in-parameter moment condition. 2 In our ill-posed inverse problem setting, however,

the control of the impact of estimation of ϕ0 on the test statistic is more complicated, because

of the regularization bias and the lower rate of convergence of the estimator ϕ̂ (see GS for such

a rate). More specifically, the regularization bias BT =
[(
λT + A∗F0

AF0

)−1
A∗F0

AF0 − 1
]
ϕ0 =

ϕλT − ϕ0 of the estimator ϕ̂ contributes the term

Th
1/2
T E0

[
Ω0(Z)I {Z ∈ S∗} [AF0BT (Z)]2

]
= Th

1/2
T QλT , (9)

to the mean of the test statistic. This term is of order Th
1/2
T λ1+β

T under F0 ∈Mβ, 0 ≤ β ≤ 1,

and vanishes asymptotically under Assumption 4(i) (see Appendix 2.3). Assumption 4(ii) is

used to prove the asymptotic negligibility of terms induced by the estimation error ϕ̂−ϕλT .

Finally, in Appendix 2 we show that, under our list of regularity conditions and the null

hypothesis, the test statistic ζT is asymptotically equivalent to Th
1/2
T ξ5,T/σ with ξ5,T :=

1

T

T∑
t=1

T∑
s=1,s 6=t

T∑
u=1,u6=t,u6=s

ψtsψtu.

3.3 Consistency under global alternatives

Let us now assume that the alternative hypothesis H1 holds.

Proposition 2: Under the alternative hypothesis H1, Assumptions 1-3, 4(ii) and A.1-A.8,

if τT := Th
1/2
T QλT →∞ as T →∞, we have σζT = τT + zT + Th

1/2
T ξ∗,E5,T + op(τT ) +Op(1),

where zT
d→ N (0, σ∗2) with σ∗2 defined in (18), and ξ∗,E5,T is the contribution of the estimation

2 To see this, set η =∞ in Assumption 3.6 of TK. Our Assumption 3(i) is used to prove the asymptotic
equivalence of QT (ϕ̂) and ξT in Section A.2.1.
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error ϕ̂− ϕλT defined in (17).

Proof: See Appendix 3.

Proposition 2 shows that the asymptotics of the statistic ζT depend on the relative

orders of magnitude of τT and Th
1/2
T ξ∗,E5,T . The non-centrality parameter τT reduces to the

bias contribution in (9) under the null hypothesis. In general, it is difficult to explicitly

characterize the behaviour of the estimation error term Th
1/2
T ξ∗,E5,T under H1. For example,

as already noticed in Section 3.1, ϕλT may or may not converge under H1. We focus on

the case where estimation error is negligible compared to the non-centrality parameter, and

we consider the next high-level assumption. This parallels the analysis under H0, where we

show that the estimation error term is asymptotically negligible.

Assumption 5: Under the alternative hypothesis H1: Th
1/2
T ξ∗,E5,T = op(τT ).

Assumption 5 implies that |ζT | ≥ CτT for a constant C > 0.

To characterize the asymptotic behaviour of τT under the alternative hypothesis, we can

decompose rF0 = PrF0 +P⊥rF0 , where P and P⊥ denote the orthogonal projection operators

on ker
(
A∗F0

)
and on ker

(
A∗F0

)⊥
, respectively. Then QλT =

∥∥MλTP⊥rF0

∥∥2

L2(Z)
+‖PrF0‖

2
L2(Z) ,

using MλTP = P and PMλTP⊥ = 0. Since ψj is an orthonormal basis of ker
(
A∗F0

)⊥
, we

have P⊥rF0 =
∞∑
j=1

〈
rF0 , ψj

〉
L2(Z)

ψj, and we get:

τT = Th
1/2
T

∞∑
j=1

λ2
T

(λT + νj)
2

〈
rF0 , ψj

〉2

L2(Z)
+ Th

1/2
T ‖PrF0‖

2
L2(Z) . (10)

We distinguish between close and separated misspecifications. Let us first consider close

alternatives, and assume that F0 is in a regularity space introduced in Section 2.3: F0 ∈ M̄c,β̄
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for −1 < β̄ ≤ 0. Then PrF0 = 0, 3 and the behaviour of the series in (10) is driven by the

decay of the coefficients
〈
rF0 , ψj

〉
L2(Z)

. We show in Appendix 4 that τT ≥ CTh
1/2
T λδ+β̄T , for

a constant C > 0 and any δ > 1. Thus τT diverges under the next Assumption 4(iii) on the

regularization parameter, which implies Assumption 4(ii).

Assumption 4: λT = cT−γ with: (iii) γ < min

{
4η̄,

1− η̄/2
1 + β̄

, 1

}
.

We deduce the following bound on the divergence rate of ζT :

Proposition 3: Under the alternative hypothesis H1 for F0 ∈ M̄c,β̄ with −1 < β̄ ≤ 0,

Assumptions 1-3, 4(iii), 5 and A.1-A.8, we have Th
1/2
T λδ+β̄T /ζT = op(1) for any δ > 1.

Proof: See Appendix 4.

Let us now consider separated alternatives: F0 ∈ M̄s. Then PrF0 6= 0 and it follows

from (10) that τT ≥ ‖PrF0‖
2
L2(Z) Th

1/2
T . Thus, τT diverges under Assumption 3. We deduce:

Proposition 4: Under the alternative hypothesis H1 for F0 ∈ M̄s, Assumptions 1-3, 4(ii),

5 and A.1-A.8, we have Th
1/2
T /ζT = Op(1).

The above results reveal that the bound on the divergence rate of the test statistic is larger

under separated misspecification than under close misspecification. Under F0 ∈ M̄s, the

bound corresponds to the divergence rate for the specification test of a parametric conditional

moment restriction in TK, namely of the order Th
1/2
T . Under F0 ∈ M̄c,β̄, the bound is close

to the divergence rate in TK for the strongest departures from correct specification: when

β̄ is near -1, we get the order T 1−εh
1/2
T , ε > 0.

We can combine Propositions 1-4 to introduce specification tests that have given asymp-

3 Under H0, we also have PrF0
= 0 since rF0

∈ ker
(
A∗F0

)⊥
.
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totic size under the null hypothesis, and are consistent against alternatives in suitable reg-

ularity spaces. The following discussion makes clear that we cannot achieve uniform con-

sistency of an unrestricted null hypothesis in our setting (see Horowitz (2012) for the same

statement in his setting).

A. For a given −1 < β̄
∗
< 0 let the alternative hypothesis H1(β̄

∗
) be defined by F0 ∈

M̄c,β̄
∗ ∪ M̄s. Let us consider the statistic ζT with bandwidth hT and regularization

parameter λT satisfying Assumptions 3, 4(i) with β = 0, and 4(iii) with β̄ = β̄
∗
.

Then, P
(
|ζT | > z1−α/2

)
→ α under H0 and P

(
|ζT | > z1−α/2

)
→ 1 under H1(β̄

∗
) as

T →∞, where z1−α/2 is the (1−α/2)-quantile of the N(0, 1) distribution for α ∈ (0, 1).

Thus, statistic ζT yields a consistent test of H0 against the alternative H1(β̄
∗
). A test

based on statistic ζT with given asymptotic size α under the null hypothesis H0 has

no asymptotic power against the alternative hypothesis F0 ∈ M̄c \

 ⋃
−1<β̄<0

M̄c,β̄

.

Indeed, if we set β̄
∗

= 0, we face an incompatibility between the conditions on λT

to have a vanishing regularization bias under the null hypothesis, and a diverging

noncentrality parameter under the alternative hypothesis. Intuitively, it is difficult to

distinguish the close misspecification M̄c \

 ⋃
−1<β̄<0

M̄c,β̄

 from a correctly specified

model with minimal smoothness, i.e., ϕ0 ∈ Φ0 under the null hypothesis.

B. For a given 0 < β∗ ≤ 1 let the null hypothesis H0(β∗) be defined by F0 ∈Mβ∗ . Let us

consider the statistic ζT with bandwidth hT and regularization parameter λT satisfying

Assumptions 3, 4(i) with β = β∗, and 4(ii) with β̄ = 0. Then, P
(
|ζT | > z1−α/2

)
→ α

under H0(β∗) and P
(
|ζT | > z1−α/2

)
→ 1 under H1 as T → ∞. Thus, statistic ζT
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yields a consistent test of H0(β∗) against the full set H1 of alternatives.

3.4 Extension to an estimated weighting function

In the previous sections, results have been presented for a known weighting matrix to ease

reading and derivation. Let us now replace Ω0(z) by an estimate Ω̂(z) = V̂ (z)−1 in (7) based

on a kernel regression estimator of the conditional variance V0(z) and a pilot estimator ϕ̄

of ϕ0. Under H0 the analysis remains virtually unchanged, and Proposition 1 holds under

the supplementary assumptions A.9-A.10 on V0(z) and ϕ̄ in Appendix A.5.1. The analysis

complicates under global alternatives. The estimation of the weighting function plays a

nontrivial role as opposed to the standard GMM setting. The difficulty comes from the

population counterpart ϕ̄λT of the first-step estimator ϕ̄ that may not converge under H1.

Then, the estimated weighting function Ω̂(z) used to compute the test statistic may not

converge. This affects the definition of the population analogue ϕλT of the estimator ϕ̂,

since the limit of Â∗ might differ from A∗F0
whose definition is based on Ω0(z). We overcome

this difficulty by introducing a norm based on the population analogue ΩλT (z) of Ω̂(z)

(see Appendix A.5.2). Then, the results in Propositions 3 and 4 can be derived under the

supplementary assumptions A.11-A.13, that control for the behavior of the norm induced

by ΩλT (z) and for the uniform convergence of Ω̂(z)−ΩλT (z) to 0. We summarize the results

as follows.

Proposition 5: Under Assumptions 1-5 and A.1-A.13, the results in Proposition 1 for

F0 ∈ Mβ, 0 ≤ β ≤ 1, Proposition 3 for F0 ∈ M̄c,β̄, −1 < β̄ ≤ 0, and Proposition 4 for

F0 ∈ M̄s, hold.
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Proof: See Appendix 5.

3.5 Bootstrap computation of the critical values

In a GMM framework, asymptotic approximation can be bad, and bootstrapping provides

one approach to improved inference (Hall and Horowitz (1996)). However, the usual boot-

strap of testing procedures based on degenerate U -statistics is known to fail. To get bootstrap

consistency, an appropriate recentering is required (Arcones and Gine (1992)). Here we par-

allel the bootstrap construction of Horowitz (2006). 4 His technique relies on sampling

from a pseudo-true model which coincides with the original model if the null hypothesis is

true, and satisfies a version of the conditional moment restriction if the null hypothesis is

false. The idea is to get a bootstrap which imposes the conditional moment restriction on

the resampled data regardless of whether the null hypothesis holds for the original model.

Recent works on bootstrap testing procedures in nonparametric IV include Santos (2008),

(2012), Freyberger and Horowitz (2015), and Freyberger (2015).

For a bootstrap test based on ζT the steps are as follows.

Bootstrap test algorithm

1. Compute Ūt := Yt − ϕ̂(Xt)−
(
r̂(Zt)− Âϕ̂(Zt)

)
, t = 1, ..., T .

2. Make T independent draws (X̃t,b, Z̃t,b, Ũt,b) with replacement from

4 Other resampling techniques such as empirical likelihood bootstrap (Brown and Newey (2002)), m-out-
of-n (moon) bootstrap (Bickel, Gotze and van Zwet (1997)), and subsampling (Politis, Romano and Wolf
(1999)) provide other approaches to improved inference in our setting. They are however less simple to
implement. The wild bootstrap (Haerdle and Mammen (1993)) and the simulation-based multiplier method
(Hansen (1996)) cannot be used.
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{
(Xt, Zt, Ūt); 1 ≤ t ≤ T

}
, and take Ỹt,b := ϕ̂(X̃t,b) + Ũt,b to get the bootstrap sam-

ple (X̃t,b, Ỹt,b, Z̃t,b), t = 1, ..., T .

3. Compute the bootstrap statistic ζ̃T,b based on the bootstrap sample.

4. Repeat steps 2 and 3 B times, where B is an integer.

5. Reject the null hypothesis at significance level α if pB < α, where the bootstrap p-value

is pB :=
1

B

B∑
b=1

I{|ζ̃T,b| > |ζT |}.

Step 2 implements the constraints E[Ỹ−ϕλT (X̃)|Z̃ = z] = 0 and E

[(
Ỹ − ϕλT (X̃)

)2

|Z̃ = z

]
=

ΩλT (z)−1 on the bootstrap sample whether H0 holds or not. A test based on the de-

cision rule in Step 5 is consistent: it satisfies lim
T→∞

P [rejectH0] = α if H0 is true, and

lim
T→∞

P [rejectH0] = 1 if H0 is false. This can be justified by showing that the limit distri-

bution of ζ̃T,b is an independent copy of the limit distribution of ζT . The proof follows the

same arguments as in the proofs of Propositions 1-5 but applied to the bootstrap sample

instead of the original sample. Therefore we omit these developments. In our Monte Carlo

results the bootstrap reduces significantly the finite sample level distortions that occur when

asymptotic critical values are used. Similar steps and comments hold for a bootstrap test

based on the other asymptotic equivalent test statistics mentioned in Sections 3.2 and 4.2.
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4 A Monte-Carlo study

4.1 Data generating process under the null hypothesis

Following GS (see also Newey and Powell (2003)) we draw the errors U and V and the

instrument Z as
U

V

Z

 ∼ N




0

0

0

 ,


1 ρUV 0

ρUV 1 0

0 0 1



 , ρUV = .5,

and build X∗ = Z+V . Then we map X∗ into a variable X = Φ (X∗), which lives in [0, 1]. The

function Φ denotes the cdf of a standard Gaussian variable, and is assumed to be known.

We generate Y according to Y = sin (πX) + U . Since the correlation ρUV 6= 0 there is

endogeneity, and an instrumental variable estimation is required. The moment condition is

E0 [Y − ϕ0 (X) | Z] = 0, where the functional parameter is ϕ0(x) = sin (πx), x ∈ [0, 1]. The

chosen function resembles the shape of the Engel curve found in the empirical illustration.

4.2 Computation of the test statistic

The estimation of ϕ0 follows GS. To compute numerically the estimator ϕ̂ we use a numer-

ical approximation ϕ(x) ' θ′P (x) based on standardized shifted Chebyshev polynomials

of the first kind (see Section 22 of Abramowitz and Stegun (1970) for their mathematical

properties). These orthogonal polynomials are best suited for an unknown function ϕ0 on

[0, 1]. We take orders 0 to 5 which yields six coefficients to be estimated in the approxi-

mation ϕ(x) '
5∑
j=0

θjPj(x), where P0(x) = T0(x)/
√
π, Pj(x) = Tj(x)/

√
π/2, j 6= 0. The

shifted Chebyshev polynomials of the first kind are T0(x) = 1, T1(x) = −1+2x, T2(x) =
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1− 8x+ 8x2, T3(x) = −1 + 18x− 48x2 + 32x3, T4(x) = 1− 32x+ 160x2 − 256x3 + 128x4,

T5(x) = −1+50x−400x2 +1120x3−1280x4 +512x5. The squared Sobolev norm is approxi-

mated by ‖ϕ‖2
H =

∫ 1

0

ϕ2 +

∫ 1

0

(∇ϕ)2 '
5∑
i=0

5∑
j=0

θiθj

∫ 1

0

(PiPj +∇Pi∇Pj) . The coefficients in

the quadratic form θ′Dθ =
5∑
i=0

5∑
j=0

θiθjDij, where Dij =

∫ 1

0

(PiPj +∇Pi∇Pj) are explicitly

computed with a symbolic calculus package:

D =



1
π

0 −
√

2
3π

0 −
√

2
15π

0

... 26
3π

0 38
5π

0 166
21π

218
5π

0 1182
35π

0

3898
35π

0 5090
63π

... 67894
315π

0

. . . . . . 82802
231π



.

Such a simple and exact form eases implementation 5 , and improves on speed.

The kernel estimator of the conditional moment r̂(z)− Âϕ(z) is approximated through

r̂(z) − θ′P̂ (z) where P̂ (z) =
T∑
t=1

P (Xt)K

(
Zt − z
hT

)
/

T∑
t=1

K

(
Zt − z
hT

)
, r̂(z) =

T∑
t=1

YtK

(
Zt − z
hT

)
/

T∑
t=1

K

(
Zt − z
hT

)
, and K is the Gaussian kernel. The bandwidth is se-

lected via the standard rule of thumb h = 1.06σ̂ZT
−1/5 (Silverman (1986)), where σ̂Z is the

empirical standard deviation of observed Zt.
6 Here the weighting function Ω0(z) is equal

to unity, and assumed to be known, which gives ϕ̂(x) ' θ̂
′
P (x) with θ̂ = (λTD+ P̂ ′P̂ )−1P̂ ′R̂

5 The Gauss programs developed for this section and the empirical illustration are available on request
from the authors.

6 This choice is motivated by ease of implementation. Moderate deviations from this simple rule do not
seem to affect estimation results significantly.
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where P̂ is the T × 6 matrix with rows P̂ (Zt)
′ and R̂ is the T × 1 vector with entries r̂(Zt).

The explicit and general form of the ridge-type estimator θ̂ in a linear model with both

exogenous and endogenous regressors and an estimated weighting function is given in GS

Section 7.

For programming purpose, the test statistic can be expressed in a matrix format:

ζT = h
1/2
T [ι′Ψ′Ψι− ι′(Ψ�Ψ)ι+ trace(Ψ�Ψ)] /σ,

where Ψ is the T×T matrix with elements ψts in (8), ι is a T×1 vector of ones, and � denotes

the Hadamard (or element-by-element) product. We also consider an asymptotically equiv-

alent statistic based on the penalized value of the criterion, namely ζT +Th
1/2
T λT ‖ϕ̂‖2

H /σ. 7

Other possibilities include statistics such as:

Th
1/2
T ξ5,T/σ = h

1/2
T [ι′Ψ′Ψι− 2diag(Ψ)′Ψι− ι′(Ψ�Ψ)ι+ 2trace(Ψ�Ψ)] /σ,

where diag (Ψ) is the T ×1 vector of the diagonal elements of Ψ, or its penalized counterpart

Th
1/2
T (ξ5,T+λT ‖ϕ̂‖2

H)/σ. In unreported Monte-Carlo results, we have checked that the finite-

sample behaviours of the latter two test statistics are qualitatively similar to those of the

corresponding tests based on ζT .

4.3 Simulation results

The sample size is fixed at T = 1000. Size and power are computed with 1000 repetitions. We

use a fixed trimming at 5% in the upper and lower tails, i.e., S∗ = [−1.645, 1.645]. We look at

7 Statistic ζT +Th
1/2
T λT ‖ϕ̂‖2H /σ is asymptotically equivalent to ζT under H0 if estimator ϕ̂ is such that

‖ϕ̂‖H = Op(1), and γ > 1− η̄/2 in Assumption 4(i).
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a grid of values for the regularization parameter λT ∈ {.00001, .0007, .0009, .0012, .0015, .005}.

The values .0009 and .0007 are the values of λT minimizing the asymptotic MISE of the es-

timator, and minimizing the finite sample MISE, respectively (see GS for details on these

computations). The data-driven procedure introduced in GS selects λT close to these optimal

values with slight overpenalization. Therefore we also consider the values .0012 and .0015.

The values .00001 and .005 are far away from the optimal ones, and far beyond the quar-

tiles of the distribution of the regularization parameters that are selected by the data-driven

procedure.

Unreported simulation results show that the asymptotic approximation of Proposition

1 is poor for sample size T = 1000: test statistic distributions are asymmetric and size

distortions are large. We often end up with no rejection at all of the null hypothesis at the

1% confidence level. In light of this, we advocate to use the bootstrap procedure of Section

3.5 for small to moderate sample sizes. The number of bootstrap samples is fixed at B = 500.

In Table I, for each value of λT we report the rejection rates of statistic ζT (left column)

and those of statistic ζT +Th
1/2
T λT ‖ϕ̂‖2

H /σ (right column), at nominal size α = .01, .05, .10.

For λT = .0007, .0009, statistic ζT provides undersized tests, while for λT = .0012, .0015,

the rejection rates are very close to the nominal ones. For λT = .0007, .0009, statistic

ζT +Th
1/2
T λT ‖ϕ̂‖2

H /σ features good finite sample properties and yields tests which are only

slightly undersized. For λT = .0012, .0015, statistic ζT +Th
1/2
T λT ‖ϕ̂‖2

H /σ provides oversized

tests at α = .10. Selecting a very small regularization parameter λT = .00001 results in

undersized tests, both for ζT and ζT +Th
1/2
T λT ‖ϕ̂‖2

H /σ. For the very large value λT = .005,
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the test becomes oversized because of regularization bias.

Rejection rates with 1000 repetitions for ζT and ζT + Th
1/2
T λT ‖ϕ̂‖2

H /σ

λT = .00001 λT = .0007 λT = .0009 λT = .0012 λT = .0015 λT = .005

α = .01 .002 .000 .005 .010 .008 .010 .013 .002 .013 .005 .087 .198

α = .05 .016 .004 .013 .025 .033 .039 .046 .046 .073 .073 .271 .533

α = .10 .048 .063 .036 .072 .049 .092 .102 .141 .107 .195 .431 .737

TABLE I: Size of bootstrap test: T = 1000, B = 500

In Table II, we study the power of the bootstrap testing procedure based on ζT (left

column) and ζT +Th
1/2
T λT ‖ϕ̂‖2

H /σ (right column). We generate Y as Y = sin (πX)+U +η.

In design 1, we take η = .20I{Z ≤ 0} − .20I{Z > 0}. This yields E0[Y − sin (πX) |Z =

z] = .20I{z ≤ 0} − .20I{z > 0}, and the model specification is incorrect (discontinuity at

point z = 0; cf. discussion in Section 2). In design 2, we take η = 0.80(|Z| −
√

2/π) yielding

another misspecification (non-differentiability at point z = 0). In both designs U + η is

maintained centered. The two cases mimick possible measurement errors in data such as

the ones of the empirical section. In the first one, reported Yt are larger in average when

reported Zt are known to be small, and vice-versa. In the second one, reported Yt are larger

in average when reported Zt are known to be large in absolute value compared to their

average value.

We find a satisfactory power for λT = .0007, .0009, .0012, .0015, under both designs.

Since design 1 implies a stronger departure from the null hypothesis than design 2, the test
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statistics have overall better power properties in the first design. For value λT = .00001,

which gives a very light penalization, the power is minimal. In our simulation experiments,

choosing a regularization parameter value around the values minimizing the asymptotic or

finite sample MISE delivers good performance. Of course there is no reason why an optimal

choice for estimation should be optimal for testing. The design of an adaptive rate-optimal

test is a challenging task even in the parametric case (Horowitz and Spokoiny (2001)), and

we leave this interesting research topic to future work.

Rejection rates with 1000 repetitions for ζT and ζT + Th
1/2
T λT ‖ϕ̂‖2

H /σ

Design 1 λT = .00001 λT = .0007 λT = .0009 λT = .0012 λT = .0015 λT = .005

α = .01 .006 .002 .648 .074 .742 .084 .812 .141 .842 .155 .896 .499

α = .05 .029 .012 .829 .290 .876 .337 .932 .419 .942 .444 .966 .811

α = .10 .073 .049 .859 .473 .902 .538 .948 .576 .952 .647 .976 .916

Design 2 λT = .00001 λT = .0007 λT = .0009 λT = .0012 λT = .0015 λT = .005

α = .01 .005 .002 .056 .078 .082 .142 .120 .338 .189 .566 .963 1.000

α = .05 .013 .009 .201 .310 .251 .473 .326 .759 .438 .920 .995 1.000

α = .10 .043 .044 .289 .513 .361 .736 .471 .930 .579 .991 .998 1.000

TABLE II: Power of bootstrap test: T = 1000, B = 500
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5 An empirical illustration

This section presents an empirical example with the data in Horowitz (2006) and GS. 8

We aim at testing the specification of an Engel curve based on the moment condition

E0 [Y − ϕ0 (X) | Z] = 0, with X = Φ (X∗). Variable Y denotes the food expenditure share,

X∗ denotes the standardized logarithm of total expenditures, and Z denotes the standardized

logarithm of annual income from wages and salaries. We have 785 household-level obser-

vations from the 1996 US Consumer Expenditure Survey. The estimation procedure is the

same as in GS (see also the previous section). It relies on a kernel estimate of the conditional

variance to get the weighting function and on a spectral approach to get a data-driven regu-

larization parameter. The selected value is λ̂ = .01113. In GS, the plotted estimated shape

corroborates the findings of Horowitz (2006), who rejects a linear curve but not a quadratic

curve at the 5% significance level to explain log Y . Banks, Blundell and Lewbel (1997)

consider demand systems that accommodate such empirical Engel curves. A specification

test based on 1000 bootstrap samples yields bootstrap p-values of .426 and .671 for the test

statistic values ζT = −.9826 and ζT + Th
1/2
T λT ‖ϕ̂‖2

H /σ = −.3017, respectively. Hence we

do not reject the null hypothesis of a correct specification of the Engel curve modeling.

8 We would like to thank Joel Horowitz for kindly providing the dataset.
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Appendices

In Appendix 1, we list the regularity conditions and provide their detailed discussion. In

Appendix 2, we show Proposition 1 on asymptotic normality of our test statistic under the

null hypothesis. In Appendices 3 and 4, we show Propositions 2 and 3 on the behavior of the

test statistic under global alternatives. In Appendix 5, we provide the details for extending

the proofs to the setting with an estimated weighting function.

Appendix 1: List of regularity conditions

A.1: {(Yt, Xt, Zt) : t = 1, ..., T} is an i.i.d. sample from a distribution admitting a pdf fY XZ

with support S = Y × X × Z ⊂ R3, X = [0, 1], such that: (i) sup
X ,Z

fX|Z < ∞; (ii) fZ is in

class C2 (R).

A.2: For m > 4: (i) E0 [|Y − ϕ0(X)|m] < ∞ under H0, and (ii) E0

[∣∣Y − ϕλT (X)
∣∣m] =

O(1) and E0 [|Y − E0[Y |Z]|m] <∞ under H1.

A.3: Set S∗ ⊂ Z is compact, contained in the interior of Z such that inf
S∗
fZ > 0.

A.4: The kernel K is (i) a pdf with support in [−1, 1] , (ii) symmetric, (iii) continuously

differentiable, and (iv) bounded away from 0 on [−a, a], for a ∈ (0, 1).

A.5: Estimator ϕ̂ is such that: (i)
1

T

∑
t

∣∣ϕ̂(Xt)− ϕλT (Xt)
∣∣2 = Op(T

−1/3); (ii) sup
X

∣∣∇2ϕ̂
∣∣ =

Op(1).

A.6: Under H0: (i) sup
z∈S∗

(
1

ThT

∑
s

K

(
Zs − z
hT

)
RT (Xs)

)2

= op

(
1

Th
1/2
T

)
, where RT :=
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ϕ̂−ϕλT−
(
λT + A∗F0

AF0

)−1
A∗F0

ψ̂−
(
λT + A∗F0

AF0

)−1
(
Â∗Â− A∗F0

AF0

)
BT and ψ̂(z) :=

∫
(y−

ϕ0(x))
f̂(w, z)

f(z)
dw; (ii) sup

z∈S∗

(
1

ThT

∑
s

K

(
Zs − z
hT

)
RT (Xs)

2

)
= op

(
1

T

)
.

A.7: (i) The eigenvalues νj of operator A∗F0
AF0 are such that C1e

−αj ≤ νj ≤ C2e
−αj, j ∈ N,

for some constants α > 0, C1 ≤ C2; (ii) The orthonormal eigenfunctions φj, j ∈ N, of

operator A∗F0
AF0 are such that sup

j∈N
sup
|u|≤1

E0

[
∇2
(
AF0φj

)
(Z + hTu)2] = O(1), as hT → 0, and

(iii) sup
j∈N

sup
z∈S∗

E0

[
φj(X)2|Z = z

]
<∞.

A.8: The function ϕ0 ∈ H2[0, 1] is in class C2 (0, 1) with sup
X

∣∣∇2ϕ0

∣∣ <∞ under H0.

Assumptions A.1, A.2 (i), A.3, A.4 yield the assumptions used in TK for testing para-

metric conditional moment restrictions in the special case of a linear-in-parameter moment

function and known weighting function. In our functional setting, compacity of X in As-

sumption A.1 eases the definition of the parameter space, which is a subset of the Sobolev

space H2[0, 1]. We take univariate variables to avoid matrix notation and facilitate the

writing and reading of the results and proofs. We can extend all our results to dimX > 1

and dimZ > 1. Assumption A.1 (i) on the conditional density fX|Z implies that operator

AF0 : L2[0, 1] → L2 (Z) is compact, and this yields compacity of AF0 defined on H2[0, 1].

Assumption A.1 (ii) on the conditional density fZ , together with Assumption A.4 on the

kernel, allows to exploit the results on uniform convergence of kernel estimators in Newey

(1994) and a result of Devroye and Wagner (1980). Assumption A.2 is a condition ensuring

finite higher moments of the innovation under H0, and similar conditions under H1. In par-

ticular, Assumption A.2 (ii) is used in the proofs of Lemmas C.1-C.4. The compact set S∗ in
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Assumption A.3 solves boundary problems of kernel estimators. Assumption A.5 concerns

properties of the functional estimator ϕ̂ that are used in the proofs of technical lemmas.

Specifically, we use Assumption A.5 (i) in the proof of Lemmas B.1-B.2 and C.1-C.2 to

prove asymptotic negligibility of two components of the test statistic. We use Assumption

A.5 (ii) to prove the asymptotic equivalence of QT and ξT in Section A.2.1. Function RT in

Assumption A.6 is the reminder term in the linearization of the estimation error ϕ̂−ϕλT per-

formed in Section A.2.4. The linearization includes a term induced by estimation of A∗F0
rF0

and a term induced by estimation of A∗F0
AF0 . The reminder term RT is of second-order

w.r.t ψ̂ and Â∗Â − A∗F0
AF0 . Assumption A.6 is satisfied e.g. when RT is Op(1/

√
T ), and

allows us to control the reminder contribution coming from the estimation error in Lemmas

B.7-B.8. Assumption A.7 concerns the spectral decomposition of compact operator A∗F0
AF0

(see Kress (1999), Chapter 14). In Assumption A.7 (i), the spectrum of A∗F0
AF0 is supposed

to feature geometric decay, which corresponds to settings with severe ill-posedness. This

assumption simplifies the control of series involving eigenvalues νj of operator A∗F0
AF0 such

as
∞∑
j=1

νj
λT + νj

in the proofs of Lemmas B.5 and B.6. In GS, we verify that Assumption

A.7 (i) is satisfied in the Monte-Carlo setting of Section 4. Our results extend to the case

of hyperbolic decay (mild ill-posedness). We use the regularity Assumptions A.7 (ii)-(iii)

on the eigenfunctions φj in the proof of technical Lemmas B.5 and B.6. Assumption A.8

concerns the smoothness of function ϕ0 under H0. We use the second-order differentiability

of ϕ0 to control the estimation bias term in ψ̂ induced by kernel density estimator f̂(y|z) (see

the proof of Lemma B.5). We could dispense of this assumption by adopting a different es-
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timator of function A∗F0
rF0 to define estimator ϕ̂ (see GS, footnote 8, and Hall and Horowitz

(2005)), at the cost however of an increase in the technical complexity. Since estimator ϕ̂ is

not the focus of this paper, we do not detail modifications induced by alternative estimation

approaches.

Appendix 2: Proof of Proposition 1

In A.2.1, we show the equivalence between QT (ϕ̂) and ξT . In A.2.2, we establish the asymp-

totic normality of the leading term before showing in A.2.3 and A.2.4 that the other terms

are negligible. We gather in A.2.5 the technical lemmas and discuss their main differences

w.r.t. TK. In this appendix and hereafter, we omit subscripts in densities, expectations and

operators. Furthermore, let T∗ = {1 ≤ t ≤ T : Zt ∈ S∗}, Kst = K

(
Zs − Zt
hT

)
, Ωt = Ω0(Zt),

Ut = Yt−ϕ0(Xt), gϕ0
(w) = y−ϕ0(x), ∆ϕ = ϕ−ϕ0, It = I {Zt ∈ S∗}, I = {Zt : 1 ≤ t ≤ T},

H0(z) = V0(z)f (z)2, wst = Kst/
∑

jKjt, KT (V,W ) =
1

T

∑
t

ΩtIt(∑
jKjt

)2

∑
s 6=t

∑
u6=t,s

KstKutVsWu.

A.2.1 Asymptotically equivalent statistics

Let us consider ξT :=
1

T

T∑
t=1

(
T∑
s=1

ψts

)2

, where ψts = Ω
1/2
t It (Ys − ϕ̂(Xs))Kst

/ T∑
j=1

Kjt.

Statistic ξT corresponds to statistic T̂ at p. 2064 in TK, but with a functional estimator ϕ̂

of parameter ϕ0. Using Assumption A.5 (ii) to get the asymptotic equivalence

∫
(y − ϕ̂(x)) f̂(w|z)dw =

T∑
s=1

(Ys − ϕ̂(Xs))K

(
Zs − z
hT

)
T∑
s=1

K

(
Zs − z
hT

) +Op(h
2
T ),
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uniformly in z ∈ S∗, and Cauchy-Schwarz inequality, we get QT (ϕ̂) = ξT + Op(ξ
1/2
T h2

T ) +

Op(h
4
T ). Using hT = c̄T−η̄ with η̄ > 2/9, we get QT (ϕ̂) = ξT +op((Th

1/2
T )−1). Thus, statistics

QT (ϕ̂) and ξT are asymptotically equivalent to define the test.

We use the decomposition ξT = ξ1,T + ξ2,T + ξ3,T + ξ4,T + ξ5,T as in TK, where

ξ1,T =
1

T

T∑
t=1

ψ2
tt, ξ2,T =

1

T

T∑
t=1

T∑
s=1,s 6=t

ψ2
ts,

ξ3,T =
1

T

T∑
t=1

T∑
s=1,s 6=t

ψtsψtt = ξ4,T

ξ5,T =
1

T

T∑
t=1

T∑
s=1,s 6=t

T∑
u=1,u6=t,u6=s

ψtsψtu.

Terms ξ1,T , ξ3,T and ξ4,T are op((Th
1/2
T )−1) (see Lemmas B.1 and B.2 in Section A.2.5), while

term ξ5,T after appropriate rescaling is asymptotically normal (see Section A.2.2). Thus, the

test statistic is based on the difference ξT − ξ2,T satisfying

ξT − ξ2,T = ξ5,T + op((Th
1/2
T )−1). (11)

Let us rewrite statistic ξ5,T in order to identify the different contributions. We use the

following decomposition:

Y − ϕ̂ (X) = U − BT (X)− ET (X). (12)

The innovation U := Y − ϕ0(X) is such that E [U |Z] = 0. The bias BT (X) is such that

E [BT (X)|Z] = −MλT rF0(Z), that is, minus the Tikhonov residual. Finally, ET (X) :=

ϕ̂(X)− ϕλT (X) is the estimation error. We get the decomposition ξ5,T = ξ̄5,T + ξB5,T + ξE5,T ,

where the leading contribution is ξ̄5,T = KT (U,U), the contribution induced by regulariza-
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tion bias is given by ξB5,T = KT (BT (X),BT (X)) − 2KT (U,BT (X)) , and the contribution

accounting for estimation error is ξE5,T = KT (ET (X), ET (X))− 2KT (U − BT (X), ET (X)) .

A.2.2 Asymptotic normality of the test statistic

Statistic ξ̄5,T corresponds to statistic T̂
(1)
5 of TK, p. 2083 (multiplied by T−1). Along the

lines of the proofs of Lemmas A.6 and A.7 in TK, ξ̄5,T =
1

T 3h2
T

∑
t

H0(Zt)
−1It∑

s 6=t

∑
u6=t,s

KstKutUsUu + Op

(
log T

ThT
sup
z∈S∗

∣∣∣f̂(z)−1 − f(z)−1
∣∣∣). Using sup

z∈S∗

∣∣∣f̂(z)−1 − f(z)−1
∣∣∣ =

Op

(√
log T

ThT
+ h2

T

)
from Assumptions A.1, A.3 and A.4, the CLT for generalized quadratic

forms of de Jong (1987) along the lines of Lemma A.6 in TK, and hT = c̄T−η̄ with

2/9 < η̄ < min {1− 4/m, 1/3}, we get Th
1/2
T ξ̄5,T

d−→ N(0, 2K∗∗vol(S∗)). Then, Proposi-

tion 1 follows using that ξB5,T , ξ
E
5,T = op((Th

1/2
T )−1) as shown below.

A.2.3 Control of the regularization bias contribution

It follows from Lemmas B.3 and B.4 in Section A.2.5 that

ξB5,T = QλT (1 + op(1)) +Op

(
1√
T
Q

1/2
λT

)
+ op((Th

1/2
T )−1).

Rewriting BT = −λT (λT + A∗A)−1 ϕ0 and developing ϕ0 w.r.t. the basis of eigenfunctions

φj of A∗A, we have for 0 ≤ β ≤ 1

QλT = ‖ABT‖2
L2(Z) = λ2

T

∞∑
j=1

νj
〈
ϕ0, φj

〉2

H

(λT + νj)
2 = λ1+β

T

∞∑
j=1

λ1−β
T ν1+β

j

(λT + νj)
2

〈
ϕ0, φj

〉2

H

νβj

≤ λ1+β
T

∞∑
j=1

〈
ϕ0, φj

〉2

H

νβj
≤ Cλ1+β

T , (13)
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from the source condition ϕ0 ∈ Φβ (see also CFR, proof of Proposition 3.11). Using As-

sumption 4(i), we get ξB5,T = op((Th
1/2
T )−1).

A.2.4 Control of the estimation error contribution

We use r = Aϕ0 under H0 and r̂ = ψ̂ + Âϕ0 + q̂, where ψ̂(z) :=

∫
(y − ϕ0(x))

f̂(w, z)

f(z)
dw

and q̂(z) =

∫
(y−ϕ0(x))

[
f̂(w|z)− f̂(w, z)

f(z)

]
dw = −ψ̂(z)

f̂(z)− f(z)

f̂(z)
. Then, the estimation

error ϕ̂− ϕλT is decomposed as:

ϕ̂− ϕλT =
(
λT + Â∗Â

)−1

A∗ψ̂ −
(
λT + Â∗Â

)−1 (
Â∗Â− A∗A

)
BT

+
(
λT + Â∗Â

)−1

A∗q̂ +
(
λT + Â∗Â

)−1

(Â∗ − A∗)
(
q̂ + ψ̂

)
. (14)

The first two terms in the RHS are of first-order, the corresponding quantities converging

to zero are ψ̂ and
(
Â∗Â− A∗A

)
BT , respectively. The third and fourth terms are at least

of second-order. To eliminate the estimate Â∗Â in the inverse
(
λT + Â∗Â

)−1

, we can use

iteratively:

(
λT + Â∗Â

)−1

= (λT + A∗A)−1 −
(
λT + Â∗Â

)−1 (
Â∗Â− A∗A

)
(λT + A∗A)−1 .

Then Equation (14) is transformed into a development of ϕ̂ − ϕλT in a series of terms of

different orders:

ϕ̂− ϕλT = ET,1+ET,2+RT ,

where ET,1 = (λT + A∗A)−1A∗ψ̂ and ET,2 = (λT + A∗A)−1
(
Â∗Â− A∗A

)
BT

are the first-order terms, and RT contains second-, third-, etc-order terms. Thus, the esti-
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mation error contribution can be decomposed as:

ξE5,T = KT (ET,1(X), ET,1(X)) +KT (ET,2(X), ET,2(X)) + 2KT (ET,2(X), ET,1(X))

−2KT (U − BT (X), ET,1(X))− 2KT (U − BT (X), ET,2(X))

+KT (RT (X),RT (X))− 2KT (RT (X), U − BT (X)− ET,1(X)− ET,2(X)) .

It follows from Lemmas B.5-B.8 and (13) that ξE5,T = op((Th
1/2
T )−1).

A.2.5 Technical Lemmas

Lemmas B.1 and B.2 are akin to Lemmas A.2 and A.4 in TK. The major technical novel-

ties are in proving Lemmas B.3-B.8 where we use conditions on the decay of the spectrum

(Assumption A.7) and on the regularization parameter (Assumption 4). To minimize the

complexity of the presentation we assume V0(z) = Ω0(z) = 1 in some steps in the proofs of

Lemmas B.5-B.6. All proofs are given under Assumptions A.1-A.8 and H0.

Lemma B.1: ξ1,T = Op((ThT )−2).

Lemma B.2: ξ3,T = op((Th
1/2
T )−1).

Lemma B.3: KT (BT (X),BT (X)) = QλT (1 + op(1)) + op((Th
1/2
T )−1).

Lemma B.4: KT (U,BT (X)) = Op

(
1√
T
Q

1/2
λT

)
+ op((Th

1/2
T )−1).

Lemma B.5: KT (ET,k(X), ET,l(X)) = op((Th
1/2
T )−1), k, l = 1, 2.

Lemma B.6: KT (U − BT (X), ET,k(X)) = op

 1√
Th

1/2
T

Q
1/2
λT

+ op((Th
1/2
T )−1), k = 1, 2.
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Lemma B.7: KT (RT (X),RT (X)) = op((Th
1/2
T )−1).

Lemma B.8: KT (RT (X), U − BT (X)− ET,1(X)− ET,2(X)) = op((Th
1/2
T )−1).

Appendix 3: Proof of Proposition 2

In A.3.1, we show that a decomposition similar to (11) holds under H1: some differences

appear in the order of the negligible terms. In A.3.2, we separate the leading term into an

asymptotically distributed term and a diverging term under H1. We gather the technical

lemmas in A.3.3 and discuss differences w.r.t. those used in the proof of Proposition 1.

A.3.1 Asymptotically equivalent statistics

From the arguments in A.2.1, statistics QT (ϕ̂) and ξT are asymptotically equivalent. Let us

study the behaviour of ξi,T , i = 1, ..., 5, under H1, and split as in (12)

Y − ϕ̂(X) = U∗ − υ − ET (X). (15)

The innovation U∗ := Y −r(Z) satisfies E[U∗|Z] = 0. The error υ := ϕλT (X)−r(Z) satisfies

E[υ|Z] = −MλT r(Z), that is minus the Tikhonov residual. We get ξ1,T is Op((ThT )−2) from

Lemma C.1, while ξ3,T and ξ4,T are Op(T
−2h

−3/2
T τT )+Op((Th

1/2
T )−1) from Lemma C.2, which

yields that under H1 and τT →∞

ξT − ξ2,T = ξ5,T + op((Th
1/2
T )−1τT ). (16)
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Let us investigate the behavior of ξ5,T by introducing a decomposition based on (15): ξ5,T =

ξ̄
∗
5,T + ξ̄

∗,υ
5,T + ξ∗,E5,T , where ξ̄

∗
5,T = KT (U∗, U∗) , ξ̄

∗,v
5,T = KT (υ, υ)− 2KT (U∗, υ), and

ξ∗,E5,T = KT (ET (X), ET (X))− 2KT (U∗ − υ, ET (X)) . (17)

A.3.2 Divergence of the test statistic

Following the same arguments as in Section A.2.2, we get Th
1/2
T ξ̄

∗
5,T

d−→ N(0, σ∗2), where

σ∗2 = 2K∗∗

∫
S∗
{Ω0(z)V0(z)}2 dz. (18)

Then Proposition 2 follows using that Th
1/2
T ξ̄

∗,υ
5,T = τT + op(τT ) + Op(1) from Lemmas C.3

and C.4.

A.3.3 Technical Lemmas

Lemma C.1 is the analogue of Lemma B.1. Lemma C.2 differs from Lemma B.2 by the orders

in the bound. Lemmas C.3 and C.4 concern the diverging contribution due to the noncen-

trality parameter Th
1/2
T QλT , and are the analogues of Lemmas B.3 and B.4. The remainder

terms are Op((Th
1/2
T )−1), since E [υ2] = O(1) under H1 in contrast to E [BT (X)2] = o(1)

under H0. All proofs are given under Assumptions A.1-A.8 and H1.

Lemma C.1: ξ1,T = Op((ThT )−2).

Lemma C.2: ξ3,T = Op ((ThT )−1QλT ) +Op((Th
1/2
T )−1).

Lemma C.3: KT (υ, υ) = QλT (1 + op(1)) +Op((Th
1/2
T )−1).

Lemma C.4: KT (U∗, υ) = Op

(
1√
T
Q

1/2
λT

)
+Op((Th

1/2
T )−1).
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Appendix 4: Proof of Proposition 3

From (10) and PrF0 = 0, we have:

τT = Th
1/2
T

∞∑
j=1

λ2
T

(λT + νj)
2χ

2
j , (19)

where χj =
〈
rF0 , ψj

〉
L2(Z)

. Let δ > 1. Then we have χ2
j/ν

δ+β̄
j → ∞ as j → ∞. Indeed, by

contradiction, if sequence χ2
j/ν

δ+β̄
j were bounded, we would have

∞∑
j=1

χ2
j

ν1+β̄
j

=
∞∑
j=1

νδ−1
j

χ2
j

νδ+β̄j

≤

C
∞∑
j=1

νδ−1
j <∞, which is impossible because of F0 ∈ M̄c,β̄. Now,

∞∑
j=1

λ2
T

(λT + νj)
2χ

2
j = λδ+β̄T

∞∑
j=1

λ2−δ−β̄
T νδ+β̄j

(λT + νj)
2

χ2
j

νδ+β̄j

≥ λδ+β̄T

λ2−δ−β̄
T νδ+β̄N(λT )(
λT + νN(λT )

)2

χ2
N(λT )

νδ+β̄N(λT )

& λδ+β̄T

χ2
N(λT )

νδ+β̄N(λT )

≥ Cλδ+β̄T ,

for any constant C and large T , where N (λ) � 1

α
log

(
C̃

λ

)
is such that νN(λ) � λ. From

(19) we conclude that τT ≥ CTh
1/2
T λδ+β̄T , and this yields the statement of Proposition 3

because of Assumption 4(iii).

Appendix 5: Proof of Proposition 5

In A.5.1, we prove the asymptotic normality of the test statistic under H0. In A.5.2, we

derive the asymptotic behavior under global alternatives. We gather the technical lemmas

in A.5.3, and compare them with the ones of TK and of the previous sections.
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A.5.1 Asymptotic distribution under the null hypothesis

A.9: The conditional variance function V0(z) := V0 [Y − ϕ0(X)|Z = z] is in class C2 (R) ,

such that inf
S∗
V0 > 0 under H0.

A.10: Estimator ϕ̄ is such that sup
z∈S∗

1

ThT

∑
t

K

(
z − Zt
hT

)
[ϕ̄(Xt)− ϕ0(Xt)]

2 = op
(
T−ε

)
under H0, for some ε >

1

3
+

2

m
.

Assumptions A.9 and A.10 concern the conditional variance V0(z), and the first-step

estimator ϕ̄ in the estimator V̂ (z) of V0(z), respectively. These assumptions are used in

Lemma D.1 to prove the convergence of V̂ (z), its inverse V̂ (z)−1, and Ĥ(z)−1 under H0,

where Ĥ(z) := V̂ (z)f̂(z)2. Then, using
log T

ThT
sup
z∈S∗

∣∣∣Ĥ(z)−1 −H0(z)−1
∣∣∣ = op

(
1/
(
Th

1/2
T

))
from Lemma D.1 (iii) with ε >

1

3
+

2

m
(Assumption A.10) and hT = c̄T−η̄ with 2/9 < η̄ <

min {1− 4/m, 1/3}, the proof of ζT
d−→ N(0, 1) is unchanged compared to Appendix 2.

A.5.2 Asymptotic behaviour under global alternatives

Let ϕ̄λT denote the population counterpart of the pilot estimator ϕ̄. Let VλT (z) :=

E
[(
Y − ϕ̄λT (X)

)2 |Z = z
]

and ΩλT (z) := VλT (z)−1. Let L2
λT

(Z) denote the L2-space as-

sociated with measure ΠZ,λT (dz) = ΩλT (z)I {z ∈ S∗}FZ(dz), and A∗λT the corresponding

adjoint of operator A. Denote by
{
φλT ,j, ψλT ,j, ωλT ,j; j = 1, 2, ...

}
the singular value decom-

position of operator A w.r.t. the H2[0, 1] and L2
λT

(Z) norms.

A.11: There exist constants c1 ≤ c2 such that c1Ω0(z) ≤ ΩλT (z) ≤ c2Ω0(z), for any z ∈ S∗

and large T.

A.12: Under H1:
∣∣∣〈r, ψλT ,j〉L2

λT
(Z)

∣∣∣ ≥ C
∣∣〈r, ψj〉L2(Z)

∣∣ for large j and T , and a constant C.
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A.13: Under H1: sup
z∈S∗

∣∣∣V̂ (z)− VλT (z)
∣∣∣ = Op

(√
log T

ThT
+ h2

T

)
+ op

(
T−1/6

)
.

Assumptions A.11 and A.12 concern the L2-norm in L2
λT

(Z). Specifically, Assumption A.11

implies that the L2-norms in L2
λT

(Z) and L2(Z) are equivalent. Assumption A.12 requires

that the coefficients of r w.r.t.
{
ψλT ,j; j = 1, 2, ...

}
are uniformly bounded from below by

the coefficients w.r.t.
{
ψj; j = 1, 2, ...

}
. Finally Assumption A.13 yields the uniform conver-

gence of V̂ (z) to VλT (z) and is the analogue of the property proved in Lemma D.1 (i) under

H0.

The asymptotic behavior of ζT is derived along the lines of Section 3.3 using Lem-

mas D.2 and D.3. The population counterpart of the TiR estimator ϕ̂ in (7) is ϕλT =(
λT + A∗λTA

)−1
A∗λT r. The population counterpart of the minimized criterion value QT (ϕ̂) is

QλT := E0

[
ΩλT (Z)I {Z ∈ S∗} [MλT r(Z)]2

]
= ‖MλT r‖

2
L2
λT

(Z), where

MλT r :=
[
1− A

(
λT + A∗λTA

)−1
A∗λT

]
r, and τT := Th

1/2
T QλT . From Lemma D.2 and As-

sumption 5, we deduce that |ζT | ≥ CτT for some constant C. As in Equation (10):

τT = Th
1/2
T

∞∑
j=1

λ2
T

(λT + νλT ,j)
2

〈
r, ψλT ,j

〉2

L2
λT

(Z)
+ Th

1/2
T ‖PλT r‖

2
L2
λT

(Z) , (20)

where PλT denotes the orthogonal projection operator on the linear space ker
(
A∗λT

)
w.r.t.

the scalar product in L2
λT

(Z). Let us now characterize the divergence rate of τT .

Consider first close misspecifications. Then, r ∈ ker (A∗)⊥ and r ∈ ker
(
A∗λT

)⊥
from

Lemma D.3. Thus PλT r = 0. Morever, c1A
∗A ≤ A∗λTA ≤ c2A

∗A from Assumption A.11, and

thus c1νj ≤ νλT ,j ≤ c2νj. Using Assumption A.12, τT ≥ CTh
1/2
T

∞∑
j=1

λ2
T

(λT + νj)
2 〈r, ψj〉

2
L2(Z)

from (20). Then, from the arguments in Appendix 4, we get τT ≥ CTh
1/2
T λδ+β̄T , for any
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δ > 1.

Consider now separated misspecifications. Then, r /∈ ker (A∗)⊥ = ker
(
A∗λT

)⊥
, and

‖PλT r‖L2
λT

(Z) ≥ C from Assumption A.11. Thus we have τT ≥ Th
1/2
T C from (20), and

the conclusion follows.

A.5.3 Technical Lemmas

Lemma D.1 is akin to Lemmas C.2 and C.3 (i) in TK. Lemma D.2 extends Proposition

2 for an estimated weighting function. Since VλT (z) might not converge, we cannot expect

an asymptotically normal distribution for term ξ̄
∗
5,T as in A.3.2. However, its contribution

is still Op(1). Lemma D.3 shows that the orthogonal complement of the null space of the

ajoint of A is the same under the two norms L2
λT

(Z) and L2(Z).

Lemma D.1: Under H0 and A.1-A.10 ,

(i) sup
z∈S∗

∣∣∣V̂ (z)− V0(z)
∣∣∣ = Op

(√
log T

ThT
+ h2

T

)
+ op

(
T−ε/2+1/m

)
;

(ii) sup
z∈S∗

∣∣∣V̂ (z)−1 − V0(z)−1
∣∣∣ = Op

(√
log T

ThT
+ h2

T

)
+ op

(
T−ε/2+1/m

)
;

(iii) sup
z∈S∗

∣∣∣Ĥ(z)−1 −H0(z)−1
∣∣∣ = Op

(√
log T

ThT
+ h2

T

)
+ op

(
T−ε/2+1/m

)
.

Lemma D.2: Under H1, Assumptions 1-3, 4(ii), A.1-A.8 and A.10-A.13, if τT → ∞ as

T →∞ we have σζT = Th
1/2
T ξ∗,E5,T +op(τT )+Op(1), where ξ∗,E5,T is defined as in (17) replacing

Ωt by Ω̂ (Zt).

Lemma D.3: We have ker
(
A∗λT

)⊥
= ker (A∗)⊥, where the orthogonal complements are

w.r.t. the scalar product in L2
λT

(Z) in the LHS, and L2(Z) in the RHS, respectively.
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