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Abstract

This chapter surveys recent econometric methodologies for inference in large dimensional condi-
tional factor models in finance. Changes in the business cycle and asset characteristics induce time
variation in factor loadings and risk premia to be accounted for. The growing trend in the use of dis-
aggregated data for individual securities motivates our focus on methodologies for a large number of
assets. The chapter starts with an historical perspective on conditional factor models with a small num-
ber of assets for comparison purpose. Then, it outlines the concept of approximate factor structure in
the presence of conditional information, and reviews an arbitrage pricing theory for large dimensional
factor models in this framework. For inference, we distinguish between two different cases depending
on whether factors are observable or not. We focus on diagnosing model specification, estimating condi-
tional risk premia, and testing asset pricing restrictions under increasing cross-sectional and time series
dimensions. At the end of the chapter, we provide new empirical findings based on a broad set of factor
models and contrast analysis based on individual stocks and standard sets of portfolios. We also discuss
the impact on computing time-varying cost of equity for a firm, and summarize differences between

results for developed and emerging markets in an international setting.
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1 Introduction

The objective of this chapter is to survey recent econometric methodologies for inference in large condi-
tional factor models in finance. We focus on diagnosing model specification, estimating conditional risk
premia, and testing asset pricing restrictions under increasing cross-sectional and time series dimensions.
Until recently, most theory and empirics have focused on either time-varying factor models with a small
number of assets or time-invariant factor models with a large number of assets. This chapter focuses on new
econometric tools targeting the combination of both large data sets and time variation.

Financial and macroeconomic variables influence the risk-return trade-off. Conditional linear factor
models aim at capturing their time-varying influence in a simple setting (see e.g. Shanken (1990), Cochrane
(1996), Ferson and Schadt (1996), Ferson and Harvey (1991, 1999), Lettau and Ludvigson (2001), Petkova
and Zhang (2005)). Time variation in risk biases time-invariant estimates of alphas and betas, and therefore
asset pricing test conclusions (Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth et al.
(2011)). Ghysels (1998) discusses the pros and cons of modeling time-varying betas.

Risk premia measure financial compensation asked by investors for bearing systematic risk. We expect
their time variation because of changes in the economic conditions (business cycles), the investment op-
portunity sets (firms to invest in), and the economic agent expectations (time preference and risk aversion
of investors). The workhorse to estimate equity risk premia in a linear multi-factor setting is the two-pass
cross-sectional regression method developed by Black, Jensen, and Scholes (1972) and Fama and MacBeth
(1973). A series of papers address its large and finite sample properties for linear factor models with time-
invariant coefficients and a fixed number n of assets, see e.g. Shanken (1985, 1992), Jagannathan and Wang
(1998), Shanken and Zhou (2007), Kan, Robotti and Shanken (2013), and the review paper of Jagannathan,
Skoulakis and Wang (2009). That early literature did not formally address statistical inference for equity
risk premia in conditional linear factor models despite its empirical relevance. It also limits itself to the em-
pirical analysis of a small number of assets, typically 25 or 100 equity portfolios. Such an analysis neglects
the huge heterogeneity expected in individual stocks and its informational content lost in the aggregation
process yielding portfolios.

In this chapter, we study how we can infer the time-varying behaviour of equity risk premia from large

stock returns databases under conditional linear factor models. Such an approach is inspired by the recent



trend in macro-econometrics and forecasting methods trying to extract cross-sectional and time-series infor-
mation simultaneously from large panels (see e.g. Stock and Watson (2002a,b), Bai (2003, 2009), Bai and
Ng (2002, 2006), Forni, Hallin, Lippi and Reichlin (2000, 2004, 2005), Pesaran (2006)). Ludvigson and Ng
(2007, 2009) exemplify this promising route when studying bond risk premia. Connor, Hagmann, and Linton
(2012) show that large cross-sections exploit data more efficiently in a semiparametric characteristic-based
factor model of stock returns. The theoretical framework underlying the Arbitrage Pricing Theory (APT)
also inspires approaches relying on individual stocks returns. In this setting, approximate factor structures
with nondiagonal error covariance matrices (Chamberlain and Rothschild (1983)) answer the potential em-
pirical mismatch of exact factor structures with diagonal error covariance matrices underlying the original
APT of Ross (1976). Under weak cross-sectional dependence among idiosyncratic error terms, such ap-
proximate factor models generate no-arbitrage restrictions in large economies where the number of assets
grows to infinity. This chapter surveys econometric methodologies tailored to the APT framework. Indeed,
we let the number of assets grow to infinity mimicking the large economies of financial theory. We also
give an historical perspective on conditional factor models with a small number of assets for comparison
purpose.

As already mentioned, empirical work in asset pricing vastly relies on linear multi-factor models with
either time-invariant coefficients (unconditional models) or time-varying coefficients (conditional models).
The factor structure is often based on observable variables or empirical factors and supposed to be rich
enough to extract systematic risks while idiosyncratic risk is left over to the error term. In the core part of
this chapter, we focus mostly on observable factors since those are amenable to trading strategies based on
low-minus-high deciles equity portfolios and, contrary to latent factors, are easy to extend to the conditional
case with an explicit account of no-arbitrage restrictions coming from financial theory. In Section 5, we
also consider some recent proposals for analysing time-varying models with unobservable factors, as the
available literature on large cross-sectional equity datasets has mainly focused on latent factors. Linear
factor models are rooted in the Arbitrage Pricing Theory (Ross (1976), Chamberlain and Rothschild (1983))
or come from a loglinearization of nonlinear consumption-based models (Campbell (1996)). A central and
practical issue is to determine whether there are one or more factors omitted in the chosen specification. If

the set of observable factors is correctly specified, the errors are weakly cross-sectionally correlated, namely



the covariance matrix of the error terms in the factor model has a fastly vanishing largest eigenvalue. If
the set of observable factors is not correctly specified, the no-arbitrage restrictions derived from APT do
not hold, and the risk premia estimated by the two-pass regression approach are meaningless. Even if the
omitted factors are not priced, i.e., their associated risk premia are nil, direct computations of the limits of
first pass and second pass estimators under misspecification show that second pass estimates do not converge
to the risk premia of the priced factors, and that biases on betas and risk premia do not compensate each
other. Besides, since the no arbitrage restrictions do not hold, we cannot simply say that the risk premia
are the expected factor returns for models with traded factors. Hence detecting an omitted factor is also
important in that case to produce correct expected excess returns from the no arbitrage restrictions. Given
the large menu of factors available in the literature (the factor zoo of Cochrane (2011), see also Harvey
et al. (2016), Harvey and Liu (2016)), we need a simple diagnostic criterion to decide whether we can feel
comfortable with the chosen set of observable factors before proceeding further in the empirical analysis
of large cross sectional equity data sets under the APT setting. For example, if the factor model passes the
diagnostic, and we reject that alphas are zero using a GRS-type statistic (Gibbons et al. (1989)), it will not
be because of an omitted factor. This chapter also aims at studying such a diagnostic criterion.

The outline of this chapter is as follows. Section 2 puts the recent development of large conditional
models into an historical perspective. We review econometric methods suited to conditional factor models
for small cross-sections of assets for comparaison purpose. In Section 3, we consider a general framework of
conditional linear factor model for asset returns in large economies. Section 4 presents inference in models
with observable factors. Those two sections are largely inspired by Gagliardini, Ossola, Scaillet (2016,
GOS) and Gagliardini, Ossola, Scaillet (2019, GOS2). We want to stress that the literature predating those
papers could not provide a conditional factor framework consistent from both a finance and an econometric
standpoint for empirical analysis of a large number of assets with observable factors, and we explain why
in those two sections. We focus on diagnosing model specification, estimating conditional risk premia,
and testing asset pricing restrictions under increasing cross-sectional and time series dimensions. This
sequence of econometric tools yields a unifying umbrella for empirical applications of large dimensional
conditional factor models in finance. In Section 5, we investigate models with unobservable factors. We

look at empirical findings in Section 6. There we contrast analysis based on individual stocks and standard



sets of portfolios, the latter being the default mode of previous empirical analysis in finance with time-
invariant factor models. This new empirical study is broader than what is available in the literature in terms
of analysed factor models and also allows us to exemplify key differences in the empirical results delivered
by the two approaches. We also discuss the impact on computing time-varying cost of equity for a firm.
Finally, we summarize differences between results for developed and emerging markets in an international

setting. Section 6 gathers concluding remarks.

2 Conditional factor models for small cross-sections of assets

In order to put the methodologies of this chapter into an historical perspective and to relate to a broader and
earlier literature, we review inference in conditional factor models for small cross-sections of assets in this
section. In these conditional models, risk premia and risk exposures (betas) vary in time as functions of
market conditions and economic variables. The cross-section consists of a few dozens of test assets, which
typically correspond to portfolios.

Ferson and Harvey (1991) consider the following specification for the conditional asset expected gross
returns:

Eylritr1] = Xog + Al it (1)

where E[-] denotes the conditional expectation given the investors’ information at date ¢. In the single-
factor case, b;; is the conditional market beta of asset 7 in a small cross section ¢ = 1,...,n, and A1,
is the conditional market risk premium (Conditional CAPM). A generalization to a conditional multiple-
factor specification is readily obtained by letting b;; = Vi[fir1] " Covt[fit1,7i++1] and A1+ be vectors
of sensitivities and risk premia for a vector f; of risk factors. This model is implied by a conditionally
linear specification of the Stochastic Discount Factor (SDF). More specifically, the absence of arbitrage
opportunities in the market implies the existence of a SDF My that represents asset prices at date ¢ as the
conditional expectation of cash flows in ¢ + 1 times M;,; (Hansen and Richard (1987)). The SDF is such

that the gross returns of the fundamental assets satisfy the conditional moment restrictions:

Eirisgp1 M) =1, )



for all assets ¢ = 1, ..., n. Let us assume that one admissible SDF is conditionally linear in the vector of risk

factors, namely:

Myy1 = 80,4+ 01 1 fr41, 3)

where dp ¢ and 01 are a scalar and a vector of risk prices conditional to the investors’ information at date
t, respectively. Then, inserting (3) into (2) and rearranging terms yields Equation (1) with Ao = Ry ; and
My = —R Vil fiv1]01,, where Ry = Ey [M;,1]~! is the conditionally risk-free short-term rate.

The estimation of the conditional risk premia (or conditional prices of risk) in these specifications has
used either “non-parametric" approaches relying on rolling window regressions, or more structural paramet-
ric specifications, mostly assuming linear relationships between conditional risk prices (or risk premia) and
a set of instrumental variables.

Ferson and Harvey (1991) estimate the conditional betas by means of rolling window regressions of
asset returns onto factors in the previous 60 months. These rolling window estimates of the conditional
betas are then used in a second pass cross-sectional regression of excess returns I?; ;1 to obtain estimates
of the risk premia A1 ; at each date. This approach has a “non-parametric" flavor as it does not require to
specify a dynamic for conditional betas and risk premia. However, it is hard to develop proper statistical
inference to account for the error-in-variable bias induced by the rolling window betas used as regressors in
the second pass. In asset pricing inference with test portfolios, it is the composition of the test assets that
varies over time as stocks with similar characteristics are assembled into different portfolios. In such a case,
we can expect that estimating betas using either the full sample or rolling windows can adequately capture
each test portfolio factor loadings. For example, a size sorted portfolio with small capitalization firms will
consistently have a positive loading on a size factor over time. On the contrary, when we test asset pricing
models using individual stocks as in the subsequent sections, the composition of the test assets is fixed (i.e.,
one stock), and their characteristics vary over time. As a firm evolves and its stock characteristics change
over time, we cannot expect its betas to be constant. Consequently, estimating betas over rolling windows
would necessarily lag its true time-varying factor exposures as time-invariant OLS estimates average recent
and more distant exposures within the rolling window. It explains why we prefer an explicit specification of
the beta dynamics in Section 4.

Lettau and Ludvigson (2001) assume that time variation in the conditional prices of risk is generated



by a scalar (to simplify) variable z; with linear specifications 0o = doo + do12: and 01 = dio + di12:.
Then, the SDF is linear in the vector of “scaled factors" Fy 1 = (2, f{, 1,2 f{,1)" (Cochrane (2005)), i.e.,
M1 = doo + d} Fy41 with dy = (do1, d), dy;)’. From the law of iterated expectation, the unconditional
version of the restriction in (2) is

Elrip4y1Miq] =1, 4)

for all 7, and we can write it as a static multi-beta pricing equation:
Elrit11] = Ao + Bi, &)

where 3; = V[F,|"'Cov[F,, 4], Ao = Ry and \y = —R;V[F}]dy, with Ry = E[M;41]~". Thus, we
can estimate the vector A = (g, \])’ by a two-pass regression methodology. The results of Shanken (1992)
provide the valid asymptotic standard errors for this estimator with n fixed and 7' — oo (see also Jagan-
nathan and Wang (1998), Jagannathan et al. (2009)). We can recover the SDF parameter estimates and their
standard errors by the delta method. Estimating the conditional risk premia vector A1 ; = —Ry V[ fi41]014
requires an estimator for the conditional variance V;|fi41].

We can estimate the SDF parameters in the conditionally linear SDF specification M;1(d) = dyo +
do1zt + (d1o + d112t) f+1 also by the Generalized Method of Moments (GMM) (Hansen and Singleton
(1982), Cochrane (1996)). By introducing the instrument matrix Z;, the conditional moment restrictions (2)

imply the set of orthogonality conditions:
E[Zy(r41Mi41(d) — )] = 0,

where 7111 = (71441, ..., "nt+1)" i the n-vector of asset gross returns and ¢ is the n-vector of ones. The
GMM estimator of the SDF parameters vector d is linear. For given choice of the instrument matrix, we
obtain the efficient GMM estimator by using a weighting matrix that is the inverse of the sample second-
moment matrix of the orthogonality vector. We can enhance the efficiency of the estimator by introducing
appropriate instruments (optimal instruments) when transforming the conditional restrictions into uncondi-
tional restrictions (see e.g. Chamberlain (1987), Newey (1990), Donald et al. (2009) for the i.i.d. setting,

and Hansen (1985) for the time series case). For a scalar factor (to simplify), and using z; as a single



conditioning variable, the optimal instrument is:

0\/
zi = By s (@)
= (EWisilz] @ 2) (6(20)' V[Vt |2)(20)) 6)

where hyy1(d) = 7441 Mip1(d) — ¢ is the conditional moment vector, Wy = ft+1r,’5+1 and Y1 =
ft+1 ® rey1 are a matrix and a vector made of the asset returns and the cross-products between factor
and assets returns, with ft+1 = (1, fr+1), 2e = (1,2)', and ¢(2¢) = (doo + do12t,d1o + d112t)’ @ I,
evaluated at the true parameter vector d°. We refer to Ludvigson (2013) for further discussion within scaled
consumption-based models.

Nagel and Singleton (2011) estimate the parameters in a conditionally linear SDF specification by de-
ploying the conditional moment restrictions in (2) and implementing the optimal instruments (6) by non-
parametric regression. Specifically, we can estimate the conditional mean and variance of Wy and Y34 in
(6) by kernel smoothing or series estimators. We can also implement this optimal instrument GMM estima-
tor by using information-theoretic approaches, such as the Euclidean Likelihood, Empirical Likelihood, or
Exponential Tilting estimators (see e.g. Ai and Chen (2003), Antoine et al. (2007), Kitamura et al. (2004) in

the i.i.d. case and Gospodinov and Otsu (2012), Gagliardini et al. (2011) in the time series case).

3 Large dimensional factor models

In this section, we outline the finance theory with large economies on which we can build the subsequent
econometric approaches. We consider a conditional linear factor model with time-varying coefficients (see
Connor and Korajczyk (1989) for an intertemporal competitive equilibrium version of APT yielding time-
varying risk premia). We work in a multi-period economy (Hansen and Richard (1987)) under an approxi-
mate factor structure (Chamberlain and Rothschild (1983)) with a continuum of assets. It yields a relation-
ship between the ruling out of asymptotic arbitrage opportunities and an empirically testable restriction for
large economies in a conditional setting. We also formalize the sampling scheme so that observed assets are
random draws from an underlying population (Andrews (2005)). Such a construction is close to the setting
advocated by Al-Najjar (1995, 1998, 1999a) in a static framework with an exact factor structure. He dis-

cusses several key advantages of using a continuum economy in arbitrage pricing and risk decomposition.



A key advantage is robustness of factor structures to asset repackaging (Al-Najjar (1999b)). Combining the
constructions of Hansen and Richard (1987) and Andrews (2005) defines a multi-period economy with a
continuum of assets having strictly stationary and ergodic return processes. We use such a formal construc-
tion to guarantee that (i) the economy is invariant to time shifts, so that we can establish all properties by
working at £ = 1, (ii) time series averages converge almost surely to population expectations, (iii) under a
suitable sampling mechanism, cross-sectional limits exist and are invariant to reordering of the assets, (iv)
the derived no-arbitrage restriction is empirically testable. This construction allows reconciling finance and
econometric analysis in a coherent and unified framework.

Let ¢, with t = 1,2, ..., be the information available to investors. Without loss of generality, the
continuum of assets is represented by the interval [0, 1]. The excess returns Ry (y) of asset v € [0, 1] at

dates t = 1,2, ... satisfy the conditional linear factor model:

Re(7) = ar() + be(v) fe + (v), (7

where vector f; gathers the values of K factors at date ¢. The intercept a,(y) and factor sensitivities b;(~y) are
Fi—1-measurable. The error terms ; () have mean zero and are uncorrelated with the factors conditionally
on information J;_1, and satisfy a weak cross-sectional dependence condition in the form of an upper bound
on the largest eigenvalue of the error variance-covariance matrix (Assumption APR.3 in GOS). Moreover,
we exclude asymptotic arbitrage opportunities in the economy: there are no portfolios that approximate
arbitrage opportunities when the number of assets increases. In this setting, the following asset pricing
restriction holds:

at(y) = by(y)' v, for almost all y € [0, 1], )

almost surely in probability, where random vector v; € RE s unique and is F;_j-measurable. The asset

pricing restriction (8) is equivalent to
E [Re(7)|Ft—1] = be(7)' M, )

where \; = v, + E [f;|F;—1] is the vector of the conditional risk premia. The latter form is already known
in the finance literature with large economies, but for either a static setting (unconditional expectation and

time-invariant coefficients) or a countable number of assets. What is new here is the characterization for a



conditional setting and a continuum of assets. Clearly, it also corresponds to Equation (1) since E¢[r; 11] —
Aot = Ei[R;441], but for a continuum of assets. We derived Equation (1) with a small cross-section of
assets in Section 2. Let us stress the different arguments used for the small or large cross-section cases. In
the former case, the absence of arbitrage opportunities implies the existence of a SDF. Then, assuming that
one such admissible SDF is conditionally linear in the risk factors, we get (1). In the latter case, we exclude
asymptotic arbitrage opportunities. Then, assuming a conditionally linear approximate factor structure for
asset returns, we get (9).

To have an empirically workable version of Equations (7) and (8), we define how the conditioning
information is generated and how the model coefficients depend on it via simple functional specifications.
The conditioning information F;_ contains Z;_1 and Z;_1(7), forall y € [0, 1], where the vector of lagged
instruments Z;_; € R? is common to all stocks, the vector of lagged instruments Z; 1 () € RY is specific
to stock v, and Z; = {Z;, Z;_1,...}. Vector Z;_; may include the constant and past observations of the
factors and some additional variables such as macroeconomic variables. Vector Z;_1(-y) may include past
observations of firm characteristics and stock returns. To end up with a linear regression model, we assume
that: (i) the vector of factor loadings b, () is a linear function of lagged instruments Z;_; (Shanken (1990),
Ferson and Harvey (1991), Dumas and Solnik (1995)) and Z;_; () (Avramov and Chordia (2006)); (ii) the
vector of risk premia ), is a linear function of lagged instruments Z;_; (Dumas and Solnik (1995), Cochrane
(1996), Jagannathan and Wang (1996)); (iii) the conditional expectation of f; given the information J;_
depends on Z;_; only and is linear (as e.g. if Z; follows a Vector Autoregressive (VAR) model of order 1).

Hence:
bi(v) = B(v)Zi—1 + C(v) Zi-1(7), N =AZ 4, E(fi|Fi—1) = FZ;_, (10)

for some unknown parameter matrices B(y), C (), A and F.
The specification choices for factor exposures and factor risk premia in (10) combined with the asset

pricing restrictions in (8) imply that a stock intercept is a function of lagged instruments, namely,
a(y) = Z;_1B() (A= F) Zi1 + Zi-1 (7)) C(7) (A = F) Zy-1. (1D

The no-arbitrage condition in Equation (11) shows that, with time-varying factor exposures and risk premia,

a stock intercept is a quadratic form of instruments, not a linear form. Hence, an adhoc specification of the
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intercept neglecting the constraint (11) might yield a factor model which is not arbitrage free. The previous
literature with time-varying specifications missed that constraint.

We introduce a sampling scheme to ensure that cross-sectional limits exist and are invariant to reordering
of the assets. We formalize it so that observable assets are random draws from an underlying population
(Andrews (2005)). In particular, we rely on a sample of n assets by randomly drawing i.i.d. indices y; from
the population according to a probability distribution G on [0, 1]. For any n,T" € N, the excess returns
are R;; = Ry(7;). Similarly, let a;+ = a:(~;) and b;+ = b (7;) be the coefficients, €;; = £¢(;) be the
error terms, and Z; ; = Z;(~y;) be the stock specific instruments. The characteristics Z; ; play a central role
in the empirical strategy for individual stocks (Freyberger et al. (2020)). For example, it is doubtful for a
successful company that its loading to the size factor remains identical after a shift from its initial small size
to its actual big size.

By random sampling, we get a random coefficient panel model (e.g. Hsiao (2003), Chapter 6). Such
a formalisation is key to reconciling finance theory and econometric modelling. Without drawings, cross-
sectional averages such as % Z b; correspond to determinist sequences since the b;s are then parameters.
Working with the standard arbiltrage pricing theory with approximate factor models has three issues. First,
cross-sectional limits depend in general on the ordering of the financial assets, and there is no natural or-
dering between assets (firms). In the list of firms, there is no natural ordering, such as temporal or spatial,
between firm A and firm B. Second, we cannot exploit either a law of large numbers to guarantee existence
of those limits, nor a central limit theorem to get distributional results. Third, the asset pricing restrictions
derived under no arbitrage are not testable, the so-called Shanken critique (Shanken (1982)). Shanken (1982)

oo

criticizes the original time-invariant APT since the asset pricing restrictions writes Z(ai — b;u)2 < 00 as

derived by Chamberlain and Rothschild (1983) and we cannot test empirically the ﬁrlli:telzness of the sum for a
given countable economy. With a random sampling, the asset pricing restrictions become a moment condi-
n
tion E[(a; — bjv)?] = 0, and we can test a moment condition via its empirical counterpart % Z(&i —bip)?
with a plugin of estimates of a;, b;, v (see Section 4.3). =
In available datasets, we do not observe asset returns for all firms at all dates due to entry and exit from
the panel. Thus, we account for the unbalanced nature of the panel through a collection of indicator variables

I; 1, for any asset 7 at time t. We define I; ; = 1 if the return of asset 7 is observable at date ¢, and 0 otherwise
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(Connor and Korajczyk (1987)). We assume independence between the observability and return generating
processes conditionally on observed variables, which amounts to a missing-at-random hypothesis (Rubin
(1976)). A more general assumption would imply model nonlinearities.

Through appropriate redefinitions of the regressors and coefficients, we can rewrite the model for Equa-
tions (7) and (8) as a generic random coefficient panel model:

Riy = o, fi + €it (12)
where the regressor x;; = (:c’17i7t,x’27i7t), has dimension d = d; + d2 and includes vectors x1;; =
(veen [Xi]', 2, & Z;t_l)' eRMandwao = (fi© 20y, fl® Z;t_l)' € R% with dy = p(p+1)/2+
pq and do = K(p + q). In vector x5 ; 1, the first components with common instruments take the interpreta-
tion of scaled factors (Cochrane (2005)), while the second components do not since they depend on . The
symmetric matrix X; = [X; ;] € RP*P is such that X, ; = fol,k, itk =1and Xy, =27 1,211,
otherwise, k,l =1, ..., p, where Z; ;. denotes the kth component of the vector Z;. The vector-half operator
vech [-] stacks the elements of the lower triangular part of a p X p matrix as a p (p + 1) /2 x 1 vector (see
Chapter 2 in Magnus and Neudecker (2007) for properties of this matrix tool). The vector of coefficients 3;
is a function of asset specific and common instrument parameters defining the dynamics of a; ; and b; ; in (8)
and (10). We give their explicit forms in Section 4.2 where we first need them. Those forms are compatible

with restrictions from asymptotic no arbitrage. In matrix notation, for any asset 7, we have
R; = X;Bi + &, (13)

where R; and ¢; are T' x 1 vectors. Regression (12) contains both explanatory variables that are common
across assets (scaled factors) and asset-specific regressors. It includes models with time-invariant coeffi-
cients as a particular case. In such a case, the regressor reduces to 2; = (1, f/)’ and is common across

assets, and the regression coefficient vector is 3; = (a;, bg)/ of dimension d = K + 1.

4 Inference in models with observable factors

In Section 4.1, we first study the diagnostic criterion for omitted factors before looking at the determination
of the number of omitted factors. In Section 4.2, we discuss how to estimate risk premia via the two-

pass regression methodology. We dedicate Section 4.3 to testing asset pricing restrictions. Throughout this
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chapter we assume a joint asymptotics in which the cross-sectional dimension n and time series dimension
T grow such that:

n,T 0o, n=0T"YY), T=0(), (14)

with 0 < v <4 < oo. Our asymptotics accommodate, among others, schemes such that 7" is much smaller
than n (i.e., ¥ < 1), or n and T are comparable (y = 7 = 1). We omit technical details and refer the reader

to GOS and GOS2 which give all required assumptions and proofs.

4.1 Model diagnostic

In order to build the diagnostic criterion for the set of observable factors, we consider the following rival

models:
M, :  the linear regression model (12), where the errors (¢; +) are weakly cross-sectionally dependent,

and

My . the linear regression model (12), where the errors (g; ) satisfy a factor structure.

Under model M, the observable factors fully capture the systematic risk, and the error terms do not feature
pervasive forms of cross-sectional dependence. This zero-factor case in the error terms should hold when we
choose factors and instruments in a time-varying setting to build the variables x; ;, so that their explanatory
power for excess returns achieves weak cross-sectional correlation in the noise terms. Working with weak
cross-sectional dependence, namely an approximate factor structure, avoids the stronger assumption of zero
cross-sectional correlations, namely an exact factor structure. Under model M, the following error factor
structure holds

it = Oihy + u;y, (15)

where the m x 1 vector h; includes unobservable (i.e., latent or hidden) factors, and the u;; are weakly
cross-sectionally correlated. The latent factors may include scaled factors to cover latent time-varying factor
loadings with common instruments. Such scaled factors may come from mispecification of the functional
form of the time-varying betas. Since the factors h; are unobservable by definition, we cannot tell from
the output of the diagnostic criterion whether they are pure or scaled factors. We cannot allow for latent

time-varying factor loadings with stock-specific instruments in our setting because of identification issues
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in disentangling time-varying loadings and latent factors. This lack of identification means that we cannot
estimate a generic time-varying unobservable structure from the spectral properties of a covariance matrix
alone. A recent proposal in the direction of a functional specification for a time-varying 6; ; is the Instru-
mented Principal Components Analysis (IPCA) of Kelly et al. (2017, 2019), which we review in Section
5 together with other inference approaches for latent factor models with time-varying betas. IPCA works
with linear loading specifications, with balanced panels, and without observable factors. The m x 1 vector
0; corresponds to the factor loadings, and the number m of common factors is assumed unknown. In vector
notation, we have:

where H is the T' x m matrix of unobservable factor values, and u; is a T" x 1 vector. In Equation (15),
the ;s and h;s are also called interactive fixed effects in the panel literature (Pesaran (2006), Bai (2009),
Moon and Weidner (2015)). King et al. (1994) use them to capture the correlation between the unanticipated
innovations in observable descriptors of economic performance (e.g. industrial production, inflation, etc.)
and stock returns. Gobillon and Magnac (2016) use them to get treatment effect estimates in regional policy
evaluation and characterize the generic bias induced by the popular difference-in-differences procedure. To
diagnose the absence of omitted interactive effects is clearly important when applying the difference-in-
differences procedure.

To compute the diagnostic criterion that checks whether the error terms are weakly cross-sectionally
correlated or share at least one common factor, we estimate the generic panel model (12) by OLS applied
asset by asset, and we get estimators

A A1 1
-1 .
Bi=Quimy Y LipwieRip, i=1,..m, (17
(]
t
here Ops = — 57 I misa! he residuals &;; = ! .Bi, where &; ; is observable only if
where (QQ;; = T Z itTit Ty o We get the residuals &, = R;; — xi’tﬁi, where &; ; is observable only i
K3
t
I;; = 1. In available panels, the random sample size T; for asset ¢ can be small, and the inversion of ma-
trix Qm can be numerically unstable. To avoid unreliable estimates of 3;, we apply a trimming approach.

We define 1¥ = 1 {CN (sz) <x1,7,TiT < Xz,T}, where CN (sz) = \/Ml (ng) /1a (Qm> is

the condition number of the d x d matrix Q“ 1 (Q“> and pg (Qm> are its largest, resp. its smallest,
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eigenvalue and 7; 7 = T'/T;. We assume that the two sequences 17 > 0 and x27 > 0 diverge asymp-
totically. The first trimming condition {C'N (QM) < x1,7} keeps in the cross-section only assets for
which the time-series regression is not too badly conditioned. A too large value of CN (Q“) indicates
multicollinearity problems and ill-conditioning (Belsley et al. (2004), Greene (2008)). The second trimming
condition {7; 7 < x2,7} keeps in the cross-section only assets for which the time series is not too short. We
also use both trimming conditions in the proofs of the asymptotic results.

We consider the following diagnostic criterion:

§=m (an Z 1?57‘5_2) —g(n,T), (13)
i

where the vector &; of dimension 7" gathers the values &;; = I;:€;;, the penalty g(n,T) is such that
g(n,T) — 0and C} 1g(n,T) — oo, when n,T — oo, for C7 = min{n,T}. Bai and Ng (2002)
consider several simple potential candidates for the penalty g(n,T’). In vector &;, the unavailable resid-
uals are replaced by zeros. Then we use the following model selection rule: we select M; if £ < 0,
and we select My if £ > 0, since (a) Pr({ <0 | M;) — 1, and (b) Pr({ > 0| Mz) — 1, when
n,T" — oo under the asymptotics (14) with 4 < 1. It characterizes an asymptotically valid model selec-
tion rule, which treats both models symmetrically. The model selection rule is valid since (a) and (b) imply
Pr (My|¢ < 0) =Pr (€ < 0|My) Pr (My) [Pr (€ < 0|M1) Pr (My) + Pr (¢ < 0|Ms) Pr (Ma)] ™!
— 1, as n,T — oo, by Bayes Theorem. Similarly, we have Pr (Ms|¢ > 0) — 1. The diagnostic crite-
rion (18) does not deliver a testing procedure since we do not use a critical region based on an asymptotic
distribution and a chosen significance level. The zero threshold corresponds to an implicit critical value
yielding a test size asymptotically equal to zero since Pr({ < 0|Mj) — 1. The selection procedure is
conservative in diagnosing zero factor by construction. We do not allow type I error under M; asymp-
totically, and really want to ensure that there is no omitted factor as required in the APT setting. It also
means that we will not suffer from false discoveries related to a multiple testing problem (see e.g. Barras
et al. (2010), Harvey et al. (2016)) in our empirical application where we consider a large variety of factor
models on monthly and quarterly data. However, a possibility to achieve p-values is to use a randomisation
procedure as in Trapani (2018) (see Bandi and Corradi (2014) and Corradi and Swanson (2006) for recent
applications in econometrics). This type of procedure controls for an error of the first type, conditional on

the information provided by the sample and under a randomness induced by auxiliary experiments.
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The validity of the selection rule derives from the largest eigenvalue in (18) vanishing at a faster rate
than the penalization term under M; when n and 1" go to infinity. Under M, we expect a vanishing largest
eigenvalue because of a lack of a common signal in the error terms. The negative penalizing term —g(n, T")
dominates in (18), and it explains why we select the first model when £ is negative. On the contrary, the
largest eigenvalue remains bounded from below away from zero under My when n and T" go to infinity. Un-
der My, we have at least one non vanishing eigenvalue because of a common signal due to omitted factors.
The largest eigenvalue dominates in (18), and it explains why we select the second model when £ is positive.
We can interpret the criterion (18) as the adjusted gain in fit including a single additional (unobservable) fac-

. . 1 9 .
tor in model M. We can rewrite (18) as £ = SSy — SS1 — g (n,T'), where SSy = T Z Xt: 1§<5i,t is
(]

1 T
the sum of squared errors and 5'S7 = min T E E 1? (Git — Hiht)2 , where the minimization is w.r.t.
n
it

the vectors H € R of factor values and © = (61, ...,0,) € R™ of factor loadings in a one-factor model,
/
subject to the normalization constraint

= 1. Indeed, the largest eigenvalue 111 (731’ Z 1?‘5,@) cor-
responds to the difference between 5SSy and S.S;. Furthermore, the criterion £ is equal to tfle difference of
the penalized criteria for zero- and one-factor models defined in Bai and Ng (2002) applied on the residuals.
Indeed, £ = PC (0) — PC (1), where PC (0) = SSp, and PC (1) = SS1 + g (n,T) . It clarifies the rela-
tionship with the previous literature on latent factor selection. The diagnostic criterion builds on the same
ideas but applied to the residuals, once we have filtered the impact of observable factors, instead of being
directly computed on the original observed returns.

The proof of the validity of the selection rule exploits an asymptotic upper bound on the largest eigen-
value of a symmetric matrix based on similar arguments as in Geman (1980), Yin et al. (1988), and Bai and
Yin (1993) without exploiting distributional results from random matrix theory valid when n is comparable
with 7. It exemplifies a key difference with the proportional asymptotics used in Onatski (2010) or Ahn and
Horenstein (2013) for balanced panel without observable factors. The asymptotic setting accommodates the
condition 7'/n = o(1) by having 4 < 1 in (14), which agrees with the “large n, small 7 case that we
face in empirical applications (for example, ten thousand individual stocks monitored over forty-five years
of either monthly, or quarterly, returns). Another key difference w.r.t. the rest of the literature is the handling

of unbalanced panels. We need to address explicitly the presence of the observability indicators I; ; and the
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trimming devices 1Y in the proofs of the asymptotic results.

The recent literature on the properties of the two-pass regressions for fixed n and large T shows that the
presence of useless factors (Kan and Zhang (1999a,b), Gospodinov et al. (2014)) or weak factor loadings
(Kleibergen (2009)) does not affect the asymptotic distributional properties of factor loading estimates, but
alters the ones of the risk premia estimates. Useless factors have zero loadings, and weak loadings drift to
zero at rate 1/ V'T. The vanishing rate of the largest eigenvalue of the empirical cross-sectional covariance
matrix of the residuals does not change if we face useless factors or weak factor loadings in the observable
factors under M. The same remark applies under M. Hence the selection rule remains the same since the
probability of taking the right decision still approaches 1. If we have a number of useless factors or weak
factor loadings strictly smaller than the number m of the omitted factors under Mo, it does not impact the
asymptotic rate of the diagnostic criterion. If we only have useless factors in the omitted factors under Mo,
we face an identification issue. We cannot distinguish such a specification from M since it corresponds to
a particular approximate factor structure. Again the selection rule remains the same since the probability of
taking the right decision still approaches 1. In a “large n, large T" setting, the estimates of the risk premia
are unchanged since we keep an approximate factor structure and risk remuneration is only attached to the
strong factors in an APT framework. Here the presence of weak factors affects the pattern of the weak cross-
sectional dependence and it only impacts variance estimator obtained by thresholding in the next section. On
the contrary, if we have weak factors among the observable factors, Anatolyev and Mikusheva (2018) show
that the conventional two-pass estimation procedure delivers inconsistent estimates of the risk premia. In
the time-invariant case, they propose a modified procedure based on sample-splitting instrumental variables
estimation at the second pass, and examine its asymptotic distribution.

Several papers in the empirical asset pricing literature focus on distinguishing between useful, useless
and redundant factors starting from different points of view. Bryzgalova (2016) develops a shinkrage-based
estimator that identify the weak factors (i.e., factors that do not correlate with the assets) and ensure consis-
tent and normality to the estimates of the risk premia. Feng et al. (2020) propose a model-selection method
to evaluate the risk prices of observable factors. Freyberger et al. (2020) propose a nonparametric method
to determine which firm characteristics provide incremental information for the cross section of expected

returns. Kozak et al. (2018) use model selection techniques to identify characteristics portfolios with a
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good explanatory power for returns. These papers do not deal with the identification of systematic factors
for which the errors are weakly cross-sectionally correlated. The model selection procedure is not able to
answer our key question on the presence of omitted factors in the chosen specification.

In the previous lines, we have studied a diagnostic criterion to check whether the error terms are weakly
cross-sectionally correlated or share at least one unobservable common factor. Hereafter we aim at answer-
ing: do we have one, two, or more omitted factors? The design of the diagnostic criterion to check whether
the error terms share exactly k unobservable common factors or share at least £ + 1 unobservable common

factors follows the same mechanics. We consider the following rival models:

M (k) :  the linear regression model (12), where the errors (¢; ;) satisfy a factor structure

with exactly k£ unobservable factors,
and

Ma(k) :  the linear regression model (12), where the errors (g, ) satisfy a factor structure

with at least k£ 4+ 1 unobservable factors.

The above definitions yield M; = M; (0) and My = M (0). The diagnostic criterion exploits the

(k + 1)th largest eigenvalue of the empirical cross-sectional covariance matrix of the residuals:

1
§(k) = pr41 (nT Z 1?‘&'82) —g(n,T). (19)

As discussed in Ahn and Horenstein (2013) (see also Onatski (2013)) for balanced panels, we can
rewrite (19) as £(k) = SSy — SSky1 — g(n, T) where SS; = min % Z Z 1Y (&4 — 9£ht)2 and the
minimization is w.r.t. H € RT>** and © = (61, ...,0,)" € R"**_ The criteri(;n 13 €k) is equal to the difference
of the penalized criteria for k and (k + 1)-factor models defined in Bai and Ng (2002) applied on the
residuals. Indeed, (k) = PC(k) — PC(k + 1), where PC(k) = SSi + kg(n,T) and PC(k + 1) =
SSky1+ (k+1)g(n,T).

The following model selection rule extends the previous one. We select M (k) if (k) < 0, and we
select My (k) if £(k) > 0, since (a) Prié(k) < 0| M (k)] — 1 and (b) Pr[{(k) > 0|Mz(k)] — 1, when

n,T — oo.
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The proof of the validity of that second selection rule is more complicated than the proof of the first one.
We need additional arguments to derive an asymptotic upper bound when we look at the (k£ + 1)th eigenvalue
of a symmetric matrix, and this further complexity explains why we have developed the first selection
rule as a special case. We rely on the Courant-Fischer min-max theorem and Courant-Fischer formula
which represent eigenvalues as solutions of constrained quadratic optimization problems. We cannot directly
exploit standard inequalities or bounds associated to a norm when we investigate the asymptotic behavior of
the spectrum beyond its largest element. We know that the largest eigenvalue 1 (A) of a symmetric positive
semi-definite matrix A is equal to its operator norm. There is no such useful norm interpretation for the
smaller eigenvalues 1 (A), k > 2. We cannot either exploit distributional results from random matrix theory
since we also allow for T)/n = o(1). The slow convergence rate /T for the individual estimates 3; also
complicates the proof. In the presence of homogeneous regression coefficients 3; = [ for all 4, the estimate
B in Bai (2009) and Moon and Weidner (2015) has a fast convergence rate V/nT. In that case, controlling for
the estimation error in €; ; = €; ¢+ + xg’t(ﬁ — B ) is straightforward due to the small asymptotic contribution
of (B — B) Hence our results also apply to diagnose the absence of omitted interactive effects before
applying a difference-in-differences procedure to avoid bias. The approach of Onatski (2010) requires the
convergence of the upper edge of the spectrum (i.e., the first k largest eigenvalues of the covariance matrix,
with k/T = o(1)) to a constant, while the approach of Ahn and Horenstein (2013) requires an asymptotic
lower bound on the eigenvalues. Extending these approaches for residuals of an unbalanced panel when
T'/n = o(1) looks challenging.

We can use the results of the selection rule in order to estimate the number of unobservable factors.
It suffices to choose the minimum % such that {(k) < 0. We get the consistency of that estimate even in
the presence of a degenerate distribution of the eigenvalues, and without needing to give conditions on the
growth rate of the maximum possible number kmazx of factors as in Onatski (2010) and Ahn and Horenstein
(2013). We believe that it is a strong advantage since there are many possible choices for kmax and the
estimated number of factors is sometimes sensitive to the choice of kmax (see the simulation results in

those papers).
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4.2 Estimation of conditional risk premia

/
In the linear regression (12), the coefficients associated to &1 ;; and x2; ; are 3; = (Bii, 6&2) such that
/ 1
Bii= <(Np [(A — F)/ ® Ip] vec [BZ'»])/, ([(A — F)' & Iq] vec [C’;])/) , N, = §D;'(Wp + Ip2),
/
Bai = <vec [BZ(]/ , VeC [CZ’]/> , 20)

where parameter matrices B; = B(;), C; = C(v;), A and F are defined in (10). The vector operator vec -]
stacks the elements of a m x n matrix as a mn x 1 vector. The matrix D; is the p(p + 1)/2 x p* Moore-
Penrose inverse of the duplication matrix D,,, such that vech [A] = D;' vec [A] for any matrix A € RP*P
(see Chapter 3 in Magnus and Neudecker (2007)). The commutation matrix W), ; is such that vec[A'] =
W, qvec[A], for any matrix A € RP*9, and W), := W, ,,. When Z; = 1 and Z;; = 0, we have p = 1
and ¢ = 0, and the model in (12) reduces to a factor model with time-invariant coefficients and regressor ¢
common across assets (scaled factors).

In Equations (20), the d; x 1 vector 31 ; is a linear transformation of the da X 1 vector 3, ;. It clarifies
that the asset pricing restriction (8) implies a constraint on the distribution of the random vector 3; via its
support. The coefficients of the linear transformation depend on matrix A — F'. For the purpose of estimating

the loading coefficients of the risk premia in matrix A, we rewrite the parameter restrictions as:
!/
Bri=pow,  v=vec[N-F], = ([N (BoL) W, (CoL)). e

Furthermore, we can relate the d; x Kp matrix 3 ; to the vector 32 ;:

vec [B5;] = JaPai, (22)
. : L Ji 0
where the dipK X dy block-diagonal matrix of constants .J, is given by J, =
Jo
with diagonal blocks J1 = Wypu1)2,x Ik @ [(I, ® Np) (W @ Ip) (I, @ vec[y])])  and

Jo = Wpgpk Uk @ [(Ip @ Wpq) (Wp e @ I,) (I ® vec[I,])]). The no-arbitrage restrictions (21) and the
link (22) induced by the conditional setting were unknown to the literature and are instrumental for the
derivation of the asymptotic theory and for empirics. They hold in the population, and we should use them
for inference with fixed n and large 7' as well. For the fixed n case, it yields a different estimation pro-

cedure compared to those reviewed in Section 2. In fact, the GMM estimator reviewed in Section 2 relies
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on a conditionally linear specification of the risk prices d; ;. No parametric specification for the betas is
required, however we need to estimate the conditional variance of the factor V;[f;41] to get an estimate of
the conditional risk premia (see Section 2). Instead, the approach reviewed in this section relies on linear
specifications for the risk premia, the betas, and the conditional expectation of the factor (see (10)), but no
specification for the conditional variance of the factor is needed. In the time-invariant setting, 31; = a;,
B2 = B3, = b;, and the matrix J is equal to /xc. Hence, Equations (21) and (22) in the time-varying case
are the counterparts of restriction a; = blv in the time-invariant case.

Let us now describe the two-pass approach to estimate the factor risk premia. The first pass consists
in computing time-series OLS estimators $;, and was described in the previous subsection (see Equation
(17)). The second pass consists in computing a cross-sectional estimator of v by regressing the Bl,i on
the Bg,i keeping non-trimmed assets only. We use a multivariate WLS approach. The weights are esti-
mates of w; = (diag [v;]) ", where the matrices v; are the asymptotic variances of the standardized errors

VT (BU — Bg7iu> in the cross-sectional regression for large I". We have v; = TiC{,Q;}SﬁQ;iCy, where

o1 2 . -1
Qui = E [wig2}4|vi], Sii = plim T > Guwigwy, = B [e] i) ], i = ghm Tir = E[Liglv] ™,
t —00

T—o00
/ .
Cy = (By — (1o, ® V') JoB3)', with Ey = (Ig, : Ogyxay)s  Fo = (Oayxa, : Ia,)"- We use the
N . 1 .
) . 1 -1 ) A
estimates ; ZTi,TC,élQmsiiQx,iCﬁp where S;; = fZIi,tai,txi,tw{i,t’ Eip = Rip — /lemi,t and
(]
t
Cp, = (B} — (I, @ ) Ju5). To estimate C,, we use the multivariate OLS estimator
~1

0= Z lfﬁézﬁgz Z 1XB% 51,6, i.e., a first-step estimator with unit weights. The WLS estima-

. 7 A
tor 1s:

oAl oa
v =Qp - > Bib (23)
K3

A 1 N A
where g, = - Z By ;iP3, and w; = 1) (diag [0:]) . Weighting accounts for the statistical precision
i

of the first-pass estimates and includes trimming. The final estimator of the risk premia is A= AZ,_4,

where we deduce A from the relationship vec [/A\’} =1+ vec [F ’} with the estimator F obtained by a SUR
-1

regression of factors f; on lagged instruments Z;_1: F= Z ftZg_l Z YA Z,f_l
t t
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In the time-invariant case, the estimator of the risk premia vector simplifies to
~ N 1 ~ Ja —1 1 ~ 7 A
)\_V—Fth:ft, V:Qb ;szb,az, 24)
(2

where Q, = % Z w;b;b; and (a;, b)) = QJ% Z I; ;x4 R; . Hence, we estimate the model coefficients
a; and b; by timelseries OLS regression, and the risfi premium by cross-sectional WLS regression of the a;s
on the Bis augmented by the factor mean. Moreover, under conditional homoskedasticity o ; = 0y; and a
balanced panel 7; 7 = 1, we have v; = ¢,Q;c,04, where ¢, = (1,—v') and Q, = E[x;x}]. Then, v,
is directly proportional to ;;, and we can simply pick the weights as w; = 6;; ! where 6;; = %Z éit
(Shanken (1992)). In the time-invariant case, we can avoid the trimming on the condition number tif we

. A 1 A . .. ..
substitute (), = T E x4 for Q4 ; in the first-pass estimator definition. However, it increases the asymp-
t
totic variance of the bias corrected estimator of v, and does not extend to the time-varying case. Start-

ing from the asset pricing restriction E[R;;] = b,\ in the time-invariant case, another estimator of \ is

- A 11 o = _ 1 N
A= Q;l — Z w;b; R;, where R; = — E I; 1 R; ;. This estimator is numerically equivalent to \ in the bal-
e T; t
_ ~ 1 o
anced case, where I; ; = 1 for all ¢ and ¢. In the unbalanced case, it is equal to A = 0 + Q;l — Z wibib; fi,
n =
1

_ 1 _
where f; = T g I; 1 fi. Estimator X is often studied by the literature (see, e.g., Shanken (1992), Kandel
7
¢

and Stambaugh (1995), Jagannathan and Wang (1998)), and is also consistent. Estimating E [f;] with a
simple average of the observed factor instead of a weighted average based on estimated betas simplifies the
form of the asymptotic distribution in the unbalanced case. It explains our preference for X over .

We get consistency and asymptotic normality of © and A under the asymptotics in (14) with 1/y < 3.
The estimator 7 has a fast convergence rate VnT and features an asymptotic bias term:
VnT (ﬁ —v— BV/T> = N(0,%,). Both Bl,i and Bgﬂ‘ in the definition of 7 contain an estimation er-
ror; for B3Z it is the well-known Error-In-Variable (EIV) problem. The EIV problem does not impede
consistency since we let 7' grow to infinity. However, it induces a bias term B, /T which centers the asymp-
totic distribution of 2. Ang, Liu, and Schwarz (2020) look at a maximum likelihood analysis with a single
asymptotic treatment (large 7', n fixed) and balanced panel under a particular approximate Gaussian factor

structure (block diagonal covariance matrix of residuals) and time-invariant coefficients. Their setting fur-

ther assumes that the factors have zero mean. Such an assumption gives A = ¥ in a time-invariant setting.
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Under a zero mean (or a known mean, i.e., not to be estimated), the asymptotic variance of A corresponds
to the asymptotic variance X, of  and the rate of convergence is v/nT'. On the contrary, if we do not know
the mean of the factor and need to estimate it, we have A = 0 + % Z f+. The asymptotic variance of A
corresponds to the asymptotic variance X of the sample average of the factors, and the rate of convergence
is v/T. Jagannathan and Wang (2002) is an early reference on the impact of knowing or not the mean of
the factors for asymptotic analysis. With an unknown mean, only the variability of the factor drives the

. 1
asymptotic distribution of ), since the estimation error O, (1 / ﬁ) of the sample average T Z f+ domi-
t

nates the estimation error O,, (1 / VnT +1 / T) of . This result is an oracle property for A, namely that its
asymptotic distribution is the same irrespective of the knowledge of v. This property is in sharp difference
with the single asymptotics with a fixed n and 7" — oo. In the balanced case and with homoskedastic errors
for the time-invariant case, Theorem 1 of Shanken (1992) shows that the rate of convergence of \is /T and
that its asymptotic variance is Xy ,, = Xy + %Z‘y,n, for fixed n and T — oo. The two components in Xy ,,
come from estimation of E[f;] and v, respectively (see also Theorem 1 in Jagannathan and Wang (1998),
or Theorem 3.2 in Jagannathan, Skoulakis, and Wang (2009)). Letting n — oo gives Xy under weak cross-
sectional dependence. Thus, exploiting the full cross-section of assets improves efficiency asymptotically,
and the positive definite matrix X ,, — X ¢ corresponds to the efficiency gain. Using a large number of assets
instead of a small number of portfolios does help to eliminate the contribution coming from estimation of
v. The use of portfolios is often motivated by their intrinsic construction yielding stable betas and thus
mitigating the contribution of the additional component %Emn. We see that this contribution vanishes when
we have a large pool of test assets, and we often use portfolios for the wrong reason.

. . . : ~ . . JU PO
We can exploit the analytical bias correction B, /T and use the estimator Vg = U — fBV instead of

. . . . 2 . 1 . . .

7. In the time-invariant setting, Ap = Up + T Z f+ delivers a bias-free estimator of A at order 1/7,
t

which shares the same root-7" asymptotic distribution as A\. We can relate that suggestion to bias-corrected

estimation accounting for the well-known incidental parameter problem (Neyman and Scott (1948)) in the
panel literature (see Lancaster (2000) for a review). To highlight the main idea, let us focus on the model
with time-invariant coefficients. We can write the factor model under restriction a; = b;u as R;; = b;( fr+
v)+¢€; . In the likelihood setting of Hahn and Newey (2004) (see also Hahn and Kuersteiner (2002)), the b;s

correspond to the individual fixed effects and v to the common parameter of interest. Here, the individual
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effects enter multiplicatively instead of additively as in a standard panel. Available results on the fixed-effect
approach tell us: (i) the ML estimator of v is inconsistent if n goes to infinity while 7" is held fixed, (ii) the
ML estimator of v is asymptotically biased even if T' grows at the same rate as n, (iii) an analytical bias
correction may yield an estimator of v that is root-(n7") asymptotically normal and centered at the truth

if T grows faster than n'/3

. The two-pass estimators ¥ and ©p exhibit the properties (i)-(iii) as expected
by analogy with unbiased estimation in large panels. This clear link with the incidental parameter literature
highlights another advantage of working with v in the second-pass regression. Chamberlain (1992) considers
a general random coefficient model nesting the factor model with time-invariant coefficients. He establishes
asymptotic normality of an estimator of v for fixed 7" and balanced panel data. His estimator does not admit
a closed-form and requires a numerical optimization. It leads to computational difficulties in the conditional
setting. It also makes the study of his estimator under double asymptotics and cross-sectional dependence
challenging. Recent advances on the incidental parameter problem in random coefficient models for fixed
T are Arellano and Bonhomme (2012) and Bonhomme (2012).

Finally, let us discuss confidence intervals. Their construction for components of A to achieve valid
asymptotic coverage is straightforward through the use of standard HAC estimators such as in Newey and
West (1994) or Andrews and Monahan (1992). The construction of confidence intervals for the components
of ¥ is more difficult. Indeed, the asymptotic variance involves a limiting double cross-sectional sum scaled

by n and not n?

. A naive approach consists in replacing unknown quantities by any consistent estima-
tor, but it does not work here. To handle this, we can rely on recent proposals in the statistical literature
on consistent estimation of large dimensional sparse covariance matrices by hard thresholding (Bickel and
Levina (2008), El Karoui (2008)). Fan, Liao, and Mincheva (2011) focus on the estimation of the variance-
covariance matrix of the errors in large balanced panel with nonrandom time-invariant coefficients and i.i.d.
disturbances. Another possibility is to rely on a multiple testing approach to find the sparsity structure. Bai-
ley et al. (2019) develop an estimator which consistently recovers the support of the population covariance
matrix under Gaussian and non-Gaussian observations, and show that the true positive rate tends to one with
probability 1, and the false positive rate and the false discovery rate tend to zero with probability 1, even if

n tends to infinity faster than 7'

Besides, if we face a short time series panel (for example a 5-year window), and without the availability
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of high-frequency data (see the discussion at the end of Section 5), asymptotics with fixed 7" and large n
are better suited. In this context, assuming time-invariant factor loadings and risk premia is coherent with
the data time span. Here, keeping 7' fixed impedes consistent estimation of the risk premia, and inference
has to focus on ex-post risk premia (Shanken (1992)). Ex-post risk premia differ from the risk premia
we have defined in the theory above and we estimate in the empirics below. Kim and Skoulakis (2018),
Raponi et al. (2020) propose methodologies for estimating with observable factors and evaluating asset
pricing models on balanced panels when 7' is fixed and n is large. Kim and Skoulakis (2018) employ
the regression calibration approach used in EIV models to derive a /n-consistent estimator of ex-post
risk premia in a two-pass cross-sectional regression setting. Raponi et al. (2020) propose a consistent and
asymptotically normally distributed estimator of ex-post risk premia following the bias-adjusted estimator of
Shanken (1992). They discuss extensions of their results to time variation in risk premia and factor loadings,

potential misspecification, and unbalanced panels.

4.3 Testing asset pricing restrictions

From (21), the null hypothesis underlying the asset pricing restriction (8) is
H : there exists v € RPX such that 3, (v) = B3(7)v, for almost all v € [0, 1],

where 31 () and [33 (y) are defined as (3; ; and f33 ; in Equations (20) and (21) replacing B (vy) and C () for
B; and C;. This null hypothesis is written on the continuum of assets. Under Hg, we have
E [(31,1 — 5371'1/)/ (Bri — 5371'1/)] = 0. Since we estimate v via the WLS cross-sectional regression of the
estimates Bl,i on the estimates 531 we can use a test based on the weighted sum of squared residuals SSR

. . . . A 1 oo a e 5 5. 5
of the cross-sectional regression. The weighted SSR is Q. = — g e;w,-ei, with é; = B1; — B3,V = C},Bi,
n -

which is an empirical counterpart of F [(Bu - 5371-1/)/ w; (B i ,837Z'V)]. Let us now introduce the fol-
lowing statistic énT =Tvn <Qe — ]{B%), where the recentering term simplifies to Bg = d; thanks to
the weighting scheme. Under the null hypothesis Ho and asymptotics (14) with 1/ < 2, we have
fnT = N (0,%¢), and get a feasible testing procedure by exploiting a consistent estimate of the asymp-
totic variance Y.

Finally, we can derive a test for the null hypothesis when the factors come from tradable assets, i.e., are
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portfolio excess returns:

Ho: B1(y) = 0 for almost all v € [0, 1],

against the alternative hypothesis
Hi: E [ﬂijiﬁl,z’] > 0.

We only have to substitute Qa = % Z Biﬂfh ,63171- for Qe. Since the constrained form of 3; ; in (21) comes
from (8), we take directly into accoulit the no-arbitrage restrictions imposed by the model specification. It
gives an extension of Gibbons, Ross and Shanken (1989) to the conditional case with double asymptotics.
Implementing the original GRS test, which uses a weighting matrix corresponding to an inverted estimated
large variance-covariance matrix, becomes quickly problematic. We face a large number nd; of restrictions;
each (31 ; is of dimension d; x 1, and the estimated covariance matrix to invert is of dimension nd; x nds.
We expect to compensate the potential loss of power induced by a diagonal weighting via the larger number
of restrictions since we use a large number n of assets. Monte Carlo simulations show that the test exhibits
good power properties against both risk-based and non risk-based alternatives (e.g. MacKinlay (1995))
already for a thousand assets with a time series dimension similar to the one in the empirical analysis. Fan
et al. (2015) discuss power enhancement in high dimensional cross-sectional tests.

Finally, let us mention that Ma et al. (2020) has recently developed a test of the nullity of the alphas
when the alphas and betas are taken as smooth functions of time in a “large n, large 7" setting (see Li and
Yang (2011) and Ang and Kristensen (2012) for the “small n, large T" case). For fixed 1" and large n, Kim
and Skoulakis (2018) develop inference for a test statistic of the asset pricing restrictions based on a measure

of aggregate mispricing (GRS type test based on their regression calibration approach).

5 Inference in models with unobservable factors

In this section, we review methodologies for inference in large dimensional conditional factor models when
the factor values are unobserved by the econometrician. In this setting, we cannot use standard Principal
Component Analysis (PCA) to extract the factor space since PCA assumes either constant factor loadings
(Stock and Watson (2002a,b), Bai (2003, 2009), Bai and Ng (2002, 2006)) or at most small instabilities in

the factors loadings (Bates et al. (2013)). Intuitively, invalidity of standard PCA in a conditional framework
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comes from a factor with time-varying loading being potentially confused with multiple static factors.
The model specification is:

Rt =a;:+ bé,tft + €its (25)

where f; is the K -dimensional vector of the unobservable factor values. Several estimation approaches are
based on assuming that the intercepts a; ; and the factor loadings b; ; are either parametric or nonparametric
functions of lagged time-varying observable variables, with or without imposing the no arbitrage restrictions.
Among the parametric approaches, Kelly et al. (2017, 2019) model the coefficients as linear functions of

characteristics plus some noise term:

air = A'Zii 1+ vig, (26)

biv = B'Zij_1+ iy, (27)

where Z; ; is a vector of observed characteristics, A and B are a vector and a matrix of unknown parameters,
and v; ; and 7); ; are unobservable noise terms. By plugging (26) and (27) into (25), we get I2; ; = i t 1A+
Zi 1 Bfi + €}, where the composite error term is 7, = &;; + Vit + 7; ; fi. The Instrumented Principal

1y

Component Analysis (IPCA) estimator of Kelly et al. (2017, 2019) is obtained by minimizing a LS criterion
n T

w.r.t. parameter matrices A, B and the factor values f;, t = 1,...,T, ie., min R+ —
P I T A,B,ft7t:1,...,Tzltz;( vt
1= =
Ziy 1A Ziy 1B f+)? subject to the static normalization restrictions that the matrix BB’ is diagonal, and
T
= Z fi= Z ftfi = Ik. They propose an iterative numerical procedure to perform the optimization.
=

In the nonparametric setting, an early contribution is provided by an extension of the model considered
by Connor and Linton (2007) and Connor et al. (2012), in which the factor loadings are functions of observed

covariates:

Zt—Zbk Ziip—1)frp + it (28)

where by(-) is an unknown smooth function of observable variable Z, ; ;1, for k = 1,..., K (see Connor
et al. (2012) p. 728 for a short discussion of this extension; their base model assumes that the covariates
are time-invariant). The identification scheme requires that the characteristics differ across factors. Indeed,
Connor et al. (2012) estimate model (28) by deploying the property that it corresponds to an additive non-

parametric regression at each date ¢t. They propose an iterative procedure that alternates at each step the
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cross-sectional estimation of (i) the loadings functions via the backfitting projection algorithm, and (ii) the
factor values by least-squares regression, subject to normalization restrictions. They obtain the final es-
timates of the loadings functions by (-) by averaging across time the cross-sectional estimates. Fan et al.
(2016b) extend the characteristic-based modeling in Connor and Linton (2007) and Connor et al. (2012)
by allowing the betas by (Z;) + ;1 to include unknown asset-specific additive constants (see Liao and
Yang (2018) for the continuous-time case under infill asymptotics for high frequency data). They propose
a so-called Projected PCA method to estimate this specification with time-invariant loadings. It is an open
question whether we can extend this estimation approach to accommodate time variation in the character-
istics. Pelger and Xiong (2019) instead let the factor loadings be functions of an observable state variable.

They consider the model:
K

Ry = Z bik(Zi—1) it +€is (29
=1

where the b; 1, (-) are smooth functions and Z; is a vector of observed variables, common across assets. Pelger
and Xiong (2019) estimate model (29) by minimizing a local version of the least-squares criterion underlying
PCA, where localization is implemented by kernel smoothing. In practice, the number of conditioning
variables, which we can accommodate, is small. Su and Wang (2017) develop a similar approach with
piece-wise smooth functions b; 1 (-) of ¢/7" on (0, 1]. They find strong evidence of structural changes in the
factor loadings in U.S. macroeconomic data. A literature related to such a specification stems from large
dimensional factor models with structural instabilities, including e.g. Breitung and Eickmeier (2011), Chen
etal. (2014), Han and Inoue (2015). In those papers, the loadings may have a small number of large changes
(structural breaks). Cheng et al. (2016) further allow for changes in the number of factors and the space
spanned by the loadings.

Among the nonparametric approaches, some recent work takes advantage of machine learning methods
to achieve greater flexibility in the modeling of time-varying betas and accommodate the large dimension-
ality of the set of potential characteristics and state variables. Gu et al. (2019, forthcoming) consider the
setting where the loadings are a nonparametric function of a large dimensional vector of characteristics:
bit = b(Zi+—1), and use an autoencoder to estimate this relationship. Autoencoder is a class of universal
approximators in the realm of Artificial Neural Networks (see Gu et al. (2019, forthcoming) and references

therein). Using L; hidden layers and an activator function g, each component of the loadings vector is
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approximated as:

bik(0h) = Gr(Zit-1,Le,g,0p) == Ap + B,’CZZSQI,
¢ - o— —
Zf,(i)_1 = Zi,tfla

where the parameter vector ¢, includes the Ay, B, A;g_l), Bj(e_l) for all k,j,¢. Gu et al. (2019, forth-

coming) approximate the factor values also with an autoencoder as f; ,(0f) = Gi(Z¢, Ly, g,0f) using
-1
. . . . 1 1 .
as input the standardized cross-sectional averages &; = < E Zw_lZZ{ 1 — g Zig—1Riy, e,
n < ’ n <=
7 7
characteristics-based portfolio returns. They minimize the penalized least-squares criterion

meinz Z (Rix — biﬂt(ﬁb)’ﬁg(@f))2 + A||@]]1, where ||0]|1 is the L' norm of the parameter vector § =
¢

(65, (93: )'. The inferential theory for this estimator is unknown.

In the rest of this section, we review a recent proposal for inference in time-varying statistical fac-
tor models developed by Gagliardini and Ma (2019). As the focus of these authors is on the problem of
conducting inference on the conditional factor space, including its dimension, the adopted nonparametric
framework is general regarding the beta dynamics and encompasses the linear and nonlinear beta specifica-
tions of e.g. Kelly et al. (2017, 2019), and Gu et al. (2019, forthcoming). The framework allows for time
variation in the number of conditional factors as an effect of the changing macroeconomic environment. The
main idea is to see the estimation of factor values as a cross-sectional Instrumental Variable (IV) problem
and deploy a well-chosen (conditional) normalization of the factor vector to accommodate an essentially
unspecified beta dynamics. Here we review the main results in the simpler framework with constant number
of conditional factors, and refer the reader to Gagliardini and Ma (2019) for the more general setting, the
regularity conditions, and the derivation of the results.

After imposing the no arbitrage restrictions a;; = b;tut (see Equation (8)), model (25) becomes:
Ry = b;tgt + €it, where g¢ = f; + 14. Gagliardini and Ma (2019) assume that the m-dimensional

lagged instruments Z; ;1 are cross-sectionally uncorrelated with errors and correlated with betas under a
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full rank condition:

1
lim — E Zii—1€ir = 0
7[3_12” i it—1E&qt )
im L S Zigabl, = Ty :
plim Zit—1b;; =: TI'pis afull column-rank matrix, 30)
n—oo Tl i ’

for all ¢, which implies the order condition m > K. Being the limit of a cross-sectional average of prede-
termined variables, the matrix I'; is measurable w.r.t. the information set G, of aggregate shocks at time
t — 1, i.e., the non-diversifiable shocks (see Gagliardini and Ma (2019) for more details). It is assumed that
G, is generated by the vector process Z;, and that the econometrician observes Z;. Under (30), it holds:

1
& = plim— Z Zit—1Rit = Ligy. 3D
i

n—oo Tl

Process &, is identifiable from population moments. Its conditional variance given G;_1 is V[§|Gi—1] =
I'tV'[g¢|Gi—1]T"}. Thus, the number of non-zero eigenvalues of V' [¢;|G;_1] equals the number of factors K,
and the associated eigenvectors span the column space of matrix I';. It allows to identify g; from (31) up
to a non-singular transformation matrix which is G;_j-measurable. In fact, the conditional factor space
in model (25) is identifiable up to transformations f; — c¢;—1 + A;—1 fi, where ¢;—1 and A;_q are G;_1-
measurable. Gagliardini and Ma (2019) show how to choose a convenient normalization of the factor space
in order to get a closed form expression for g;. Specifically, Gagliardini and Ma (2019) normalize the
latent factors such that E[f;|G;—1] = 0, and I'; = J;, where J; is the matrix whose columns are the K
normalized eigenvectors of V'[{;|G;—_1] associated with the non-zero eigenvalues. Under this normalization,
it follows g; = (J{QtJt)_ljg(tht, where {2, is any m X m positive definite matrix measurable w.r.t. G;_1,
and f; = g1 — Elg:|Gi1].

In a setting with n,T" — oo, Gagliardini and Ma (2019) define consistent estimators for the condi-
tional factor space and for its dimension by replacing population (cross-sectional, or conditional) expec-
tations with sample analogues. They get §; = (jt’Qtjt)_ljl{Qtét, and ft = g; — E[gt\gt_l], where

2 1 . . . . .
& = — E Z;t—1R; ;. Here, J; is the matrix of the standardized eigenvectors to the K largest eigen-
n <=
1

values of V[£,|G;_1], and E[-|G,_1] and V[-|G,_1] are nonparametric estimators for the conditional expec-
tation given Z;_;. Given the potentially large dimension of vector Z;, Gagliardini and Ma (2019) consider

estimators based on post-Lasso and Artificial Neural Networks (ANN). The estimator of the conditional
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factor space is in closed form up to the nonparametric regression given Z;_;. The estimator of the number

of factors is K = mode {l%t,t > 1} ,and k, = argmax MkH(AVA[gt’gt_l]), where () denotes the k
1<k<hmaz  Hk(V[Et|Ge1])

largest eigenvalue of a symmetric matrix. Estimator k; exploits the idea of the eigenvalue ratio test but
in a different context than Ahn and Horenstein (2013), since V[éﬂgt,ﬂ is not a large dimensional sample
variance-covariance matrix.

In the framework of Kelly et al. (2017, 2019), Equation (27) yields I'y = Qz—15, where Qz;_1 =

1
plim— E Z@t,lZ; +—1, which implies a constraint on the time variation of I';. In Gu et al. (2019, forth-
n “ '
(2

n—oo

coming), we have x; := plimz; = Q};_lft = Q}i_lftgt. Hence, for large n, the autoencoder mapping
for the latent factor essen?iZlol; amounts to fixing a normalization of the latent factor such that some k x k
block of Qg;_ll“t is time-invariant, so that we can write g; as a time-invariant function of x;. This function
is linear. The methodology of Gagliardini and Ma (2019) does not impose constraints on the dynamics of
I"; and deploys the structural linear link between &; and g; conditional on G;_1.

Among the possible extensions of the model setting, we can further impose a group structure on the
latent factor space in order to accommodate the presence of both common pervasive factors and group-
specific pervasive factors. The former affect all series in the panel while the latter have an impact on
subgroups of assets. The subgroups can correspond to e.g. economic sectors, asset classes, markets or
countries. Andreou et al. (2019) develop inference procedures in a “large n, large 1" setting for estimating
the common and group-specific numbers of factors and the corresponding spanned factor spaces.

Finally, let us mention that there is also work on inference for large dimensional models with unobserv-
able factors with high frequency data (Fan et al. (2016a), Ait-Sahalia and Xiu (2017), Pelger (2019a,b)), but
extensions to the conditional case with instruments still need to be developed there. Fan and Kim (2018)
discuss how to robustify such methods and Kim and Fan (2019) how to impose a dynamic parametric struc-
ture based on a factor GARCH-Itd process for prediction. Li et al. (2019) develop tests for deciding whether
a large cross-section of asset prices obey an exact factor structure at the times of factor jumps with infill
asymptotics. In the context of short time series panel, but when high-frequency data are not available, Zaf-
faroni (2019) provides inferential theory with unobservable factors for fixed 7" and large » in a conditional

setting.
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6 Empirical findings

In this section, we provide some empirical findings based on a large number of financial factor models. We
provide contrast analysis based on monthly returns of individual stocks and standard sets of portfolios. The
latter is the typical approach adopted in previous empirical applications of time-invariant factor models in
finance. The empirical analysis presented below is made possible thanks to the unified econometric toolkit
outlined in Section 4 for large dimensional conditional factor models with observable factors. Available
literature studying large cross-sectional equity data sets has mainly relied on latent factor approaches as

reviewed in Section 5.

6.1 Data description and factor models

Our dataset includes monthly excess returns of stocks data from CRSP database. We proxy the risk free rate
with the monthly 30-day T-bill beginning-of-month yield. We exclude financial firms (Standard Industrial
Classification Codes between 6000 and 6999) as in Fama and French (2008). The dataset after matching
CRSP and Compustat contents comprises n = 10, 827 stocks, and covers the period from July 1963 to
December 2017 with T" = 654 months. Table 1 provides the distribution of asset returns of stocks w.r.t. T;
the number of observations available for each asset. About half of the stocks in the panel have more than
120 monthly return observations. We observe the complete time series of observations for only 2% of the
stocks. Table 2 provides the distribution of stocks w.r.t. the classification of industry in Ferson and Harvey
(1999). The two most frequent industry categories are Professional Services (2282) and Healthcare (1194),
while the two less frequent ones are Aerospace (64) and Paper (129).

For comparison purposes with a standard methodology for small n, we consider i) the 25 Fama-French
(FF) portfolios and ii) the 44 industry (Indu.) portfolios excluding four financial sectors (banking, insurance,
real estate, and trading) as base assets.

We consider several linear factor models that involve financial variables (see GOS2 for models with
macroeconomic variables). Table 3 lists the financial models, the factors, the number of parameters to esti-
mate, and the trimmed cross-sectional dimensions nX considering time-invariant and time-varying spec-
ifications. The three factors of Fama and French (1993) are the monthly excess return 7,,; on CRSP

NYSE/AMEX/Nasdaq value-weighted market portfolio over the risk free rate, and the monthly returns
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on zero-investment factor-mimicking portfolios for size and book-to-market, denoted by 74, 1 and 7p,1,¢-
We denote the monthly returns on portfolio for momentum by 7,0, ¢ (Carhart (1997)). The two operative
profitability factors of Fama and French (2015) are the difference between monthly returns on diversified
portfolios with robust and weak profitability and investments, and with low and high investment stocks,
denoted by 7y, and Temas. We have downloaded the time series of these factors from the website of
Kenneth French. We also consider a model with long-only factors, that should be more immune to market
imperfections (e.g., transaction costs). We build the long-only factors from the six FF research portfolios
available on the website of Ken French. The excess return of the "Small" factor (denoted by rs ) is the
average excess return of the three small portfolios, and the excess return of the "Value" factor (denoted by
rp,t) 18 the average excess return of the two value portfolios. Furthermore, we include quality minus junk
(gmj,) and bet against beta (bab;) factors as described in Asness et al. (2019) and Frazzini and Pedersen
(2014). The factor return gmj; is the average return on the two high quality portfolios minus the average
return on the two low quality (junk) portfolios. The bet against beta factor is a portfolio that is long low-beta
securities and short high-beta securities. We have downloaded these data from the website of AQR. As
additional specifications, from the website of Kenneth French, we consider the two reversal factors which
are monthly returns on portfolios for short-term and long-term reversals, denoted by 7'strey + and 74y t-

To account for time-varying alphas, betas and risk premia, we use a conditional specification based
on one common variable and a firm-level variable. We take the instruments Z;_; = (1, dith,l)/, where
divY;_q is the lagged dividend yield and the asset specific instrument bm; ;1 corresponds to the lagged
book-to-market equity of firm i. We compute the book-to-market equity of firm ¢ as defined in logarithmic
terms by Fama and French (2008). We compute the firm characteristics from Compustat as in the appendix of
Fama and French (2008). We consider all the assets for which the book-to-market equity is always positive
over the sample period, as in Fama and French (2008). The number of assets reduces to n = 8,570 for
the estimation of the time-varying specifications. We refer to Avramov and Chordia (2006) for convincing
theoretical and empirical arguments in favor of the chosen conditional specification. In Table 3, the vector
x; + has maximum dimension d = 23 (CAR and REV model), and parsimony explains why we have not
included e.g. the size of firm ¢ as an additional stock specific instrument. We have downloaded time series

of portfolio characteristics from the website of Kenneth French.
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6.2 Time-invariant specifications

Let us first focus on the time-invariant specifications (i.e. Z; = 1 and Z;; = 0) in order to benchmark the
results of the next section for the time-varying specifications. We use x1,7 = 15 as advocated by Greene
(2008), together with x2 7 = 546/60. The number of assets whose condition number is below 15 is 7, 754
for each model specification.

First, we compute the diagnostic criterion and the number k of omitted factors. Table 4 reports the

contribution in percentage of the first eigenvalue p; with respect to the variance of normalized residuals
1

nXT
3

residuals. We also report the selected number of omitted factors k, the contribution of the first k£ eigenvalues,
k

ie., Z 15, and the incremental contribution of the (k + 1)-th eigenvalue ji441. For each model, we have

E 1?‘5:1-5; that is equal to one by construction under our variance scaling for each time series of

j=1
to specify the numerical value of the penalisation function g (nX,T"). We use the penalisation

2
(\/ﬁ i ﬁ) In nt (32)

nT (\/EJM/T)?’

with a data-driven constant ¢ based on the proposal of Alessi et al. (2010); see also Hallin and Liska
(Va+vT)*
nT

g(n,T)=c

(2007) in the general dynamic factor model. The multiplicative factor in (32) is the order of
the largest eigenvalue predicted by random matrix theory if the residuals were independent standard Gaus-
sian variates (Geman (1980), Johnstone (2001)). The multiplicative factor In ((\fnrf\jﬁf) ensures that
min{n, T}g(n,T) — oo, so that we get a valid selection procedure.

The number & of omitted factors is larger than one for the most popular financial models, e.g., the
CAPM (Sharpe (1964)) and the three-factor Fama-French model (FF). On the contrary, for the the four-factor
Carhart (1997) model (CAR), the five-factor Fama-French model (5FF), quality minus junk (QMJ), and

models involving the reversal factors, we find no omitted latent factor. We observe that adding observable

factors helps to reduce the contribution of the first eigenvalue p; to the variance of residuals. However,
k

when we face latent factors, the omitted systematic contribution Z f4; only accounts for a small proportion
Jj=1

of the residual variance. For instance, we find k¥ = 1 omitted factors in the CAPM. That latent factor only

contributes to 1 = 2.39% of the residual variance. Figures 1, 3, 5 summarize this information graphically

by displaying the penalized scree plots and the plots of cumulated eigenvalues for the CAPM, the three
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Fama-French factors model and the four-factor CAR model. For instance, pus = 1.54% lies below the
horizontal line g (nX,T) = 1.55% in Panel A for the time-invariant CAPM, so that k¥ = 1. In Panel B for
the time-invariant CAPM, the vertical bar p1 + ps = 3.93% is divided into the contribution of 1 = 2.39%
(light grey area) and that of pus = 1.54% (dark grey area). Figure 2 Panel A displays the scree plots

of squared eigenvalues for the CAPM and the square g2 (nX,T) of the penalisation function relative to
T

. 1 - ) .
the squared Frobenius norm E NZQ (T E 1?&5) By construction, the conclusion of the number of
n
=1 i

omitted factor is the same as for the scree plot shown in Figure 1. For example, we get that the sum of the
square of the two first eigenvalues accounts for 21.45% of the square of the Frobenius norm for the time-
invariant CAPM. Thus, the two latent factors are much more representative of the off-diagonal components.
We conclude similarly for the time-invariant FF model (see Figure 4), even if the correlation explanation
provided by the single omitted factor is lower.

Tables 5-8 gather the estimated annual risk premia and the estimates of the components of v, with the
corresponding confidence intervals at 95% level, for the ten time-invariant models listed in Table 3. For
individual stocks, we use bias-corrected estimates for A and v. In order to build the confidence intervals, we
use the HAC estimators 3  defined as in Newey and West (1994) and f],, defined in GOS. When we consider
the 25 FF and 44 Indu. portfolios as base assets, we use asymptotics for fixed n and T — oo. In particular,
we compute the estimates of the variance-covariance matrices X ,, and X, ,, defined in GOS. The estimated
risk premia for the market factor are of the same magnitude and all positive across the three universes
of assets and all financial models. In Table 7, for the four-factor CAR model and the individual stocks,
the size factor is positively remunerated (3.5430%) and it is significantly different from zero. The value
factor commands a significant negative reward (-4.9265%). The momentum factor is largely remunerated
(8.0947%) and significantly different from zero. For the 25 FF portfolios, we observe that the size factor
is not significantly positively remunerated while the value factor is significantly positively remunerated
(2.5028% and 4.1996%). The momentum factor bears a significant positive reward (34.6689%). For \,,,
Asmbs Ahmi» We obtain similar inferential results when we consider the Fama-French model in Table 8. Our
point estimates of A, Agmp, and Ap,yy; for large n agree with Ang et al. (2020). Our point estimates and
confidence intervals for A,,, Agmp, and Ay, agree with the results reported by Shanken and Zhou (2007)

for the 25 FF portfolios. The large, but imprecise, estimate for the momentum premium when n = 25
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comes from the estimate for vy, (26.7559%) that is much larger and less accurate than the estimates for
Vs Vsmpbs and Uy (0.9447%, -0.0225%, -0.3662%). Moreover, while the estimates of v, Vgmp, and vpm;
are statistically not significant for the 25 FF portfolios, the estimates of v,,,, Vsyp, and vy, are statistically
different from zero for individual stocks. In particular, the estimate of 1/, is large and negative. It explains
the negative estimate on the value premium for individual stocks displayed in Table 7, despite the positive
time average of the value factor. Phalippou (2007) obtained a similar growth premium for portfolios built
on stocks with a high institutional ownership. The results with the 44 Indu. portfolios sharply differ from
those with the 25 FF portfolios. The former are more like the results for individual stocks; in particular,
they yield negative estimates of coefficient vy,,; and value premium \p,,; (albeit the latter not statistically
significant). In Table 6, the SFF model also exhibits large differences between estimated risk premia on
individual stocks, FF and Indu. portfolios. For example, we get a significant A, = 5.3198% for the
FF portfolios and an insignificant A,p,,, = 0.8911% for individual stocks. On the contrary, we get an
insignificant A, = 0.8787% for the FF portfolios (with a large confidence interval) and a significant
Aema = —3.2867% for individual stocks. The estimated risk premia on the Indu. portfolios exhibit large
confidence intervals. For example, we get insignificant A, = 2.3817% and M. = —0.3614%.

The size, value, and momentum factors are tradable in theory. In practice, their implementation faces
transaction costs due to rebalancing and short selling. A nonzero v might capture these market imperfections
(Cremers et al. (2012)). In Table 8, we also get zero estimates with the FF portfolios except for value, and
nonzero estimates with the Indu. portfolios and the individual stocks for market and value, when we use
a time-invariant model with long-only factors derived from the FF methodology. Market imperfections are
probably not the key drivers here (see Frazzini et al. (2012)) for empirical support based on live trading data
from a large institutional money manager).

A potential explanation of the discrepancies revealed in Tables 5-8 between individual stocks and the
FF portfolios is the much larger heterogeneity of the factor loadings for the former. As already discussed
in Lewellen et al. (2010), the FF portfolio betas are all concentrated in the middle of the cross-sectional
distribution obtained from the individual stocks. Creating portfolios with an ad hoc methodology distorts
information by shrinking the dispersion of betas. The estimation results for the momentum factor on the FF

portfolios exemplify the problems related to a small number of portfolios exhibiting a tight factor structure.
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Another potential explanation of the discrepancy revealed in Tables 5-8 is the effect of model misspecifica-

tion on the risk premia because of omitted factors as observed in Table 4 for the three-factor FF model.

6.3 Time-varying specifications

We use x1,7 = 15 and x2 7 = 546/60. The number of assets whose condition number is below 15 is often
between 2,000 and 3,000, for instance 2,578 for the four-factor CAR model.

For the time-varying specifications of Table 3, we still find one omitted factor for the CAPM and the
4-factor MOM and REV model in Table 4. The other time-varying models pass the diagnostic criterion. As
already discussed in the Introduction, this diagnostic step is crucial to decide whether we can feel comfort-
able with the chosen set of observable factors before proceeding further in an empirical analysis of a large
cross sectional equity data set under the APT setting. The time-varying specification is more parsimonious
for the factor space in the conditional sense, but less parsimonious for the parameter space. From an econo-
metric point of view, it is not clear which parsimony we should favor to decide between the time-invariant
specification (more factors, fewer parameters) and the time-varying specification (fewer factors, more pa-
rameters). For investment purposes, the first one is better suited for static (unconditional) decisions while
the second one is better suited for dynamic (conditional) decisions. The choice between the two models
should meet the investor needs or answer the empirical research question at hand.

Figure 7 plots the estimated time-varying paths of the four risk premia estimated assuming the four-
factor CAR model and using the individual stocks (see GOS for a formal test of time variation based on
the estimated coefficients ¥’ and 7). For comparison purpose, we also plot the time-invariant estimates
and the average lambdas over time. A well-known bias coming from market-timing and volatility-timing
(Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth et al. (2011)) explains the discrepancy
between the time-invariant estimate and the average over time. After trimming, we compute the risk premia
on nX = 2,549 individual assets in the four-factor CAR model. The observed discrepancy w.r.t. the average
over time is only marginally explained by the larger size of the stock universe used for the time-invariant
estimates. The risk premia for the factors feature a counter-cyclical pattern most of the time. Indeed,
these risk premia increase during economic contractions and decrease during economic booms. Gomes

et al. (2003) and Zhang (2005) constructed equilibrium models exhibiting a counter-cyclical behavior in

37



size and book-to-market effects. Furthermore, time-varying estimates of the value premium are negative
and might take positive values because of the large confidence intervals around recessions. Growth firms
are riskier in boom times because of their in-the-money growth options; value firms are riskier in recession
times because of default risk. However, empirical evidence for such an interpretation is mixed. Some
papers find that distress is related to size and book-to-market effects (Griffin and Lemmon (2002), Vassalou
and Xing (2004)) while other papers find the opposite (Dichev (1998), Campbell et al. (2008)). Chava and
Purnanandam (2010) find support for a positive relation and argued that conclusions regarding the risk return
trade-off can change significantly depending on how the expected return is measured. Gomes and Schmid
(2010) and Garlappi and Yan (2011) argue that financial leverage provides a rationale for a positive relation.
The time-varying estimates of the size premium are most of the time slightly positive.

Figure 8 plots the estimated time-varying path of the four risk premia from the 25 FF portfolios. We
also plot the time-invariant estimates and the average lambdas over time. The discrepancy between the
time-invariant estimates and the averages over time is also observed for n = 25. The time-varying point
estimates for A,,om ¢ are typically smaller than the time-invariant estimate in Table 7, but both estimates are
rather inaccurate. Finally, by comparing Figures 7 and 8, we observe that the patterns of risk premia look
similar in terms of cyclicality except for the book-to-market factor. Indeed, the risk premium for the value
effect estimated from the 25 portfolios is pro-cyclical, contradicting the counter-cyclical behavior predicted
by finance theory. The paths of risk premia in the Fama-French model estimated from the 25 FF portfolios
look similar to the corresponding estimates for the four-factor CAR model in Figure 8. The time-varying
paths of risk premia for the 44 Indu. portfolios look similar to the corresponding estimates on individual
stocks. This similarity, also observed in Section 6.2 with time-invariant models, is likely linked with the
relative stability of the time-varying portfolio weights for the 44 Indu. portfolios compared to the weights of

the 25 FF portfolios.

6.4 Asset pricing restriction tests

As already discussed in Lewellen et al. (2010), the 25 FF portfolios have four-factor CAR market and
momentum betas close to 1 and zero, respectively. As depicted in Figure 1 by Lewellen, Nagel, and Shanken

(2010), this empirical concentration implies that it is easy to get artificially large estimates ? of the cross-
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sectional R? for three-factor FF and four-factor CAR models. On the contrary, the observed heterogeneity in
the betas coming from the individual stocks impedes this. It suggests that it is much less easy to find factors
that explain the cross-sectional variation of expected excess returns on individual stocks than on portfolios.
Reporting large p?, or small SSR Q., when n is large, is much more impressive than when 7 is small.

Tables 9 and 10 gather the results for the tests of the asset pricing restrictions in factor models with
time-invariant coefficients. When n is large, we prefer working with test statistics based on the SSR Qe
instead of p? since the population R? is not well-defined with tradable factors under the null hypothesis (its
denominator is zero). For the individual stocks, we compute the feasible test statistics based on Qe and
Qa and hard thresholding to get consistent estimates ig of covariance matrices, as well as their associated
one-sided p-value. Our Monte Carlo simulations show that we need to set a stronger trimming level x2 7 to
compute the test statistic than to estimate the risk premium. We use x2 7 = 546/240. For the 25 and 44 Indu.
portfolios, we compute weighted test statistics (Gibbons et al. (1989)) as well as their associated p-values.
For individual stocks, the test statistics reject both null hypotheses Hg : a(y) = b(v)'v and Hp : a(y) =0
for all specifications at 1% level. Similar conclusions are obtained when using the 25 FF portfolios as base
assets. For the 44 Indu. portfolios, we do not reject the null hypothesis Hg : a(y) = b()'v, but we reject
Ho :a(y) =0.

Tables 11 and 12 gather the results for tests of the asset pricing restrictions in time-varying specifications.
We do not report results for the FF long-only model since multicollinearity problems prevent us to estimate
and test that model. Contrary to the time-invariant case, we do not report the values of the weighted test
statistics (Gibbons et al. (1989)) computed for portfolios because of the numerical instability in the inversion
of the covariance matrix. Instead, we report the values of the test statistics TQe and TQa. For individual
stocks, the test statistics reject both null hypotheses Ho : a(y) = b(y)'v and Hy : a(y) = 0 for all
specifications at 1% level.

In addition, we compare the cross-sectional distributions of Bil Bl,i, the idiosyncratic risk (square root
of residual variance), and the estimated time-series coefficient of determination ﬁ? (ratio of explained vari-
ance and total variance) for the time-varying specifications assuming the four-factor CAR model for the
excess returns. We can view those estimates as measures of limits-to-arbitrage and missing factor im-

pact (Pontiff (2006), Lam and Wei (2011), Ang et al. (2009)). For each asset (either stock, or portfolio)
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% P T
/RS, ESS;
idiosyncratic risk IdiVol; = T ' with RSS; = Z Iiﬂféfit; (iv) the systematic risk SysRisk; = T .
7 P A

Figures 13 and 14 compare the cross-sectional distributions of the four measures (i)-(iv) computed on
the time-invariant and time-varying four-factor CAR models using the individual stocks, 25 FF and 44 Indu.
portfolios as base assets. The boxplots provided by the statistical software do not take into account the
presence of estimation noise, i.e, of the EIV issue coming from using estimates instead of true quantities.
Barras et al. (2019) explain how to correct for the EIV bias and to modify standard deviations and confidence
intervals of estimates of p.d.f., c.d.f., quantiles, and moments computed from estimated quantities such as
estimated regression coefficients in a “large n, large T setting. For comparison purposes, the cross-sectional
distributions for individual stocks in both figures refer to the nX = 2,549 stocks used in the estimation of
the time-varying specification after trimming. The time-series (adjusted) p? of the 25 FF portfolios are all
larger than 0.80. The estimates ﬁ? of the individual stocks are typically much smaller, with a median below
0.30. As expected, the excess returns of individual stocks also have larger idiosyncratic volatilities. The
time-series adjusted ,622 of individual stocks tend to be a bit larger in the time-varying model than in the
time-invariant one, as a result of the explanatory power that we gain by allowing for beta dynamics. Figures
13 and 14 show that the use of the FF portfolios also shrinks the dispersion of p?, IdiV ol;, and SysRisk;,
by a large amount. The distributions for the individual stocks and the 44 Indu. portfolios are comparable
and share a wide support. Figure 15 plots the cross-sectional distributions of Bil BM for the three universes
of assets. We observe a huge heterogeneity in Biz Bl,i for the individual stocks in Figure 15, similar to the
one observed on IdiV ol; in Figure 14. We may face the presence of limits-to-arbitrage and missing factors
in that case. On the contrary, the estimates BA{Z,@U are concentrated close to zero for the 25 FF and 44
Indu. portfolios. The 25 FF portfolios exhibit small BAizBM, small idiosyncratic risks, and large estimates
p; compared to individual stocks as expected from the previous empirical results. Unreported preliminary
results based on linear quantile regressions reveal that stocks with small size tend to yield large B{,LB“,

large idiosyncratic risks, and small estimates p;. We also find that firms with short observation periods tend
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to be associated with large values of both idiosyncratic and systematic risks (with a larger proportion of

systematic risk to total risk), as well as small market capitalization.

6.5 Time-varying cost of equity

We can use the results in Section 4.2 for estimation and inference on the cost of equity in conditional factor
models (see Fama and French (1997) for a fixed n approach). We can estimate the time-varying cost of

equity CE; s = 174 + bg,t)\t of firm ¢ with C/’]\Ei,t =71+ lA);’tS\t, where 7y is the risk-free rate. We have
\/f (C/'Ezt - CEi,t) = w;,tEéﬁ (Bz - 51)
+(Ziy @ b,) Wy Tvee [N = N'| + 0, (1), (33)

/ ~
where ;; = ()\Q ® Zi_1, N} ® Zz{,tq) . Standard results on OLS imply that estimator /3; is asymptoti-
cally normal, VT <Bl — ﬁi> = N (O, TZ‘Q;%SZ‘Z‘Q;%), and independent of estimator A. Then, from the
asymptotic normality results for the estimator A, we deduce that T (6]\5” — CEM) = N (07 Yom;, t),

conditionally on Z;_;, where
Sem, = 1 ByQy 1 SiQy i Eatis + (Zi21 @ U ) Wy k SaAWkp (Zi-1 @ biy) -

Figure 16 plots the path of the estimated annualized costs of equity for Microsoft Corp, Apple, Disney
Walt, and Sony. We use the time-varying four-factor CAR model estimated on individual stocks. For the
last twenty years, the cost of equity rose substantially during the subprime crisis, but came back to much
lower levels in the recent years. Again, using a time-invariant specification would obliterate those dynamic
features, and could mislead investors in computing the return that a firm should pay to them to compensate

for the risk they undertake by investing their capital.

6.6 International equity data sets

All of the empirical findings on factor structure, asset pricing restrictions tests, risk premia estimation and
cost of equity discussed so far are based on evidence from a large cross-sectional equity data set for the
U.S. market. It is interesting to examine these important issues in a global context. Market integration and
currency risk are two main factors that distinguish international financing and investment decisions from

domestic ones.
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A recent paper by Chaieb, Langlois and Scaillet (2020, CLS hereafter) extends the GOS methodology
to make it applicable to a very large panel of international equity returns. The sample includes more than
64,000 stocks from 23 Developed Markets (DMs) and 24 Emerging Markets (EMs). It is the first time in
the literature that a large international database is analysed at the individual stock level, and time-varying
risk premia are infered from. GOS methodology is particularly suitable to model USD-denominated inter-
national equity returns as it can handle the correlation implications of denominating all returns in a common
currency. CLS explicitly consider the impact of currency conversion on correlations across stocks since they
do not impose a priori an exact factor structure. To handle the large number of parameters needed to capture
time-varying factor exposures and risk premia in multifactor models for an international setting, CLS extend
the GOS methodology by automatically selecting the most important instruments for each stock while en-
suring consistency with no-arbitrage conditions. This extension allows dimension reduction and renders the
estimation approach applicable in an international setting through more parsimonious first-pass regressions.
Using this framework, CLS document several new empirical results based on individual international stocks.

First, global or regional factor models fail to fully capture the factor structure in many DMs and EMs.
It holds for models with only a market factor or models augmented with non-market factors such as size,
value, momentum, profitability, and investment. The country-excess market factor - defined as the spread
between the country market and the world market - is crucial to capture the factor structure in individual
stock returns for both DMs and EMs. Bekaert et al. (2009), Fama and French (2012), and Fama and French
(2017) find that regional factors perform better than global factors on portfolios. The results with individual
stocks show that regional factors are not sufficient to fully capture the factor structure, a necessary step
prior to estimating risk premia. CLS obtain a factor model specification close to a block diagonal structure
for the error covariance matrix with blocks corresponding to countries. Such a sparse matrix is compatible
with the notion of weak cross-sectional dependence. Therefore, the leading Fama and French (2012, 2017)
four-factor and five-factor international models and Hou et al. (2015) g-factor model (when applied using
global factors) should allow factor exposures to vary over time, specifically with stock characteristics, and
should add a country excess market factor to capture the factor structure of international individual equity
returns for both DMs and EMs.

Second, although the country-excess market factor is crucial to capture the factor structure in individual
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stock returns for both DMs and EMs, it carries a small risk premium for DMs but a large one in EMs.
Third, since asset pricing restrictions are often rejected, it is important to account for model misspecifi-
cation. Notwithstanding a few differences across regions, CLS show that pricing errors from leading factor

models constitute a large part of expected returns.

7 Concluding remarks

After an historical perspective on conditional factor models with a small number of assets, this chapter has
reviewed recent advances in econometrics for conditional factor models estimated on data sets with “large
n, large T" in finance. The tools studied above are simple to implement and often similar to the ones used in
a “small n, large T setting. The asymptotic treatment however differs substantially. The empirical results
on individual stocks also differ substantially from an analysis relying on standard sets of portfolios, and
show the importance of allowing for time variation in the loadings and risk premia. The empirics reveal
the relevance of including characteristics in conditional modeling. We believe that extracting information
directly from disaggregated data in finance will become increasing popular in the upcoming years as it is
already the case in other fields, e.g., in labor econometrics. The current big data trend favours the develop-
ment of new econometric tools, the collection of data sets at the individual level, and the improvement of

computation/storage powers.
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Table 1: Distribution of individual stocks w.r.t. T;

T; Frequency
1<12 18
13<24 607
25 <60 2514
61 <120 2444
121 <240 2861
241 < 360 1351
361 <480 557
481 <600 286
601 < 654 189

We report the frequency counts of the individual stocks w.r.t. their buckets of sample size T;.
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Table 2: Distribution of individual stocks w.r.t. industry

Industry Frequency
Aerospace 64
Transportation 152
Building Materials 147
Chemicals/Plastics 276
Construction 177
Entertainment 375
Food/Beverage 314
Healthcare 1194

Industrial Machinery 322
Metals 198

Mining 364

Motor Vehicles 155
Paper 129

Petroleum 869
Printing/Publishing 194
Professional Services 2282
Retailing 5717
Semiconductors 861
Telecommunications 901
Textiles/Apparel 200
Utilities 437
Wholesaling 639

We report the frequency counts of the individual stocks w.r.t. their industry category.
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Table 3: Financial linear factor models.

Model Observable Factors time-invariant time-varying

K nX d nX

CAPM Tt 1 7,154 8 3,215
FF Tty Tsmb,ts Thiml,t 3 7,154 14 2,877
FF long-only Tty Vst Thit 3 7,754 14 825

CAR Tints Tsmb,ts Thiml,ts Trmom,t 4 7,754 17 2,549
FF and QMJ Trngts Tsmb,ts Thml,t> Tqmit 4 7,754 17 2,251
FF and BAB Tty Tsmb,ts Thml,ts Thab,t 4 7,754 17 2471
MOM and REV 7y, ¢, "mom,ts Tstrev,t, Tltrev,t 4 7,754 17 2,569
S5FF Tty Tsmb,ts Thml,ts Trmw,t> Tema,t 5 7,754 20 1,928
FF and REV Tty Tsmb,ts Thinl,t> Tstrev,ts Tlirev,t 5 7,754 20 2,460
CAR and REV Tty Tsmb,ts Thml,ts Tmom,ts Tstrev,ts Tlirevt O 7,754 23 2,019

For each financial model, we report the list of observable factors and the trimmed cross-sectional dimension
nX for estimation from monthly data. We use ;7 = 15 and xo 7 = 546/60. For the time-invariant
specifications, we report the number of observable factors K. The number of parameters to estimate is
d = K + 1. For the time-varying specifications, we give the dimension d of vector x;; using Z;_1 =

(1,divY;_1) and Zit—1=0bmj 1.
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Table 4: Number of omitted factors.

Model ok Z?zl Wi fk+1  Penalty | pg K 2?21 Lj Hg+1  Penalty
Panel A: time-invariant models Panel B: time-varying models
CAPM 239 1 239 154 1.55 217 1 2.17 1.65 1.66
FF 1.55 1 1.55 1.18 1.19 | 146 O 0 146 1.60
FF long-only 1.57 1 1.57 1.22 1251148 O 0 148 1.60
CAR 128 0 0.00 1.28 1521127 0 0 1.27 1.60
FF and QM]J 1.50 0 0.00 1.50 1.52 1143 0 0 143 1.60
FF and BAB 1.54 1 1.54 1.13 1.16 | 145 O 0 145 1.60
MOM and REV 222 1 222 1.28 1.31 ] 2.03 1 203 133 1.35
SFF 147 0 0.00 147 1.52 1139 0 0 1.39 1.60
FF and REV 142 0 0.00 1.42 1.52 1137 O 0 137 1.60
CARandREV 124 0 0.00 1.24 152124 0 0 124 1.60

The table shows the contribution of the first eigenvalue p; to the variance of normalised residuals, the num-
ber of omitted factors k, the contributions of the first k, and of the (k + 1)-th eigenvalues, and the penalty

term. Panel A and B report the results for time-invariant and time-varying specifications, respectively.
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Figure 1: Number of omitted factors and cumulated eigenvalues for the time-invariant CAPM

model.

1 o\
1 (mzli‘éi6§> with j = 1,..,5.

Panel A plots the scree-plot of the values of the first five eigenvalues in percentage, i.e.,

The horizonal line corresponds to the penalty function

7
g (nX,T). Panel B plots the cumulated eigenvalues in percentage. The light grey area corresponds to

7j—1
1
E 0 <XT E 1}@%) , the dark grey area is the contribution of the j-th eigenvalue in percentage.
n
= i
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Figure 2: Number of omitted factors and cumulated squared eigenvalues for the time-invariant CAPM

model. Panel A plots the scree-plot of the values of the first five squared eigenvalues in percentage, i.e.,
T
1 - 1 -
15 (nXT Z 12‘51541> /lz;ulz (nT E 1f5i5§> with j = 1, ..., 5. The horizonal line corresponds to the
(2 = 7

T
1 .
penalty function g (nX,T)*/ g 17 (T E 1?5@) Panel B plots the cumulated squared eigenvalues
n -

Jj—1
X= x= =/
in percentage. The light grey area corresponds to Z 75 (nXT Z 1€ ) / Z 15 ( Z 1%e )

the dark grey area is the contribution of the j-th squared ei genvalue in percentage
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Figure 3: Number of omitted factors and cumulated eigenvalues for the time-invariant three-factor

Fama-French model. Panel A plots the scree-plot of the values of the first five eigenvalues in percent-

1
age, i.e., i; T Z 1?5}52—) with j = 1,...,5. The horizonal line corresponds to the penalty function

(2
g (nX,T). Panel B plots the cumulated eigenvalues in percentage. The light grey area corresponds to

j—1
1
E 1] <XT E 1?‘&5&) , the dark grey area is the contribution of the j-th eigenvalue in percentage.
n
= i
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Figure 4: Number of omitted factors and cumulated squared eigenvalues for the time-invariant

three-factor Fama-French model. Panel A plots the scree- plot of the values of the first five

squared eigenvalues in percentage, i.e., u ( XT21X€Z ) / Zul ( Zl €€ ) with j =

.,5. The horizonal line corresponds to the penalty function g (nX,T) /Z i ( Z 1X&; _'>.
=1
Panel B plots the cumulated squared eigenvalues in percentage. The light grey area corresponds to

j—1
1 _
2 X = X= = . . . .
lZ; 15 ( T Z 175;€ > /Z W (nT Z 1; 5151») , the dark grey area is the contribution of the j-th
= K3

squared elgenvalue in percentage
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Figure 5: Number of omitted factors and cumulated eigenvalues for the time-invariant four-factor

CAR model. Panel A plots the scree-plot of the values of the first five eigenvalues in percentage,

. 1 _ sy . . .

Le., <nXT Z lfsis;) with 5 = 1,...,5. The horizonal line corresponds to the penalty function
7

g (nX,T). Panel B plots the cumulated eigenvalues in percentage. The light grey area corresponds to

7j—1
1
E 0 <XT E 1}€i5§> , the dark grey area is the contribution of the j-th eigenvalue in percentage.
n
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Figure 6: Number of omitted factors and cumulated squared eigenvalues for the time-invariant

four-factor CAR model. Panel A plots the scree-plot of the values of the first five squared
T
1 - - 1 __
. . . 2 = 2 = = . .
eigenvalues in percentage, i.e., [ (nXT % 1?61541> /ZE_I 17 (nT % 1?‘81-82) with j = 1,...,5.
T

1 -
The horizonal line corresponds to the penalty function g (nX,T)*/ E i} (T E 1?51-5;). Panel
n -
(2

=1
B plots the cumulated squared eigenvalues in percentage. The light grey area corresponds to

j—1 T

1 - 1 -
E ulz (nXT E 1?‘&82) / E ,ulz (nT E 1?@5%) , the dark grey area is the contribution of the j-th
=1 i =1 %

squared eigenvalue in percentage.
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Figure 13: Cross-sectional distributions of /322, ﬁzdi, 1diVol;, and SysRisk; for the time-invariant

four-factor CAR model
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The figure displays the cross-sectional distributions of (i) the estimated coefficients of determination ﬁ?, (ii)
the estimated adjusted coefficients of determination ﬁg d,i® (iii) the idiosyncratic risks IdiV ol;, and (iv) the
systematic risks SysRisk; for the individual stocks (box-plots), the 25 FF portfolios (red triangles) and the
44 Indu. portfolios (blue stars). Estimates are for the time-invariant four-factor CAR model. For comparison
purposes, the cross-sectional distribution for individual stocks refers to the nX = 2, 549 stocks that are used

in the estimation of the time-varying model after trimming.
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Figure 14: Cross-sectional distributions of p?, ,63 440 1diVol;, and SysRisk; for the time-varying four-

factor CAR model
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The figure displays the cross-sectional distributions of (i) the estimated coefficients of determination ﬁ?,
(ii) the estimated adjusted coefficients of determination ﬁg d.i> (iii) the idiosyncratic risks I'diV ol;, and (iv)
the systematic risks SysRisk; for the nX = 2,549 individual stocks (box-plots), the 25 FF portfolios (red

triangles) and the 44 Indu. portfolios (blue stars). Estimates are for the time-varying four-factor CAR model.
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Figure 15: Cross-sectional distributions of Bil Bl,i for the time-varying four-factor CAR model
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The figure plots the cross-sectional distributions of BA{ZBU for the nX = 2,549 individual stocks (box-
plot), the 25 FF portfolios (red triangles) and the 44 Indu. portfolios (blue stars). Estimated Bl,i are for the

time-varying four-factor CAR model.
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