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1 Introduction

Knowledge of the dependence structure between …nancial assets or claims is crucial to

achieve performant risk management in …nance and insurance. Measuring dependence by

standard correlation is adequate in the context of multivariate normally distributed risks

or for assessing linear dependence. Contemporary …nancial risk management however

calls for other tools due to the presence of an increasing proportion of nonlinear risks

(derivative assets) in trading books and the nonnormal behaviour of most …nancial time

series (skewness and leptokurticity). Using estimates of risk dependence via conventional

correlation coe¢cients neglects nonlinearities and leads in most cases to underestimation

of the global risk of a portfolio. Furthermore it is now well admitted that the choice of

the dependence structure, or similarly of the copula, is also often a key issue for numerous

pricing models in …nance and insurance. This is especially true concerning the pricing and

hedging of credit sensitive instruments such as collateralised debt obligations (CDO) or

basket credit derivatives 2 .

The copula of a multivariate distribution can be considered as the part describing its

dependence structure as opposed to the behaviour of each of its margins. One attractive

property of the copula is its invariance under strictly increasing transformation of the

margins 3 . In fact, the use of copulas allows solving a di¢cult problem, namely …nding

the whole multivariate distribution, by performing two easier tasks. The …rst step starts

by modeling each marginal distribution. The second step consists of estimating a copula,

which summarizes all the dependence structure. However this second task is still in its

infancy for most of multivariate …nancial series partly because of the presence of temporal

dependencies (serial autocorrelation, time varying heteroskedasticity,...) in returns of stock

indices, credit spreads between obligors, interest rates of various maturities...
2 see e.g. Frey and McNeil (2001), Li (2000).
3 Note also that scale invariant measures of dependence such as Kendall’s tau and Spearman’s rho can

be expressed by means of copulas. These quantities are often more informative and less misleading than

the usual coe¢cient of correlation. See Embrechts et al. (2002) for a discussion.
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Estimation of copulas has essentially been developped in the context of i.i.d. samples.

If the true copula is assumed to belong to a parametric family C = fCµ; µ 2 £g, consistent

and asymptotically normally distributed estimates of the parameter of interest can be

obtained through maximum likelihood methods. There are mainly two ways to achieve

this : a fully parametric method and a semiparametric method. The …rst method relies

on the assumption of parametric marginal distributions. Each parametric margin is then

plugged in the full likelihood and this full likelihood is maximized with respects to µ.

Alternatively and without parametric assumptions for margins, the marginal empirical

cumulative distribution functions can be plugged in the likelihood. These two commonly

used methods are detailed in Genest et al. (1993) and Shi and Louis (1995) 4.

Beside these two methods, it is also possible to estimate a copula by some nonparamet-

ric methods based on empirical distributions following Deheuvels (1978), (1981a,b) 5.

The so-called empirical copulas resemble usual multivariate empirical cumulative distrib-

ution functions. They are highly discontinuous (constant on some data-dependent pave-

ments) and cannot be exploited as graphical device. In fact they are useless to help …nding

a convenient parametric family of copulas by simple visual comparison on available data

sets.

To our best knowledge, nonparametric estimation of copulas in the context of time

dependence has not yet been studied theoretically in the literature. Clearly, this is an

important omission since most …nancial series exhibit temporal dependence and copulas

are becoming more and more popular among practitioners 6 .

4 see Cebrian, Denuit and Scaillet (2002) for inference under misspeci…ed copulas.
5 see some asymptotic properties and extensions in Fermanian et al. (2002).
6 see Bouyé et al. (2000) for a survey of …nancial applications, Frees and Valdez (1998) for use in ac-

tuarial practice, and Patton (2001a,b), Rockinger and Jondeau (2001) for use in modelling conditional

dependencies.
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In this paper we propose a nonparametric estimation method for copulas for time se-

ries, and use a kernel based approach. Such an approach has the advantage to provide a

smooth (di¤erentiable) reconstitution of the copula function without putting any partic-

ular parametric a priori on the dependence structure between margins and without losing

the usual parametric rate of convergence. The approach is developped in the context of

multivariate stationary processes satisfying strong mixing conditions 7. Once estimates of

copulas and their derivatives are available (need of di¤erentiability explains our choice of

a kernel approach), concepts such as positive quadrant dependence and left tail decreasing

behaviour may be empirically analysed. These estimates are also useful to draw simulated

data satisfying the dependence structure infered from observations 8. They are further

needed to build asymptotic con…dence intervals for our copula estimators. Nonparametric

estimators of copulas may also lead to statistics aimed to assess independence between

margins. These statistics are in the same spirit as kernel based tools used to test for serial

dependence for a univariate stationary time series 9 .

The paper is organized as follows. In Section 2 we outline our framework and re-

call the de…nition of copulas and some of their properties. In Section 3 we present the

kernel estimators of copulas and their derivatives, and characterize their asymptotic be-

haviour. Their use in estimation of measures of dependence between margins is also brie‡y

described. Section 4 contains some Monte Carlo results for a stationary vector autoregres-

sive process of order one with Gaussian innovations. An empirical illustration on European

and US stock index returns is provided in Section 5. Section 6 concludes. All proofs are

gathered in an appendix.
7 Intuitively a process is strong mixing or ®-mixing when observations at di¤erent dates tend to behave

more and more independently when the time interval between dates gets larger and larger. See Doukhan

(1994) for relevant de…nitions and examples in ARMA and GARCH modelling with Gaussian errors.
8 see Embrechts et al. (2002) for the description of an algorithm.
9 see the survey of Tjostheim (1996).
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2 Framework

We consider a strictly stationary process fYt; t 2 Zg taking values in Rn and assume

that our data consist in a realization of fYt; t = 1; :::; Tg. These data may correspond to

observed returns of n …nancial assets, say stock indices, at several dates. They may also

correspond to simulated values drawn from a parametric model (VARMA, multivariate

GARCH or di¤usion processes), possibly …tted on another set of data. Simulations are

often required when the structure of …nancial assets is too complex, as for some derivative

products. This, in turn, implies that the sample length T can sometimes be controlled,

and asked to be su¢ciently large to get satisfying estimation results.

We denote by f(y), F(y), the p.d.f. and c.d.f. of Yt = (Y1t; :::; Ynt)0 at point y =

(y1; :::; yn)0. The joint distribution F provides complete information concerning the be-

haviour of Yt. The idea behind copulas is to separate dependence and marginal behaviour

of the elements constituting Yt. The marginal p.d.f. and c.d.f. of each element Yjt at point

yj, j = 1; :::; n, will be written fj(yj), and Fj(yj), respectively. A copula describes how

the joint distribution F is "coupled" to its univariate margins Fj , hence its name. Before

de…ning formally a copula and reviewing various useful dependence concepts, we would

like to refer the reader to Nelsen (1999) and Joe (1997) for more extensive treatments.

De…nition. (Copula)

A n-dimensional copula is a function C with the following properties:

1. domC = [0; 1]n.

2. C is grounded, i.e. for every u in [0; 1]n, C(u) = 0 if at least one coordinate uj = 0,

j = 1; :::;n.

3. C is n-increasing, i.e. for every a and b in [0;1]n such that a · b, the C-volume

VC([a;b]) of the box [a;b] is positive.

4. If all coordinates of u are 1 except for some uj, j = 1; :::; n, then C(u) = uj.
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The reason why a copula is useful in revealing the link between the joint distribution

and its margins transpires from the following theorem.

Theorem 1. (Sklar’s Theorem)

Let F be an n-dimensional distribution function with margins F1; :::;Fn. Then there exists

an n-copula C such that for all y in Rn,

F(y) = C(F1(y1); :::;Fn(yn)): (1)

If F1; :::;Fn are all continuous, then C is uniquely de…ned. Otherwise, C is uniquely

determined on rangeF1 £ ::: £rangeFn. Conversely, if C is an n-copula and F1; :::;Fn are

distribution functions, then the function F de…ned by (1) is an n-dimensional distribution

function with margins F1; :::;Fn.

As an immediate corollary of Sklar’s Theorem, we have

C(u1; :::; un) = F(F¡1
1 (u1); :::;F¡1

n (un)); (2)

where F¡1
1 ; :::;F¡1

n are quasi inverses of F1; :::;Fn, namely

F¡1
j (uj) = inffyjFj(y) ¸ ujg:

Note that, if Fj is strictly increasing, the quasi inverse is the ordinary inverse. Copulas

are thus multivariate uniform distributions which describe the dependence structure of

random variables. Besides as already mentioned, strictly increasing transformations of the

underlying random variables result in the transformed variables having the same copula.

From expression (2), we may observe that the dependence structure embodied by the

copula can be recovered from the knowledge of the joint distribution F and its margins

Fj . These are the distributional objects that we propose to estimate nonparametrically

by a kernel approach in the next section. Before turning our attention to this problem,

let us review some relevant uses of copulas.

First copulas characterize independence and comonotonicity between random variables.

Indeed, n random variables are independent if and only if C(u) =
Qn
j=1 uj , for all u, and

each random variable is almost surely a strictly increasing function of any of the others
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(comonotonicity) if and only if C(u) = min(u1; :::;un), for all u. In fact copulas are

intimately related to standard measures of dependence between two real valued random

variables Y1t and Y2t, whose copula is C . Indeed, the population versions of Kendall’s tau,

Spearman’s rho, Gini’s gamma and Blomqvist’s beta can be expressed as:

¿Y1;Y2 = 1 ¡ 4
Z 1

0

Z 1

0

@C(u1;u2)
@u1

@C(u1;u2)
@u2

du1du2; (3)

½Y1;Y2 = 12
Z 1

0

Z 1

0
C(u1;u2)du1du2 ¡ 3; (4)

°Y1;Y2 = 4
Z 1

0
[C(u1;1 ¡ u1) + C(u1; u1)]du1 ¡ 2; (5)

¯Y1;Y2 = 4C(1=2; 1=2) ¡ 1: (6)

Second copulas can be used to analyse how two random variables behave together

when they are simultaneously small (or large). This will be useful in examining the joint

behaviour of small returns, especially the large negative ones (big losses), which are of

particular interest in risk management. This type of behaviour is best described by the

concept known as positive quadrant dependence after Lehmann (1966). Two random

variables Y1t and Y2t are said to be positively quadrant dependent (PQD) if, for all (y1; y2)

in IR2,

P [Y1t · y1; Y2t · y2] ¸ P [Y1t · y1]P [Y2t · y2]: (7)

This states that two random variables are PQD if the probability that they are simultane-

ously small is at least as great as it would be if they were independent. Inequality (7) can

be rewritten in terms of the copula C of the two random variables, since (7) is equivalent

to the condition C(u1;u2) ¸ u1u2, for all (u1;u2) in [0;1]2.

Finally inequality (7) can be rewritten P [Y1t · y1jY2t · y2] ¸ P [Y1t · y1] by applica-

tion of Bayes’ rule. The PQD condition may be strengthened by requiring the conditional

probability being a non increasing function of y2. This implies that the probability that

the return Y1t takes a small value does not increase as the value taken by the other return

increases. It corresponds to particular monotonicities in the tails. We say that a random

variable Y1t is left tail decreasing in Y2t, denoted LTD(Y1jY2), if P [Y1t · y1jY2t · y2] is a
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non increasing function of y2 for all y1. This in turn is equivalent to the condition that,

for all u1 in [0; 1], C(u1; u2)=u2 is non increasing in u2, or @C(u1; u2)=@u2 · C(u1;u2)=u2

for almost all u2.

In short, concepts such as independence, PQD or LTD, may be characterized in terms

of copulas, and thus may be checked (see for example the testing procedures developped in

Denuit and Scaillet (2002) and Cebrian, Denuit and Scaillet (2002)), once copulas

are empirically known. In the next section we develop estimation tools for that purpose.

3 Kernel estimators

We start with the de…nition of kernel estimators before moving to their asymptotic distri-

butions.

3.1 De…nitions

For given uj 2 (0;1), j = 1; : : : ;n, we assume that the c.d.f. Fj of Yjt, is such that the

equation Fj(y) = uj admits a unique solution denoted ³j(uj), or more compactly ³j (if

there is no ambiguity).

To build our estimators we need to introduce kernels, i.e. real bounded symmetric 10

functions kj on R such that

Z
kj(x)dx = 1; j = 1; : : : ;n:

Let the n-dimensional kernel

k(x) =
nY

j=1
kj(xj);

and its primitive function

K(x) =
nY

j=1

Z xj
¡1

kj =
nY

j=1
Kj(xj):

10 The symmetry of the kernel may induce the so-called boundary bias for data with …nite support.

Boundary bias is due to weight allocation by the …xed symmetric kernel outside the density support when

smoothing is carried out near the boundary. This may happen, for example, when considering smoothing

of insurance loss data near the zero boundary.
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For the sake of simplicity, we choose to work here with products of univariate kernels. We

could however extend easily our results to more general k and K. Let us denote further

k(x;h) =
nY

j=1
kj

Ã
xj
hj

!
; K(x;h) =

nY

j=1
Kj

Ã
xj
hj

!
;

where the bandwidth h is a diagonal matrix with elements (hj)nj=1 and determinant jhj
(for a scalar x, jxj will denote its absolute value), while the individual bandwidths hj are

positive functions of T such that hj ! 0 when T ! 1. Moreover, we denote by h¤ the

largest bandwidth among h1; : : : ;hn. The p.d.f. of Yjt at yj , i.e. fj(yj), will be estimated

as usually by

f̂j(yj) = (Thj)¡1
TX

t=1
kj

Ã
yj ¡Yjt

hj

!
;

while the p.d.f. of Yt at y = (y1; :::; yn)0, i.e. f(y), will be estimated by

f̂(y) = (Tjhj)¡1
TX

t=1
k(y ¡ Yt; h):

Hence, an estimator of the cumulative distribution of Yjt at some point yj is obtained

as

F̂j(yj) =
Z yj
¡1

f̂j(x)dx; (8)

while an estimator of the cumulative distribution of Yt at y is obtained as

F̂ (y) =
Z y1
¡1

:::
Z yn
¡1

f̂(x)dx: (9)

If a single Gaussian kernel kj(x) = '(x) is adopted, we get

F̂j(yj) = T¡1
TX

t=1
©((yj ¡ Yjt)=hj) ;

and

F̂(y) = T¡1
TX

t=1

nY

j=1
©((yj ¡ Yjt)=hj) ;

where ' and © denote the p.d.f. and c.d.f. of a standard Gaussian variable, respectively.

9



In order to estimate the copula at some point u, we use a simple plug-in method, and

exploits directly expression (2):

Ĉ(u) = F̂(³̂); (10)

where ³̂ = (³̂1; :::; ³̂n)0 and ³̂j = infy2Rfy : F̂j(y) ¸ ujg. In fact ³̂j corresponds to a kernel

estimate of the quantile of Yjt with probability level uj 11.

3.2 Asymptotic distributions

The asymptotic normality of kernel estimators for copulas can be established under suit-

able conditions on the kernel, the asymptotic behaviour of the bandwidth, the regularity

of the densities, and some mixing properties of the process.

Assumption 1. (kernel and bandwidth)

(a) Bandwidths satisfy Th2¤ ! 0, or

(a’) Bandwidths satisfy Th4¤ ! 0 and the kernel k is even,

(b) The kernel k has a compact support.

Assumption 1 (b) could in fact be weakened, by controlling the tails of k, for instance

by assuming supj jkj(x)j · (1+jxj)¡® for every x and some ® > 0, as in Robinson (1983).

This type of assumption is satis…ed by most kernels, in particular by the Gaussian kernel.

Assumption 2. (process)

(a) The process (Yt) is strong mixing with coe¢cients ®t such that ®T = o(T¡a) for some

a > 1, as T ! 1.

(b) The marginal c.d.f. Fj, j = 1; : : : ;n are continuously di¤erentiable on the intervals

[F¡1
j (a) ¡ "; F¡1

j (b)+ "] for every 0 < a < b < 1 and some " > 0, with positive derivatives

fj. Moreover, the …rst partial derivatives of F exist and are Lipschitz continuous on the

product of these intervals.
11 see e.g. Gouriéroux et al. (2000) and Scaillet (2000) for use of this type of smooth quantile esti-

mates in risk management and portfolio selection as well as Azzalini (1981) for the asymptotic properties

in the i.i.d. case.
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The asymptotic behaviour of Ĉ is related to the limit in distribution of T 1=2(F̂ ¡F ),

the smoothed empirical process associated with the sequence of Rn-valued vectors (Yt)t¸1.

We …rst state the limiting behaviour of this smoothed empirical process before giving the

limiting behaviour of the smoothed copula process.

Theorem 2. (Smoothed empirical process)

Under Assumptions 1 and 2, the smoothed empirical process T 1=2(F̂ ¡ F) tends weakly

to a centered Gaussian process G in l1(Rn) (the space of a.s. bounded functions on Rn),

endowed with the sup-norm. The covariance function of G is

Cov(G(x);G(y)) =
X

t2Z
Cov(1fY0 · xg; 1fYt · yg): (11)

Moreover, T1=2 supx j(F̂ ¡F )(x)j = oP(1).

Theorem 3. (Smoothed copula process)

Under Assumptions 1 and 2, the process T1=2(Ĉ ¡C) tends weakly to a centered Gaussian

process Á0(G) in l1([0;1]n) endowed with the sup-norm, where the limiting process is given

by

Á0(G)(u1; : : : ;un) = G(F¡1
1 (u1); : : : ; F¡1

n (un))

¡
nX

j=1

@C
@uj

(u1; : : : ; un)G(+1; : : : ; F¡1
j (uj); : : : ; +1):

A direct consequence of Theorem 3 is the following asymptotic normality result.

Corollary 1. (Joint normality of copula estimators)

Under Assumptions 1 and 2, for any (v1; : : : ;vd) in ]0;1]nd, the d-dimensional random

vector

S ´ T1=2
³
(Ĉ ¡C)(v1); : : : ; (Ĉ ¡ C)(vd)

´

tends weakly to a centered Gaussian vector.

It is possible to derive an explicit form of the asymptotic covariance matrix of the vector

S after some tedious computations (see Equation (16) at the end of the appendix). This
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covariance matrix will be used in the empirical section of this paper to build con…dence

intervals around copula estimates.

In the bivariate case Yt = (Y1t; Y2t)0, we have seen that positive quadrant depen-

dence is characterized by C(u1; u2) ¡ u1u2 ¸ 0, while left tail decreasing behaviour of

Y1t (resp. Y2t) in Y2t (resp. Y1t) is characterized by C(u1; u2)=u2 ¡ @C(u1;u2)=@u2 ¸ 0

(resp. C(u1;u2)=u1 ¡ @C(u1; u2)=@u1 ¸ 0). We have just developed a kernel estimator

for C . It is thus natural to suggest an estimator for @pC(u) = @C(u)=@up based on the

di¤erentiation of Ĉ(u) w.r.t. up:

\@pC(u) = @p
³
Ĉ(u)

´
=

@pF̂(³̂)
f̂p(³̂p)

;

with

³̂ = (³̂1; : : : ; ³̂n); ³̂j = F̂¡1
j (uj); j = 1; : : : ; n;

and

@pF̂(³̂) =
1

Thp

TX

t=1
kp

Ã
³̂p¡ Ypt

hp

! Y

l 6=p
Kl

Ã
³̂l ¡ Ylt

hl

!
:

The estimators Ĉ(u) and @pĈ(u) will help to detect positive quadrant dependence and

left tail decreasing behaviour through the empirical counterparts of the aforementioned

inequalities.

Assumption 3. (kernel and bandwidth)

(a) Bandwidths satisfy Thp ! +1, Th3¤ ! 0 and k is even,

(b) Each kernel kj has a compact support Aj, j = 1; : : : ; n, and the kernel kp is twice

continuously di¤erentiable.

Assumption 4. (process)

(a) The process (Yt) is strong mixing with coe¢cients ®t such that ®T = O(T¡2), as

T ! 1.

(b) The …rst derivative @pF and the marginal density fp are Lipschitz continuous.

(c) Let ft;t0 be the density function of (Yt; Yt0) with respect to the Lebesgue measure. There

exists an integrable function Ã : R2n¡2 ¡! R such that, for every vectors u; v in Rn, and
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for some open subset O of R2 containing Ap £Ap, we have

sup
t6=t0

sup
(up;vp)2O

ft;t0(u; v) · Ã(u¡p;v¡p):

Then we get:

Theorem 4. (Joint normality of derivative estimators)

Under Assumptions 3 and 4, for any u1; : : : ; ud 2]0;1[nd, the random vector

(Thp)1=2
³
(@pĈ ¡ @pC)(u1); : : : ; (@pĈ ¡@pC)(ud)

´

tends weakly to a centered Gaussian vector.

Again the asymptotic covariance matrix §¤ = [¾¤ij ]1·i;j·d of this random vector admits

a rather complex explicit form (see Equation (14) in the appendix).

Note that the extension of the previous propositions to higher derivatives

@kĈ(u)=(@u1@u2:::@uk), k · n, is straightforward. Such estimates are for example re-

quired for the implementation of an empirical counterpart of the simulation algorithm

described in Embrechts et al. (2002).

As clear from Theorem 4, a random vector of derivatives of T1=2(Ĉ ¡ C) at some

points u1; : : : ;ud does not in general tend weakly to a vector of independent Gaussian

variables. This is however the case when the components corresponding to the indices

of the derivatives are all di¤erent. A similar result is also true for successive derivatives.

Indeed, under some technical assumptions, the random vector

(Thm1
1 : : : : :hmnn )1=2

³
@m1
1 : : : @mnn (Ĉ ¡ C)(u1); : : : ; @m1

1 : : : @mnn (Ĉ ¡C)(ud)
´

tends weakly to a centered Gaussian vector whose covariance matrix is diagonal if

1. ml ¸ 1 for every l = 1; : : : ; n, or

2. for the indices l such that ml 6= 0, uli 6= ulj for every pair (i; j).

We end up this section with the description of how to build the sample analogues of

the dependence measures (3)-(6). First we may substitute a kernel estimator Ĉ for the

13



unknown C in (4)-(6) to estimate ½Y1 ;Y2 , °Y1;Y2, and ¯Y1;Y2. According to Theorem 3, these

estimators are consistent and asymptotically normally distributed. Second we may replace

the unkown derivatives by @Ĉ(u1;u2)=@u1 and @Ĉ(u1;u2)=@u2 in order to estimate ¿Y1;Y2.

This estimator will be consistent by Theorem 4.

4 Monte Carlo experiments

In this section we wish to investigate the …nite sample properties of our kernel estimators.

The experiments are based on a stationary vector autoregressive process of order one:

Yt = A + BYt¡1 + ºt;

where ºt » N(0;§) and all the eigenvalues of B are less than one in absolute value. The

marginal distribution of the process Y is Gaussian with mean ¹ = (Id ¡ B)¡1A and

covariance matrix ­ satisfying vec­ = (Id ¡ B ­ B)¡1vec§ (vecM is the stack of the

columns of the matrix M).

We start with a bivariate example where the components Y1t and Y2t are independent,

and thus C(u1;u2) = u1u2. The parameters are A = (1;1)0, vecB = (0:25;0;0; 0:75)0 and

vec§ = (:75; 0;0;1:25)0. The parameters of the Gaussian stationary distribution are then

¹ = (1:33; 4)0 and vec­ = (0:8; 0; 0;2:86)0. The number of Monte Carlo replications is

5,000, while the data length is T = 45 = 1024 (roughly four trading years of quotes).

The nonparametric estimators make use of the product of two Gaussian kernels. Band-

width values are based on the rule of thumb hi = ¾̂iT¡1=5, which uses the empirical

standard deviation of each series. Table 1 gives bias and mean squared error (MSE) 12

of the kernel estimates Ĉ(u1;u2) for several pairs (u1;u2) in the tails and center of the

distribution.

12 Recall that the bias is de…ned as EĈ ¡C and the MSE as E[(Ĉ ¡ C)2 ].
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Table 1: Bias and MSE of kernel estimates of copulas

Bias and MSE have been computed on 5000 random samples of length 1024 from a

bivariate autoregressive process of order one with independent components.

All …gures (true value of the Gaussian copula, bias and MSE) are expressed as percents of

percents (10¡4).

£10¡4 C(.01,.01) C(.05,.05) C(.25,.25) C(.5,.5) C(.75,.75) C(.95,.95) C(.99,.99)

True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00

Bias -0.09 -0.08 0.40 1.12 -0.90 -0.04 4.66

MSE 0.00 0.01 0.25 0.48 0.25 0.01 0.05

We may observe that the results are satisfactory both in terms of bias and MSE.

The pairs located in the tails of the distribution are well estimated. The pairs C(:01; :01);

C(:05; :05); in the left tail are of particular interest in risk management since they measure

the dependence of joint extreme losses.

We continue with a bivariate examplewhere the components Y1t and Y2t are dependent.

The parameters are A = (1; 1)0, vecB = (0:25;0:2;0:2;0:75)0 and vec§ = (:75; :5; :5;1:25)0.

The parameters of the Gaussian stationary distribution are then ¹ = (3:05;6:44)0 and

vec­ = (1:13; 1:49; 1:49;3:98)0 (correlation of 0.70). Since Y1t and Y2t are positively de-

pendent, we get C(u1;u2) > u1u2. Results are reported in Table 2. Bias and MSE

are higher when compared with the previous independent case. They are however still

satisfactory.

Table 2: Bias and MSE of kernel estimates of copulas

Bias and MSE have been computed on 5000 random samples of length 1024 from a

bivariate autoregressive process of order one with dependent components.

All …gures (true value of the Gaussian copula, bias and MSE) are expressed as percents of

percents (10¡4).
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£10¡4 C(.01,.01) C(.05,.05) C(.25,.25) C(.5,.5) C(.75,.75) C(.95,.95) C(.99,.99)

True 27.08 197.95 1511.74 3747.68 6511.74 9197.95 9827.08

Bias -7.47 -34.88 -130.32 -172.28 -130.53 -35.25 -7.65

MSE 0.01 0.18 1.98 3.36 1.99 0.18 0.01

5 Empirical illustrations

This section illustrates the implementation of the estimation procedure described in Sec-

tion 3. We analyse return data on two pairs of major stock indices: CAC40-DAX35, and

S&P500-DJI. The data are one day returns recorded daily from 03/01/1994 to 07/07/2000,

i.e. 1700 observations. We also report results for returns computed on a daily basis (rolling

returns) with a holding period of ten days instead of one day. This holding period is

favoured by the Basle Committee on Banking Supervision when quantifying trading risks.

Note that our asymptotic results derived in a dependent data framework cover the high

degree of autocorrelation that such a computation induces. We have selected bandwidth

values according to the usual rule of thumb (empirical standard deviation over the sample

length at the power one …fth), and used a Gaussian kernel 13 .

We start with the pair of European indices CAC40-DAX35. The linear correlation

coe¢cient between the two indices is 67.03%. Figure 1 reports plots of observed returns

and rank statistics divided by the number of observations. The left column corresponds

to one day returns while the right column corresponds to ten day returns. These plots

show that the dependence is more pronounced for the ten day returns. Indeed we have

more points situated on the diagonal for the ten day returns and their associated rank

statistics.

13 Other choices of kernels have not been found, as usually in nonparametric estimation, to a¤ect the

empirical results substantially.
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– Please insert Figure 1 –

Figure 1 : Returns and rank statistics for CAC40-DAX35

One day and ten day returns of the pair CAC40-DAX35 between 03/01/1994 and

07/07/2000 are plotted on the …rst line. The second line shows the associated rank statis-

tics divided by the number of observations.

Figure 2 gives 3D and contour plots of estimated copulas. The contour plot for the

ten day returns is closer to the shape given by the comonotonic copula, namely successive

straight lines at right angles on the diagonal, which also indicates higher dependence for

the ten day returns.

– Please insert Figure 2 –

Figure 2 : Copula estimates and contour plots for CAC40-DAX35

Estimated copulas of one day and ten day returns of the pair CAC40-DAX35 between

03/01/1994 and 07/07/2000 are plotted on the …rst line. The second line shows the asso-

ciated contour plots.

In Figure 3 we use estimates of the copulas to analyse positive quadrant dependence

(PQD). The …rst line of graphs shows that C(u1;u2) ¡ u1u2 is greater than zero, which

means that one day and ten day returns exhibit PQD. The di¤erence is larger in the

center of the distribution and decreases when we move to the extremes. Just below we …nd

comparison w.r.t. the comonotonic copula, i.e. min(u1; u2) ¡ C(u1;u2), and the Gaussian

copula, i.e. C(u1;u2) ¡ CGau(u1; u2; ½¤). The estimate ½̂¤ of the parameter ½¤ of the

Gaussian copula is obtained using the equation ½¤ = 2 sin(¼½=6) linking ½¤ with the rank

correlation ½ 14 . The hat of the ten day returns is lower than the hat of the one day
14 Estimates obtained from the empirical rank correlation or its smoothed counterpart lead to virtually

identical results.
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returns for comotonicity. This again indicates a higher dependence for the former than

for the latter. Interestingly the last line illustrates how smoothed copula estimates can be

used as graphical device to detect adequacy of parametric copula models. Indeed we may

observe that the Gaussian copula exhibits too low levels for small u1, u2 and large u1, u2.

In the center of the distribution this is the reverse.

– Please insert Figure 3 –

Figure 3 : Comparison with independent, comonotonic and Gaussian copulas

for CAC40-DAX35

The graphs successively compare nonparametric copula estimates with the independent

copula, the comonotonic copula and the Gaussian copula for the one day and ten day re-

turns of the pair CAC40-DAX35 between 03/01/1994 and 07/07/2000.

In Figure 4 copula derivatives are computed to study left tail decreasing behaviour

(LTD). The two lines carry graphs of C(u1;u2)=u2 ¡@C(u1;u2)=@u2, and C(u1; u2)=u1 ¡
@C(u1;u2)=@u1, respectively. Again we get positiveness, and LTD is thus present for both

stock indices and both holding periods. Besides, LTD is heavier for the ten day holding

period.

– Please insert Figure 4 –

Figure 4 : Left tail decreasing behaviour for CAC40-DAX35

The graphs show the left tail decreasing behaviour of the one day and ten day returns

of the pair CAC40-DAX35 between 03/01/1994 and 07/07/2000.

For the pair of US indices S&P500-DJI, we get Figures 5-8. The linear correlation

coe¢cient is equal to 93.25%. Comments made for European indices carry over. However

the dependence is higher for US indices. Indeed we get further clustering around the
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diagonal in Figure 5, even closer contour plots to the comonotonic plot in Figure 6, and

higher hats for positive quadrant dependence and comonotonicity in Figure 7.

– Please insert Figure 5 –

Figure 5 : Returns and rank statistics for S&P500-DJI

One day and ten day returns of the pair S&P500-DJI between 03/01/1994 and 07/07/2000

are plotted on the …rst line. The second line shows the associated order statistics divided

by the number of observations.

– Please insert Figure 6 –

Figure 6 : Copula estimates and contour plots for S&P500-DJI

Estimated copulas of one day and ten day returns of the pair S&P500-DJI between 03/01/1994

and 07/07/2000 are plotted on the …rst line. The second line shows the associated contour

plots.

– Please insert Figure 7 –

Figure 7 : Comparison with independent, comonotonic and Gaussian copulas

for S&P500-DJI

The graphs successively compare nonparametric copula estimates with the independent

copula, the comonotonic copula and the Gaussian copula for the one day and ten day

returns of the pair S&P500-DJI between 03/01/1994 and 07/07/2000.
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– Please insert Figure 8 –

Figure 8 : Left tail decreasing behaviour for S&P500-DJI

The graphs show the left tail decreasing behaviour of the one day and ten day returns

of the pair S&P500-DJI between 03/01/1994 and 07/07/2000.

As already mentioned in the comments of Figures 3 and 7 the Gaussian copula tends

to underestimate risk dependencies. One may then wonder what could be the impact of

using a Gaussian copula in computing a risk measure like the Value at Risk (VaR). Recall

that VaR for a two asset portfolio is implicitly de…ned through the equation:

P [¡a1Y1t ¡ a2Y2t > V aR(a1; a2;p)] = p; (12)

where (a1; a2) is the portfolio allocation in percentage and p is a small probability level, say

1%. An empirical counterpart of Equation (12) under the assumption of a Gaussian copula

and margins estimated by the corresponding individual empirical cumulative distribution

functions is simply:

TX

t=2

TX

t0=2
1f¡a1Y1(t) ¡ a2Y2(t0) > VaR(a1; a2; p)g¢HGau(Y1(t); Y2(t0); ½̂¤) = p;

where Y1(t), Y2(t0) denote order statistics and

¢HGau(Y1(t);Y2(t0); ½̂¤) = CGau(
t
T

;
t0

T
; ½̂¤) ¡CGau(

t ¡ 1
T

;
t0

T
; ½̂¤)

¡CGau(
t
T

;
t0 ¡ 1

T
; ½̂¤) +CGau(

t ¡ 1
T

;
t0 ¡ 1

T
; ½̂¤):

Tables 3 and 4 compare empirical VaR, i.e. empirical quantiles 15 of the distribution

of the portfolio losses ¡a1Y1t ¡ a2Y2t, and VaR obtained under a Gaussian copula spec-

i…cation. We have considered an equally weighted portfolio, i.e. a1 = a2 = 50%, and

p = 1%. Clearly the underestimation of risk dependencies by the Gaussian copula yields

an underestimation of the VaR portfolio.
15 Since smoothed quantiles are close to empirical ones we prefer to use here the empirical quantiles for

our point estimates. They are easier to implement and faster to compute.
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Table 3: Comparison of VaR estimates for CAC40-DAX35

VaR are computed for an equally weighted portfolio and a 99% loss probability level.

VaR estimates correspond to empirical VaR and VaR obtained under a Gaussian copula

speci…cation. They are computed for the one day and ten day returns of the pair CAC40-

DAX35 between 03/01/1994 and 07/07/2000.

Emp (1 day) Gau (1 day) Emp (10 day) Gau (10 day)

VaR 3.10% 2.75% 9.39% 8.53%

Table 4: Comparison of VaR estimates for S&P500-DJI

VaR are computed for an equally weighted portfolio and a 99% loss probability level.

VaR estimates correspond to empirical VaR and VaR obtained under a Gaussian copula

speci…cation. They are computed for the one day and ten day returns of the pair S&P500-

DJI between 03/01/1994 and 07/07/2000.

Emp (1 day) Gau (1 day) Emp (10 day) Gau (10 day)

VaR 2.53% 2.42% 7.04% 6.94%

Finally the two following tables deliver 90% con…dence intervals based on the asymp-

totic normality result of Corollary 1 for copula estimators. Since the asymptotic variance

involves an in…nite number of lags (see Equation (16)) it is necessary to truncate after

some point. We have chosen to keep 36 positive and 36 negative lags after having checked

stability of variance estimates. Copula derivatives appearing in the asymptotic variance

have been estimated with the estimators of Theorem 4, and covariances between indicator

functions with their empirical average counterparts.
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Table 5: Con…dence intervals of copula estimates for CAC40-DAX35

Con…dence intervals are based on a 90% level. All …gures (copula estimate, upper bound

and lower bound) are expressed as percents of percents (10¡4) and are given for the one

day and ten day returns of the pair CAC40-DAX35 between 03/01/1994 and 07/07/2000.

£10¡4 C(.01,.01) C(.05,.05) C(.25,.25) C(.5,.5) C(.75,.75) C(.95,.95) C(.99,.99)

Ĉ (1 day) 25.71 202.51 1321.46 3427.40 6455.62 9248.57 9856.22

up (1 day) 40.45 259.78 1422.07 3556.42 6569.22 9310.66 9874.62

low (1 day) 10.97 145.23 1220.85 3298.38 6342.01 9186.48 9837.81

Ĉ (10 day) 43.99 186.88 1595.76 3843.69 6609.97 9338.08 9937.30

up (10 day) 70.28 247.10 1730.37 3992.00 6783.05 9425.27 9942.20

low (10 day) 17.71 126.66 1461.14 3695.37 6436.90 9250.90 9932.40

Table 6: Con…dence intervals of copula estimates for S&P500-DJI

Con…dence intervals are based on a 90% level. All …gures (copula estimate, upper bound

and lower bound) are expressed as percents of percents (10¡4) and are given for the one

day and ten day returns of the pair S&P500-DJI between 03/01/1994 and 07/07/2000.

£10¡4 C(.01,.01) C(.05,.05) C(.25,.25) C(.5,.5) C(.75,.75) C(.95,.95) C(.99,.99)

Ĉ (1 day) 55.47 341.86 1859.67 4026.27 6839.94 9364.49 9879.73

up (1 day) 72.73 372.15 1946.85 4109.70 6904.53 9399.24 9893.02

low (1 day) 38.19 311.57 1772.49 3942.85 6775.35 9329.74 9866.45

Ĉ (10 day) 70.22 292.26 1781.33 4163.94 6910.56 9405.54 9952.28

up (10 day) 104.58 334.56 1894.72 4277.41 7014.44 9454.77 9958.42

low (10 day) 35.87 249.96 1667.95 4050.48 6806.68 9356.31 9946.13

6 Concluding remarks

In this paper we have proposed simple nonparametric estimation methods of copulas and

their derivatives. The procedure relies on a kernel approach in the context of general

stationary strong mixing multivariate processes, which provides smooth di¤erentiable es-

timators. These estimators have proven to be empirically relevant to the analysis of
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dependencies among stock index returns. In particular they reveal the di¤erent types of

dependence structures present in these data. Hence they complement ideally the existing

battery of nonparametric tools by providing speci…c instruments dedicated to dependence

measurement and joint risk analysis. They should also help to design goodness-of-…t tests

for copulas. This is under current research.
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APPENDIX

Proof of Theorem 2

Let us denote by FT the empirical c.d.f. associated with (Yt)t¸1, say

FT (y) = T¡1
TX

t=1
1fYt · yg:

We have for every y in Rn

F̂(y) =
Z

K(y ¡ v;h)FT (dv) =
Z

FT (y ¡h ¢ v)k(v)dv;

by a n-dimensional integration by parts. The “dot” in h ¢ v denotes the componentwise

product, i.e. y ¡h ¢ v corresponds to the vector (y1 ¡h1v1; : : : ; yn ¡hnvn). Moreover,

T 1=2(F̂ ¡ F)(y) ¡T 1=2(FT ¡ F)(y) = T1=2
Z

[(FT ¡ F)(y ¡ h ¢ v)

¡ (FT ¡F)(y)] k(v)dv + T1=2
Z

[F(y ¡ h ¢ v) ¡F (y)] k(v)dv ´ A1 + A2:

First, the equicontinuity of the process T1=2(FT ¡F) is a consequence of its weak conver-

gence (see Rio (2000)) :

Theorem 5. Let (Yt)t¸1 a stationary sequence in Rn. If each marginal c.d.f. Fj, j =

1; : : : ;n is continuous, if the process is ®-mixing and ®T = O(T¡a) for some a > 1, then

there exists a Gaussian process G, whose trajectories are uniformly continuous a.e. on Rn

endowed with the pseudo-metric

d(x;y) = sup
i=1;:::;n

jFi(xi) ¡Fi(yi)j;

and such that the empirical process T 1=2(FT ¡ F ) tends weakly to G in l1(Rn). The

covariance structure of the limiting process is given by Equation (11).

Thus, under such assumptions, and since k has a compact support, supy jA1j = oP (1).

Second, since F is Lipschitz continuous, the second term A2 is O(T 1=2h¤), or further

O(T1=2h2¤) if k is even. Thus, we have proved that

sup
y2Rn

jT1=2(F̂ ¡ F)(y)¡ T1=2(FT ¡ F)(y)j = oP(1); (13)
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hence the stated result. Note that we have proved Theorem 2 using the fact that F is

Lipschitz continuous which is weaker than Assumption 2. 2

Proof of Theorem 3

By the functional Delta-Method, we deduce the weak convergence of T 1=2(Ĉ ¡ C) in

l1([a; b]n), for every a;b, 0 < a < b < 1, exactly as in Van der Vaart and Wellner

(1996, p. 389), and we obtain the convergence of the …nite dimensional distributions.

Note that T 1=2(Ĉ ¡C)(u) is zero when one component of u is zero. Moreover, when one

component of u is 1, say the j-th component, then T 1=2(Ĉ ¡ C)(u) tends to a Gaussian

random variable that would be obtained if we had forgotten all the j-th components (in

other words, as if the observed random variables had been (Ykt)k 6=j). Let us …nally remark

that the weak convergence of T 1=2(Ĉ ¡C) can be proved in l1([0;1]n). This can be done

by exploiting the proximity between F̂ and FT provided by Theorem 2, and by mimicking

the proof of Theorem 10 in Fermanian et al. (2002). 2

Proof of Theorem 4

Letus remark that the Delta-Method provides us the limiting behaviour of the smoothed

empirical quantiles.

Theorem 6. Under Assumptions 1 and 2, for every uj 2]0;1[ and every j 2 f1; : : : ; ng,
³̂j is a consistent estimator of ³j ´ F¡1

j (uj). Moreover,

T 1=2(³̂j ¡ ³j)
law¡! N(0;¾2(uj));

where

¾2(uj) =
P
t2Z Cov(1fYj0 · ujg; 1fYjt · ujg)

f2j (³j)
¢

In particular, each ³̂j tends to ³j at the parametric rate T¡1=2. Note that Assumptions

3 and 4 imply Assumptions 1 and 2. We prove in the next theorem that the quantities

@pF̂ and f̂p converge at the slower rate (Thp)¡1=2. Thus, it will be convenient to replace
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each random quantity ³̂j by its limit ³j in @pF̂ (³̂) and f̂p(³̂p). The proof of the following

asymptotic result will be given later in the appendix.

Theorem 7. Under Assumptions 3 and 4, the random vector

(Thp)1=2
³
(@pF̂ ¡@pF)(y1); : : : ; (@pF̂ ¡@pF )(yd); (f̂p ¡ fp)(yp1); : : : ; (f̂p ¡ fp)(ypd)

´

tends weakly to a centered Gaussian vector whose covariance matrix § = (¾i;j)1·i;j·2d, is

characterized by

¾i;j = ¾j;i = @pF (yi ^ yj)
Z

k2p; if ypi = ypj ;

¾i+d;j+d = ¾j+d;i+d = fp(ypi)
Z

k2p; if ypi = ypj ;

¾i;j+d = ¾j+d;i = @pF(yi)
Z

k2p; if ypi = ypj ;

¾i;j = ¾i+d;j = ¾i;j+d = ¾i+d;j+d = 0; otherwise;

for every i; j in f1; : : : ; dg.

We have denoted yi ^ yj the minimum of yi and yj componentwise, say

(min(y1i; y1j); : : : ;min(yni; ynj)). Let us now turn to the initial problem, namely the limit

in law of

(Thp)1=2
³
(@pĈ ¡ @pC)(u1); : : : ; (@pĈ ¡ @pC)(ud)

´
;

where (u1; : : : ; ud) is some point in ]0;1[nd. Since every ³̂j tends to ³j ´ F¡1
j (uj) at the

rate T¡1=2, and since f̂p(³p) tends to fp(³p) at the slower rate (Thp)¡1=2, the asymptotic

behaviour of f̂p(³̂p) will be the same as the one of f̂p(³p). We however still need a continuity

argument. If kp is twice continuously di¤erentiable, k00p being bounded,

f̂p(³̂p) = f̂p(³p) + f̂ 0p(³p):(³̂p ¡ ³p) +
(³̂p ¡ ³p)2

2Th3
p

TX

t=1
k00p

Ã
³¤p ¡ Ypt

hp

!

= f̂p(³p) + f̂ 0p(³p):(³̂p ¡ ³p) +
(³̂p ¡ ³p)2

2Th3
p

O(T);

where j³¤p ¡ ³pj · j³̂p ¡ ³pj. It can be proved easily that f̂ 0p(³p) is OP (1) (for instance by

use of an exponential inequality, or even the Markov inequality). Thus,

(Thp)1=2(f̂p(³̂p) ¡ fp(³p)) = (Thp)1=2(f̂p¡ fp)(³p) + OP((Thp)1=2T¡1=2)

+ OP ((Thp)1=2T¡1h¡3p ) = (Thp)1=2(f̂p¡ fp)(³p) + OP(h1=2p ) +OP (T¡1=2h¡5=2p ):
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This quantity tends to zero when Th5p tends to zero. Exactly in the same way, we get

under the same assumptions:

(Thp)1=2(@pF̂ (³̂) ¡ @pF(³)) = (Thp)1=2(@pF̂ ¡@pF )(³) + oP(1):

Therefore, for any numbers (¸j)j=1;:::;d, we get
dX

j=1
j̧
n
@pĈ(uj) ¡ @pC(uj)

o
=
dX

j=1
¸j

(
@pF̂ (³̂j)
f̂p(³̂pj)

¡ @pF(³j)
fp(³pj)

)

=
dX

j=1
¸j

(
@pF̂(³̂j)

f̂p(³̂pj)fp(³pj)
[fp(³pj) ¡ f̂p(³̂pj)] +

@pF̂(³̂j) ¡ @pF(³j)
fp(³pj)

)

=
dX

j=1
¸j

(
@pF(³j)
f2
p (³pj)

[fp(³pj) ¡ f̂p(³pj)] +
@pF̂(³j) ¡@pF (³j)

fp(³pj)
+ oP((Thp)¡1=2)

)
:

Then we may apply Theorem 7 which delivers asymptotic normality. The asymptotic

covariance matrix is also easily deduced from the covariance expressions of Theorem 7:

¾¤i;j =
1

fp(³pi)fp(³pj)
¾ij +

@pF(³i)@pF(³j)
f2
p (³pi)f2

p (³pj)
¾i+d;j+d

¡ @pF (³j)
f2
p (³pj)fp(³pi))

¾i;j+d ¡ @pF(³i)
f2
p (³pi)fp(³pj))

¾i+d;j :2 (14)

Proof of Theorem 7

It is su¢cient to prove that

(Thp)1=2
dX

i=1
¸i(@pF̂ ¡@pF )(yi) + (Thp)1=2

dX

i=1
¹i(f̂p ¡ fp)(ypi)

tends weakly to a centered Gaussian random variable whose variance takes the form
P
i;j i̧¹j¾2

i;j , for any real numbers i̧, ¹j , i; j = 1; :::; d. Let us …rst deal with the bias

term. Consider (Thp)1=2
Pd
i=1 i̧(E[@pF̂ ] ¡@pF )(yi). As usually,

E[@pF̂ (yi)] ¡@pF(yi) = h¡1p
Z

@pK (yi¡ u; h) F (du) ¡ @pF(yi)

= h¡1p
Z

F(yi ¡h ¢ u)k0p(up)

0
@Y

l 6=p
kl(ul)dul

1
A dup ¡@pF (yi)

=
Z

@pF (yi ¡h ¢ u)k(u)du¡ @pF(yi)

= O(h¤);
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since @pF is Lipschitz continuous. Then, this bias term is negligible under our assumptions.

Similarly, (Thp)1=2
Pd
i=1 ¹i(E[f̂p] ¡ f)(ypi) is o(1) under the same assumptions.

Second, to obtain the asymptotic normality, the simplest way to proceed is to apply

Lemma 7.1 in Robinson (1983) 16. In his notations, set p = 2d, ai = hp, as well as

VitT = ¸i f(@pK) (yi¡ Yt; h) ¡ E [(@pK) (yi ¡ Yt;h)]g ;

and

V ¤
itT = ¹i fkp (ypi ¡Ypt; hp) ¡ E [kp (ypi¡ Ypt;hp)]g :

We now verify the conditions of validity of Lemma 7.1 in Robinson (1983).

Note that, by successive integration by parts, we get

E[V 2
itT] = ¸2i

(Z
(@pK)2 (yi ¡u;h) F(du) ¡

µZ
(@pK) (yi ¡u;h) F(du)

¶2
)

= ¸2
i

8
><
>:

Z
F(yi ¡h ¢ u)2n(kk0)p(up)

Y

l6=p
(kK)l(ul)du ¡

0
@

Z
F(yi¡ h ¢ u)k0p(up)

Y

l 6=p
kl(ul)du

1
A

2
9
>=
>;

= hp¸2
i

8
<
:

Z
@pF(yi¡ h ¢ u)2n¡1k2p(up)

Y

l6=p
(kK)l(ul)du

¡ hp

0
@

Z
@pF(yi ¡ h ¢ u)kp(up)

Y

l6=p
kl(ul)du

1
A

2
9
>=
>;

= 2n¡1hp¸2
i@pF (yi)

Z
k2p(up)

Y

l 6=p
(kK)l(ul)du+ O(h2¤) = ¸2ihp¾

2
ii + O(h2¤):

Moreover, by similar computations, if i 6= j,

E[VitTVjtT ] = ¸i¸j
½Z

(@pK) (yi ¡u;h) (@pK) (yj ¡ u; h) F (du)

¡
µZ

(@pK) (yi¡ u; h) F(du)
¶

:
µZ

(@pK) (yj ¡u;h) F(du)
¶¾

= ¸i¸j
½Z

F(yi¡ h ¢ u)
h
k0p(up)kp((ypj ¡ ypi)=hp+ up) + kp(up)k0p((ypj ¡ ypi)=hp +up)

i

¢
Y

l6=p
[kl(ul)Kl((ylj ¡ yli)=hl +ul) +Kl(ul)kl((ylj ¡ yli)=hl +ul)] du+ O(h2¤):

9
=
;

16 see e.g. Bierens (1985) or Bosq (1998) for some alternative sets of assumptions
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If yip 6= yjp, then kp((ypi¡ypj)=hp+up) and k0p((ypi¡ypj)=hp+up) is zero for every up 2 Ap,

for hp su¢ciently small. We get that E[VitTVjtT ] = 0 in this case, for T su¢ciently large.

Thus, let us assume ypi = ypj . For any index l 6= p, notice that Kl((ylj ¡ yli)=hl + ul)

is zero if ylj < yli and is one if ylj > yli, for T su¢ciently large. In the …rst case,

set the change of variable yli ¡ hl:ul = ylj ¡ hl:vl. The l-th factor in brackets becomes

kl(vl)Kl((yli¡ ylj)=hl + vl), which is kl(vl) for T su¢ciently large. In the second case, the

latter factor is kl(ul). Thus, E[VitTVjtT]) is nonzero only if ypi = ypj and, for T su¢ciently

large,

E[VitTVjtT ] = ¸i¸j

8
<
:

Z
F(yi ^ yj ¡ h ¢ u)2k0p(up)kp(up) ¢

Y

l 6=p
kl(ul)du +O(h2

¤):

9
=
; (15)

By an integration by parts with respect to up (similarly as for E[V 2
itT ]), we get easily

E[VitTVjtT] = i̧ j̧hp¾2
ij + o(h¤):

Similar computations yield

E[V ¤
itTV ¤

jtT ] = hp¹i¹jfp(ypi)
Z

k2p + oP(hp);

if ypi = ypi, and E[V ¤
itTV

¤
jtT] = oP(hp) otherwise. Moreover,

E[V ¤
itTVjtT ] = ¹i¸j

Z
kp

Ã
ypi ¡up

hp

!
(@pK) (yj ¡ u; h) F(du)+ OP(h2

p)

= ¹i j̧
Z

F(yj ¡h ¢ u)
Y

l6=p
kl(ul)

(
kp(up)k0p

Ã
ypi ¡ ypj

hp
+up

!

+ k0p(up)kp

Ã
ypi ¡ ypj

hp
+up

!)
du +OP(h2p):

If ypi 6= ypj , the latter quantity is zero for T su¢ciently large. Otherwise, it is equivalent

to ¹i j̧hp@pF(yj)
R

k2p.
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Thus, condition A:7:3 of Robinson (1983) is satis…ed. It remains to verify condition

A:7:4. For every i 6= j and t 6= t0,

E[jVitTVjt0Tj] = i̧ j̧

Z ¯̄
¯̄(@pK) (yi ¡ u;h) ¡

µZ
(@pK) (yi ¡u;h) F(du)

¶¯̄
¯̄

¢
¯̄
¯̄(@pK) (yj ¡ v; h) ¡

µZ
(@pK) (yj ¡ v;h) F(dv)

¶¯̄
¯̄ F(Yt;Yt0)(du; dv)

· Cst:h2p i̧ j̧
Z 0

@
¯̄
¯̄
¯̄kp(up)

Y

l 6=p
Kl

µ
yli¡ ul

h

¶¯̄
¯̄
¯̄ + 1

1
A

0
@

¯̄
¯̄
¯̄kp(vp)

Y

l 6=p
Kl

µ
ylj ¡ vl

h

¶¯̄
¯̄
¯̄ +1

1
A

ft;t0(u¡p; ypi ¡ hpup;v¡p; ypj ¡hpvp)du dv:

Under our assumptions, the latter quantity if O(h2¤). Using similar boundings the same

property is satis…ed for E[jVitTV ¤
jt0T j] and E[jV ¤

itTV ¤
jt0T j].

The other conditions of Lemma 7.1 in Robinson (1983) are clearly satis…ed. Note

that our condition 4 (a) implies Robinson’s one on the mixing coe¢cients, i.e.
P+1
t=T ®t =

O(T¡1). Hence we have indeed proved the stated result. 2
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Asymptotic covariance matrix in Corollary 1

The limiting distribution of S is a centered Gaussian vector whose covariance matrix

has the following (i; j)-th term:

E[Á0(G)(vi)Á0(G)(vj)] = E[G(³i)G(³j)] ¡
nX

k=1
@kC(vi)E[G(+1; : : : ; ³ki; : : : ; +1)G(³j)]

¡
nX

k=1
@kC(vj)E[G(+1; : : : ; ³kj ; : : : ; +1)G(³i)]

+
nX

k;l=1
@kC(vi)@lC(vj)E[G(+1; : : : ; ³ki; : : : ; +1)G(+1; : : : ; ³lj ; : : : ; +1)]

As previously, for every i = 1; : : : ; d, we have denoted by ³i the n-dimensional vector

(³1i; : : : ; ³ni) = (F¡1
1 (v1i); : : : ;F¡1

n (vni)):

Recalling Equation (11), we get

E[Á0(G)(vi)Á0(G)(vj)] =
X

t2Z
Cov(1fY0 · ³ig;1fYt · ³jg)

¡
nX

k=1
@kC(vi)

X

t2Z
Cov(1fY0k · ³kig;1fYt · ³jg)

¡
nX

k=1
@kC(vj)

X

t2Z
Cov(1fY0 · ³ig;1fYtk · ³kjg)

+
nX

k;l=1
@kC(vi)@lC(vj)

X

t2Z
Cov(1fY0k · ³kig;1fYtl · ³ljg): (16)
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Figures 1-8

Figure 1 : Returns and rank statistics for CAC40-DAX35

Figure 2 : Copula estimates and contour plots for CAC40-DAX35

Figure 3 : Comparison with independent, comonotonic and Gaussian copu-

las for CAC40-DAX35

Figure 4 : Left tail decreasing behaviour for CAC40-DAX35

Figure 5 : Returns and rank statistics for S&P500-DJI

Figure 6 : Copula estimates and contour plots for S&P500-DJI

Figure 7 : Comparison with independent, comonotonic and Gaussian copu-

las for S&P500-DJI

Figure 8 : Left tail decreasing behaviour for S&P500-DJI
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