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Abstract

We propose new closed-form pricing formulas for interest rate options which guarantee per-

fect compatibility with volatility smiles. These cap pricing formulas are computed under

variance optimal measures in the framework of the market model or the Gaussian model

and achieve an exact calibration of observed market prices. They are presented in a general

setting allowing to study model and num�eraire choice e�ects on the computed prices. We

show that price sensitivities of pricing formulas with respect to observed option prices are

equal to mean-variance hedging portfolio holdings. We also show that the theoretical cap

prices are equal to the cost of the hedging portfolio, thus closing the gap between pricing

and hedging. A numerical example and an empirical application on market data are given

to illustrate the practical use of the calibration procedure.
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Introduction

For accounting and regulatory purposes, assessing the value of a portfolio of interest rate

derivative assets is one of the tasks carried out by �nancial institutions. Such �nancial assets

are routinely used to tailor the interest rate risk exposure induced by existing deposits and

loans, and are now part of standard �nancial products such as capped mortgage loans.

Financial institutions such as investment banks must evaluate them in accordance with

observed prices of liquid �nancial products, following the \mark-to-market" principle. For

banks managing large portfolios, only a few option prices are observed and unobserved

prices must thus be inferred in order to get the current market value of the book. Indeed

the relevant information is di�cult and costly to obtain and only a small part of portfolios

corresponds to assets whose prices are easily available. The unobserved option prices are in

general rebuilt through the use of pricing models.

It is a well known feature that the standard Black-Scholes model is not consistent

with observed option prices of di�erent exercise prices and leads to the presence of volatility

smiles (see e.g. Bates (1996), Bakshi, Cao and Chen (1997)). As we show below,

similar departures occur between standard interest rate option pricing models and quoted

market prices of interest rate options. Recently some authors have raised the problem

of calibrating pricing models to volatility smiles. In the case of stocks or exchange rates

(Madan andMilne (1994), Rubinstein (1994), Buchen andKelly (1996), Jackwerth

and Rubinstein (1996), Magnien, Prigent and Trannoy (1996), Avellaneda et al.

(1997), Laurent and Leisen (1998)), risk neutral densities can be extracted from a �nite

set of observed option prices.

The bayesian implied approach initiated by Buchen and Kelly (1996), Jackwerth

and Rubinstein (1996), consists in slightly modifying an a priori structural option pricing

model so that a perfect calibration to all observed option prices can be achieved. The

modi�ed pricing model will thus be exactly calibrated and remain economically sound. The

di�erence between the a priori and a posteriori models is similar to an error term due to

omission of various e�ects and variables in the initial structural model. Unlike practices

relying on interpolating volatility smiles, this approach is aimed to provide proper risk-

neutral densities, i.e. positive and integrating to one. Once the risk-neutral densities have

been obtained, the option prices are then computed by some numerical integration procedure.

Thus, the bayesian implied approach provides a consistent pricing scheme.

Other implied approaches, commonly used by practitioners to build option pricing mod-

els face various di�culties. These are based upon Breeden and Litzenberger (1978)

idea that a complete set of observed option prices fully determines the pricing kernel. Der-

man and Kani (1994), Rubinstein (1994), Dupire (1996) extend these approaches to the
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dynamic case. Since there are usually less traded options than states of the world, various

arti�cial methods are used to �ll in missing option prices. Shimko (1993) shows that inter-

polation of implied volatilities is likely to provide negative risk-neutral densities or densities

which do not integrate to one. Derman, Kani and Chriss (1996) show that the existence

of implied option pricing models cannot be guaranteed. Because of the arti�cial information

put in the model, the hedging performance and out of sample consistency of these models

are usually poor as shown in Dumas, Fleming and Whaley (1998).

The aim of this paper is to present an implied bayesian approach in the framework of

interest rate options. Unlike previous studies, we consider both pricing and hedging issues.

1. As shown byDumas, Fleming andWhaley (1998), the main weakness of the implied

approach lies in its hedging performance. Either it is not considered at all, either the

building of some implied risk-neutral density is related to some unrealistic assumption

of complete markets. Our implied approach can be used to build hedging portfolios

based on all traded options. The derivatives of the pricing formulas w.r.t. observed

option prices are in fact equal to the portfolio holdings in the optimal mean-variance

hedging portfolio. The caplet prices provided by the explicit pricing formula are shown

to be equal to the cost of the hedging portfolio, thus closing the gap between pricing

and hedging and providing a comprehensive model.

2. A characteristic of interest rate modeling is the importance of the change of num�eraire

technique (El Karoui and Rochet (1989), Geman, El Karoui and Rochet

(1995), Jamshidian (1993, 1997)). We show here, by suitable changes of num�eraires,

that it is possible to directly derive explicit option pricing formulas consistent with

observed volatility smiles. The retained a priori models are the well known market

and Gaussian models.

3. Our implied approach is essentially static, i.e. does not allow for dynamic trading.

The space of attainable claims is made of linear combinations of traded interest rate

derivatives and is thus of �nite dimension. The market is here incomplete unlike

the standard case where prices of interest rate derivatives are uniquely determined

and equal to the prices of dynamic self-�nancing replicating portfolios. There are both

technical, economic and practical advantages to this static approach. First, our pricing

formulas are consistent with volatility smiles by construction. In complete markets, the

deterministic relationships between derivative and underlying asset prices are rejected

by the data leading to the immediate conclusion that pricing models are misspeci�ed.

As far as hedging is concerned, dynamic portfolios are more sensitive to transaction

costs than static ones. Moreover, the hedging properties of our static approach are
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likely to be better since the hedge involves holding a portfolio of all observed liquid

caplets of the same maturity. In practice it is very easy to implement and only requires

to solve linear equations. Lastly, the static approach only relies on measure theory

and does not require the sophisticated apparatus of semimartingale theory.

In Section 1, we recall market practice regarding Libor rates and present payo�s and

num�eraires that are commonly used in interest rate modeling such as FRAs, caps, ... It

provides the basic notations and paves the way towards Sections 2 to 3.

In Section 2 we describe the implied model approach for the pricing and hedging of

interest rate derivatives. We focus on the variance optimal measures of Schweizer (1992).

We link the induced price with the approximation price, i.e. the price of the best mean-

variance hedging portfolio, and give its sensitivities (deltas) w.r.t. observed prices.

In Section 3, we consider closed-form pricing formulas for interest rate options, based on

variance optimal measures, that are consistent with observed volatility smiles. These pricing

formulas are simple and easy to compute.

Eventually, Section 4 contains a numerical example and an empirical application based

on real market data (DEM caplet prices). This section aims to show that the calibration

procedure is straightforward to implement and can be used in real time applications to

provide prices and hedging portfolios.

Concluding remarks are given in Section 5.

1 The market

We begin with the description of what forms the ground of our analysis. We focus on Libor

rates (i.e. money market rates quoted among banks in London) and later consider asset

payo�s that depend on these Libor rates. FRAs, interest rate swaps and caps on Libor rates

are the main products on the OTC interest rate derivatives market. A typical plain vanilla

cap on three month Libor will pay every three months the positive part of the di�erence

between the current three month Libor and a predetermined rate called the exercise (or

strike) rate until the expiration of the cap. Usual cap maturities vary from six months to

ten years. The reference Libor is often a three month Libor, although other references are

not scarce. This means that caps are long term options based on short term money market

rates. The Libor may correspond to USD rates but other active markets exist in other

currencies (for example, DEM). Each individual payment of a cap is a separate �nancial

contract, named a caplet (see e.g. Brace, Gatarek and Musiela (1997), Jamshidian

(1997), Musiela and Rutkowski (1997) for illustrations). Thus a cap is a collection of

caplets. If one is able to price a caplet (the building block of a cap) the valuation of the
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cap is straightforward. Let us remark that caplets have to be distinguished from options on

continuously compounded discount bond yields since the caplet payo�s are based on money

market conventions (Longstaff (1990), Leblanc and Scaillet (1998)).

1.1 Libor rates and forward prices

We adopt the usual international conventions in terms of interest rate �xing and delivery

dates for interbank deposits, three-month Libor swaps, and three-month Libor caps and

swaptions. Typically, this time period has three dates, the �rst date �0 corresponding to

the �xing of the Libor which prevails between the dates �1 and �2 (�0 < �1 < �2). The date

�2, i.e. the payment date of the Libor. In London, date �1 is two trading days after date

�0. Time spaces between these dates may vary because of the presence of nontrading days

and generally di�er when one shifts to another underlying interest rate reference for the

contracts.

Along the paper, we assume that discount bonds maturing at dates �2 and �1 are traded

assets and that their prices are observed at date 0 and date �0. Libor rates and forward prices

are de�ned in Table 1 where B(�0; �2) is the price at date �0 of the discount bond delivering

one money unit, say a Deutsche Mark (DEM) or a Euro, at date �2, � = J (�1; �2) =360 and

J (�1; �2) are the number of years and the number of days between �1 and �2, respectively.

Table 1 : Libor rates and forward prices

Libor at date �0 x = x(�0) �
�1B(�0; �1)�B(�0; �2)

B(�0; �2)

Forward Libor (date 0) x(0) �
�1B(0; �1)�B(0; �2)

B(0; �2)

Forward price at date �0 z
�1 = B(�0; �1; �2)

B(�0; �2)

B(�0; �1)

Forward price at date 0 B(0; �1; �2)
B(0; �2)

B(0; �1)

The forward Libor x(0) is the Libor which one is able to lock at date 0. The forward

Libor x(0) is thus equivalent to the �xed rate of an FRA (forward rate agreement) on the

Libor with maturity date �0. The forward price at date �0 of a discount bond with maturity

�2 � �1 at date �1 is given by the ratio : B(�0; �1; �2) = B(�0; �2)=B(�0; �1), and we deduce

the relation between the inverse of the forward price z and Libor rate x :

z = 1 + �x: (1.1)

In some cases writing num�eraires, asset payo�s or risk neutral measures in terms of the

inverse of the forward price will lead to simpler computations.
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1.2 Num�eraires and asset payo�s

An asset payo� is characterized by an amount paid in a given num�eraire at a given date. For

obvious practical purposes, there is often a delay between the time when the asset payo� is

determined (the so-called �xing date) and its payment date. This can be viewed (through a

standard discounting argument) as receiving at the �xing date a given amount of discount

bonds maturing at the payment date. This means that the num�eraire can precisely be this

discount bond. In our context the �xing date is �0, and we consider amounts known at

that time which depend on the Libor rate x. These amounts can be expressed in one of the

following three useful num�eraires in interest rate modeling:

� the discount bond maturing at �1 [the �rst num�eraire U1].

� the discount bond maturing at �2 [the second num�eraire U2].

� the \exchange principal asset" : one discount bond maturing at �1 in long (buy) posi-

tion and one discount bond maturing at �2 in short (sell) position [the third num�eraire

U3].

We denote by Ui(� ), the price at time �; � = 0; �0, of num�eraire Ui :

8>><
>>:

U1(� ) = B(�; �1);

U2(� ) = B(�; �2);

U3(� ) = B(�; �1)�B(�; �2):

Each num�eraire will be used later in the derivation of the cap pricing formulas. In general

they play a crucial role when considering various interest rate derivatives. Forward measures,

Libor and dual swap measures (each of them related to a di�erent num�eraire) prove to be a

key tool for computing pricing formulas for interest rate options such as caps and swaptions.

A suitable choice of num�eraire and clever use of exchange rates between num�eraires often

ease price computations (see Section 3.1). We also denote by Ui=j(� ) the exchange rate

between num�eraires Ui and Uj (the relative price of Ui w.r.t. Uj) at date � :

Ui=j(� ) =
Ui(� )

Uj(� )
; � = 0; �0; i; j = 1; 2; 3: (1.2)

From Table 1 we can directly deduce the exchange rates between the num�eraires at date

�0 (see Table 2) as functions of x, the Libor rate at date �0.
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Table 2 : Exchange rates between num�eraires (Libor)

num�eraire 1 num�eraire 2 num�eraire 3

num�eraire 1 U1=1(�0) = 1 U1=2(�0) = 1 + �x U1=3(�0) =
1 + �x

�x

num�eraire 2 U2=1(�0) =
1

1 + �x
U2=2(�0) = 1 U2=3(�0) =

1

�x

num�eraire 3 U3=1(�0) =
�x

1 + �x
U3=2(�0) = �x U3=3(�0) = 1

We are thus able to express the payo�s of standard �nancial contracts, such as caplets

and digital caplets, in units of these three num�eraires. Note that digital caplets are also

traded on interest rate markets though less frequently than caplets. They are often used

when customizing �nancial asset payo�s involving an interest rate guarantee. The payo�

expressions are gathered in Table 3 where (x� c)+ = max(0; x� c), I1x(�0)�c = 1 if x(�0) � c

and 0 otherwise, gi (i = 1; 2; 3) is a real function, and c is the exercise rate.

Table 3 : Num�eraires and asset payo�s (Libor)

num�eraire 1 num�eraire 2 num�eraire 3

Discount bond �1 1 1 + �x
1 + �x

�x

Discount bond �2
1

1 + �x
1

1

�x

FRA
(x� c)�

1 + �x
(x� c)�

(x� c)

x

Caplet
(x� c)+�

1 + �x
(x� c)+�

(x� c)+

x

Digital Caplet
I1x�c

1 + �x
I1x�c

I1x�c

�x

General asset g1(x) g2(x) = (1 + �x)g1(x) g3(x) =
1 + �x

�x
g1(x)

These payo�s share the remarkable property that they only depend on the Libor rate x.

It is clear that whatever the num�eraire, the same amount of cash will be received at date

�2. Let us also remark that for any given asset, the following num�eraire invariance property

holds :

gi = Uj=i(�0)gj; 8i; j = 1; 2; 3: (1.3)

From equation (1.1), we can express the exchange rates between the three num�eraires at

date �0 as functions of the inverse of the forward price z (see Table 4).
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Table 4 : Exchange rates between num�eraires (inverse of forward price)

num�eraire 1 num�eraire 2 num�eraire 3

num�eraire 1 1 z
z

z � 1

num�eraire 2
1

z
1

1

z � 1

num�eraire 3
z � 1

z
z � 1 1

Similarly payo�s may be rewritten using the inverse of the forward discount bond price

instead of the Libor. They are shown in Table 5 where :

�gi(z) = gi((z � 1)=�); i = 1; 2; 3: (1.4)

Table 5 : Num�eraires and asset payo�s (inverse of forward price)

num�eraire 1 num�eraire 2 num�eraire 3

Discount bond �1 1 z
z

z � 1

Discount bond �2
1

z
1

1

z � 1

FRA
z � (1 + �c)

z
z � (1 + c�)

z � (1 + c�)

z � 1

Caplet
(z � (1 + �c))+

z
(z � (1 + c�))+

(z � (1 + c�))+

z � 1

Digital Caplet
I1z�1+�c

z
I1z�1+�c

I1z�1+�c

z � 1

General asset �g1(z) �g2(z) = z�g1(z) �g3(z) =
z

z � 1
�g1(z)

Let us remark that for any given asset, the following num�eraire invariance property holds :

�gi = Uj=i(�0)�gj; 8i; j = 1; 2; 3: (1.5)

2 Pricing and hedging interest rate derivatives in an

implied approach

We now consider the procedure for building viable pricing and hedging models from an a

priori pricing model and a set of observed prices in the framework of interest rate derivatives.

2.1 A priori pricing models

The a priori measure is usually associated with a caplet pricing model derived either in

discrete or continuous time, from equilibrium or arbitrage arguments. In other words the a
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priori model is a kind of benchmark or structural model. A characteristic of interest rate

pricing models is their multiplicity. The setting ofHeath, Jarrow andMorton (hereafter

HJM) (1992) with its applications in the Gaussian case and in the lognormal case provides

an illustration. For a detailed presentation of these two widely used and documentated

models we refer to Miltersen, Sandmann and Sonderman (1997), Jamshidian (1997),

Musiela and Rutkowski (1997) for the lognormal or market model, and to El Karoui

andRochet (1989), El Karoui,Myneni andViswanathan (1992), Jamshidian (1993),

Brace and Musiela (1994) for the Gaussian model. Since these models are adopted by

market practitionners, we will consider one or another as an a priori model. We will show

thereafter that both a priori models lead to tractable implied models.

Before recalling the caplet pricing formulas in these two models, let us introduce a

probability measure � for the Libor rate x on B[a;b], the Borel algebra for the interval [a; b] �
IR. This probability measure can be discrete or continuous without loss of generality. The

bounds a and bmay be seen as lower and upper bounds for Libor rates and b may be in�nite.

The measure � may be viewed as a technical reference measure as in Madan and Milne

(1994) and Elliott and Madan (1998). It may be taken equal to the Lebesgue measure

or a lognormal measure in order to ease computations. It may also be chosen in order to

re
ect expectations based on historical observations, and will then be related to the so-called

historical measure.

In Section 1, we have de�ned some exchange rates between the num�eraires : 1 + x�, x�,

1=(1 + x�), ... For these exchange rates to be well behaved we assume that they are strictly

positive, � a.s.. Hence we will not necessarily consider all num�eraires when considering pric-

ing models and we will restrict ourselves in practical applications to a subset of num�eraires

whose exchange rates are strictly positive. Furthermore we assume that the num�eraires have

�nite moments of order 2 under �. This guarantees that all caplet and digital caplet payo�s

are in L
2(�). If � is the historical measure on Libor rates, the tail index tells us whether

Libor rates exhibit too heavy tails (Levy distributions) to ensure that caplet payo�s are in

L
2(�). If � is another reference measure (such as a lognormal one), it usually involves �nite

moments of any order.

Finally, since z = 1+�x (equation (1.1)), the probability measure �� on B[1+�a;1+�b] related

to the inverse of the forward discount bond price z can be readily derived from the knowledge

of �.

A. Market model

In the market model the Libor rate is assumed to be lognormal under �, and is equal

to :

x =
U3(0)

U2(0)�
exp

 
�
p
�0 "�

�
2
�0

2

!
; (2.6)
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where " is a standard Gaussian variable (with cdf denoted by �) under the pricing measure

associated with num�eraire U2. This leads to the following pricing formula :8>>>>>>>>>><
>>>>>>>>>>:

Cap(c) = U3(0)�(d1)� c�U2(0)�(d2);

with :

d1 =
1

�
p
�0

log

 
U3(0)

U2(0)c�

!
+
�

2

p
�0;

and :

d2 = d1 � �
p
�0:

(2.7)

The formula (2.7) is parametrized through the volatility � of the forward Libor, and is a

Black-Scholes formula on interest rate. Thanks to this example we can notice that our

framework also covers the standard stock and exchange rate cases after adequate substitution

for the underlying asset.

B. Gaussian model

In this model, the inverse of the forward price is assumed to be lognormal under ��, and

is equal to :

z =
U1(0)

U2(0)
exp

 
��
p
�0 "�

��2
�0

2

!
; (2.8)

where " is a standard Gaussian variable under the pricing measure associated with num�eraire

U2. This gives : 8>>>>>>>>>><
>>>>>>>>>>:

Cap(c) = U1(0)�
�
�d1
�
� (1 + c�)U2(0)�

�
�d2
�
;

with :

�d1 =
1

��
p
�0

log

 
U1(0)

U2(0)(1 + c�)

!
+

��

2

p
�0;

and :

�d2 = �d1 � ��
p
�0:

(2.9)

The parameter in the caplet pricing formula (2.9) is ��. In the Vasicek model (Vasicek

(1977)), ��2
�0 specializes to :

��2
�0 =

�
2

2�3

��
e
��(�2��0) � e

��(�1��0)
�2
�
�
e
���2 � e

���1
�2�

; (2.10)

which involves two parameters � and �, the volatility and the mean reversion coe�cient of

the instantaneous interest rate, respectively.

2.2 Variance optimal pricing models

We introduce a sequence of observed prices, i.e. a �nite sequence of pairs : (gi;j ; Pj), j 2 J;

i = 1; 2; 3, where Pj stands for the observed price of the asset delivering gi;j units of Ui at
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date �2. These payo�s gi;j are related by the num�eraire invariance property (1.3) and have

�nite moments of order 2 under �, i.e. gi;j 2 L
2(�). The sequence of observed prices may

in particular include observed caplet prices with di�erent exercise rates. We will further

assume that the sequence of observed prices includes two out of the three num�eraires (the

third one beeing deduced by linear combination). We denote by Gi, the subspace of L
2(�)

spanned by (gi;j); j 2 J ; it is the (static) investment opportunity set.

Let us take the discount bond U2 for num�eraire (as in the market and Gaussian model),

and introduce di�erent sets of risk neutral densities. By taking any element of such sets,

we can build a pricing model consistent with observed prices. The set F e
2 of equivalent

risk-neutral probability densities associated to num�eraire U2 is de�ned by :

F e
2 =

�
f2 2 L

2(�); f2 > 0; U2(0)

Z
g2;jf2d� = Pj ; 8j 2 J

�
:

The other spaces involved in the choice among risk neutral measures will be F2 the set of

risk-neutral probability densities associated to num�eraire U2 absolutely continuous w.r.t. � :

F2 =

�
f2 2 L

2(�); f2 � 0; U2(0)
Z
g2;jf2d� = Pj ; 8j 2 J

�
;

and F s
2 the set of risk-neutral signed-measure densities associated to num�eraire U2 :

F s
2 =

�
f2 2 L

2(�); U2(0)

Z
g2;jf2d� = Pj ; 8j 2 J

�
:

Since the num�eraires are assumed to be observed, (g2;j = 1; U2(0)) belongs to the sequence

of observed prices which implies :
R
f2d� = 1.

Let us now consider an a priori pricing model, say the market model. We denote by f0�2 ,

the density of this a priori model w.r.t �, associated to num�eraire U2. It is indexed � in order

to explicitly show its dependence on the volatility parameter. If the a priori model is not

consistent with observed option prices, f0�2 /2 F e
2 , the basic idea in the implied approach is

to �nd a probability measure as close as possible to an a priori probability measure among

all risk neutral probability measures. The a priori probability measure is used as a starting

point and then modi�ed to achieve an exact calibration of the observed prices. We examine

the two minimization problems which di�er in their optimization sets :

min
f2Fs

2

Z �
f � f

0�
2

�2
d�;

min
f2F2

Z �
f � f

0�
2

�2
d�:

Various criteria have been proposed in order to measure the proximity between prob-

ability measures such as the quadratic, cross-entropy (Kullback-Leibler) or goodness-of-�t
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criteria. On economic grounds, we show in Section 2.3 that the quadratic criterion is related

to the standard mean-variance hedging problem. Indeed the induced option price appears

to be equal to the price of the hedging portfolio which minimizes the quadratic residual risk.

The sensitivities of the option price w.r.t. to observed option prices are equal to the holdings

of the optimal hedging portfolio. This economic interpretation prompts to use a quadratic

criterion.

On practical grounds, since tractability also matters, the quadratic criterion reveals to

be very attractive. It is by far the most simple one and leads to explicit expressions for

the a posteriori pricing measure and for caplet price forecasts thanks to the use of con-

venient num�eraires. Furthermore the robustness of the predicted option prices w.r.t. to

choices concerning num�eraires, proximity criteria, or a priori models is another very con-

vincing argument. This appears in several empirical papers (Jackwerth and Rubinstein

(1996), Jondeau and Rockinger (1997), Frachot, Laurent and Pichot (1999)) and

is con�rmed here in the empirical section. For these various reasons we prefer to rely on an

L
2(�)-approach.

Since the two previous minimization sets, F s
2 ;F2 are non-empty, closed and convex sub-

sets of L2(�), there exists a unique minimization element (by projection theorem) for each

minimization problem. The solutions are called the variance optimal signed measure den-

sity associated to num�eraire U2 and a priori model f0�2 (and denoted by ~f2�2 ) and variance

optimal probability measure density associated to num�eraire U2 and a priori model f0�2 (and

denoted by f
2�
2 ). ~f2�2 and f

2�
2 mirror some risk premium updated thanks to information

provided by observed prices.

Of course, if the a priori pricing model is already consistent with observed prices (no

volatility smile), then ~f2�2 = f
0�
2 .

Let us notice that there does not always exist a minimal distance element between

f
0�
2 and F e

2 , since the later set is not closed. However if ~f2�2 happens to be in F e
2 , it is

clearly a minimal distance element between f
0�
2 and F e

2 . In a continuous-time framework

and when asset prices are continuous semimartingales, it has been proven by Delbaen and

Schachermayer (1996) that the variance optimal signed measure density is always strictly

positive and thus equivalent to � (see also Gouri�eroux, Laurent and Pham (1998) for

a discussion, and Laurent and Pham (1999) for applications).

The solutions of these standard convex optimization problems can be written through

the �rst order conditions as :

~f2�2 = f
0�
2 +

P
j2J

~��2;jg2;j;

f
2�
2 =

�
f
0�
2 +

P
j2J �

�
2;jg2;j

�+
; � a.s.:

(2.11)

where ~��2;j; �
�
2;j are real numbers uniquely determined by the price constraints. These forms
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are obtained by applying the Lagrange Multiplier Theorem (see Luttmer (1996), Proposi-

tion 2 and Hansen and Jagannathan (1997), Proposition A.2).

The variance optimal measures depend on the a priori density f0�2 (and on the volatility

parameter �). The variance optimal signed measure of Schweizer (1992) corresponds to

the case where f0�2 = 1, and will lead to a nice interpretation of option prices in the next

subsection. This variance optimal signed measure also appears in a portfolio context in

Hansen and Richard (1987), Hansen and Jagannathan (1991) and Bansal, Hsieh

and Viswanathan (1993).

Since risk-neutral densities are closely related to second order derivatives of option prices

w.r.t. to exercise price (Breeden and Litzenberger (1978)), the previous criteria can also

be seen as smoothness criteria. This guarantees that option prices will be smooth functions

of the exercise price and thus the implied approach may also be seen as a numerical approach

to properly interpolate option prices.

The variance optimal measures also depend on the choice of � but only through the

Lagrange multipliers ~��2;j; �
�
2;j as can be seen in equation (2.11). Magnien, Prigent and

Trannoy (1996) use the Lebesgue measure on a �nite length interval [a; b]. In Section 3,

we will use lognormal measures (i.e. x (resp. z) will be lognormal under � (resp. ��)).

When � is the Lebesgue measure on some �nite interval [a; b], Michelli, Smith,

Swetits andWard (1985), Irvine, Marin and Smith (1986)1,Magnien, Prigent and

Trannoy (1996) characterize and compute the variance optimal probability measure when

observed prices are call option prices. In that framework, the variance optimal probability

measure is related to B-splines.

2.3 Variance optimal signed measures and mean-variance hedging

In this section we show that option prices computed under the variance optimal signed

measure correspond to the \approximation price" of the option introduced by Schweizer

(1992) and that the price sensitivities of option prices w.r.t. to observed option prices are

the portfolio holdings in the optimal mean-variance hedging portfolio. Thus, we can link a

dual optimization problem in the space of risk-neutral densities to a primal portfolio choice

problem.

Let us consider the mean-variance hedging problem :

min
�i

Z
(
X
j2J

�i;jgi;j � gi)
2
d�:

where gi is a square integrable payo� (for i = 1; 2; 3). This problem consists in �nd-

ing a (static) portfolio
P

j2J �i;jgi;j which minimizes the square of the hedging residual :

1We are grateful to F. Magnien for providing the two last references.
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P
j2J �i;jgi;j � gi, or equivalently the L

2(�) distance to payo� gi. This linear regression

problem has been introduced in a dynamic framework by Duffie and Richardson (1991)

and further studied among others by Schweizer (1992) and Gouri�eroux, Laurent and

Pham (1998).

A direct application of the projection theorem guarantees that under non redundancy

and no arbitrage, there exists a unique ��i to the previous minimization problem.

The mapping : gi �! P
�
i [gi] =

P
j2J �

�
i;jPj is a continuous linear functional on L

2(�)

consistent with observed prices and
P

j2J �
�
i;jPj is called the approximation price of gi. The

price of the approximating portfolio
P

j2J �
�
i;jgi;j is thus equal to a linear combination of the

asset prices. As is well known in international portfolio management (Solnik (1974)), the

approximating portfolio and thus its price are num�eraire dependent (since P �i [gi] is obtained

by taking as reference num�eraire Ui). We are now able to state the following :

Property 1 (approximation price)

The approximation price P
�
i [gi] of some payo� gi is equal to the price of this payo� under

the variance optimal signed measure associated to num�eraire Ui, Ui(0)
R ~f ii gid�, where

~f ii is

the variance optimal signed measure density associated to num�eraire Ui and to f
0�
i = 1.

Proof : see Appendix.

The variance optimal densities depend on observed option prices, Pj; j 2 J , through the

Lagrange multipliers. As a consequence, prices of payo�s gi under these variance optimal

measures do also depend on observed prices. One may think of computing the price sensi-

tivities w.r.t. to all these observed prices and not only w.r.t. to the underlying price, since

all observed payo�s are treated symmetrically in our approach.

The following property relates these price sensitivities or deltas to the holdings in the

optimal mean-variance hedging portfolio :

Property 2 (sensitivities)

Let us consider an arbitrary square integrable payo� gi. The sensitivities of the price of gi

under the variance optimal signed measure (associated to num�eraire Ui) w.r.t. to observed

option prices Pj are equal to the regression coe�cients of the linear regression of gi on the

observed option payo�s gi;j under the measure �, or equivalently to the holdings �
�
i in the

mean-variance hedging portfolio. The second order derivatives are equal to zero.

This statement is a direct consequence of the previous property relating approximation

prices (obtained from solutions of least square problems involving hedging residuals), and

prices computed under variance optimal measures. Since we deal with multiple underlying
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assets (the observed option payo�s), there are multiple deltas. However, since we remain in

a static framework, the second order derivatives are equal to zero. Such deltas can obviously

be used to build static hedges of a given payo�.

3 Explicit cap pricing formulas under the variance op-

timal measure

3.1 Modi�ed market and Gaussian models

In order to shed light on the model building procedure, some of the previous points are now

illustrated on caplet pricing. We will see that it is easy to derive closed-form caplet pricing

formulas consistent with observed option prices in the variance optimal measure setting.

Let us consider a sequence of observed prices corresponding to num�eraires and caplets,

namely (g2;0(x) = 1; U2(0)), (g2;j(x) = (x� cj)
+
�; Pj); c1 = 0; j � 1; j 2 J . From Equation

(2.11), the variance optimal signed measure density associated to the a priori model f0�2 = 1

(which leads to the interpretation in terms of approximation prices) and to num�eraire U2

can be written as :

~f22 (x) = 1 + �0 +
X

j�1;j2J
�j(x� cj)

+
�; � a.s.; (3.1)

which leads to :

Cap(c) = U2(0)
Z
(x� c)+�

0
@1 + �0 +

X
j�1;j2J

�j(x� cj)
+
�

1
A d�(x): (3.2)

Let us introduce the density function f
0
4 de�ned by :

U2(0) =
U4(0)f

0
4 (x)

x2�2
; � a.s.;

where U4(0) = U2(0)
R
x
2
�
2
d�(x). Since x is in L

2(�) this density is well de�ned. Straight-

forward computations give the following property, where Q0
i denotes the probability measure

on Libor rate whose density w.r.t. � is equal to f
0
i :

Q
0
i (E) =

Z
E
f
0
i d�; (3.3)

where E is some �-measurable set.

Property 3 (caplet price forecast)

A caplet pricing formula consistent with observed num�eraires and caplet prices in the vari-

ance optimal signed measure is given by :

Cap(c) = (1 + �0)Cap
0(c) +

X
j�1;j2J

�jCap
j(c); (3.4)
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where Cap0(c) is the a priori pricing formula (i.e. U2(0)E
Q0

2 [(x�c)+�]) and Cap
j(c) is equal

to :

Cap
j(c) = U4(0)Q

0
4(Ej)� U3(0) � (c+ cj)Q

0
3(Ej)� U2(0) c cj �

2
Q

0
2(Ej); (3.5)

Ej the exercise region being equal to fx � c _ cjg and c _ cj = sup(c; cj). The Lagrange

multipliers �j are determined by the linear equations :

Pj = (1 + �0)Cap
0(cj) +

X
i�1;i2J

�iCap
i(cj); j � 1; j 2 J;

U2(0) = U2(0)(1 + �0) +
X

i�1;i2J
�iCap

0(ci):

Hence we get an explicit formula which only requires solving linear equations for its

practical implementation. This explicit formula is particularized in the next two examples

based on lognormal assumptions on x under � (market model), or on z under �� (Gaussian

model).

A. Modi�ed market model

When x is lognormal (equation (2.6)), the a priori caplet pricing formula Cap0(c) is given

by (2.7), while the other formula used in equation (3.5) specializes to :

Cap
j(c) = U2(0)

h
x
2(0)�2 exp(�2

�0)�(d
j
0)� x(0)�2(c+ cj)�(d

j
1) + c cj �

2
�(dj2)

i
; (3.6)

with : 8>>><
>>>:

d
j
1 = 1

�
p
�0
log x(0)

c_cj
+ �

2

p
�0;

d
j
2 = d

j
1 � �

p
�0;

d
j
0 = d

j
1 + �

p
�0:

This simple expression is due to the lognormality of the Libor rate under Q0
2, Q

0
3 and Q

0
4.

B. Modi�ed Gaussian model

When z is lognormal (equation (2.8)), the same kind of explicit formulas can be de-

rived under the measure that minimizes the L2(�)-distance between �f0��2 = 1 and the set of

densities for z compatible with observed prices. This measure takes the form :

~�f
2

2(z) = 1 + ��0 +
X

j�1;j2J

��j(z � (1 + cj�))
+
; �� a.s.;

which gives :

�Cap(c) = (1 + ��0) �Cap
0(c) +

X
j�1;j2J

��j �Cap
j(c);

with :

�Cap0(c) = U1(0)�( �d1)� �cU2(0)�( �d2); (3.7)
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�Capj(c) = U2(0)
h
z
2(0) exp(��2

�0)�( �d
j
0)� z(0)(�c+ �cj)�( �d

j
1) + �c �cj �( �d

j
2)
i
; (3.8)

with :

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�c = 1 + c�;

�d1 = 1
��
p
�0
log z(0)

�c
+ ��

2

p
�0

�d2 = �d1 � ��
p
�0;

�cj = 1 + cj�;

�d
j
1 = 1

��
p
�0
log z(0)

�c_�cj
+ ��

2

p
�0;

�d
j
2 = �d

j
1 � ��

p
�0;

�d
j
0 = �d

j
1 + ��

p
�0:

Finally similar explicit caplet pricing formulas are also available under the variance opti-

mal probability measure. This is due to the fact that the positive part of a piecewise linear

function is still piecewise linear. Thus the densities w.r.t. � (resp. ��) are piecewise linear

functions of x (resp. z) and the computations go along the same lines as in the signed case.

3.2 Further use of change of num�eraire

When introducing variance-optimal measures, we took as benchmark the num�eraire U2,

and we were able to state explicit caplet formulas with such measures. However, variance

optimal measure densities give rise to di�erent pricing models when we change our reference

num�eraire from U2 to Ui. This is not surprising since we know that the option price is equal

to an approximation price for a mean-variance hedging problem, which is not num�eraire

invariant.

Let us consider the density ~f
j
i (resp. f

j
i ) will be the variance optimal signed (resp.

probability) measure densities associated with num�eraire Ui when the num�eraire Uj is used

as reference (for notational simpli�cation, we drop here the dependence on �).

In order to make a comparison, let us consider some other num�eraire, Ui, i 6= 1 while

keeping U2 as reference num�eraire for the moment. By the state price invariance property

(see e.g. Duffie (1992), Geman, El Karoui and Rochet (1995), Bajeux and Portait

(1997), Gouri�eroux, Laurent and Pham (1998)), the density associated to num�eraire

Ui can be written as :

~f2i =
Ui=2

Ui=2(0)
~f22 ; (3.9)

where Ui=2 is the exchange rate between num�eraires Ui and U2 at time �0 (and is a �-

measurable function). Let us remark that ~f2i is in L
2(�) under the standing assumption

that the Libor rate is strictly positive (which in turn implies that Ui=2 2 L
1(�)). The
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density fi of the a priori pricing model, associated to num�eraire Ui can also be obtained by

state price invariance property :

f
0
i =

Ui=2

Ui=2(0)
f
0
2 : (3.10)

From the characterization of ~f22 in equation (2.11) and from the relations between payo�s

under di�erent num�eraires, g2;j = Ui=2gi;j, we obtain by (3.9) and (3.10) :

~f2i = f
0
i +

Ui=2

Ui=2(0)

X
j2J

~�2;jUi=2gi;j : (3.11)

On the other hand, we can directly compute the variance optimal signed measure density

associated with num�eraire Ui while choosing as reference num�eraire Ui. By adapting the

characterization result (2.11) to num�eraire Ui instead of U2 there exist some real numbers

~�i;j , j 2 J such that :

~f ii = f
0
i +

X
j2J

~�i;jgi;j: (3.12)

Now, since in the usual cases Ui=2 is a non constant random variable and the a posteriori

model di�ers from the a priori model (some of the Lagrange multipliers are di�erent from

zero), we clearly see from (3.11) and (3.12) that :

~f2i 6= ~f ii ;

which states that the variance optimal measures will di�er if we start with num�eraire Ui ( ~f
i
i )

instead of U2 ( ~f
2
i ).

Further explicit, but more complicated, pricing formulas for caplets can be derived under

some of these new measures associated with other num�eraires. However, we will not further

consider these additional caplet pricing formulas. Indeed, num�eraire dependencies have

been empirically investigated by Frachot, Laurent and Pichot (1999) and appear to

be second order e�ects.

4 Numerical example and empirical application

In this last section, we begin by checking the practical relevance of our approach on a

numerical example based on simulated data. The example is designed to obtain prices

similar to those currently traded on the DEM Libor market. We then proceed further on

real caplet data.2

2The Gauss programs developed for this section are available on request.
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For the numerical example, ten caplet prices have been generated with the Gaussian

model (eq. (2.9)). These simulated prices are one year caplet prices on three month Libor

(�0 = �1 = 1, �2 = 1:25, � = 0:25) with equally spaced exercise rates from 2:5% to 7%, and

will act as observed option prices. The volatility parameter of the Gaussian model is set

equal to 0.242% (eq. (2.10) : �� = 0:242%, � = 1%, � = 5%). The yield curve is taken 4%


at (U1(0) = 0:9608, U2(0) = 0:9512, U3(0) = 0:0096, x(0) = 4:02%). These data are used

as input data for a calibration procedure based on the modi�ed market model (eq. (2.7),

(3.4), (3.6)). Hence we take the market model as our a priori model in this example. The

volatility parameter of the market model corresponds to the implied volatility of the observed

at-the-money caplet price (� = 24:478%). In Table 6 the price forecasts are compared with

the (unobserved) true prices. The strike rates of the caplet prices to be inferred are the

intermediate rates from 2.75% to 6.75%.

Table 6 : True prices and price forecasts (in percent)

strike true forecast

2.75 0.31263 0.31234

3.25 0.21172 0.21181

3.75 0.12848 0.12845

4.25 0.06813 0.06814

4.75 0.03085 0.03084

5.25 0.01169 0.01170

5.75 0.00365 0.00365

6.25 0.00093 0.00093

6.75 0.00019 0.00019

The results show that our simple procedure is very successful in rebuilding the unobserved

data while matching exactly (by construction) the available market prices. The di�erence

is not visible to the naked eye if the true prices are plotted on a graph together with their

forecasts for each exercise rate. The absolute errors are of orders 10�6 to 10�8 while the

relative errors are of orders 10�2 to 10�4. Reversing the role of the Gaussian model and the

market model in such an example leads to similar results.

Let us now apply the calibration approach to real market data. The collected data

are one year caplet prices for the three month DEM Libor. The quotes (Tue. 06/10/1998

around 4 pm) take the form of a lognormal volatility smile which can be translated into

caplet prices. The data (implied volatilities and caplet prices) are presented in Table 7.

The discount bond prices are equal to 0:9665 and 0:9582 for the one year and �fteen month

maturities, respectively.
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Table 7 : Implied volatilities and observed caplet prices (in percent)

strike volatility price

2.5 24.841 0.23747

3 24.321 0.14219

3.5 24.249 0.07558

4 24.464 0.03695

4.5 24.857 0.01739

5 25.331 0.00814

5.5 25.799 0.00384

6 26.197 0.00182

6.5 26.500 0.00086

7 26.712 0.00040

From these observed data, we get the following price forecasts taking for the rebuilding

procedure either the modi�ed market model or the modi�ed Gaussian model (Table 8).

The volatility parameters are taken equal to their respective at-the-money implied volatility

(� = 24:464%, �� = 0:225%). The price forecasts made by the two modi�ed models do not

di�er very much from each other. For the strike rates : 2.75%, 3.75%, 4.75%, 5.75%, 6.75%,

the Gaussian model forecasts are slightly higher while the reverse holds for the other exercise

rates. However we do not see a particular reason for this special alternate ordering.

Table 8 : Price forecasts with modi�ed market and Gaussian models (in percent)

strike market Gaussian

2.75 0.18671 0.18707

3.25 0.10506 0.10496

3.75 0.05325 0.05327

4.25 0.02541 0.02539

4.75 0.01189 0.01189

5.25 0.00558 0.00558

5.75 0.00264 0.00265

6.25 0.00125 0.00122

6.75 0.00059 0.00062

The sensitivities (or deltas) w.r.t. observed caplet prices are gathered in Table 9 and 10

for the modi�ed market and Gaussian models, respectively. These sensitivities may be used

to build a static hedge since they correspond to the holdings of the approximating portfolio

as discussed in Section 2.3. A line (column) in Tables 9 and 10 gives the sensitivities of a
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(each) forecast caplet price w.r.t. each (a particular) observed caplet price. The sensitivities

are of course higher near the central diagonal of the Tables, i.e. for forecast and observed

caplet prices with close strike rates. Moreover the sensitivities are relatively similar in both

models and have always the same sign. The static hedges under the two models thus involve

the same type of short and long positions in the observed caplet prices.

Table 9 : Sensitivities in the modi�ed market model (in percent)

strike 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

2.75 47.727 62.498 -13.312 4.135 -1.434 0.534 -0.208 0.083 -0.033 0.009

3.25 -9.412 58.629 62.289 -15.420 5.350 -1.992 0.777 -0.312 0.123 -0.037

3.75 2.168 -10.689 55.370 66.582 -18.364 6.839 -2.667 1.070 -0.424 0.127

4.25 -0.442 2.181 -8.991 52.357 69.793 -20.655 8.057 -3.234 1.281 -0.384

4.75 0.083 -0.410 1.691 -7.830 50.409 72.005 -22.321 8.961 -3.549 1.064

5.25 -0.014 0.073 -0.300 1.393 -7.129 49.143 73.516 -23.455 9.289 -2.786

5.75 0.002 -0.012 0.051 -0.238 1.221 -6.693 48.328 74.413 -23.411 7.023

6.25 -0.001 0.002 -0.008 0.040 -0.205 1.127 -6.471 48.126 72.962 -17.254

6.75 0.000 -0.001 0.002 -0.007 0.038 -0.210 1.206 -7.147 52.962 57.217

Table 10 : Sensitivities in the modi�ed Gaussian model (in percent)

strike 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

2.75 45.970 64.105 -12.838 3.639 -1.199 0.456 -0.199 0.099 -0.056 0.030

3.25 -9.552 60.094 59.705 -13.504 4.450 -1.694 0.741 -0.370 0.207 -0.114

3.75 2.436 -12.053 58.035 63.839 -16.750 6.378 -2.790 1.393 -0.782 0.429

4.25 -0.531 2.628 -10.058 53.807 68.877 -20.907 9.146 -4.567 2.564 -1.409

4.75 0.098 -0.487 1.866 -7.942 49.734 74.278 -25.951 12.960 -7.276 3.998

5.25 -0.015 0.076 -0.293 1.248 -6.224 45.942 80.006 -31.987 17.954 -9.868

5.75 0.002 -0.010 0.038 -0.165 0.825 -4.857 42.424 86.025 -38.768 21.308

6.25 -0.001 0.001 -0.004 0.018 -0.092 0.542 -3.784 39.231 91.604 -40.475

6.75 0.000 -0.001 0.001 -0.001 0.008 -0.052 0.369 -3.066 37.544 86.974

Finally, it is interesting to have a look at the a posteriori densities underlying the price

forecasts, and to see how the priors on the Libor rate x are a�ected by the information

contained in observed prices. Figures 1 and 2 are designed for such a purpose. They

correspond to the modi�ed market and Gaussian models, respectively. The solid line in

Figure 1 is the lognormal density of x associated with equation (2.6), while in Figure 2 it

is obtained from the lognormal density of z (equation (2.8)) and the link (1.1) between x

and z. The plots show that the shift in the shape of the Libor rate density is quite large

in the Gaussian case. The informational updating is much less pronounced in the modi�ed

market model, re
ecting that the lognormal prior on x, and thus the market model is closer

to what translates in the observed option prices. In fact our procedure is also aimed to be
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an investigation tool to uncover which type of pricing model a trader uses when quoting

derivative prices.

Please insert Figure 1 : Densities in the modi�ed market model

Please insert Figure 2 : Densities in the modi�ed Gaussian model

5 Concluding remarks

We have presented a general approach for the valuation and the hedging of a book of interest

rate derivative products, such as caplets. The proposed valuation is di�erent from the usual

approach based on continuously adjusted self-�nancing portfolios. In particular, we do not

rely on a particular time evolution of the state variables and institutional assumptions such

as frictionless trading. The usual dynamic approach makes it di�cult to take into account

observed prices, and is mainly aimed at providing a structural model that will be modi�ed

according to the information contained in observed prices. We conjecture that our static

approach will tend to outperform the dynamic ones regarding the hedging performance. The

hedge here directly involves short and long positions in assets with similar payo�s instead

of a dynamic trading in the underlying asset. Of course, the quality of the static approach

will depend on the one hand on the number of currently traded assets and observed prices

and on the other hand on the quality of the a priori model.

Our main focus was interest rate products such as caplets. This is a rich framework to

introduce di�erent num�eraires and provide simple general formulas for interest rate options.

Our framework ought to be extended in order to take into account more general assets

such as swaptions. However, this work involves technical di�culties since swaption payo�s

depend on the whole forward curve and not only on a single Libor rate.
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Appendix : Proof of Property 1

From Riesz-Fr�echet Representation Theorem (see Rudin (1974), Theorem 6.16), there exists

a unique function f�i 2 L2(�) such that P �i [gi] = Ui(0)
R
gif

�
i d�; 8gi 2 L2(�). We also haveR

f�i d� = 1. Indeed, the num�eraire Ui is a traded asset and its approximation price is equal to

Ui(0). Thus, f
�
i belongs to the set F s

i of risk-neutral signed density measures.

Let us now take some gi orthogonal to the investment opportunity set Gi = fgi;jg. Its approx-

imation price is zero and thus we have the implication :

8j 2 J;

Z
gigi;jd� = 0 =)

Z
gif

�
i d� = 0:

Therefrom we deduce that f�i belongs to the investment opportunity set Gi which means that f�i

has the interpretation of a portfolio. Let us denote Ai, the subspace of Gi spanned by the zero

price portfolios :

Ai = f
X
j2J

�jgi;j j
X
j2J

�jPj = 0g:

Since the approximation price of any arbitrage portfolio is equal to zero, we deduce that the

portfolio f�i is orthogonal to Ai.

We now have to show that ~f ii = f�i . Since ~f ii is the unique L2(�)-norm minimum element of

F s
i , we simply have to show that :

Z
( ~f ii )

2d� =

Z
(f�i )

2d�:

or equivalently that : Z
~f ii (

~f ii + f�i )d� =

Z
f�i (

~f ii + f�i )d�:

~f ii + f�i is the payo� of a portfolio since we know from our previous results that ~f ii and f�i are two

portfolios. Since the expectations of a given portfolio under any measure consistent with observed

prices are the same, the last equality is true.
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Figure 1 : Densities in the modified market model

Figure 2 : Densities in the modified Gaussian model
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