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Abstract

We introduce a new analytical approach to price American options. Using an explicit and intuitive proxy for the

exercise rule, we derive tractable pricing formulas using a short-maturity asymptotic expansion. Depending on

model parameters, this method can accurately price options with time-to-maturity up to several years. The main

advantage of our approach over existing methods lies in its straightforward extension to models with stochastic

volatility and stochastic interest rates. We exploit this advantage by providing an analysis of the impact of

volatility mean-reversion, volatility of volatility, and correlations on the American put price.
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1 Introduction

The valuation of American options is a challenging task, even under the Black-Scholes model (see Detemple

(2005) for an extensive review). Several semi-analytical approximations for American option prices have been

proposed in the literature (Barone-Adesi and Whaley (1987), Broadie and Detemple (1996), Bunch and Johnson

(2001), Ju (1998)). Although these approaches are fast and accurate, they cannot easily be extended beyond the

Black-Scholes model.

It has been firmly established that the Black-Scholes model is not consistent with quoted option prices. The

literature advocates the introduction of stochastic volatility and/or jumps to reproduce the implied volatility smile

observed in the market. The introduction of an additional stochastic volatility factor enormously complicates

the pricing of American options. Presently, this can only be done by means of numerical schemes, which involve

solving integral equations (Kim (1990), Huang, Subrahmanyam and Yu (1996), Sullivan (2000), Detemple and

Tian (2002)), performing Monte Carlo simulations (Broadie and Glasserman (1997), Longstaff and Schwartz

(2001), Rogers (2002), Haugh and Kogan (2004)), or discretizing the partial differential equation (Brennan and

Schwartz (1977), Clarke and Parrott (1999), Ikonen and Toivanen (2007)).

The early exercise premium of the American put option depends on the cost of carry determined by interest

rates. Consequently, the volatility of interest rates does affect the decision to exercise this option at any point in

time. This fact is recognized in the literature dealing with models with stochastic interest rates (Ho, Stapleton

and Subrahmanyam (1997), Menkveld and Vorst (2001), Detemple and Tian (2002)). This literature, however,

considers only two-factor extensions of the Black-Scholes model assuming that the volatility of the underlying

asset is constant.

Numerical approaches are complicated to implement when both volatility and interest rates are stochastic.

Presently, there exist two ways of computing the option price in this case: a discretization of the partial differential

equation (PDE), and the simulation-based method of Longstaff and Schwartz (2001). From the analogy with

standard tree approaches, a PDE solver amounts to reconnecting three trees: a tree for the price of the underlying

asset, a tree for the mean-reverting stochastic volatility and a tree for the stochastic interest rates. As a result, the

implementation of a PDE solver is case specific. Such an implementation is feasible in the case of a three-factor

affine specification, but next to impossible in the general setting. Further it may raise stability issues (especially

when computing option Greeks). Being easier to implement, the method of Longstaff and Schwartz (2001) is

extremely time-consuming, making it not realistic from a practical point of view.

In this paper we propose a new analytical approach that is both computationally tractable and general

enough to be successfully applied to a three-factor diffusion model without jumps. Here we limit our analysis of

American payoffs to diffusion processes. For European payoffs there is a large recent literature on models based
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on Levy processes (see e.g. Carr and Wu (2004), Bakshi, Carr, and Wu (2008), and references therein). The

characterization of American put prices under Levy processes raises complex issues related to the possibility of

discontinuities of the underlying process at the exercise boundary (see e.g. Chesney and Jeanblanc (2004), Alili

and Kyprianou (2005), and Lamberton and Mikou (2008) for recent discussions), and extending our method is

not straightforward in such a context.

Our approach is based on the idea of substituting the optimal exercise rule with a simple (suboptimal) exercise

rule for which an approximate solution is easy to find and fast to compute. Similar ideas have already been explored

in the literature in the context of the Black-Scholes model (Broadie and Detemple (1996), Carr (1998), Ju (1998)).

Our proxy rule is to exercise the option as soon as its moneyness measured in standard deviations reaches some

specified level. The rationale is that an option should be exercised when it can be considered sufficiently in-the-

money (large moneyness). The option price under this rule appears to have a regular asymptotic behavior near

maturity with an asymptotic expansion available in a closed-form for a broad class of models. The American

option price is then approximated by the maximum over these option prices. We provide several numerical

experiments and comparisons showing that our method performs well with respect to computational time and

accuracy.

Taking advantage of our computationally efficient method, we study the effect of introducing stochastic volatil-

ity and stochastic interest rates on the American put price and its components: the European put price and the

early exercise premium. Using a simple economic argument we guess that the effect on the American put price

should be equal in sign but smaller in magnitude than the impact on the European put price. We confirm this

conjecture by providing a detailed analysis of the impact of different generalizations of the Black-Scholes model

using a range of plausible model parameter values borrowed from empirical studies of stock index and currency

options. Our analysis does not extend easily to the case of an underlying asset paying discrete dividends before

the option maturity.

The paper is organized as follows. In Section 2 we describe our approach in the context of the Black-Scholes

model. We provide a motivation for our approach, discuss intuitively its main features, and compare it with other

available methods. We focus our discussion on the American put option. We can use the put-call symmetry

to obtain prices, derivatives of prices with respect to parameters, and early exercise boundaries for American

call options from the properties of the corresponding put options (see e.g. Schroder (1999) and Section 3.6 in

the survey article of Broadie and Detemple (2004)). In Section 3 we generalize our approach to incorporate

multifactor models with stochastic volatility and stochastic interest rates. We run several numerical experiments

to show that our approach is accurate for reasonable model parameters, and investigate the impact of stochastic

volatility and stochastic interest rates on the components of the American put price. Section 4 concludes the
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paper. Technical proofs and results are gathered in Appendices. All the Matlab codes used in this paper are

available from the authors on request.

2 Black-Scholes model

In this section we consider the Black-Scholes model where the price S of the underlying asset follows a log-normal

diffusion process dSt = (r − δ)Stdt+ σStdW
(1)
t , with constant interest rate r, dividend yield δ, and volatility σ.

This section is aimed at presenting intuitively our approach and developing an analytical approximation for the

American put in a simple setting. In the next section we look at richer settings where two additional Brownian

motions W (2)
t and W

(3)
t are introduced in a three-factor model.

2.1 Short-maturity asymptotics for American option prices

An American put option with strike price K and maturity date T is a derivative that gives its owner the right to

receive max (K − St0 , 0) at any point in time t ≤ t0 ≤ T . Under the Black-Scholes model the price P(S, t) of this

option satisfies the partial differential equation (PDE):

Pt + (r − δ)SPS +
1

2
σ2S2PSS − rP = 0, (1)

with boundary conditions:

P(∞, t) = 0, P(S, T ) = max(K − S, 0),

P(S(T − t), t) = max
¡
K − S(T − t), 0

¢
, PS(S(T − t), t) = −1. (2)

Here subscripts denote differentiation with respect to time t and price S; S(τ) is the early exercise price, which

depends on the option time-to-maturity τ = T − t. The last boundary condition in (2) is the so-called "smooth

pasting" condition. Note that the European put also satisfies (1) plus the four boundary conditions with S(τ) = 0.

The unique solution for the American option price is then determined by requiring that P(S, t) ≥ max(K−S, 0).

Solving PDE (1) given the five conditions above is a non-trivial task. The only known analytical solution to

this problem 2 is found by Zhu (2006) in the form of a Taylor series expansion. While the emphasis of that paper

is to show the existence of an exact analytical solution, such a solution does not have a clear advantage over some

fast numerical schemes from a computational point of view. The convergence is rather slow, and the expansion

terms are given recursively by a complicated analytical formula.

A number of approximation methods exist in the literature. In particular, the behavior of S(τ) near maturity

2Except, of course, the trivial case when there is no early exercise premium.
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(small τ) has attracted lots of attention as a promising way to derive an analytical formula (Alobaidi and Mallier

(2001), Barles et al. (1995), Chevalier (2005), Dewynne et al. (1993), Evans, Keller and Kuske (2002), Goodmand

and Ostrov (2002), Lamberton and Villeneuve (2003); see also Levendorski (2007) and references therein for

further general results). However, this approach has not produced a sufficiently accurate approximation under

realistic model parameters (see the numerical examples in Mallier (2002)). Although a high-order short-maturity

asymptotic approximation of S(τ) is available in an analytical form (see Alobaidi and Mallier (2004)), accuracy

remains an issue. In a related paper Chen and Chadam (2007) use short-maturity asymptotics to derive an implicit

approximation that appears to be accurate for time-to-maturity less than several months. However, instead of

using a truncated asymptotic expansion, they choose an ad hoc functional form with correct asymptotic behavior

near maturity.

We now explain why a direct short-maturity analysis does not yield an applicable formula for American

options. This will motivate our approach to option pricing described in the rest of the paper. Let us take δ = 0,

and introduce a convenient parameterization, denoting:

θ =
ln(K/S)

σ
√
τ

. (3)

This ratio is called normalized moneyness, and is frequently used in the literature (see e.g. Bates (2000), Carr

and Wu (2003)). It measures the distance between the logarithm of the price of the underlying asset and the

logarithm of the strike price in terms of standard deviations. Strictly speaking, we should take the ratio of the

strike price to the forward price to take into account the drift in lnS. The two definitions, however, are equivalent

when time-to-maturity is small.

As an example, consider now the choice to exercise a put option now or wait till maturity. If the option is

exercised now then the option holder receives P = K−St (provided that K > St). Since the expected discounted

payoff of the option at maturity is equal to the European put price PE , put-call parity says that:

PE = Ke−rτ − St +C
E . (4)

This equality combined with P = K − St implies that the early exercise premium P−PE is given by:

K(1− e−rτ )−CE . (5)

The early exercise decision may be interpreted as equivalent to giving up a call option while putting money in

a bank account. If K is sufficiently greater than St (i.e., the option is said to be deep in-the-money) then the
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European call option price CE is small. In this case the interest rate income K(1 − e−rτ ) > 0 exceeds the call

price meaning that the early exercise has a positive premium.

Let us proceed by noting that the early exercise level of the normalized moneyness θ(τ) has the following

asymptotic behavior under zero dividends (see e.g. Barles et al. (1995) 3 ):

θ(τ) =
ln(K/S(τ))

σ
√
τ

∼
p
ln(1/τ). (6)

It follows that when time-to-maturity decreases, no matter how deep in-the-money (as measured by θ) the put

option is, it still is suboptimal to exercise before expiry. This result seems to contradict the rationale behind

early exercise. Intuitively, we expect that when θ is sufficiently large, say 2 (this corresponds to the well-known

2-sigma rule for tail events under normality), the call option in (5) becomes negligible and it is optimal to exercise

the American put right away.

This reasoning appears to be fundamentally wrong when time-to-maturity is very small. Medvedev and

Scaillet (2007) show that the call option price satisfies CE ∼
√
τ for given fixed θ (see also (18)). Consequently,

when time-to-maturity is very small, the interest income K(1 − e−rτ ) ∼ τ is only second order relevant, and

the American put converges to a European put. This formal explanation suggests that the exact asymptotics

(6) is most likely to be accurate only in a region where the American put loses its early exercise advantage. As

a result, a direct short-maturity asymptotic analysis is unable to deliver a good approximation under realistic

model parameters.

In this paper we show that it is still possible to rely on a short-maturity asymptotic analysis if we modify

the initial problem. Inspired by the "wrong" intuition behind the early exercise, we introduce an explicit exercise

rule based on the normalized moneyness.

2.2 Modified problem

Let us consider a modified version of problem (1), with the smooth pasting condition in (2) replaced by an explicit

exercise rule. The new problem is defined by the same PDE

Pt + (r − δ)SPS +
1

2
σ2S2PSS − rP = 0, (7)

with boundary conditions:

P(∞, t) = 0, (8)

3When δ = 0, r > 0, we get δ < r. This yields the case of less well-behaved asymptotics near expiry where the expansion of θ(τ)
involves logarithms.
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P(S, T ) = max(K − S, 0), (9)

P(S(T − t), t) = max
¡
K − S(T − t), 0

¢
, (10)

where S(T − t) satisfies S(T − t) = Ke−σy
√
T−t.

The unique solution to this problem is the price of a barrier put option that is exercised as soon as the

normalized moneyness reaches the barrier level y. There are few examples of boundaries for which the distribution

of the first passage time of a Brownian motion is known in a closed-form and helps getting an explicit pricing

formula, but they do not suit our setting. As we have already noted, the proxy for the optimal exercise rule

is intuitively appealing since it is based on a normalized measure of moneyness. Hence, if the barrier level y is

chosen around 2 to approximate the exercise boundary of the American option we expect the solution to the

modified problem to be close to the true American option price.

To derive proper asymptotic expansions, we rewrite PDE (7) in terms of (θ, τ) instead of (S, t). Using the

definition of θ in (3), and setting P (θ, τ) = P
³
Ke−σθ

√
τ , T − τ

´
, we make the following substitutions in (7):

Pt = −Pτ +
θ

2τ
Pθ, PS = −

1

σS
√
τ
Pθ, and PSS =

1

σ2S2τ
Pθθ +

1

σS2
√
τ
Pθ. Simplifying, we obtain:

θPθ + Pθθ +
1

σ

£
σ2 + 2(δ − r)

¤
Pθ
√
τ − 2(Pτ + rP )τ = 0. (11)

As we shall see in the next section, there is a unique solution to (11) satisfying boundary conditions (8) and (10)

in the form:

P (−∞, τ) = 0, (12)

P (y, τ) = Kmax
³
1− e−σy

√
τ , 0
´
= K(1− e−σy

√
τ ), (13)

and which has regular asymptotics near maturity of the form:

P (θ, τ) =
∞X
n=1

Pn(θ)τ
n
2 , (14)

where Pn(θ), n = 1, 2, ..., are the coefficients of the short-maturity asymptotic expansion in τ . The characterization

of Pn(θ) is given in Proposition 1 below. Note that condition (9) is implicit in (14). Indeed, when τ = 0 and θ is

held fixed, we have S = K, and max(K − S, 0) = 0. Thus, P (θ, 0) = 0, a condition implied by (14).

Let us denote the solution to (11) with conditions (12), (13), and (14) by P (θ, τ ; y). The American put price

P (θ, τ) can be approximated from below by:

P (θ, τ) ' max
y≥θ

P (θ, τ ; y) = P (θ, τ ; ey(θ, τ)). (15)
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2.3 Asymptotic expansion

In the following proposition we describe the series representation of the general solution to (11) without boundary

condition (13). Then we show how a unique solution is determined by requiring (13). To make the presentation

more compact, let us introduce some notation. The set of polynomials in θ of the form:

anθ
n + an−2θ

n−2 + an−4θ
n−4 + ...+ amθ

m, m = mod(n, 2),

is denoted by Π1(n, θ), and the subset for which an = 1 is denoted by Π0(n, θ). Here, m = 1 if n is an odd

number, and 0 if an even number. In addition, let us set: Φ(θ) =
1√
2π

θZ
−∞

e−
s2

2 ds, φ(θ) =
1√
2π

e−
θ2

2 .

Proposition 1 Consider partial differential equation (11) with boundary condition (12) and the regular asymp-

totic expansion (14) in the vicinity of (0, 0). For any solution to this problem there exist constants C1, C2, ... such

that for each n: Pn(θ) = Cn

£
p0n(θ)Φ(θ) + q0n(θ)φ(θ)

¤
+p1n(θ)Φ(θ)+q1nφ(θ), where p

0
n ∈ Π0(n, θ), p1n ∈ Π1(n−2, θ),

q0n ∈ Π0(n− 1, θ), and q1n ∈ Π1(n− 3, θ) with coefficients depending on model parameters and C1, C2,.., Cn−1.

Proof. See Appendix A.

Proposition 1 describes the form of the asymptotic expansion of the general solution (14) with appropriate

asymptotics given by (12). To obtain a unique Nth order expansion, we need to determine N constants Cn,

n = 1, .., N . Let us show how to do this using a 2nd order expansion of equation (14) as an illustration. Using

Proposition 1 we find by substitution:

P (θ, τ ; y) = C1 [θΦ(θ) + φ(θ)]
√
τ +

∙
C2
¡
(θ2 + 1

¢
Φ(θ) + θφ(θ)) +

σC1
2
Φ(θ)

¸
τ +O(τ

√
τ). (16)

The coefficients C1 and C2 are uniquely determined by imposing the early exercise condition (13). Indeed, the

short-maturity expansion of the payoff function is:

P (y, τ ; y) = K
£
1− exp(−σy

√
τ)
¤
= σyK

√
τ − σ2y2K

2
τ +O(τ

√
τ). (17)

Equating expansion (16) at θ = y to expansion (17) allows us to identify the missing coefficients. The expressions

for these coefficients can be found in Appendix B, where we present the short-maturity expansion of P (θ, τ ; y) up

to the 4th order.
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As a consistency check, recall that the European put price corresponds to y = ∞. So, as y → ∞, we have

C1(∞) = σK, C2(∞) = −
Kσ2

2
, and

P (θ, τ ;∞) = σK(θΦ(θ) + φ(θ))
√
τ −K

∙
σ2

2

¡
θ2Φ(θ) + θφ(θ)

¢
+ rΦ(θ)

¸
τ +O(τ). (18)

This is exactly the asymptotic behavior of the European put implied by the put-call parity and results in Medvedev

and Scaillet (2007) for the European call. It follows that the European put (call) converges to zero at the rate of
√
τ when τ goes to zero for given fixed θ. Observe also that the leading order in expansion (18) coincides with

the put price under an arithmetic Brownian motion specification for the stock price (Bachelier formula). Both

types of models are equivalent near maturity.

2.4 Early exercise price

So far we have dealt with the pricing of the American put. However, we did not address the issue of how to

decide on the early exercise of the option. An approximation eθ for the true early exercise level of moneyness
θ =

ln(K/S)

σ
√
τ

can be defined in the following way:

eθ(τ) = argmin
θ
{ey(θ, τ) = θ} , (19)

where ey is implicitly defined in (15). That is, the minimum level of moneyness such that the American put is best
approximated by its payoff and, therefore, should be exercised immediately. When θ = θ, the payoff also delivers

the best approximation; consequently from (19) we necessarily have eθ ≤ θ.

We use barrier options to approximate the American put, and this may raise concerns about the quality of

the approximation of the early exercise boundary especially near maturity where, under zero dividends, θ(τ)

∼
p
ln(1/τ) (see (6)). Our numerical experiments, however, suggest that the approximation appears to be

indistinguishable from the true boundary. Proposition 2 provides a formal justification for this. It shows that the

"smooth-pasting" condition is satisfied at the early exercise boundary, and eθ(τ) has the correct short-maturity
asymptotic behavior.

Proposition 2 Let eθ(τ) be the approximation of the early exercise boundary defined by (19) then
1) the barrier put option P (θ, τ ;eθ(τ)) is tangent to its payoff at θ = eθ(τ).
2) under zero dividends, eθ(τ) ∼pln(1/τ) when τ goes to 0.

Proof. See Appendix C.

We conclude this section by noting that, in practice, it is not necessary to solve problem (19). The decision
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to exercise the option should be based on a comparison between θ and the value-maximizing boundary ey(θ, τ). If
θ = ey(θ, τ) then the option should be exercised.
2.5 Performance of the approximation

In this section we perform several numerical experiments to study the accuracy of the approximation of the

American put option introduced in the previous section. The approximation error has two possible sources: the

asymptotic expansion and the suboptimal exercise rule. Hereafter we find that the convergence of the asymptotic

expansion is extremely fast, meaning that the major source of the approximation error is the suboptimal exercise

rule. This error also appears to be small.

2.5.1 Convergence of the asymptotic expansion

To illustrate the speed of convergence of the asymptotic expansion we find an approximation of the American

put (15) using a 2000-step binomial tree to value the barrier options P (θ, τ ; y). Then we compute the same

approximation using expansion (14) truncated at different orders (N = 2, 3, 4, 5). Assuming that 2000 steps are

sufficient to compute option prices with high precision, the difference between the two approximations is only due

to series truncation. For the numerical experiment we assume r = 0.05, δ = 0, σ = 0.2. The optimal ey is found
using a simple search algorithm. We start with y = θ and then move in the direction of increasing y with a step

size of 0.1. When this preliminary search is terminated, we refine the search with a smaller step size of 0.01. This

procedure allows us to find ey with a precision of 0.01.
Figure 1 compares errors of the two approximations with the true American put price being computed on a

2000-step binomial tree. Observe that the convergence of the short-maturity asymptotic expansion is very fast

at all maturities. The 4th order expansion, given explicitly in Appendix B as an example, already appears to

be sufficiently close to the tree-based approximation. The higher order expansion terms appear to be negligibly

small relative to the error stemming from the suboptimal exercise rule.

2.5.2 Comparison with existing methods

In this section we compare our approach with other analytical approximations developed for the Black-Scholes

model. We perform the analysis using model parameters chosen in the corresponding paper.

Broadie and Detemple (1996) suggest simple lower and upper bounds on the American call price. The lower

bound is computed as the maximum over prices of call options that are exercised as the price level reaches some

critical value (capped call options). The upper bound is derived from the lower bound using a formula for the

early exercise premium. The same procedure can be applied using our approximation, which also provides a lower
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bound.

The difference between our approach and that of Broadie and Detemple (1996) is that we use this rule for the

normalized moneyness rather than the price of the underlying asset. We believe that expressing the suboptimal

exercise rule in terms of normalized moneyness is more appealing (at least in the domain where time-to-maturity is

not large), and we expect our approach to be more accurate. Although the price of the capped option in Broadie

and Detemple (1996) admits an exact analytical expression, our setup is nevertheless given by an asymptotic

expansion with a fast convergence rate, as shown in the previous section.

Table 1 reports lower bounds on American call prices from Broadie and Detemple (1996) (Tables 1 and 2),

along with our results. To gauge the early exercise premium we also give European option prices. We compute

American call prices using the put-call symmetry (see e.g. Broadie and Detemple (2004)). The call option price

is equal to the put option price with S replaced by K and, vice-versa, and r replaced by δ, and vice-versa.

The first part of Table 1 reports option values corresponding to time-to-maturity equal to 6 months. Here the

convergence of the asymptotic expansion is sufficiently fast and the 4th order expansion is largely satisfactory.

The accuracy of our approximation is clearly superior to the lower bound of Broadie and Detemple (1996). The

relative error does not exceed 0.2%, which is more than sufficient for applications. In the second part of Table 1

we compare different approximations of option prices with long time-to-maturity (3 years). The convergence of

the series here is much slower. This is to be expected since we rely on a short-maturity expansion. Accuracy is

still reasonably good even if we limit ourselves, for example, to a 5th order expansion with a relative error not

exceeding half a percent. Our approximation based on the 5th order expansion is again more accurate than the

lower bound of Broadie and Detemple (1996).

With respect to computational efficiency, our method is equivalent to the lower bound approximation of

Broadie and Detemple (1996). Both methods involve similar maximization procedure, and formulas have com-

parable complexities. To give an idea of the computational speed, a Matlab code requires only 0.002 seconds to

compute an approximation with a 4th order expansion. This is comparable to a 35-step binomial tree on the same

computer. Note that Broadie and Detemple (1996) approach may still be preferable for pricing long maturity

options. In this case, our approximation requires a higher order expansion, which increases the computational

time.

Bunch and Johnson (2000) propose an alternative fast method for American option pricing based on an

analytical approximation of the early exercise boundary (see Zhu and He (2007) for a modification of this approach

better suited for approximating long term options). Table 2 reports option values from Bunch and Johnson (2000)

(Table II) and our results based on a 4th order asymptotic expansion (see Appendix B). The accuracy of our

approximation is comparable with that of Bunch and Johnson (2000), and is roughly equivalent to a 300-step
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tree.

3 Three-factor model

The true power of the method introduced in the previous sections lies in the possibility of its extension to a more

general model with stochastic volatility and stochastic interest rates. Let us consider the following risk-neutral

dynamics:

dSt = (rt − δ)Stdt+ σtStdW
(1)
t ,

dσt = a(σt)dt+ b(σt)dW
(2)
t ,

drt = α(rt, t)dt+ β(rt)dW
(3)
t , (20)

with dW (i)
t dW

(j)
t = ρijdt, i, j = 1, 2, 3. Model (20) nests most models used in applications. To allow for negative

ρ12 and ρ23 covers potential leverage and flight-to-quality effects. The empirical literature on European option

pricing tends to assume no correlation between stock prices and interest rates. Bakshi, Cao and Chen (1997)

admit that this is a potentially limiting assumption (see footnote on page 2009), since economic theory suggests

a negative correlation. As we will see in the numerical analysis below correlations ρ12 and ρ13 may have a sizable

effect, while ρ23 does not.

3.1 Modified problem and its solution

The PDE for the put option price P(S, σ, r, t) is:

0 = Pt +PSS(r − δ) +Pσa(σ) +Prα(r, t) +
1

2
PSSS

2σ2 +
1

2
Pσσb

2(σ)

+
1

2
Prrβ

2(r) +PSσσSb(σ)ρ12 +PSrσSβ(σ)ρ13 +Pσrb(σ)β(σ)ρ23 − rP, (21)

with the boundary conditions given in (2).

As in the Black-Scholes case, we skip the "smooth-pasting" condition, go from P(S, σ, r, t) to P (θ, σ, r, τ),

and derive a recursive system of PDEs to characterize the coefficients Pn, n = 1, 2, ..., in the short-maturity

asymptotic expansion of P .

Let us make the change of variables from (S, t) to θ =
ln(K/S)

σ
√
T − t

and τ = T − t, and make use of the following

relationships:

PS = −
1

σS
√
τ
Pθ, PSS =

1

σ2S2τ
Pθθ +

1

σS2
√
τ
Pθ, Pt =

θ

2τ
Pθ − Pτ , Pσ = Pσ −

θ

σ
Pθ,
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PσS = −
1

σS
√
τ
Pσθ +

1

σ2S
√
τ
Pθ +

θ

σ2S
√
τ
Pθθ, Pσσ = Pσσ −

2θ

σ
Pσθ +

2θ

σ2
Pθ +

θ2

σ2
Pθθ,

α(r, t) = α(r, T − τ) = α0(r) + τα1(r) + τ2α2(r)...

This allows us to transform (21) into:

0 =
θ

2
Pθ +

1

2
Pθθ − τPτ +

√
τ

∙
1

2σ

¡
σ2 + 2(δ − r)

¢
Pθ + bρ12

µ
−Pσθ +

1

σ
Pθ +

θ

σ
Pθθ

¶
− βρ13Pθr] + τ

∙
a

µ
Pσ −

θ

σ
Pθ

¶
+ bβρ23

µ
Pσr −

θ

σ
Pθr

¶
+
b2

2

µ
Pσσ −

2θ

σ
Pσθ +

2θ

σ2
Pθ +

θ2

σ2
Pθθ

¶
+

β2

2
Prr − rP + α0(r)Pr

¸
+τ2α1(r)Pr + τ3α2(r)Pr... (22)

Further, as in (14), let us consider an asymptotic expansion of the option price near maturity of the form:

P (θ, σ, r, τ ) = P1(θ, σ, r, τ )
√
τ + P2(θ, σ, r, τ)τ + P3(θ, σ, r, τ)τ

√
τ + ...

Substituting this into (22), we obtain the following PDEs for Pn, n = 1, 2, ..:

0 = Pnθθ + θPnθ − nPn +
1

σ

¡
σ2 + 2(δ − r)

¢
Pn−1θ + 2bρ12

µ
−Pn−1σθ +

1

σ
Pn−1θ +

θ

σ
Pn−1θθ

¶
−2βρ13Pn−1θr + 2bβρ23

µ
Pn−2σr −

θ

σ
Pn−2θr

¶
+ 2a

µ
Pn−2σ −

θ

σ
Pn−2θ

¶
+ b2

µ
Pn−2σσ −

2θ

σ
Pn−2σθ

+
2θ

σ2
Pn−2θ +

θ2

σ2
Pn−2θθ

¶
+ Pn−2rrβ

2 − 2rPn−2 + 2(α0(r)Pn−2r + α1(r)Pn−4r + α2(r)Pn−6r + ...), (23)

with Pm = 0 for m ≤ 0.

Proposition 3 describes the solution to this system of PDEs. We do not provide the proof of the proposition,

which is lengthy but straightforward. The proof parallels the proof of Proposition 1. The results may be verified

by a direct substitution of the solution with unknown coefficients.

Proposition 3 Consider partial differential equation (22), the boundary condition: P (−∞, σ, r, t) = 0, and

regular asymptotic expansion:

P (θ, σ, r, τ ) =
∞X
n=1

Pn(θ, σ, r)τ
n
2 , (24)

with (θ, τ) in the vicinity of (0, 0). For any solution to this problem there exist functions C1(σ, r), C2(σ, r), ...

such that for each n: Pn(θ, σ, r) = Cn(σ, r)
£
p0n(θ, σ, r)Φ(θ) + q0n(θ, σ, r)φ(θ)

¤
+ p1n(θ, σ, r)Φ(θ) + q1n(θ, σ, r)φ(θ),

where p0n ∈ Π0(n, θ), p1n ∈ Π1(n− 2, θ), q0n ∈ Π0(n− 1, θ), and q1n ∈ Π1(3n− 5, θ) with coefficients depending on
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model parameters and C1(σ, r), C2(σ, r), ..., Cn−1(σ, r).

To get the coefficients Cn we proceed in the same manner as in the Black-Scholes case. We impose an explicit

early exercise rule by requiring that the put option is exercised as soon as it hits the barrier level θ = y. This

condition allows us to uniquely identify the coefficients Cn(σ, r), n = 1, 2, ... Indeed, we equate expansion (24)

evaluated at θ = y to the expansion of the put option payoff: K
£
1− exp(−σy

√
τ)
¤
= σyK

√
τ − σ2y2K

2
τ + ....

After equating P1 to σyK we determine C1(σ, r). Then we find p02, p
1
2, q

0
2 and q12, and equating P2 to

σ2y2K

2
, we

obtain C2(σ, r). The recursive formulas for Cn can be obtained easily from a symbolic calculus software package

and copy-pasted in a code for option pricing. As an illustrative example we give the 3rd order expansion of the

solution to the modified problem under an affine three-factor model (see (28) below) in Appendix D. For the 5th

order expansion the formula is much lengthier but is still straightforward to derive and implement. This is the

formula we use in the numerical experiments of Section 3.3. We do not reproduce it here to save space.

Let us denote the put price with barrier level y by P (θ, τ ; y), and the American put price by P (θ, τ), where

we skip the dependencies on σ and r to ease notation. Then we have

P (θ, τ) ' P1(θ, τ ; ey(θ, τ))√τ + P2(θ, τ ; ey(θ, τ))τ + ..., (25)

where

ey(θ, τ) = argmax
y≥θ

P (θ, τ ; y). (26)

3.2 Approximation of the early exercise premium

Our numerical experiments suggest that the convergence of asymptotic expansion (24) under stochastic volatility

is slower than in the Black-Scholes model. To improve our approximation we suggest using closed-form solutions

for European option prices whenever they are available. Well-known examples are found in the class of affine

and quadratic multifactor models, where European options can be valued quickly and accurately via the inverse

Fourier transform (see e.g. Duffie, Pan and Singleton (2000), Leippold and Wu (2002), Cheng and Scaillet (2007)).

Indeed, the American put option price is the sum of the European put price and the early exercise premium,

and the approximation error can be decomposed in a similar way. If the two errors in such a decomposition are

relatively independent then the accuracy of our approximation can be improved if European put option prices

are available in closed-form expressions.

Recall that the European put price is the solution to the modified problem with y = ∞. Consequently, the

early exercise premium is approximately given by P (θ, τ ; ey(θ, τ)) − P (θ, τ ;∞), where ey(θ, τ) is defined in (26).
Now suppose that the price of the European put is available. Then the American put price may be approximated
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by

P (θ, τ) ' P (θ, τ ;∞) + [P1(θ; ey(θ, τ))− P1(θ;∞)]
√
τ + [P2(θ; ey(θ, τ))− P2(θ;∞)] τ + ... (27)

To distinguish between the two approximations presented so far, we refer to (25) as approximation 1 and to

(27) as approximation 2.

3.3 Numerical analysis

3.3.1 Accuracy of the approximation

In this section we illustrate the accuracy of our method when both volatility and interest rates are stochastic.

We assume the price S of the underlying asset to have the following risk-neutral dynamics:

dSt = (rt − δ)Stdt+
√
vtStdW

(1)
t , (28)

dvt = κv(v − vt)dt+ σv
√
vtdW

(2)
t ,

drt = κr(r − rt)dt+ σr
√
rtdW

(3)
t ,

with r0 = r, v0 = v, 4 and where interest rate r is uncorrelated with both the volatility and the price of the

underlying asset, namely ρ13 = ρ23 = 0. The advantage of the affine three-factor model (28) is that it admits

a closed-form solution for the European option price. The closed-form allows us to gauge the accuracy of our

approach, to compare performance of approximation 1 versus approximation 2, and to assess potential bias in

simulation-based approaches with discretized paths.

Table 3 reports the European and American put values for different combination of model parameters. The

choice of parameter values is influenced by possible applications of our methodology, which include stock index

and currency options. Empirical estimates of Bates (1996) and Carr and Wu (2007) for currency options suggest

that the volatility mean-reversion κv does not exceed 1.5 and the volatility of volatility σv is below 0.3. This

is also in line with the findings of Bakshi, Cao and Chen (2000) for stock index options. Currency markets are

characterized by very low correlation between exchange rates and volatility, which is typically between −0.1 and

0.1. On the contrary, stock indices are highly negatively correlated with volatility. We take this into account by

introducing a set of parameters with a high negative correlation ρ12 = −0.5. The specification of the interest rate

process is consistent with findings of Bakshi, Cao and Chen (2000).

American put prices are computed using the simulation-based approach of Longstaff and Schwartz (2001) with

1, 000, 000 sample paths 5, 500 time steps, and 50 exercise dates. We use the Euler discretization method with

4This assumption is needed to make sure that rt and σt are constant when σr = σv = 0, and that the Black-Scholes model is a
natural benchmark for comparison purposes (see the next section for numerical examples).

5To reduce the variance, we generate 500’000 random paths of the price of the underlying asset, while the other 500’000 paths are
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the full truncation method suggested by Lord, Koekkoek and van Dijk (2009). To check for possible bias in the

simulation-based results due to the truncation, we compare European put prices given by a closed-form solution

(see Bakshi, Cao and Chen (2000)) and by the Monte-Carlo approach. Approximations 1 and 2 of American put

prices are computed using a 5th order expansion with the search algorithm described in Section 2.5.1. To give an

idea of the computational advantage of our method, a Matlab code implementing the algorithm of Longstaff and

Schwartz (2001) takes dozens of minutes to compute a single option price while our approximation takes roughly

a tenth of a second.

The comparison of European put prices based on Monte-Carlo simulations with those based on the closed-form

solution suggests that, if any, the truncation bias is almost negligible. Indeed, in 33 out of 36 cases, the absolute

difference between the European option prices does not exceed the standard error of the Monte-Carlo simulation.

Overall approximation 2 appears to be more accurate than approximation 1 in the valuation of American

options. Both approximations provide accurate and similar option values for in-the-money (K = 110) and at-the-

money put options (K = 100). The reported errors for approximation 2 relative to the simulated prices do not

exceed half a percent, and can be as small as one basis point. The corresponding absolute errors are of a magnitude

of 10−3. For some out-of-the-money put options (K = 90) the two approximations lead to mild distortions in

option valuation with approximation 2 being closer to the Monte-Carlo pricing. The reported relative errors for

approximation 2 can be larger than two percent for a limited number of cases. For those cases absolute errors

are, however, small in the range of 10−4 − 10−5.

To explain the observed differences yielded by the two approximations in Table 3, note that an approximation

based on short-maturity asymptotics is essentially an expansion of the option price around the initial values of

the stochastic factors. In the Black-Scholes model, where only the price of the underlying asset is stochastic, the

short-maturity asymptotics expansion converges very quickly (see the analysis of the previous section). Such an

approximation should be less accurate in models with multiple stochastic factors that are likely to move away

from their initial values during the lifetime of the option. Consequently, we expect a short-maturity asymptotic

approximation to be less accurate for out-of-the-money options, which have longer expected time-to-maturity.

Here approximation 2 performs better as it relies on the exact European put price given by a closed-form formula.

The same reasoning also suggests that approximation errors of in-the-money put options should be lower than

those of at-the-money put options. An observation of the relative errors in Table 3 confirms this conjecture. Based

on this last evidence, we further guess that our methodology may prove to be very accurate in approximating the

early exercise boundary. A combination of an approximation of the early exercise boundary and a Monte-Carlo

simulation can result in a more accurate pricing scheme at the expense of a slight increase in computational time.

We leave the development of such an approach for future research.

obtained by reflection.
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3.3.2 Effect of stochastic volatility and stochastic interest rates

In this section we take advantage of our fast pricing algorithm to study the effects of stochastic volatility and

stochastic interest rates on the American put price. In particular, we are interested in their effect on the early

exercise premium. A simple alternative approximation approach to pricing American options in a multifactor

setting is to compute the European option price using known closed-form solution while adding the early exercise

premium evaluated under the Black-Scholes model. 6 In this section we explain why such an approach may

result in an economically significant mispricing. Apart from illustrating the advantage of our approach for option

pricing, this study provides new insights on the key determinants of the American put price.

The effect of a change in model parameters on the American put price (∆P) can be decomposed into the

effect on the early exercise premium (∆EEP) and the European put price (∆PE): ∆P = ∆EEP +∆PE . For

a price S below the early exercise price, the American put price is equal to its payoff. Therefore, for deep-in-the

money options, ∆P ' 0 and ∆EEP ' −∆PE . This means that deep-in-the money American put options are

not affected by a model specification, while the effect on the early exercise premium is comparable with the

impact on the European put price. For deep-out-of-money options, the early exercise premium is negligible and

∆P ' ∆PE . This means that the model specification has an identical effect on both American and European

put price. Taking into account these two extremes, we can guess that the effect of model specification on near-

at-the-money American put options will be equal in sign but smaller in magnitude than the impact on European

put options. Another justification for this guess is that the possibility of an early exercise reduces the expected

lifetime of the put option, thus diminishing the impact of stochastic factors. The subsequent numerical analysis

confirms our conjecture.

Consider a generalization of the affine specification of the previous section by allowing for an additional

correlation ρ13 between the price of the underlying asset and the interest rate. The effect of introducing stochastic

volatility and stochastic interest rates will be measured relative to the benchmark case of the Black-Scholes model,

which corresponds to σv = σr = 0 in (28). Hereafter we assume zero correlation between volatility and interest

rates (ρ23 = 0) since unreported results show that it appears to have a negligible impact on put prices.

Figure 2 illustrates the effect of generalizations of the Black-Scholes model on the put prices and the early

exercise premium. Figure 2a shows the effect of the introduction of a stochastic volatility uncorrelated with the

price of the underlying asset. The European put under uncorrelated volatility is equal to the expected Black-

Scholes price with volatility being the variable to be integrated (Hull and White (1987)), and the European put

price decreases due to the convexity of the Black-Scholes option price with respect to volatility. While American

put prices also decrease, the magnitude of the impact is smaller as expected. The discrepancy between American

6We thank Liuren Wu for pointing out this approach sometimes used in practice.
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and European prices increases as options go deeper in-the-money (the price of the underlying asset goes down),

which is reflected by a larger impact on the early exercise premium. Here at-the-money ∆EEP is 1.1% of the

Black-Scholes price.

The comparison between Figures 2a and 2b shows the effect of having a negative correlation between volatility

and the price of the underlying asset. Here we observe a well-known effect of the implied volatility skew: out-of-

the-money put options become relatively more expensive. The difference between Figures 2b and 2c illustrates

the impact of volatility mean-reversion. In our case with the spot variance v0 equal to its long-term average

v, the volatility mean-reversion dimishes the impact of stochastic volatility on option prices. In practice, the

long-term average is likely to be higher than the spot level due to the volatility risk premium, meaning that

the volatility mean-reversion will tend to increase option prices. The comparison between Figures 2c and 2d

reveals the additional effect of stochastic interest rates. Often an increase in domestic interest rates results in a

decrease of the stock price or the price of the foreign currency. To emphasize this effect we assume a high negative

correlation ρ13 = −0.5. The negative correlation between the price of the underlying asset and the spot interest

rate implies that the states where the European put yields larger payoffs (low price) are discounted more heavily

due to higher interest rates. As a result, put option prices decrease after the introduction of stochastic interest

rates.

4 Concluding remarks

In this paper we have described a new approach to pricing American options in a general setting with stochastic

volatility and stochastic interest rates. Although the analytical approximation is based on a short-maturity

asymptotic expansion, it performs extremely well in the Black-Scholes context with time-to-maturity up to several

years. Under stochastic volatility, the convergence of the asymptotic expansion is slower. This problem is dealt

with by considering the approximation of the early exercise premium instead of the American put. Then the

convergence is achieved much faster: across all moneyness degrees, the approximation remains accurate for

options with time-to-maturity up to half a year. Using our method, we have run several numerical experiments to

study the effect of model specification on the American put. We have found that effects stemming from stochastic

volatility and stochastic interest rates can be substantial.
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APPENDIX A. Proof of Proposition 1.

Substituting (14) into (11) we arrive at:

−nPn + θPnθ + Pnθθ +
1

σ

£
σ2 + 2(δ − r)

¤
Pn−1θ − 2rPn−2 = 0, n = 1, 2... (29)

with P0 = P−1 = 0. The homogeneous solutions of equation (29) form a two dimensional space. One dimension

is spanned by a polynomial solution which does not satisfy the boundary condition (8) at infinity. The other

independent solution has the form:

P 0n(θ) = p0n(θ)Φ(θ) + q0n(θ)φ(θ). (30)

Let us substitute (30) in the homogeneous part of (29). After some rearrangements we find:

µ
d2p0n
dθ2

+ θ
dp0n
dθ
− np0n

¶
Φ(θ) +

µ
−(n+ 1)q0n − θ

dq0n
dθ

+
d2q0n
dθ2

+ 2
dp0n
dθ

¶
φ(θ) = 0.

It is easy to verify that PDE
d2p0n
dθ2

+ θ
dp0n
dθ

− np0n = 0, has polynomial solution

p0n(θ) = π0n0θ
n + π0n1θ

n−2 + π0n2θ
n−4 + ..., with π0n0 = 1, π0ni+1 =

(n− 2i)(n− 2i− 1)
2i+ 2

π0i . The polynomial so-

lution to −(n+ 1)q0n − θ
dq0n
dθ

+
d2q0n
dθ2

+ 2
dp0n
dθ

= 0, has the form q0n(θ) = κ0n0θ
n−1 + κ0n1θ

n−3 + κ0n2θ
n−5 + ... with

κ0ni+1 =
κ0ni(n− 1− 2i)(n− 2− 2i) + 2π0ni+1(n− 2i− 2)

2n− 2i− 2 .

Let us now find a particular solution P 1n of (29), which satisfies the boundary condition at infinity. Any

solution of (29) with appropriate behavior at the boundary is given by Pn(θ) = CnP
0
n(θ) + P 1n(θ), where Cn is

some constant. Let us look for a particular solution P 1n in the form P 1n(θ) = p1n(θ)Φ(θ) + q1n(θ)φ(θ). This implies

that the general solution is:

Pn(θ) = Cn

£
p0n(θ)Φ(θ) + q0n(θ)φ(θ)

¤
+ p1n(θ)Φ(θ) + q1nφ(θ). (31)

Let us guess that polynomials p1n and q1n are as follows:

p1n(θ) = π1n0θ
n + π1n1θ

n−2 + π1n2θ
n−4 + ..., q1n(θ) = κ1n0θ

n−1 + κ1n1θ
n−3 + κ1n2θ

n−5 + ...

After substituting Pn−1 and Pn−2 of the form (31) into equation (29) for P 1n we obtain a system of two equations:

d2p1n
dθ2

+ θ
dp1n
dθ
− np1n + σ̃Cn−1

dp0n−1
dθ

+ σ̃
dp1n−1
dθ

− 2rCn−2p
0
n−2 − 2rp1n−2 = 0,
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−(n+ 1)q1n − θ
dq1n
dθ

+
d2q1n
dθ2

+ 2
dp1n
dθ

+ σ̃Cn−1p
0
n−1 + σ̃Cn−1

dq0n−1
dθ

− σ̃Cn−1θq
0
n−1

+σ̃p1n−1 + σ̃
dq1n−1
dθ

− σ̃θq1n−1 − 2rCn−2q
0
n−2 − 2rCn−2q

1
n−2 = 0,

where σ̃ =
1

σ

£
σ2 + 2(δ − r)

¤
. These equations can be solved as before. In particular we may assume π1n0 =

κ1n0 = 0 since we can safely subtract a homogeneous solution. Here we do not write down the lengthy recursive

relationship. In practice the PDE for P 1n can be solved directly by the substitution of its guessed form.

APPENDIX B. 4th order expansion of the solution to the modified problem under the Black-

Scholes model.

The solution to the modified problem has the 4th order short-maturity expansion:

P (θ, τ) =
4X

n=1

τ
n
2

©
Cn

£
p0n(θ)Φ(θ) + q0n(θ)φ(θ)

¤
+ p1n(θ)Φ(θ) + q1nφ(θ)

ª
,

where p01(θ) = θ, p11(θ) = 0, q01(θ) = 1, q11(θ) = 0,

p02(θ) = θ2 + 1, p12(θ) =
1

2σ
C1
¡
σ2 − 2μ

¢
, q02(θ) = θ, q12(θ) = 0,

p03(θ) = θ3 + 3 θ, p13(θ) =
1

σ

£
C2σ

2 − 2C2μ− rC1σ
¤
θ, q03 = θ2 + 2,

q13(θ) =
1

8σ2
(
£
8C2σ

3 − 16C2σ μ− 8 rC1σ2 − 4C1σ2μ+ C1σ
4 + 4C1μ

2
¤
,

p04(θ) = θ4 + 6θ2 + 3,

p14(θ) =
1

2σ

£
3C3σ

2 − 6C3μ− 2 rσ C2
¤
θ2

+
1

4σ2
£
3C3σ

3 + σ4C2 − 6C3σ μ− σ
¡
−3C3σ2 + 6C3μ+ 2 rσ C2

¢
+4C2μ

2 − 2σ3rC1 − 4σ2C2μ− 2 rσ2C2 + 4σ rC1μ
¤
,

q04(θ) = θ3 + 5 θ,

q14(θ) =
1

48σ3
£
8C1μ

3 + 72C3σ
4 − C1σ

6 − 48 rσ3C2 + 6C1σ4μ− 12C1σ2μ2 − 144C3σ2μ
¤
θ,
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and C1 = (Kyσ) (Φ0y + φ0)
−1

, C2 = −
¡
Φ0C1σ

2 − 2Φ0C1μ+Ky2σ3
¢ £
2σ
¡
Φ0y

2 +Φ0 + φ0y
¢¤−1

,

C3 =
£
24σ2

¡
Φ0y

3 + 3Φ0y + φ0y
2 + 2φ0

¢¤−1
×
¡
−24Φ0yσ3C2 + 48Φ0yσ C2μ+ 24Φ0yσ2rC1

−24φ0C2σ3 + 48φ0C2σ μ+ 24φ0rC1σ2

+12φ0C1σ
2μ− 3φ0C1σ4 − 12φ0C1μ2 + 4Ky3σ5

¢
,

C4 = −
£
48σ3

¡
Φ0y

4 + 6Φ0y
2 + 3Φ0 + φ0y

3 + 5φ0y
¢¤ −1

×
¡
72Φ0σ

4y2C3 − 144Φ0σ2y2C3μ− 48Φ0σ3y2rC2 + 48Φ0σ C2μ2

+12Φ0σ
5C2 + 72Φ0σ

4C3 − 144Φ0σ2C3μ− 48Φ0σ3rC2 − 24Φ0σ4rC1

−48Φ0σ3C2μ+ 48Φ0σ2rC1μ+ 8φ0yC1μ3 + 72φ0yC3σ4 − φ0yC1σ
6

−48φ0yrσ3C2 − 12φ0yC1μ2σ2 − 144φ0yC3σ2μ+ 6φ0yC1σ4μ+ 2Ky4σ7
¢
,

with μ = r − δ, Φ0 = Φ(y), φ0 = φ(y).

APPENDIX C. Proof of Proposition 2.

By definition of the barrier put option, its value at the early exercise boundary is equal to the payoff g. Hence,

P (θ, τ ; θ) = K(1 − e−σθ
√
τ ) = g(θ, τ ,K), which implies that Pθ(eθ, τ ;eθ) + Py(eθ, τ ;eθ) = gθ(eθ, τ ,K). Here and

further in the proof the subscripted θ refers to the left derivative with respect to θ. Recall that eθ is an argument
of the maximum of P (eθ, τ ; y) as a function of y. From (19) by continuity we have:

Py(eθ, τ ;eθ) = 0, (32)

which yields the first result of the proposition: Pθ(eθ, τ ;eθ) = gθ(eθ, τ ,K).
Using the notations of Appendix A, we can write the barrier option price as: P (θ, τ ; y) =

σyK

yΦ(y) + φ(y)
(θΦ(θ) + φ(θ))

√
τ + R(θ, τ ; y)τ , where we have used the notation R(θ, τ ; y) =

∞X
n=2

τ
n−2
2

©
Cn(y)

£
p0n(θ)Φ(θ) + q0n(θ)φ(θ)

¤
+ p1n(θ)Φ(θ) + q1nφ(θ)

ª
. The first order condition (32) implies:

σKφ(eθ)eθΦ(eθ) + φ(eθ) = −Ry(eθ, τ ;eθ)√τ , (33)
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with

Ry(eθ, τ ;eθ) = ∞X
n=2

τ
n−2
2

∂

∂y

n
Cn(y)

h
p0n(
eθ)Φ(eθ) + q0n

eθ)φ(eθ)i+ p1n(
eθ)Φ(eθ) + q1nφ(

eθ)o . (34)

Using the expressions given in Appendix A we observe that the leading term in (34) has asymptotics of ordereθ−1. The other terms in expansion (34) converge to zero faster than eθ−1 due to the multiplication by a positive
power of τ and the slow growth of eθ(τ) ≤ θ(τ) ∼

p
ln(1/τ). Substituting Ry(eθ, τ ;eθ) ∼ eθ−1in (33) yields

σKeθφ(eθ)eθΦ(eθ) + φ(eθ) ∼ √τ . Using the approximation Φ(eθ) = 1− φ(eθ)eθ−1 +O(eθ−2) we have σKφ(eθ) ∼ √τ , which gives
the second result eθ ∼pln(1/τ) of the proposition.
APPENDIX D. 3rd order expansion of the solution to the modified problem under an affine

three-factor model.

Let us consider the affine three-factor model (28) with ρ23 = 0, i.e., an Heston model with stochastic interest

rates. With condensed notations the solution to the modified problem has the 3rd order short-maturity expansion:

P = [θC1Φ+ C1φ]
√
τ +

1

2σ

∙
(2C2σθ

2 + 2C2σ + C1σ
2 − 2C1q)Φ+ θ(2C2σ +

1

2
σvρ12C1)φ

¸
τ

+

∙
− θ

σ
(−C3σθ2 − 3C3σ + 2σr

√
rρ13σ

∂C2
∂r

+ 2C2q − 2σvρ12C2 + σvρ12
∂C2
∂σ

σ + rC1σ − C2σ
2)Φ

+
1

24σ2

µ
24C3σ

2θ2 + 48C3σ
2 +

3

4
σ2vρ

2
12C1θ

4 − 3σvC1θ2ρ12σ2 −
5

2
σ2vC1θ

2ρ212 + 6σvC1θ
2ρ12q

+σ2vC1θ
2 + 12C1q

2 − 12C1σ2q + 12aσC1 − 24rC1σ2 +
1

2
σ2vC1 − 6σvρ12C1q + 12σr

√
rρ13σC1

−24σvρ12
∂C2
∂σ

σ2 + 36σvρ12C2σ − 48σr
√
rρ13σ

2 ∂C2
∂r
− 48C2σq + 24C2σ3 + 3C1σ4 +

1

4
σ2vρ

2
12C1

−3σvρ12C1σ2
¢
φ
¤
τ
√
τ +O(τ2),

where C1 = Kyσ/(Φ0y + φ0), C2 =
1

2σ
(−Φ0C1σ2 + 2Φ0C1q −

1

2
φ0yσvρ12C1 −Ky2σ3)/(Φ0y

2 +Φ0 + φ0y),

C3 =
1

24σ2
(−3Φ0C1σ4 + 24Φ0yσvρ12

∂C2
∂σ

σ2 + 24Φ0σvρ12
∂C2
∂σ

σ2 + 24Φ0rC1σ
2 − Φ0σ2vy2C1

−24Φ0yC2σ3 + 24Φ0yrC1σ2 −
3

4
Φ0σ

2
vρ
2
12C1y

4 + 3Φ0σvy
2ρ12C1σ

2 − 24Φ0C2σ3

−48Φ0yσvρ12C2σ − 36Φ0σvρ12C2σ − 12Φ0aσC1 − 6Φ0σvy2ρ12C1q + 48Φ0yC2σq

+6Φ0σvρ12C1q + 48Φ0yσr
√
rρ13σ

2 ∂C2
∂r

+ 48Φ0σr
√
rρ13σ

2 ∂C2
∂r
− 12Φ0C1q2

−12Φ0σr
√
rρ13σC1 + 12Φ0C1σ

2q + 48Φ0C2σq −
1

2
Φ0σ

2
vC1 + 3Φ0σvρ12C1σ

2

−1
4
Φ0σ

2
vρ
2
12C1 +

5

2
Φ0σ

2
vy
2ρ212C1 + 4Ky3σ5)/(Φ0y

3 + 3Φ0y +Φ0y
2 + 2Φ0),

and q = r − δ, a =
κv(v − v)− σ2v/4

2σ
, φ0 = φ(y), Φ0 = Φ(y).
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Table 1. American call option prices and their approximations under the Black-Scholes model.
The table compares option price bounds of Broadie and Detemple (1996) with our approximation based on asymptotic expansions of different orders. Broadie&Detemple refers to option price lower bounds
reported in Tables 1 and 2 of Broadie and Detemple (1996). “True value” is a 15’000-step binomial tree approximation computed in Broadie and Detemple (1996). Here all options have strike price K = 100. 
Time-to-maturity , asset price S, interest rate r, volatility , and  dividend rate  are indicated in the table.

Option parameters r = 0.03,  = 0.2,  = 0.07 r = 0.03,  = 0.4,  = 0.07 r = 0,  = 0.3,  = 0.07 r = 0.07,  = 0.3,  = 0.03
S 80 90 100 110 120 80 90 100 110 120 80 90 100 110 120 80 90 100 110 120

 = 0.5 years

European 0.215 1.345 4.578 10.421 18.302 2.651 5.622 10.021 15.768 22.650 1.006 3.004 6.694 12.166 19.155 1.664 4.495 9.251 15.798 23.706

4th order 0.219 1.384 4.774 11.083 20.000 2.686 5.718 10.228 16.166 23.341 1.036 3.118 7.022 12.934 20.696 1.665 4.495 9.248 15.792 23.698

Broadie&Detemple 0.218 1.376 4.750 11.049 20.000 2.676 5.694 10.190 16.110 23.271 1.029 3.098 6.985 12.882 20.650 1.664 4.495 9.251 15.798 23.706

True value 0.219 1.386 4.783 11.098 20.000 2.689 5.722 10.239 16.181 23.360 1.037 3.123 7.035 12.955 20.717 1.664 4.495 9.251 15.798 23.706

  = 3 years

European 2.241 4.355 7.386 11.331 16.117 10.309 14.162 18.532 23.363 28.598 4.644 7.269 10.542 14.430 18.882 12.133 17.343 23.301 29.882 36.973

4th order 2.552 5.108 8.974 14.333 21.320 11.157 15.518 20.563 26.249 32.532 5.460 8.752 13.023 18.313 24.644 12.082 17.200 23.052 29.536 36.560

5th order 2.574 5.148 9.028 14.388 21.358 11.291 15.676 20.735 26.424 32.698 5.496 8.802 13.082 18.375 24.702 12.089 17.288 23.249 29.853 36.991

Broadie&Detemple 2.553 5.121 9.002 14.371 21.354 11.238 15.609 20.656 26.337 32.607 5.463 8.766 13.048 18.347 24.685 12.145 17.367 23.347 29.961 37.099

True value 2.580 5.167 9.066 14.443 21.414 11.326 15.722 20.793 26.495 32.781 5.518 8.842 13.142 18.453 24.791 12.145 17.369 23.348 29.964 37.104



Table 2. Put option prices and their approximations under the Black-Scholes model.
The table compares the approach of Bunch and Johnson (2000) with our approximation based on a 4th order asymptotic expansion.
Bunch&Johnson refers to results reported in Table II of Bunch and Johnson (2000). “True value” is a 10,000-step binomial tree approximation 
computed in Bunch and Johnson (2000). Here asset price S = 40, interest rate r = 0.0488 and dividend yield is zero. Time-to-maturity  and asset 
price volatility  are indicated in the table.

Method
 = 0.2  = 0.3  = 0.4

 =1/12  = 1/3  = 7/12  =1/12  = 1/3  = 7/12  =1/12  = 1/3  = 7/12

K = 35

European put 0.006 0.196 0.417 0.077 0.687 1.189 0.246 1.330 2.113
4th  order 0.006 0.200 0.432 0.077 0.697 1.218 0.247 1.345 2.152
Bunch &Johnson  0.006 0.200 0.433 0.077 0.698 1.229 0.247 1.347 2.153
300-step tree 0.006 0.200 0.434 0.078 0.698 1.220 0.247 1.348 2.157
True value 0.006 0.200 0.433 0.077 0.698 1.220 0.247 1.346 2.155

K = 40

European put 0.840 1.522 1.881 1.299 2.428 3.064 1.758 3.334 4.247
4th  order 0.852 1.578 1.986 1.310 2.481 3.165 1.768 3.386 4.349
Bunch &Johnson 0.853 1.581 1.992 1.310 2.484 3.171 1.769 3.389 4.354
300-step tree 0.853 1.581 1.990 1.310 2.482 3.169 1.769 3.391 4.357
True value 0.852 1.580 1.990 1.310 2.483 3.170 1.768 3.387 4.353

K = 45

European put 4.840 4.780 4.840 4.980 5.529 5.972 5.236 6.377 7.166
4th  order 5.021 5.085 5.261 5.059 5.702 6.237 5.286 6.506 7.376
Bunch &Johnson 5.002 5.091 5.265 5.062 5.708 6.244 5.289 6.512 7.385
300-step tree 5.000 5.088 5.267 5.060 5.706 6.246 5.286 6.511 7.383
True value 5.000 5.088 5.267 5.060 5.706 6.244 5.287 6.510 7.383



Table 3. Put option prices under stochastic volatility and stochastic interest rates
Option prices are computed for an affine model of the asset price with stochastic volatility and stochastic interest rates:
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with 02313   . Asset price S = 100 and spot interest rate r = 0.04. Strike price K, time-to-maturity , volatility mean-reversion parameter 

v volatility of volatility 
v , and correlation 

12 take different values. Monte-Carlo refers to the Longstaff and Schwartz (2000) algorithm with 

1,000,000 sample paths, 500 time steps, and 50 exercise dates (see the text for more details). Standard errors are shown in parenthesis. European 
put prices are also computed using a closed-form solution to assess the extent of the bias of Monte-Carlo results due to truncation of the volatility 
process at zero. Approximations 1 and 2 are computed with a 5th order asymptotic expansion.

Method
K = 90 K = 100 K=110

 =1/12  = 1/4  = 1/2  =1/12  = 1/4  = 1/2  =1/12  = 1/4  = 1/2

.1.0,15.0,5.1,01.0 12   vvv

European put (Monte-Carlo)
0.0001

(0.0000)
0.0330

(0.0003)
0.1959

(0.0011)
1.0162

(0.0016)
1.6504

(0.0027)
2.2282

(0.0084)
9.6366

(0.0030)
9.0709

(0.0050)
8.6375

(0.0066)

European put (Closed form) 0.0001 0.0335 0.1965 1.0160 1.6492 2.2254 9.6358 9.0701 8.6410

American put (Monte-Carlo)
0.0001

(0.0000)
0.0346

(0.0003)
0.2040

(0.0010)
1.0438

(0.0013)
1.7379

(0.0023)
2.3951

(0.0031)
9.9950

(0.0005)
9.9823

(0.0009)
9.9796

(0.0021)

American put (Approx. 1) 0.0002 0.0303 0.1694 1.0416 1.7332 2.3989 10.000 10.000 10.000

American put (Approx. 2) 0.0001 0.0342 0.2054 1.0415 1.7319 2.3891 10.000 10.000 10.000

Relative Error (Approx. 2) 21.54% 1.16% 0.69% 0.22% 0.35% 0.25% 0.05% 0.18% 0.20%

.1.0,3.0,75.0,04.0 12   vvv

European put (Monte-Carlo)
0.0602

(0.0005)
0.5188

(0.0019)
1.1417

(0.0034)
2.1021

(0.0031)
3.3195

(0.0050)
4.2042

(0.0066)
9.7901

(0.0054)
10.0212
(0.0079)

10.3198
(0.0096)

European put (Closed form) 0.0603 0.5205 1.1439 2.1009 3.3156 4.1999 9.7904 10.0156 10.3200

American put (Monte-Carlo)
0.0619)
(0.0004)

0.5303
(0.0018)

1.1824
(0.0032)

2.1306
(0.0027)

3.4173
(0.0043)

4.4249
(0.0057)

10.0386
(0.0023)

10.4271
(0.0052)

11.0224
(0.0070)

American put (Approx. 1) 0.0608 0.5321 1.1984 2.1249 3.4054 4.4088 10.0135 10.4249 11.0342

American put (Approx. 2) 0.0606 0.5283 1.1788 2.1249 3.4060 4.4139 10.0137 10.4233 11.0178

Relative Error (Approx. 2) 2.10% 0.38% 0.30% 0.27% 0.33% 0.25% 0.25% 0.04% 0.04%

.1.0,3.0,5.1,04.0 12   vvv

European put (Monte-Carlo)
0.0576

(0.0004)
0.4837

(0.0018)
1.0359

(0.0032)
2.0851

(0.0031)
3.2480

(0.0049)
4.0509

(0.0063)
9.7846

(0.0054)
9.9647

(0.0078)
10.1669
(0.0094)

European put (Closed form) 0.0577 0.4849 1.0383 2.0844 3.2441 4.0467 9.7850 9.9594 10.1657

American put (Monte-Carlo)
0.0592

(0.0004)
0.4950

(0.0017)
1.0752

(0.0029)
2.1138

(0.0026)
3.3478

(0.0042)
4.2732

(0.0055)
10.0372
(0.0023)

10.3825
(0.0050)

10.8964
(0.0067)

American put (Approx. 1) 0.0582 0.4999 1.1243 2.1088 3.3381 4.2848 10.0116 10.3860 10.9363

American put (Approx. 2) 0.0580 0.4925 1.0717 2.1087 3.3368 4.2659 10.0119 10.3825 10.8950

Relative Error (Approx. 2) 2.03% 0.51% 0.33% 0.24% 0.33% 0.17% 0.25% 0.00% 0.01%

.5.0,15.0,5.1,04.0 12   vvv

European put (Monte-Carlo)
0.0765

(0.0005)
0.5887

(0.0021)
1.2482

(0.0036)
2.0996

(0.0032)
3.3164

(0.0052)
4.2165

(0.0068)
9.7403

(0.0054)
9.8117

(0.0081)
9.9901

(0.0099)

European put (Closed form) 0.0767 0.5903 1.2490 2.0998 3.3147 4.2085 9.7405 9.8073 9.9877

American put (Monte-Carlo)
0.0787

(0.0005)
0.6012

(0.0019)
1.2896

(0.0032)
2.1277

(0.0027)
3.4089

(0.0044)
4.4103

(0.0056)
10.0198
(0.0019)

10.2512
(0.0047)

10.6988
(0.0064)

American put (Approx. 1) 0.0771 0.6000 1.3039 2.1221 3.3970 4.4139 10.000 10.2442 10.7069

American put (Approx. 2) 0.0771 0.5982 1.2823 2.1221 3.3951 4.3927 10.000 10.2432 10.6935

Relative Error (Approx. 2) 2.03% 0.50% 0.57% 0.26% 0.40% 0.40% 0.20% 0.08% 0.05%



(a) S = 90

(b) S = 100

(c) S = 110

Figure 1. Convergence of the asymptotic expansion in the Black-Scholes model
Each graph shows absolute approximation errors of our method based on different orders of 
asymptotic expansion (N =2, 3, 4, 5). “Tree” refers to the errors of our approximation with barrier 
option prices being computed on a 2000-step binomial tree instead of asymptotic expansions. 
Reference American put prices are computed on a 2000-step binomial tree. The Black-Scholes 

model parameters are r = 0.05,  = 0,  = 0.2, K = 100. The time unit is one year.   
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Figure 2. Impact of stochastic volatility and stochastic interest rates  
Graphs show the impact of variation of model parameters on the early exercise premium ( EEPΔ ), the European put price 
( EPΔ ) and the American put price ( PΔ ) relative to the Black-Scholes model.  The general model set-up is:  
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tW . Time-to-maturity is 6 months, strike price K = 100. Graph (a) shows the effect of the 

introduction of stochastic volatility uncorrelated with the price of the underlying asset. The comparison between Graphs (a) and 
(b) shows the effect of having a negative correlation between volatility and the price of the underlying asset. The difference 
between Graphs (b) and (c) illustrates the impact of volatility mean-reversion. The comparison between Graphs (c) 
and (d) reveals the additional effect of stochastic interest rates. 
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