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Abstract

Voluntary carbon disclosure collapses into a paradox of green silence: firms choose to disclose
emissions based on strategic incentives (e.g., correcting vendor overestimates), while high emit-
ters may exploit vendor estimation bias. Mirroring Heckman sample selection bias, this self-
censorship skews disclosed emissions into non-random samples, distorting climate risk pricing
and policy. We bridge economic problem and machine learning, proposing a Heckman-inspired
three-step framework in high-dimensional settings to correct for strategic non-disclosure and
ensure variable selection consistency in the presence of sample selection bias. By integrating
kernel group lasso (KG-lasso) and double machine learning (DML) from neighbouring firms,
i.e., using information from carbon next door, we unveil systematic underestimation: empirical
analysis of 3444 unique US firms (2010-2023) rejects the null of no selection bias. Our findings
indicate that voluntary disclosure induces adverse selection, where green silence rewards pol-
luters and undermines decarbonization. Underestimation translates to a $2.6 billion shortfall in
tax revenues and up to $525 billion hidden social cost of carbon.
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1 Introduction

Greenhouse gas emissions reach new highs and climate impacts intensify globally according to the

UNEP Emissions Gap Report 2024.1 Monitoring carbon emissions by firms is key to achieve a

Net Zero Target (Net Zero (2024)). Firms disclose emissions on a voluntary basis and numbers are

collected by data vendors. Amongst data vendors, the Carbon Disclosure Project (CDP) data is most

widely used by academics, practitioners and serves as the basis for other data vendors. According to

the CDP disclosure report, 23,188+ firms disclosed on a voluntary basis climate related information

in 2023, 140% increase from disclosure in 2020.2 Out of these firms, 8000 (35%) disclosed for the

first time. Yet, just under 400 companies (2%) were A listed by CDP, that is recognized for the very

high quality of the published information.3 While CDP coverage is on a voluntary basis, other data

vendors select firms for their databases and provide estimates for non-disclosing companies. These

estimated emissions account for a substantial portion of the data - up to 75%.

In the disclosure process, we likely face a sample selection issue inducing biased estimators (Heckman

(1979)). When firms with superior carbon information strategically withhold data - anticipating that

third-party estimates underestimate their true environmental impact - voluntary disclosure regimes

morph into arenas of ‘green silence’, mirroring the economic notion of adverse selection. This

self-censorship creates bias: reported carbon footprints become non-random samples, systematically

skewed toward firms with fewer incentives to hide. Not surprisingly, corporate disclosure of environ-

mental, social, and governance information has become a focal point for academics, practitioners,

and regulators seeking to understand how transparency shapes market outcomes (Ilhan et al. (2023)).

Yet, in the absence of uniform mandates, firm voluntary reporting behavior remains uneven: while

long-term institutional shareholder activism can effectively compel firms to reveal climate-risk ex-

posures - yielding measurable valuation premiums (Flammer et al. (2021)) - managerial uncertainty

about stakeholder preferences and risk aversion sometimes induces strategic silence rather than full

disclosure (Bond and Zeng (2022)). Recent regulatory innovations demonstrate that compulsory cli-

mate reporting not only elevates both the quantity and quality of firm disclosures but also reorients

capital flows toward lower-carbon investments (Gibbons (2024), Gehricke et al. (2025)). Dynamic

disclosure models further reveal that managers optimally release unfavorable information only below

certain thresholds - sacrificing short-term price levels to reduce long-run valuation uncertainty (Kre-

mer et al. (2024)) - and that well-designed ESG mandates enhance stock liquidity, particularly for

firms with weaker preexisting information environments (Krueger et al. (2024)). Together, these find-

1https://www.unep.org/resources/emissions-gap-report-2024
2https://cdp.net/en/insights/cdp-2023-disclosure-data-factsheet.
3https://www.cdp.net/en/press-releases/scores-press-release-2023.
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ings underscore the multifaceted drivers of corporate transparency and its critical role in promoting

market efficiency and sustainable finance.

Sample selection bias in carbon disclosure arises not only from firm strategic self-censorship but also

from data vendor reliance on incomplete information. Vendors lack granular data on small firms (e.g.,

limited public sustainability reports, opaque supply chains). Just as Heckman observed that wage

samples exclude workers whose reservation wages keep them out of the labor force, carbon disclosures

exclude firms whose unobserved environmental performance incentivizes green silence (adverse selec-

tion in non-reporting firms which possess private information on their carbon emissions and use it to

their benefit). Reported emissions data - like the earnings of migrants or trainees - do not reflect the

counterfactual: what nondisclosers would have reported if compelled to transparency. Conventional

comparisons (disclosers vs. nondisclosers) thus misestimate the true ‘treatment effect’ of decarboniza-

tion policies, much as uncorrected wage studies misestimate the value of union membership. Only

by modeling the selection process itself - why firms opt out of disclosure - can we disentangle green

rhetoric from sustainability.

We establish the parallel to Heckman selection bias. In Heckman seminal work, sample selection

bias arises when individuals self-select into a study (e.g., migrants, union workers). Similarly, in

voluntary carbon disclosure: (1) self-selection by firms : firms choose to disclose emissions based on

strategic incentives (e.g., correcting vendor overestimates or avoiding scrutiny); (2) vendor estimation

bias : third-party vendors estimate emissions for non-disclosers using incomplete or skewed data,

mirroring Heckman analyst-driven selection. By addressing self-selection bias, Heckman approach

indirectly aids in analysing markets plagued by adverse selection. Our approach not only quantifies

the statistical and economic significance of this bias but also enables an empirical inference about

the extent of green silence (adverse selection in non-reporting firms) within the carbon disclosure

landscape.

While the IPCC Guidelines set a clear method for differentiating between “sectors of economy”

(Eggleston et al. (2006)), these sectors are quite different to those understood by economists. In

the IPCC Guidelines, a sector is a grouping of activities, while in economics a sector is a grouping

of similar economic actors. The energy sector, for example, includes most combustion of energy,

whether the activities are undertaken by enterprises whose main activity is energy production or

not. All household combustion of gasoline in private transportation is included in the energy sector,

whereas under economic accounts such activities is included in the household sector. To align with

the IPCC notion of sectors as activity-based groupings, we propose portfolio sorts as a method for

grouping firms from the data. Firms are sorted into L portfolios based on the values of selected

characteristics. These characteristics and their values are chosen to reflect the type of activities
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undertaken by different groups of firms, thereby forming activity-based sectors.

The carbon estimates provided by data providers, including CDP, Trucost, MSCI, Sustainalytics,

Thomson Reuters, Bloomberg, and ISS often diverge due to differences in the definitions of nearest

peer groups. For instance,Thomson Reuters employs a carbon-to-size ratio as the matching criterion

to identify potential peer companies in the same industry if there are at least 10 firms, and the firms

are extended to industry group, business sector, and finally economic sector, following that order

until there are sufficient observations. Unlike Thomson Reuters, MSCI uses total revenue rather

than size as the primary matching criterion for identifying nearest peers. Beyond firm size and

revenue, other firm characteristics such as total assets, total sales, number of employees, and net

property and equipment values can serve as proxies for the scale of operations, which in turn predict

carbon output. These variations in the chosen approach raise a fundamental question: Which firm

characteristics are most crucial for identifying the nearest peer group to infer undisclosed carbon

output? Can we trust those selected firm characteristics and the estimated carbon emissions in the

presence of sample selection? Can we simply rely on näıve imoutation based on size and revenue?

Research publications using vendor estimates by MSCI ESG, Refinitiv, Sustainalytics, and Trucost

have experience a huge growth from a dozen per year in 2008 to several thousands in recent years

according to the Dimensions research database. A key question is to check potential biases in those

estimates.

We propose kernel group lasso (KG-lasso) to identify carbon neighbours across characteristics-sorted

portfolios that mimic activity-based sectors. The group lasso framework is employed to select groups

of portfolios sorted by key characteristics that are most informative for deriving carbon insights.

Hence, we want to exploit information from carbon next door, i.e., neighbouring firms. The kernel

function generates a vector of weights for the sorted portfolios, indicating the similarity between an

undisclosing firm and the L portfolios in terms of the selected characteristics. By leveraging a feature

map, the kernel function measures similarity in the feature space rather than the original character-

istics space. A significant advantage of this approach is that the kernel captures nonlinearity and

high-order interactions, extending beyond simple linear correlations. Concerning the identification

issue in the sample selection problem, we propose an adaptive KG-lasso to differentiate the variable

selection contributors from the sample selection contributors. The estimates from the selection equa-

tion are adaptive weights used to differentiate regularisations at the group level, hence the resulting

active set in the variable selection equation and the active set in the sample selection equation have

a bounded intersection. Ultimately, the adaptive weights benefit exclusion restrictions.

Drawing on Heckman remedy for sample selection bias, we shed light on gaps in carbon reporting

and show how accounting for strategic non-disclosure can better align incentives and strengthen
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decarbonization policies. In the presence of high-dimensional firm characteristics that determine

firm heterogeneity, we cannot use off-the-shelf penalisation techniques available in the literature.

The conventional Heckman approaches, either one-step or two-step procedures, appear to collapse

in the presence of high-dimensional variables in both sample selection equation and variable selec-

tion equation. It is stringent to consider advanced modern approaches to circumvent the curse of

dimensionality in our framework. Hence, on the theoretical side, we contribute to the literature

by showing i) the asymptotic distribution of a test statistic for sample selection in the presence of

high-dimensional nuisance parameters, ii) asymptotic consistency of variable selection in the carbon

function after sample selection bias correction, iii) the asymptotic normality of the estimated carbon

regression parameter in the presence of sample selection. To get i), we rely on the recent double ma-

chine learning (DML) approach by Chernozhukov et al. (2018). The advantage of DML leverages the

Neyman orthogonality to make the parameter of sample selection bias insensitive to inconsistency in

the high-dimensional nuisance estimates. The inconsistency arises from the regularisation bias from

both nuisance estimates. As long as the coefficient of selection bias can be consistently estimated,

we can do ”post” variable selection in the variable selection equation to attain the consistent esti-

mators and variable selection. One of by-products is to deliver doubly robust score test for sample

selection bias. The existing tests may fail to have unit power asymptotically against a wide range of

regularisation bias in variable selection equation and sample selection equation.

For consistency of variable selection, we extend the two-step procedure of Heckman (1979) to a

three-step procedure.4 The first step is to estimate nuisance parameters and plug-in these nuisance

parameters into the main equation to consistently estimate parameter of sample selection bias in the

second step using DML approach to get i). In the last step for post variable selection, we consistently

estimate main equation and derive consistent variable selection to get ii). This three-step procedure

generalises Heckman (1979) to a high-dimensional setup. In addition to estimation strategies, we

establish asymptotic analysis in our framework for iii). The asymptotic analysis in the proposed

framework decouples from Heckman (1979) because joint asymptotic analysis on parameter of sam-

ple selection bias and nuisance parameters is impossible in the presence of the curse of dimensionality.

Indeed, nuisance parameters are potentially biased from regularisation. We need to first asymptot-

ically analyse the parameters of sample selection bias, and the parameters in the sample selection

equation separately, then given the studied asymptotic properties, we can finally analyze asymp-

totically the estimated parameters in the variable selection equation for estimation consistency and

variable selection consistency.

Because of our approach à la Heckman based on a plug-in of a bias correction term, the proposed

4Sample selection issues can also be addressed via other methods targeting misspecification of conditional distri-
butions (Chen et al. (2024)).
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framework prevents an instrumental requirement for the sample selection equation. Bia et al. (2024)

develop DML for sample selection models that requires valid instrumental variables to tackle un-

observables and get consistent estimates. They do not rely on the bias correction and use random

forests. Although incorporating instrument variables facilitates modeling, such an instrument, if it

exists, is hard to find and hard to justify its plausibility in practice to achieve identification, especially

in a high-dimensional setting.

To quantify the impact of selection bias on carbon emissions estimates, we use annual carbon data

from Trucost covering 3444 unique US firms and 22,043 firm-year observations over the period Jan-

uary 2010 to December 2023. A substantial share of these data points is estimated by the vendor

rather than disclosed by firms. We leverage a rich set of firm characteristics (173 in total) both for

sample and variable selection. Our primary finding is a strong rejection of the null hypothesis of no

sample-selection bias: the coefficient on the selection term is consistently negative and highly signifi-

cant, indicating negative correlation between the unobserved determinants of selection and outcome

equations. Unobserved factors that increase the likelihood of voluntary disclosure are negatively

associated with unobserved drivers of carbon emissions estimates. Firms with greener unobserved

attributes are more likely to disclose, seeking to avoid vendor overestimation, and also tend to gen-

erate lower emissions due to their climate-conscious behavior. Ignoring selection bias results in a

substantial underestimation of scope 1, 2, and 3 emissions when considered separately. Encourag-

ingly, we document a steady decline in this bias over the sample period, particularly for scope 1 and

2 emissions. This trend appears related to the expanded data coverage following Trucost acquisition

by S&P in 2016.

A second key finding concerns the role of firm characteristics in the selection process. Sample selection

is primarily driven by indicators of firm quality, with firm size, age, and trading volume emerging

as dominant predictors. In contrast, the variables selected in the variable selection equation are

more closely related to firm future growth opportunities - such as R&D intensity, profitability, and

investment activity - as well as capital structure. Notably, firm size plays no significant role in the

variable selection stage. Only a small number of characteristics are inactive across both steps of our

methodology for scope 1. The numbers of characteristics for scope 2 and 3 are higher even if less

than 10. Prominent characteristics also differ across different scope emissions. Common ones include

debt issuance, R&D and volatility, yet each scope has its own key drivers. These findings underscore

the empirical relevance of a high-dimensional approach in both sample and variable selection. In

contrast, data vendors often rely on a limited set of firm characteristics to impute emissions, which

is likely to result in substantial underestimation - a pattern that is readily verified empirically. To

highlight the importance of dimensionality, we also implement our method using only firm size or

revenue as predictors. In these restricted specifications, the magnitude of the sample selection bias
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is several orders of magnitude larger than when employing the full set of characteristics. This raises

concerns for studies aiming to measure the carbon premium or carbon burden, as many rely on only a

small number of characteristics (see, e.g., Aswani et al. (2024), Bolton and Kacperczyk (2021, 2023),

Pastor et al. (2025), Zhang (2025)).

A third finding concerns the carbon tax revenue shortfall implied by underestimated emissions. Using

our high-dimensional approach and accounting for underestimation across all emission scopes, we

estimate a conservative tax revenue loss of $2.65 billion. This estimate is likely understated, as the

methodology used by data vendors to impute emissions is typically undisclosed. Comparing vendor-

imputed emissions to our high-dimensional predictions that correct for selection bias, we observe

substantial underestimation on the part of the vendor. This discrepancy translates into a potential

tax revenue shortfall exceeding $9 billion. To the credit of the data vendor, we note that the pattern of

decreasing selection bias over time - previously documented using our own high-dimensional estimates

- also holds in the vendor data. Moreover, underestimation based on simplified imputations using

only firm size or revenue is considerably larger than that observed in the vendor estimates. This

suggests that while vendor-based estimates fall short relative to a high-dimensional correction, they

still outperform näıve low-dimensional approaches commonly used in practice.

A forward-looking perspective on our findings can be gained by considering the social cost of carbon.

The social cost of carbon represents the present value of the estimated economic damages caused

by the emission of one additional ton of carbon dioxide. It serves as a key benchmark in evaluating

the benefits of emissions reductions and is widely used in climate policy and cost-benefit analyses.

The US Environmental Protection Agency (EPA) periodically publishes estimates of this cost (see

EPA (2023)). Based on our corrected emissions estimates, we find that the implied economic cost

of underreported carbon emissions could be as high as $525 billion. This figure vastly exceeds the

estimated tax revenue shortfall and underscores the broader societal implications of inaccurate carbon

reporting.

The paper is organized as follows. In Section 2, we outline our model based on a high-dimensional

regression with reproducing kernels. The model is made of a variable selection equation and a sample

selection equation. We discuss the identification issues underlying our approach. In Section 3, we

explain how to build a doubly robust score test for our sample selection model. We deploy the DML

approach by Chernozhukov et al. (2018) to correct for regularisation bias. In Section 4, we explain

how our kernel group lasso brings consistency of variable selection under sample selection bias. In

Section 5, we describe the data and our empirical results. In Appendix A, we provide proofs of

our theorems and in Appendix B, we give an overview of reproducing kernel methods. In Internet

Appendix, we gather additional Tables, and Figures.
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2 A high-dimensional model with variable selection and sam-

ple selection

2.1 High-dimensional regression with reproducing kernels

Our primary goal is to estimate carbon emissions using its carbon neighbours identified by kernel

group lasso. Let us denote the disclosed carbon of firm i by Yi, while Xi = (Xi1, · · · , XiJ) is a J

dimensional characteristics of i, and J is high-dimensional. We suppose that we are given n firm

information on carbon emissions. A prediction of Yi given the carbon outputs of its neighbouring

firms is

Yi = E
[
Yk|k ∈ Ni

]
so that we take the average of Yk for those k considered as the neighbour of i denoted by Ni.

How can we find neighbours that offer sufficient carbon insights? We can identify the potential

neighbours using some firm characteristics to define neighbourhood. We can lay out the unknown

carbon function conditional on firm characteristic information. To avoid the curse of dimensionality,

like many nonparametric approaches, we impose an additive model to approximate unknown carbon

function. The additive property is the by-product of reproducing properties in the Reproducing

Kernel Hilbert Space (RKHS) such that a linear combination of kernels is a kernel function per se.

Please refer to Berlinet and Thomas-Agnan (2011) for more details on RKHS.

Unlike the conventional nonparametric approaching such as kernel smoothing that exploits a cross-

section of n− 1 to identify/weight potential neighbors, we identify a group of neighbors, that is, the

portfolios sorted by one particular characteristics for which i may belong to. A sorted-portfolio is

a group of firms with similarity on characteristics j as sorting criteria. There are two main reasons

for this. First, in finance literature, portfolio-sorting is popular in return prediction as it exploits

cross-sectional information in a flexible way. The second reason is that portfolio sorts allow us to

form activity-based groupings. Firms are sorted into L portfolios based on the values of selected

characteristics. These characteristics and their values are chosen to reflect the type of activities

undertaken by different groups of firms, thereby forming activity-based sectors. An immediate benefit

is that the computing load is reduced from n(n− 1) to n× L, provided L < n.

In our empirics, Yi is the firm-level carbon emissions in tons of carbon dioxide in logarithm. We

can characterize the conditional mean equation in the RKHS as a linear span of reproducing kernels.

As such, we can have a simple estimate if we can allocate i to portfolio ` sorted by the value of
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characteristic j, denoted as Pj,` for ` = 1, · · · , L, j = 1, · · · , J , namely

Yi =
J∑
j=1

L∑
`=1

bj,`k(Xij, Pj,`) + εi, (1)

where k(., .) is a known reproducing kernel function for which we can choose from a family of kernel

functions such as polynomial kernels or Gaussian kernels; see Appendix C for more detail. Gaussian

kernel acts as a ”catch-all” method as it never performs poorly than others (Exterkate (2013)), For

this reason, we use Gaussian kernels in our emprical excercise.

The corresponding coefficient bj,` weights the kernel function. In (1), bj,` is the average carbon of `-th

portfolio sorted by j. We can think of k(Xij, Pj,`) as a smooth extension of the indicator function

1(Xij ∈ Pj,`) to belong to Pj,`. Here, we would like to incorporate higher-order information from a set

of variables including Xi,j, Pj,1, ..., Pj,L, and their nonlinear interaction. We propose to replace the

indicator 1(Xij ∈ Pj,`) by kernel function k(Xij, Pj,`) to measure similarity between the two entries

in a nonlinear fashion. We discuss useful functional properties of kernels in the following subsection.

Let

k(Xi) =


k(Xi1, P1,1), · · · , k(Xi1, P1,L)

...

k(XiJ , PJ,1), · · · , k(XiJ , PJ,L)


J×L

. (2)

Applying the vectorization operator vec(·) that stacks the columns of k(Xi) on top of one another

to yield ki = vec(k(Xi)
>)> and ki ∈ R1×JL. ki represents the kernel evaluated at Xi. We obtain a

compact representation of (1), namely

Yi = kib+ εi, (3)

where b ∈ RJL×1 is the vector of parameters to be estimated. Hence, equation (3) takes the form of

a high-dimensional linear regression based on reproducing kernels with many regressors ki and many

parameters in b. Indeed, in our empirics, we have J = 173 characteristics and L = 10 portfolios. In

the spirit of Fama and French (1993) for factor construction based on deciles (see also Freyberger

et al. (2020)), we set L = 10.5 We may extend this ad-hoc choice to an adaptive or data-driven one

to decide on L.

5To construct their empirical factors, Fama and French (1993) sort stocks according to deciles of the firm charac-
teristic. For example, for firm size, big stocks are those in the top 90% of June market cap, and small stocks are those
in the bottom 10%.

9



2.2 Model setup

Estimating the conditional mean function and variable selection are unlikely to be consistent in the

presence of sample selection bias if kib in (3) is estimated using non-randomly selected subsamples. It

is the main challenge in a growing literature for carbon estimation. Carbon information Yi is observed

if firm i reports its emission estimate, indicated by Di = 1, otherwise Yi is unknown, indicated by

Di = 0. Let N denote the entire sample size and use n to denote the subsample for which Di = 1. The

Variable Selection and Sample Selection (VS-SS) high-dimensional model that we study comprises

of two equations, one for variable selection in (4) that aims to select carbon-relevant characteristics

from a full set of X and estimate the unknown carbon regression function using the n disclosed

sample. The other one is for sample selection in (5) that models disclosure decision using full sample

information N . The sample selection equation is the propensity score of disclosure conditional on

regressors Zi:

variable selection: Yi = kib+ εi, (4)

sample selection: Di = Ziβ + vi. (5)

where b ∈ RJL×1 and β ∈ Rp×1.

The selection outcome Di is endogenous, raising a selection bias due to

E
[
εi
∣∣vi, Di = 1

]
6= 0. (6)

In the presence of sample selection bias, b in (4) cannot be consistently estimated using the observed

sample Di = 1, because E
[
Yi
∣∣Xi, Zi, Di = 1

]
= kib+ E

[
εi
∣∣Xi, Zi, Di = 1

]
6= kib from (6). Given that

selection function takes a linear form Ziβ, and if we assume εi and vi are bivariate normal random

variables, Heckman (1979) shows that

E
[
εi
∣∣Xi, Zi, Di = 1

]
= θh(Z>i β) = θhi, (7)

where h(z) = φ(z)/Φ(−z) is known as the inverse Mills ratio, hi := h(−Ziβ). For consistency in

carbon estimation, it is stringent to incorporate (7) into (4) for bias correction. We rewrite the

primary equation as,

Yi = kib+ θhi + εi, (8)

where θ is proportional to the covariance between ε and v, denoted by σε,v.

The conventional Heckman approaches, either one-step or two-step procedures, appear to collapse in
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the presence of high-dimensional variables in both sample selection and variable selection equations.

It is stringent to consider advanced modern approaches to circumvent the curse of dimensionality

in the VS-SS framework. For this, we consider DML proposed by Chernozhukov et al. (2018) which

leverages the Neyman orthogonality to make θ insensitive to inconsistency in the high-dimensional

nuisance estimates b and β. The inconsistency arises from the regularisation bias in the nuisance

estimates. As long as θ, the coefficient of selection bias, can be consistently estimated, one can

do ”post” variable selection in the variable selection equation to attain consistent estimators and

consistent variable selection.

For consistency of variable selection, we extend a two-step procedure of Heckman (1979) to a three-

step procedure. The first step is to estimate nuisance parameters b and β and plug in these nuisances

into (8) to consistently estimate θ in the second step using DML approach. In the last step for

post variable selection, we consistently estimate b and derive consistent variable selection for an

active subset of b as desired. This three-step procedure generalises Heckman (1979) to a high-

dimensional framework. In addition to estimation strategies, we establish asymptotic analysis in

the VS-SS framework. The asymptotic analysis in the proposed framework decouples from Heckman

(1979) because jointly asymptotically analysing θ, β and b is not possible in the presence of curse of

dimensionality. The estimators of β and b suffer potentially from a bias caused by regularisation. We

need to first asymptotically analyse θ̂, β̂ separately, then given the studied asymptotic properties of θ̂

and β̂ we finally derive an asymptotic analysis on b̂ for estimation consistency and variable selection

consistency.

We begin with estimating nuisance parameters as the first step. The selection equation in (5) under

the normally distributed error terms can be parametrised by lasso probit that allows us to handle high-

dimensional Zi and undertake variable selection in the parametrised propensity score Ziβ. β ∈ Rp,

a p-dimension vector, can be estimated by lasso probit to penalise small value in the parameter

vector. The linear form with sparsity constraint facilitates understanding of important covariates

that determine the propensity of disclosure:

β̂ = arg min
β

EN
[
Λi(β)

]
+ λ1 ‖β‖1 , (9)

where EN denotes the sample mean of N observations, Λi(.) is the negative log-likelihood for the

probit model evaluated at i, and ‖·‖1 is L1-norm driven by the penalisation parameter λ1 > 0 .

Now, we turn to estimation of b, the coefficient used to weight kernel functions in the kernel group lasso

model. This estimate is informative as it sheds lights on identification of carbon neighbours across

characteristic-sorted portfolios that mimic activity-based sectors. If we think that characteristic j
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is the most informative to identify the carbon neighbours, then the reproducing kernel kj spans the

RKHS. However, we may desire sparsity in the sense only a small subset of characteristics spans the

RKHS. Therefore, we impose a regularisation for complexity as follows with penalisation parameter

λ > 0:

min
b

1

2

n∑
i=1

(
Yi − kib

)2

+ λ
J∑
j=1

‖bj‖Kj , (10)

where b ∈ RJL×1 stacks all column vector bj for j = 1, ...J , and bj ∈ RL×1 a L-vector of coefficients.

In (10), the regularisation factor corresponding to j is ‖bj‖Kj =
(
b>j Kjbj

)1/2
, where Kj is a symmetric

L × L positive definite kernel matrix, with entries
[
Kj
]
`,`′

= 1
L
k(Pj,`, Pj,`′), for `, `′ = 1, · · · , L. We

choose Gaussin basis kernels in the empirical study. The good properties of Gaussian kernels have

been discussed in the appendix.

In the penalty term, the coefficient vector bj is weighted by kernel matrix Kj. The norm ‖bj‖Kj in the

RKHS space has salient insights in terms of cross-sectional information across L portfolios sorted by a

given characteristic. The entry
[
Kj
]
`,`′

= k(Pj,`, Pj,`′) for all `, `′ ∈ L measures the similarity between

portfolios ` and `′, sorted by j. If all entries in Kj are large or close to one, it implies a general large

similarity among the L portfolios sorted by j. In other words, characteristic j, as sorting criteria, is

not discriminant enough along the cross-section of firms grouped into the L portfolios. It explains

why we want to penalize the coefficients associated to such an uninformative characteristic through

a large weight in ‖bj‖Kj in order to discard j in building activity-based sectors. The penalty function

in a group lasso is intermediate between the L1-penalty that is used in the lasso and the L2-penalty

that is used in ridge regression (see Yuan and Lin (2006) for graphical illustrations of the different

penalties). The group lasso encourages sparsity at the group level, and not within a group.

The solution for b ∈ RJL×1 should be sparse. We can re-express (10) as follows:

min
b

1

2
‖Y − kb‖2 + λ

J∑
j=1

‖bj‖Kj , (11)

where k ∈ Rn×JL stacks n kernel vectors ki, i = 1, · · · , n. Denote zj = k(j)>
(
Y − kb−j

)
, b−j =(

b1, · · · , bj−1,0, bj+1, · · · , bJ
)>

and

k(j) =


k(X1j, Pj,1), · · · , k(X1j, Pj,L)

...

k(Xnj, Pj,1), · · · , k(Xnj, Pj,L)


n×L

(12)
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Let IL be L-dimensional matrix of ones. A closed-form solution for (11) is

b̂j =

(
IL −

λKj
‖zj‖Kj

)
+

zj (13)

2.3 Identification issues in a high-dimensional system

It is crucial to consider identification issues in (8). In most cases, Zi and Xi will have many variables

in common. A strong form of exclusion restrictions is not possible in the high-dimensional case.

In the case of the sample selection model, in order to separately identify the decision regarding

disclosure (to report or not to report) from the carbon determinants (how much to emit carbon), it

is necessary that we have variables which enter Zi but do not enter Xi. If such variables (known as

exclusion restrictions) cannot be found then separate identification depends upon the non-linearity

of the extra term (known as the inverse Mills ratio) which appears in the variable selection equation.

As addressed by Vella (1998), the inverse Mills ratios are likely to be linear over a wide range of its

arguments.

To ensure identification and facilitate estimation and variable selection in a high-dimensional setting,

we rely on the following assumptions .

Assumption 1. εi and vi are i.i.d. jointly normally distributed with covariance σε,v 6= 0, and (εi, vi)

are independent of Zi.

Assumption 2. The exclusion restrictions require supp(Xi) ⊂ supp(Zi) and Xi is contained in Zi.

Assumption 3. Let Aβ = {j; βj 6= 0} be the active set of selection parameters, and let Ab = {j; bj 6=
0} be the active set of b determining carbon emissions. Let |Ab| and |Aβ| be cardinality of Ab and Aβ.

As sparsity condition, we assume |Ab| < J and |Aβ| < q and q < p.

Assumption 4. Denote Pd the power set of d and d = min(|Ab|, |Aβ|). For an intersecting family

A ⊆ Pd, and 1 ≤ s ≤ n define an intersection structure of A by I(A) = {Aβ ∩ Ab : Aβ,Ab ∈ A} and

the collection of s-intersections of A by A(s) = {A ∈ I(A) : |A| = s}.

Assumption 1 and 2 are primitive. Assumption 1 enables the adoption of the inverse Mills ratio to

achieve bias correction by plug-in. Assumption 2 is a mild identification condition. The exclusion

restrictions are stated in terms of Xi and not their transformations ki since it is the behavior of

the former that matters in terms of identification. Assumption 3 allows Zi and Xi to share many

variables, and their active sets are small relative to their corresponding size of full set. In Assumption
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4, we impose that two active sets are nearly disjoint. For this, we require that the two active sets

have a bounded intersection.6 Assumption 4 suffices to ensure nonlinearity of inverse Mills ratio,

at least over part of the range of its arguments, even if the two design matrices have considerably

overlapping columns.

To meet these assumptions, we introduce an adaptive version of kernel group lasso. The estimates

from the selection equation underlie adaptive weights used to differentiate regularisations at the

group level. Intuitively, if Xj = Zj∈Aβ , we want to penalize its associated coefficient bj more heavily

with a regularisation directly weighted by (1 + |β̂j|)γ, for γ ≥ 1. To get that Xi is contained in Zi in

Assumption 2, we let Z = (X,U) and Zj = Xj for j = 1, · · · , J and Zj = Uj′ for j = J + 1, · · · , p
and j′ = 1, · · · , (p− J). Then, we build an adaptive Kernel group lasso:

min
b

1

2
‖Y − kb‖2 + λ

J∑
j=1

wj ‖bj‖Kj , (14)

where wj =
(
1 + |β̂j|

)γ
, γ ≥ 1 for j = 1, · · · , J and β̂j is the estimate from (9). The magnitude of

|β̂j| determines an additional weight in the excess of one. Clearly, the adaptive-weight regularisation

boils down to the plain regularisation with wj = 1 if β̂j = 0. Under such an adaptive weighting

scheme, Assumptions 3 and 4 are satisfied.

3 Doubly robust score test for sample selection model

3.1 Neyman orthogonal score and asymptotic normality

To rigorously pin down the asymptotic theorem for θ and to test sample selection bias, we incorporate

Neyman orthgonality conditions and derive the Neyman orthogonal score to make θ insensitive to

inconsistency in the plug-in estimates. The resulting estimator is M -estimator. The idea of adopt-

ing Neyman orthogonal score estimation can be dated back to Newey (1994). Newey (1994) gives

conditions on estimating equations and nuisance function estimators so that nuisance function esti-

mators do not affect the limiting distribution of parameters of interest. Chernozhukov et al. (2018)

establishes the equivalence between Neyman orthogonal score and the partialling-out approach of

Robinson (1988).

6Assumption 4 is compatible with the Erdös-Ko-Rado Theorem, which limits the number of sets in a family of
sets for which every two sets have at least one element in common.
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Let W = {Wi}i=1,··· ,N be a collection of Wi =
(
Yi, Di, Zi, Xi, hi

)
. Suppose `(W ; θ, η) a known

criterion function which is continuously differentiable almost surely, `(·) can be log-likelihood or

quasi-log-likelihood function. In the case of a linear model,

`
(
W ; θ, η

)
= −1

2

(
Y − kb− θh

)2

We present the Neyman orthogonal score,

ψ(W ; θ, η
)

= ∂θ`(W ; θ, b
)
− µ∂b`(W ; θ, b

)
(15)

where η =
(
b, h
)

and h := h(Zβ). µ solves the equation

Jθη − µJηη = 0

where J stands for Jacobian matrix. µ0 = Jθη(Jηη)−1 is a unique solution if Jηη is invertible. The

orthogonality conditions implies

∂ηE
[
ψ(W ; θ0, η0

)]
[η − η0] = 0

With the sample selection function Z>β and the variable selection function kb being parametrised

in a high-dimensional setup, the Neyman orthogonal score for the VS-SS model is given

ψ(W ; θ, η
)

=
(
Y − kb− θh

)(
h− E[h]

)
(16)

Eq. (16) forms a linear score (linear in θ) to benefit computational advantages to side step Jacobin

matrix computation. We can decompose the entire score into two parts,

ψ(W ; θ, η
)

= ψa(W ; η
)
θ + ψb(W ; η

)
(17)

where ψa(W ; η
)

= −h(h−E[h]) and ψb(W ; η
)

= (Y −kb)
(
h−E[h]

)
. For θ = θ0, we will have moment

condition to satisfy

E
[
ψ(W ; θ0, η0

)]
= 0 (18)

To satisfy the orthogonality conditions, following Chernozhukov et al. (2018) we deploy K-fold cross-

fitting algorithm to estimate η = (β, b). Such random sample splitting avoids overfitting issues

in nuisances and mitigates high variance caused by the use of subsamples. The estimate of η from

auxiliary samples will be plugged into the score function to solve the moment condition for θ estimate.
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Given the efficient orthogonal score, θ̂, the average of θ estimates from K folds, is the consistent

estimator of θ0, as stated in the next theorem following directly from Chernozhukov et al. (2018) and

based on the implementation algorithm:

Algorithm 1: Estimating selection bias via K-fold cross fitting

Input: W = {Wi}i=1,··· ,N be a collection of Wi =
(
Yi, Di, Zi, Xi

)
1 Split W in K subsamples. For each subsample k, let nk be its size, Wk be k-th fold subsample,

and Wc
k be its complement set.

2 Split Wc
k into 2 nonoverlapping subsamples and estimate the nuisance parameter β in one

subsample, and b in the other subsample to predict βk and bk in Wk.
3 Estimate θk using the plug-in ηk = {βk, bk} under the moment condition in (18).

4 Average θk across all K subsamples to obtain θ̂ = 1
K

∑K
1 θk.

Output: θ̂

Theorem 1. If the score is the Neyman orthogonal efficient, and under the condition that the variance

of the score ψ is no-degenerate: all eigenvalues of matrix E
[
ψ
(
W ; θ0, η0

)
ψ(W ; θ0, η0

)>]
are bounded

from below by τN > 0 and suppose δN ≥ N−1/2, then we have

√
N
(
θ̂ − θ0

)
=

1√
N

N∑
i=1

ψ̄(Wi) +Op(τN)→ N (0, σ2
ψ), (19)

where the reminder term requires to τN ≤ δN , and ψ̄(W ) := −J −1
0 ψ(W, θ0, η0) is the influence

function, and Jacobian matrix J0 = ∂θE
[
ψ(W, θ, η0)

]∣∣
θ=θ0

, while the asymptotic variance is

σ2
ψ := J −1

0 EN
[
ψ(W, θ0, η0)ψ(W, θ0, η0)>

]
(J −1

0 )>

We can replace σ2
ψ by a consistent estimator σ̂2

ψ, obtained via the K-fold cross fitting using Algorithm

1 (see Theorem 3.2 of Chernozhukov et al. (2018)). The risk bound Op(τN) in (19) embeds the risk

arising from (1) the deviation from orthogonal condition; (2) the smoothness of score function; (3)

the estimation risk of Jacobian matrix; (4) the risk associated with the estimated score. Concerning

these risks, we can impose the necessary regularised conditions to ensure the validity of Theorem

1. These regularised conditions include the near-orthogonality condition, a linear score function, a

smooth score, the minimal singular value of Jacobian matrix and the statistical rate of risk associated

with the score approximation in the presence of estimation risk of nuisance parameters. These regu-

larised conditions are standard in the literature of M-estimators in the presence of high-dimensional

nuisances. For further details on the regularised conditions and the proof of Theorem 1, we refer to

Chernozhukov et al. (2018) and Newey (1994), and do not repeat them explicitly here.
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3.2 Doubly robust Score test for sample selection bias

We take a significant step further to establish the score test statistics based on the Neyman orthogonal

score for a doubly robust sample selection bias test. The score test is based on the efficient score

criterion and it has the advantage compared with other large sample tests, such as the likelihood

ratio and Wald tests, of requiring estimation only under the null hypothesis. Score test, or LM

test, is not new for sample selection bias. The earlier work by Melino (1982) has formalised a

correspondence between LM test and t-test proposed by Heckman (1979). The existing score test or

LM test are limited in the presence of high-dimensional covariates in the variable selection equation.

These existing tests fail to have unit power asymptotically against a wide range of regularisation

bias in the variable selection equation. Most explicitly, the existing tests may have low power in the

presence of regularisation bias in the nuisance parameters. This low power is caused by a possibility

that the bias term dominates the variance of score. As a result, bias potentially govern the limiting

distribution of test statistics, misleading the testing results.

To isolate the impact from bias, we propose a doubly robust score test that replaces the efficient

score vector by the Neyman orthogonal score. One merit of doubly robust score test is its power

in the presence of bias, hence, one can pay less efforts on striking a balance between bias term and

variance term, which is the key in the specification test literature. Wooldridge (1992) uses the bias to

determine the limit distribution by controlling the variance so as to be negligible, whereas Hong and

White (1995) uses the variance to determine the limit distribution by controlling the bias so as to be

negligible. As orthogonalization eliminates the bias term, one, therefore, focuses on maximising the

information of the variance of score that exclusively determines the power of test statistics.

We propose the doubly robust score test for the null θ = 0, with a test statistic taking the form of

Sn := ψ(Wn); θ, b)>Vψ(Wn; θ, b)
d−→ χ2

1 (20)

where V := Hθθ−HθbHbθ(Hbb)
−1 andH = −∂2

(θ′b′)E
[
∂2

(θ′b′)′`
(
W ; θ, b

)]
is the Hessian matrix

[
Hθθ Hθb

Hbθ Hbb

]
.

We evaluate the score ψ(Wn; θ, b) at the restricted model with θ = 0 and b = b̂. We do not reject the

null hypothesis if Sn is sufficiently near zero. The test statistic Sn is a quadratic form of the score

function, which is a linear function of θ. From standard results on score tests, the test statistic is

asymptotically distributed as a chi-square distribution with degree of freedom 1. Using Taylor ex-

pansion of the Lagrangian and information matrix equivalence, Aitchison and Silvey (1958) formally

prove a chi-square limiting distribution. Compared to Wald-type or t test in Heckman (1979), the

score test has a computational advantage because there is no need to solve for the moment condition
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in (18). In the case of a large sample, the power of test statistic Sn is asymptotically equivalent to

the likelihood ratio test (Silvey (1959)) for which we have consistency of the testing procedure.

4 Variable selection under sample selection bias

4.1 Post variable selection consistency

In the presence of sample selection bias confirmed by the doubly robust score test, the estimate of

b and variable selection in (4) are by no means consistent. It is stringent to correct such bias for

consistency as desired. It is clear that we are no longer relying on (13) for variable selection, and a

necessary modification is introduced.

Let zj(θ) be function of θ for j = 1, ..., J , zj(θ) = k(j)>
(
Y − kb−j − θh

)
. The vector b−j is defined

as (b1, . . . , bj−1,0, bj+1, . . . , bJ)>, and k(j) is defined in (12). Having a consistent estimator of θ in

Theorem 1, we obtain a post-selection estimator in the presence of sample selection bias

b̂j(θ̂) =

(
IL − λwj

Kj√
zj(θ̂)>Kjzj(θ̂)

)
+

zj(θ̂). (21)

Equation (21) fundamentally deviates from (13) unless θ = 0 under the null. Without a bias correc-

tion, the estimate of b may be overstated given the same value of λ. As discussed before, the adaptive

weight wj facilitates implementation of identification.

Invoking the Karush-Kuhn-Tucker conditions, we present the following proposition for post variable

selection.

Proposition 1. Let Kj with entries
[
Kj
]
`,`′

= 1
L
k(Pj,`, Pj,`′) for `, `′ = 1, · · · , L and for j = 1, · · · , J .

θ̂ is a consistent estimator of θ in Theorem 1. For identification purposes, the adaptive weight is

given by wj =
(
1 + |β̂j|

)γ
, γ ≥ 1 and β̂j is the estimate from (9). Define ‖bj‖Kj =

(
b>j Kjbj

)1/2
,

a regularisation factor corresponding to j. A necessary and sufficient condition for b̂ ≡ b̂(θ̂) =(
b̂1(θ̂), · · · , b̂J(θ̂)

)
to be a solution is

−k(j)>
(
Y − kb̂

)
+ λwj

Kj b̂j∥∥∥b̂j∥∥∥
Kj

= 0, ∀b̂j 6= 0, (22)

∥∥∥k(j)>
(
Y − kb̂

)∥∥∥ < λwj ‖Kj‖ , ∀b̂j = 0. (23)
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To ensure that Proposition 1 is plausible for variable selection, we establish the asymptotic properties

of model selection to understand in which conditions it undertakes consistent model selection, when

we are given sufficient amount of sample size, namely n→∞.

We establish the asymptotic properties for selection consistency of the characteristics . The first step

is to propose regularity conditions. Under these conditions, the estimates of the contributions of the

characteristics to carbon estimation are non-zero for the characteristics that are truly relevant and

shrink to zero for the irrelevant ones.

Regularity conditions We consider the case where J > n, meaning the dimensionality of firm

characteristics (J) exceeds the cross-sectional sample size (n). This scenario is particularly likely

during earlier periods when the number of firm characteristics may surpass the number of firms with

disclosed carbon information. We assume a diverging dimension in the sense, Jn can grow with n. Let

true parameter be b0 =
(
b10, · · · , bJ0

)
. Consistency in characteristics selection ensures a separation

between the oracle active set Ab =
{
j : bj0 6= 0

}
and the complement Acb =

{
j : bj0 = 0

}
. We write

b0 =
(
b′10, b

′
20

)′
, two subsets where b10 is the subset with the indices of elements in Ab and b20 is the

subset with the indices of elements in Acb. The size of Ab is quantified by its cardinality |Ab| = J1

and by |Acb| = J2 for Acb, and J1 + J2 = Jn. For notational simplification, we suppress subscript n

in J1 and J2 for which both diverge on n. Define a submatrix of k to be k1 ∈ Rn×J1L as we only

consider submatrix involving j ∈ Ab. For each j ∈ Ab and the corresponding kernel matrix k(j), we

denote a L× L covariance matrix Σj = 1
n
k(j)>k(j). Likewise, we denote a L× L covariance matrix

Σjh = 1
n
k(j)>k(h) for h ∈ Ab and j /∈ Ab.

To present that oracle properties of model selection consistency are attainable, we impose mild

regularity conditions for the regularised model.

Condition 1 (Eigenvalue constraint). Denote λmin(C) and λmax(C) is the minimum and maxi-

mum eigenvalue of a positive definite matrix C. With Dn > dn ≥ 0 and Dn <∞, it requires that, for

each j ∈ Ab, dn ≤ λmin(Σj) ≤ λmax(Σj) ≤ Dn.

Condition 2 (Non-zero coefficients). The number of non-zero coefficients grows proportionally

to cross-sectional sample size n, provided J1 = O(log n)

Condition 3 (Partial orthogonality). Define the maximal carbon insight derived from any j /∈ Ab,

cn =
maxj /∈Ab‖k(j)>Y ‖(∑
h∈Ab
‖k(h)>Y ‖

)
/J1

< 1. Partial orthogonality implies n−1λmax(Σjh) ≤ ρn, j /∈ Ab, h ∈ Ab.

For any η < 1, we assume ρn ≤ dn
cn
√
J1
η.
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Condition 4 (Irrepresentable condition). Denote a weighted sign vector sh = wh sgn(bh) for

h ∈ Ab and an L2 norm ‖sh‖. If w−1
j ‖sh‖ ≤ cn, for j /∈ Ab the irrepresentable condition requires

1

nwj
√
LJ1

∑
h∈Ab

∥∥k(j)>k(h)Σ−1
h sh

∥∥ ≤ cnρn
dn
≤ η

Condition 1 requires the minimal eigenvalue for the covariance matrix of the kernel j, k(j) ∈ Rn×L,

undertaken by kernel principal component analysis (kernel PCA). Unlike the conventional PCA

which is linearly separably in d < n, kernel mapping into a higher-dimensional feature space permits

a linear separability by appropriate hyperplanes. The eigenvalues compute the principal component

variances in kernel features space, and these are related to the reconstruction error of projecting

to leading kernel principal component directions (Braun (2006)). It implies a covariance bounded

away from zero such that the structure of similarity covariance of j-th feature among n firm is of

low rank. Condition 2 controls the number of non-zero coefficients that grows proportionally to the

cross-sectional sample size n. Condition 3 is a weak partial orthogonality assumption. It postulates

a weaker correlation ρn between the reproducing kernel kj from the active set and any one from its

complement of set. It implies that the two subspaces, spanned by the reproducing kernels induced

by the respective coordinates from the active and inactive set, have a constrained intersection. Here,

ρn is inversely bounded by cn, the maximal carbon insight derived from any j /∈ Ab, to ensure that

the correlation between Y and the irrelevant characteristics remains low relative to that with the

relevant cluster. In other words, as long as the characteristics in these two subsets exhibit distinct

carbon insight with Y and cn remains low, a partial orthogonality is satisfied. Condition 4 is the

key to promote model selection consistency. While many existing research (Chatterjee and Lahiri

(2013), Huang, Horowitz and Ma (2008), Huang, Ma and Zhang (2008)) have relaxed a restricted

assumption for completely orthogonality in the design matrix, it remains unclear as how to find an

optimal bound for partial orthogonality. We establish the adaptive irrepresentable condition that

incorporates maximal carbon relevance derived from the non-relevant characteristics for an optimal

upper bound. It turns out that the structured upper bound is a necessary condition for selection

consistency.

Selection consistency We opt for a strong form of selection consistency, that is, sign consistency.

It not only requires correctly distinguishing between zero coefficient (inactive or irrelevant character-

istics) and non-zero coefficients (active or relevant characteristics) but also ensuring that the signs

of the estimated coefficients match those of the true coefficients. To formalize this, we introduce the

sign equivalence operator =s to indicate b̂ =s b0 if sgn(b̂) = sgn(b0).
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Theorem 2 (selection consistency of characteristics ). If Conditions 1 - 4 hold, the adaptive

KG-lasso selects the relevant characteristics consistently, i.e., P
[
b̂ =s b0

]
→ 1.

The proof of Theorem 2 is given in the appendix. Theorem 2 requires to satisfy λn√
n

√
J1 → 0, provided

that J1 will not grow much faster than n, which is supported by Condition 2. Further, we impose

partial orthogonality along with the irrepresentable condition. These conditions make Theorem 2

going beyond the fixed dimension case.

4.2 Asymptotic analysis under sample selection bias

The presence of sample selection bias posts a challenge to asymptotic analysis on the variable selec-

tion equation. The resulting limiting distribution is inconsistent. The main challenge of modelling

limiting distribution arises from the asymptotic covariance between β̂ and b̂ because both parameter

vectors are high-dimensional and regularised for desired sparsity. The strategy to establish asymp-

totic analysis under sample selection bias comprises of two steps. The first step is to understand

the asymptotic normality of the sample selection equation and asymptotic normality of estimated

bias term θ̂ĥ where ĥ := h(Z>β̂). In the second step, we incorporate asymptotic variance of β̂ and

asymptotic variance of θ̂ into the asymptotic analysis developed for the variable selection equation

that involves the bias correction term. The asymptotic normality in the first step, compared to that

in the second step, has an oracle advantage given a larger sample size (full sample N) available in

the sample selection equation, namely the estimation of θ does not bring additional contribution to

the asymptotic variance. By contract, the variable selection equation relies on partially observed

samples, provided n < N .

For the asymptotic normality of the sample selection equation, we borrow the asymptotic theorem of

Fan and Li (2001) for penalised likelihood estimation where we employ the penalised log-likelihood

for the probit lasso model. We denote the penalised log-likelihood Λ̃(β) = Λ(β) +
∑p

j=1 penλ(|βj|)
as the sum of the negative log-probit likelihood Λ(β) and penality function under regularisation

parameter λ. Let β0 = (β>10, β
>
20)> be true coefficient with the true nonzero coefficient β10 and true

zeros captured by β20. Denote the score function φ(Zi, β10) ≡ ∂βΛ̃(Zi, β10) and Jacobian matrix

Jβ10 = ∂β1E
[
φ(Z, β1)

]∣∣
β1=β10

to arrive at the influence function φ̄(Z) := −J −1
β10
φ(Z, β10). The L1 penalty is singular at the origin

and does not have continuous second order derivatives but can be locally approximated by a quadratic

function, see Fan and Li (2001). The resulting score function φ(Z, β) is smooth at the neighborhood
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of β0.

Following their regularity conditions, we obtain the asymptotic normality of β1 if the irrelevant

covariates are known.
√
N
(
β̂1 − β10

)
=

1√
N

N∑
i=1

φ̄(Zi)→ N (0, σ2
φ) (24)

where σ2
φ = J −1

β10
E
[
φ(Z, β10)φ(Z, β10)>

]
(J −1

β10
)> is the asymptotic variance of β̂10. The regularity

conditions for λN/N → 0 lead to a vanishing first order and second order derivative of the penality

function. In that case, σ2
φ is asymptotically close to the inverse I(β10)−1 of the Fisher information

matrix .

For the asymptotic normality of the bias correction term, we define a conditional mean function for

bias correction term in a parametric form from (7)

Γ(Wi; θ, β) = E
[
εi
∣∣Xi, Zi, Di = 1

]
= θh(Z>i β) = θhi, (25)

Importantly, Γ(Wi; θ, β) is differentiable at Θ = (θ, β) if there exists a linear map (matrix) Γ(Θ + `) :

Rp → Rm such that Γ(Θ + `) − Γ(Θ) = Γ′Θ(`) + o(‖`‖), ` → 0. The derivative map ` → Γ′Θ(`) is

matrix multiplication by the matrix

Γ′Θ = −∂(θ′,β′)E
[
∂(θ′,β′)′Γ

(
W ; θ, β

)]
=

[
Γ′θθ Γ′θβ
Γ′βθ Γ′ββ

]
.

Denote the asymptotic covariance matrix for Θ = (θ, β),

ΣΘ =

[
σ2
ψ Ω

Ω σ2
φ

]
, (26)

where Ω = J −1
0 EN

[
ψ(W, θ0, η0)⊗ φ(Z, β10)>

]
(J −1

β10
)> is the outer product between the score column

vector ψ(W, θ0, η0) and the score row vector φ(Z, β10)>, multiplied by J −1
0 and (J −1

β10
)> as a result of

the delta method.

We establish the following proposition for the asymptotic analysis of the bias error correction.

Proposition 2. Suppose that the sample selection bias function Γ(Wi; θ, β) is differentiable at Θ =

(θ, β) and hi := h(Ziβ) is a twice continuously differentiable function of β. If there exists a linear
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derivative map Γ′Θ, the estimate of Γ has asymptotic normality

√
N
(
Γ̂− Γ

) d−→ N (0,Γ′ΘΣΘ(Γ′Θ)>), (27)

based on the asymptotic covariance defined in (26).

For the asymptotic analysis of the variable selection equation in the second step, we introduce the

following assumptions.

Assumption 5 (Product of kernels). Define Σk = 1
n
k>k the covariance matrix of kernel matrix

k ∈ Rn×JL that stacks ki ∈ R1×JL defined after (2) for i = 1, · · · , n. Define a submatrix of k to be

k1 ∈ Rn×J1L for j ∈ Ab and |Ab| = J1. Let Σk1 = 1
n
k>1 k1 be a J1L × J1L matrix and J1 is diverging

in n. As n increases, we assume 1
n
k>1 k1 → C.

The product matrix Σk ∈ RJL×JL of kernels is positive definite because of positive definite kernels,

implying that Σk is invertible in spite of a high-dimensional k. The same remark applies to the

submatrix Σk1 by construction.

Assumption 6 (Bounded eigenvalue of kernel matrix). Kj is a symmetric L × L positive

definite kernel matrix, with entries
[
Kj
]
`,`′

= 1
L
k(Pj,`, Pj,`′) for `, `′ = 1, · · · , L, j = 1, ..., J . Denote

λmin(C) and λmax(C) is the minimum and maximum eigenvalue of a positive definite matrix C. With

Dn > dn ≥ 0 and Dn <∞, it requires for each j ∈ Ab, dn ≤ λmin(Kj) ≤ λmax(Kj) ≤ Dn.

Assumption 7 (Error distribution). εi are i.i.d. with mean zero and finite second moment σ2.

Theorem 3 (Asymptotic normality of characteristics estimate). Under Assumptions 5, 6 and

7 and λn/
√
n→ 0, with an inclusion of bias correction term Γ̂ := θ̂ĥ in Proposition 2 and asymptotic

properties of sample selection estimators in (24), the adaptive KG-lasso estimates b̂ =
(
b̂j
)
j=1,··· ,J

with b̂j := b̂j(θ̂) in (21) are consistent and possess oracle properties

√
n
(
b̂− b0

) d→ N
(

0,
(
σ2 + Γ′ΘΣΘ(Γ′Θ)>

)
Σ−1

k1

)
(28)

Without bias correction, the asymptotic variance of b is inconsistent, which may mislead estimated

significance level. For θ 6= 0, it implies that the null of the sample selection bias test in (20) is

rejected. We obtain an augmented variance induced by
(
Γ′ΘΣΘ(Γ′Θ)>

)
Σ−1

k1
. The proof of Theorem 3

is provided in the appendix.
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5 Empirical results

5.1 Data description

Carbon emission data Following Aswani et al. (2024), Bolton and Kacperczyk (2021, 2023),

Sautner et al. (2023) and Zhang (2025), among many others, we employ the Trucost database to

analyze carbon emissions over a sample period from January 2010 to December 2023. Our sample

is limited to US-based firms with common stocks (share codes 10 and 11) traded on the NYSE,

AMEX, or NASDAQ exchanges, and return data available in the Center for Research in Security

Prices (CRSP) database. Trucost provides a comprehensive set of carbon emissions data, widely used

by researchers and practitioners, covering scope 1, 2, and 3 emissions as defined by the Greenhouse

Gas Protocol.7 Scope 1 emissions include direct emissions from firm operations, scope 2 accounts

for indirect emissions from purchased electricity and other inputs, and scope 3 encompasses other

indirect emissions associated with firm supply chain. Additionally, Trucost offers metrics on carbon

intensity, expressed in equivalent tons of CO2 (tCO2e) per million dollars of revenue.

Trucost coverage begins with the fiscal year-end of 2005, and our sample period extends to the

fiscal year-end of 2023. In 2016, the coverage was substantially expanded to include small and mid-

cap stocks. However, due to limitations in the availability of effective year/month emissions data,

practical coverage only starts in May 2009, even for firms with a fiscal year-end of 2005. Thus, we

begin our sample period in January 2010. We use fiscal year-end timing and apply a six-month lag

to obtain monthly emissions, aligning with common practices (Fama and French (1993),Bolton and

Kacperczyk (2021, 2023)).

Trucost provides emissions data from a diverse array of sources, including both firm-disclosed and

vendor-estimated figures. In total, Trucost employs 28 distinct sourcing methods. A substantial

fraction of firms consistently receive emissions data derived from a single method throughout the

sample period; however, some firms have emissions data compiled from multiple sources. To isolate

estimated emissions, we follow Aswani et al. (2024) and retain each of 28 sourcing methods where

”estimate” is clearly stated. Busch et al. (2022) report that while emissions data from vendors, in-

cluding Trucost, exhibit near-perfect correlation for disclosed emissions, the correlation for estimated

emissions is only around 0.70.

In Figure 1, we report the time-series of total firms covered by Trucost. Until 2016, carbon data

for around 1000 firms is available with equally disclosing firms and firms for which emissions are

7Further details on protocol standards can be found at https://ghgprotocol.org.
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estimated. After 2016, the number of firms increased substantially to 2500 and even more than 3000

firms by the end of the sample. Yet, the fraction of firms for which emissions are estimated increased

and reached 2/3 by the end of the sample. Overall, a vast majority of firms in the data sample have

their emissions estimated.

Figure 1: Number of firms over the sample period 2010 to 2023.

Sample expansion has natural impact on the average firms emissions as illustrated in Figure 2.

Scope 1 and 3 are of similar magnitude even though the latter decreased drastically after the sample

expansion in 2016 where average emissions more than halved over the full sample. Even though the

impact on average estimated emissions is substantial, it is not less sizable for disclosed emissions. In

the later case, we observe a steady decrease is average emissions per firm both for scope 1 and 2.

Figure 2: Total Emissions over the sample period 2010 to 2023.

Stock returns and characteristics We obtain monthly stock characteristics from the open-

source data provided by Chen and Zimmermann (2022).8 We begin with a set of 209 characteristics

from Chen and Zimmermann (2022) and complement these with monthly stock returns and market

capitalization data spanning January 2010 to December 2023 from the CRSP database. We then

8https://www.openassetpricing.com/
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construct size defined as the logarithm of total equity market value. In our empirical analysis, we

retain only those characteristics with at least 25% non-missing data over the sample period to leave

us a total of 173 characteristics, and we impute the remaining missing values using mean imputation

as advocated by Chen and McCoy (2024).

In Table 1, we report the yearly disclosure rate as well as firm size and age. We standarise the size

and age variables at the annual basis. Not surprisingly, the average size of disclosing firms is much

larger than that of non-disclosing firms, and disclosing firms are obviously older than non-disclosing

firms.

Year Disclosure Disclosed Estimated Disclosed Estimated Disclosed Estimated Disclosed Estimated
rate median median std std size size age age

2010 0.305 12.79 10.924 2.987 2.222 0.624 -0.273 0.542 -0.237
2011 0.357 12.546 10.707 2.856 2.157 0.602 -0.335 0.487 -0.270
2012 0.412 12.321 10.645 2.869 2.187 0.527 -0.369 0.374 -0.262
2013 0.438 12.156 10.513 2.847 2.219 0.473 -0.369 0.378 -0.295
2014 0.462 11.93 10.510 2.919 2.195 0.457 -0.393 0.328 -0.282
2015 0.435 11.843 10.453 2.944 2.190 0.527 -0.406 0.382 -0.294
2016 0.459 11.899 10.330 2.905 2.236 0.459 -0.390 0.365 -0.310
2017 0.385 11.759 9.926 2.801 2.318 0.666 -0.417 0.455 -0.284
2018 0.194 11.835 8.799 2.747 2.647 1.171 -0.283 0.808 -0.195
2019 0.203 11.842 8.727 2.831 2.680 1.099 -0.280 0.733 -0.187
2020 0.223 11.687 8.662 2.883 2.674 0.986 -0.283 0.686 -0.197
2021 0.245 11.598 8.522 2.859 2.668 0.903 -0.294 0.664 -0.216
2022 0.267 11.360 7.941 2.888 2.664 0.890 -0.324 0.619 -0.226
2023 0.326 10.925 7.798 3.006 2.621 0.799 -0.387 0.502 -0.243

Table 1: Disclosure Rate and Firm Size

As already discussed, the disclosure rate is particularly low (around 25%) after the sample expansion

in 2016. Interestingly, over the whole sample period, disclosing firms are always large and established

firms. Yet, the correlation between emissions and size are stronger in estimated emissions than in

disclosed emissions as shown in Figure IA.1. The high correlation with size raises serious multicolin-

earity issues when measuring the carbon premium as extensively discussed by Aswani et al. (2024)

and Zhang (2025).

5.2 Sample selection results

We begin with the sample selection equation (5) and obtain the estimates of β by lasso probit in (9)

that allows us to handle high-dimensional Zi and undertake variable selection in the parametrised

propensity score Ziβ for which β ∈ Rp. The parameter in the lasso penalty is chosen by 5-fold
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cross-validation. We present the sample selection results in Figure 3 for the non-zero β̂j (active

characterictics).

Figure 3: Active Characteristics in Sample Selection

While the number of characteristics needed to predict disclosure fluctuates, it grows substantially

across our sample period and doubled between the beginning and the end of the sample period. Part

of the story lies in the small and medium size of added firms. As we can see in the right panel, only

few characteristics are systematically selected over the 14 years sample period while more than half

of the characteristics show at most half of the time. Three characteristics frequently play a pivotal

role in sample selection: ”Size” (measured by log of market capitalisation), ”Age” as measured by

the number of months the company is present in CRSP files, and two months lagged trading volume

in Dollars (”DolVol”). These variables belong to three key variables related to firm quality: size,

information quality (”Age”) and liquidity (’Dolvol’). It implies that firms with higher market equity

values and good informational environment are inclined to disclose. It is in line with findings in the

literature including Flammer et al. (2021), Gibbons (2024), Krueger et al. (2024) and Gehricke et al.

(2025). The relatively higher disclosure propensity observed among larger firms may reflect their

greater resources for estimating aggregated carbon emissions - whether through direct measurement

or indirect approximation - as well as heightened regulatory scrutiny and stronger incentives to

demonstrate corporate social responsibility. The constellation of β̂ estimates can be found in Figure

IA.2.

We also find that profitability as measured by analyst earnings per share (”FEPS”), growth as

measured by sales growth and corresponding firm rank amongst peers (”MeanRankRevGrowth”),

and pension funding (”FR”) which can be related to employees well-being are important for the

disclosure propensity as they show up 12 out of 14 years. Only 31 out 173 characteristics are

irrelevant over our sample period lending support to the need for a high-dimensional approach to

understand firm disclosure decision.
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Coefficient of sample selection bias term To correct for sample selection bias from the sample

selection equation, we proceed with estimating θ for each calendar year using Neyman orthogonal

score defined in (16). It turns out that the M-estimator θ satisfies the moment condition specified in

(18). We deploy the DML estimation strategy detailed in Algorithm 1 where we adopt a 5-fold cross-

fitting. Each run of Algorithm 1 renders one estimate of θ, and a thirty-run gives us the distribution

of θ in Figure 4.

Figure 4: Distribution of θ across year 2010-2023 for Scope 1

The DML estimation technique relies on subsamples obtained by randomly partitioning the sample:

an auxiliary sample for estimating the nuisance functions and a main sample for estimating the

parameter of interest. To incorporate the impact of sample splitting, the mean of θ distribution is

suggested by Chernozhukov et al. (2018) in their Definition 3.3.

It appears that before 2017, the uncertainty induced by sample splitting is relatively higher than

in the recent years, as clear from the dispersion of the distribution. It reflects a relatively smaller

sample size and lower disclosure rate in the early period. The location of distributions indicates

a negative value of θ̂, implying a negative correlation between the error process in (4) and that of

(5). Unobserved factors increasing selection probability are negatively correlated with unobserved

factors affecting the outcome which is emission level in log. As an example, the firms possessing

unobserved green characteristics are inclined to disclose but also more likely to yield a reduced scale

of emission output. In Table 2, we showcase the statistical significance of θ̂ and its variance estimator

(see Theorem 3.2 of Chernozhukov et al. (2018)) for scope 1 emissions.

Obviously, all the estimates of θ̂ are statistically significant at 1% level, indicating that the sample

selection bias is statistically present. The same pattern occurs when looking at scope 2 (Table IA.1)

or scope 3 emissions (Table IA.2). We corroborate that with the hypothesis test of the sample
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θ̂ σψ
θ̂
σψ

p-value θ̂
σψ

sn p-value sn

2010 -0.208 0.028 -7.432 0.000 5.034 0.025
2011 -0.211 0.034 -6.244 0.000 9.186 0.002
2012 -0.179 0.023 -7.643 0.000 7.648 0.006
2013 -0.166 0.021 -7.760 0.000 7.794 0.005
2014 -0.089 0.022 -4.098 0.000 10.624 0.001
2015 -0.125 0.023 -5.548 0.000 8.508 0.004
2016 -0.243 0.019 -12.615 0.000 8.341 0.004
2017 -0.257 0.018 -14.034 0.000 7.974 0.005
2018 -0.196 0.022 -8.775 0.000 8.071 0.004
2019 -0.219 0.012 -18.471 0.000 5.467 0.019
2020 -0.180 0.011 -15.669 0.000 5.805 0.016
2021 -0.198 0.016 -12.153 0.000 7.163 0.007
2022 -0.197 0.017 -11.673 0.000 8.047 0.005
2023 -0.259 0.019 -13.635 0.000 10.029 0.002

Table 2: Significance of θ̂ and score test for Scope 1

selection bias in (20) where we test the null hypothesis H0 : θ = 0 against the alternative hypothesis

H1 : θ 6= 0. The critical value at 95% confidence level is obtained from the chi-square distribution

with degree of freedom one, which is 3.841. The null hypothesis is rejected at 5% level for all calendar

years.

To assess the impact of regularisation bias, we also report the estimates of θ̂ obtained from the

model without mitigating that potential effect. We display the estimates obtained without sample

splitting and K-fold cross-fitting in Table IA.3. We find that θ̂ is not always statistically significant

across years. However, our score test remains powerful and rejects the null hypothesis of no sample

selection bias for all years. The estimates of θ̂ are still negative, but the magnitude is smaller than

that obtained from the DML approach correcting for the regularisation bias. It indicates that such

a bias is not negligible and should be accounted for.

5.3 Variable selection results

We define two models: M1: variable selection with sample selection bias correction; M2: variable

selection without sample selection bias correction, and compare the variable selection results. The

nonzero coefficients b̂ 6= 0 per portfolio and per year estimated by M1 and M2 for scope 1 are

displayed in Figure 5.

We document a clear increase in the relevance of firm characteristics in variable selection over time,
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Figure 5: Active Characteristics Portfolios in Variable Selection, Scope 1

partially driven by the greater heterogeneity introduced by the sample expansion in 2016. This

pattern is consistent across portfolios and holds both with and without the application of sample

bias correction. A critical role of the bias correction is to restore the relevance of the extreme top

decile of characteristic-sorted portfolios. While these portfolios exhibit limited explanatory power

without correction, they become as relevant as other portfolios once correction is applied. This result

provides an additional reason for caution in interpreting reported findings in the literature. It is

well established that extreme portfolios (top and bottom decile portfolios in our case) constitute

the fundamental building blocks of the long-short factors widely used in empirical asset pricing and

corporate finance (Fama and French (1993)), as well as in the measurement of the carbon premium

(Pástor et al. (2022), Avramov et al. (2025)). Muting the short or the long legs of some factors is

problematic.

The most striking result is the absence of any role for portfolios sorted on size, despite size being

pivotal in sample selection as revealed in the previous section. Although sample inclusion is strongly

driven by size - potentially raising identification concerns - the adaptive weights impose exclusion

restrictions that mitigate this issue. After bias correction, only one additional characteristic remains

inactive, i.e., not selected, namely the six-month zero-trade indicator, further underscoring the neces-

sity of a high-dimensional analysis. In the uncorrected specification, however, thirteen characteristics

are inactive.9 Overall, less than 10% of the portfolios comprise the list of mismatched characteristics

selected in M1 and M2. The mismatched number increases from 86 in the beginning of the period

to 146 in 2022, to be compared to 1730 portfolios each year.

9Without bias correction, inactive characteristics are: Beta adjusted to idiosyncratic volatility (”BetaFP”),
Coskewness with market (”CoskewACX”), Firms omitting to pay dividend (”DivOmit”), Trading volume (”DolVol”),
Exchange switching (”ExchSwitch”), (”Illiquidity”), Long term momentrum (”MomSeason11YrPlus”), Delayed stock
to market reaction (”PriceDelayTstat”), IPO without RD (”RDIPO”), Skewness of returns (”ReturnSkew”), Size
(”Size”), Average over 12 months of number of days without trade (”zerotrade12M”) and Average over 6 months of
number of days without trade (”zerotrade6M”). With bias correction, only zerotrade6M and Size remain inactive.

30



The key characteristics for Scope 1, namely the ones selected 85% of the time over the full sample

period, relate to future growth opportunities (R&D, profitability, investment) and capital structure

(external financing, leverage and payout indicator). 10 Figure IA.3 presents the estimated coefficients

of the selected characteristics in M1 and M2.

The findings for Scope 2 and Scope 3 are qualitatively similar, particularly concerning the limited

importance of the size characteristic. As shown in Figure IA.4, Scope 3 begins with a relatively large

number of relevant firm characteristics, which declines slightly toward the end of the sample period.

This is consistent with the nature of Scope 3 emissions, which account for a significant portion

of total firm emissions and reflect value chain activities—making them more complex to measure

and, therefore, requiring a broader set of explanatory variables. While not all characteristics remain

consistently relevant over time, the number of persistently selected key characteristics is 10 for Scope

1, 5 for Scope 2, and 10 for Scope 3. Two variables—Debt Issuance and R&D—are common across

all scopes. The variation in selected characteristics across scopes indicates that each captures distinct

economic dimensions of firm emissions.

5.4 Emission prediction performance

We show the emission prediction performance between M1 and M2 over times in Table 3. For each

calendar year, we randomly split the disclosed sample into training and testing sets (90% vs. 10%).

We train M1 and M2 using the training set and predict the emission outcomes for the testing set.

We report the MSE of the testing set for each calendar year and the relative error as the ratio of

MSE under M1 and M2 .

M1 demonstrates superior predictive performance, with relative MSE ratios ranging from 0.603 to

0.923. Prediction results for the testing set of disclosure samples under M1 and M2 are shown

in panels (a) and (b) of Figure IA.5. Compared to M2, M1 displays a wider interquartile range,

likely due to the incorporation of the bias correction term. Owing to negative values of θ̂, the

median predicted values under M1 are lower than those under M2. This suggests that omitting

the correction for sample selection bias leads to an overestimation of disclosed emissions. The same

pattern holds for scope 2 and 3 emissions, as shown in Tables IA.5 and IA.6.

10Adjusting for selection bias introduces the top deciles of the following variables into the selection: Credit
rating downgrade (”CredRatDG”), Earning forecasts (”FEPS”), Unexplained book-to-market ratio (”Frontier”),
IPO occurring (”IndIPO”), Deflated investment growth (”InvGrowth”), Customer oriented industries momentum
(”iomom cust”), Supplier oriented industries momentum (”iomom supp”), Long term debt leverage (”NetDebtFi-
nance”), Option relative to equity volume (”OptionVolume2”), IPO without R&D (”RDIPO”), Growth in number of
shares (”ShareIss5Y”), New stocks (”Spinoff”) and Trading volume over total market capitalization (”VolMkt”).
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Year MSE of M1 MSE of M2 Relative error
2010 2.553 4.235 0.603
2011 3.117 3.399 0.917
2012 2.742 3.259 0.841
2013 3.498 4.109 0.851
2014 3.298 4.185 0.788
2015 1.898 2.739 0.693
2016 2.294 3.319 0.691
2017 2.262 2.726 0.830
2018 3.174 3.946 0.804
2019 2.939 3.186 0.923
2020 4.275 5.215 0.820
2021 2.362 3.585 0.659
2022 3.109 3.893 0.799
2023 2.808 3.593 0.782

Table 3: Prediction performance (Scope 1)

Interestingly, the MSE across all years is lower for scope 3 emissions than for scope 1 and 2, under

both M1 and M2. This is encouraging, given that scope 3 is generally the hardest to measure and

accounts for a significant share of total emissions. At the same time, scope 3 emissions are also

the category where the sample selection bias correction, albeit significant from Table IA.2, has the

least impact in terms of relative prediction performance (relative error close to 0.9 for the majority

of years in Table IA.6). One possible explanation for this pattern is that, even when firms disclose

scope 3 emissions, they typically rely on estimation procedures based on characteristics of upstream

and downstream partners. As a result, disclosed scope 3 emissions - despite being estimated by firms

- are broadly consistent with what could be inferred using publicly available information.

One of the advantages in the SS-VS model is to predict the undisclosed emission given the estimated

propensity of firm disclosure decision and the resulting sample selection bias. To be more explicit,

the undisclosed emissions can be estimated under M1 via

Ŷi = E
[
Yi
∣∣Xi, Zi, Di = 0

]
= kib̂+ E

[
εi
∣∣Xi, Zi, Di = 0

]
= kib̂− θ̂

φ(−Ziβ̂)

Φ(−Ziβ̂)

Panels (c) and (d) of Figure IA.5 display the box plot of prediction for the undisclosed samples.

Panel (c) shows the results of M2 in comparison with the results of M1 in (d). We observe that the

median and interquartile range in (c) and (d) are generally smaller than those in (a) and (b) using

the disclosed samples. It is not surprising because the disclosed samples have bigger firm sizes, and
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those firms tend to produce a large scale of emission compared to small firms, as evident in Table 1.

The idea in the estimation of the undisclosed emissions is similar to the use of a parametric model to

model the probabilistic behaviour of the censored or truncated (unobserved) parts in duration data

such as unemployment spells.

We also compare (c) and (d) with the Trucost estimates. It appears that the Trucost estimates

look indifferent between 2010-2016 (same median and interquartile range for these years), along with

another block of estimates with high persistence during 2017-2023 in terms of interquartile range.

More importantly, the Trucost estimates potentially yield many outliers in the left-tailed distribution.

5.5 Pecuniary implications

We assess the pecuniary impact of sample selection bias on the estimation of firm carbon emissions

by computing the median difference between the predicted emissions derived from M1 and M2

for each firm. This difference is then aggregated across the subset of firms that do not disclose

emissions. We report the term θ̂ φ(−Ziβ̂)

Φ(−Ziβ̂)
expressed in units of tCO2e, which quantifies the aggregated

bias (underestimation) in estimated emissions for non-reporting firms. We also report the difference

between our bias selection corrected estimation and Trucost estimated emissions.

One relates to the changes in data coverage over our sample period. As more small and medium-sized

firms entered the dataset, the median level of absolute carbon emissions mechanically declined over

time. To account for this, we present the results in relative terms in Figure 6, scaling the median

underestimation by the median emissions of firms that disclosed their carbon emissions. Absolute

figures are reported separately in Figure IA.6 and detailed figures in Tables IA.7 - IA.9.

Figure 6: Relative Underestimation in Scope Emissions

Two notable patterns emerge. First, while underestimation is substantial at the beginning of the
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sample period (2010), the gap narrows considerably over time for scope 1 and 2 emissions. This

convergence is less pronounced for scope 3, once again highlighting the challenges of assessing value

chain related emissions. Average underestimation in scope 1, 2, and 3 was 9.28 %, 9.04 %, and

5.01 %. It steadily decreased for scope 1 and 2 (from 13.21 % to 3.84 % and from 9.37 % to 5.30 %),

but remained fairly stable for scope 3, with even a slight increase toward the end of the sample

period. Once again, scope 3 appears to behave differently from the other scopes.

To price the impact of selection bias, we also examine absolute values, which are reported in Fig-

ure IA.6. The median underestimation for scope 1 falls sharply from 41,977 tCO2e in 2010 to 1,947

tCO2e in 2023 - a 95 % decline. For scope 2, the decrease is less steep in absolute terms (from 27,338

tCO2e to 3,080 tCO2e), but still economically significant (–89 %). For scope 3, the reduction is

more modest, with the median underestimation falling by roughly half (from 70,615 tCO2e to 38,719

tCO2e). The total aggregate underestimation over the full period is substantial: 167.6 million tCO2e

for scope 1, 197.6 million tCO2e for scope 2, and 676 million tCO2e for scope 3 - adding up to nearly

1 GtCO2e. As we discuss below, this large-scale underestimation and the related selection bias likely

carry significant pecuniary implications.

A second noteworthy pattern is that the gap in emissions estimated by Trucost closely mirrors -

at least qualitatively - the estimates produced by our M1 and M2 models when using absolute

values. However, when examining relative values, the picture diverges sharply between Trucost and

M1. Average relative underestimation is 26.30 % for scope 1, 30.73 % for scope 2, and 18.33 % for

scope 3. While the exact estimation method used by the vendor is unknown, these figures suggest

that additional information may be incorporated beyond publicly available firm characteristics. The

dynamic pattern for scopes 1 and 2 is relatively similar between Trucost and M1: underestimation

declines from 31.13 % to 13.50 % for scope 1, and from 39.14 % to 17 % for scope 2. In contrast, the

evolution for scope 3 is less monotonic, moving from 20.24 % to 21.86 %, with intermediate values as

low as 12.19 %.

Absolute values further confirm this picture. In 2010, the median Trucost underestimation for scope

1 was 98,928 tCO2e, compared to 41,977 tCO2e for M2. For scope 2, the figures were 114,161 tCO2e

for Trucost versus 27,338 tCO2e for M2; and for scope 3, 315,008 tCO2e versus 70,615 tCO2e.

Although all figures declined markedly over time, Trucost ’s underestimation remained larger than

that of M2 by the end of the sample: 6,840 tCO2e vs. 1,947 tCO2e for scope 1; 9,871 tCO2e vs.

3,080 tCO2e for scope 2; 105,642 tCO2e vs. 38,719 tCO2e for scope 3.

These trends suggest a meaningful improvement in data quality over time. Although it remains

unclear whether Trucost adjusts for selection bias, the narrowing gap between their estimates and
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ours - particularly for scope 1 and 2 - indicates a clear convergence. Notably, the alignment between

Trucost estimates and those produced by our models implies that such emissions data can be closely

replicated using high-dimensional public information and the estimation procedures developed in this

paper. Given the sophistication of our methodology, Trucost effort to make these estimates readily

available to investors provides significant added value.

Although underestimation declines over time, it remains economically meaningful. It is therefore

important to quantify the associated pecuniary cost. To compute this monetary gap, we apply an

explicit carbon price of €2.35 per tCO2e, sourced from the US Emissions Trading System (ETS) and

carbon tax data reported by the OECD.11 Using the average 2023 euro-to-dollar exchange rate of

0.924, this corresponds to a carbon price of $2.54 per tCO2e.12 Our findings are reported in Tables

IA.7 - IA.9.

The pecuniary impact of emissions underestimation - and the resulting shortfall in carbon tax rev-

enues - is economically significant. For scope 1, the total cost over the sample period amounts to

$425.8 million, declining from $62.3 million in 2010 to $9.3 million in 2023. The cumulative figures

for scope 2 and 3 are $501.9 million and $1.72 billion, yielding an aggregate shortfall of approximately

$2.65 billion. The corresponding figure based on Trucost estimates is even larger, reaching nearly

$9.5 billion. These magnitudes underscore the economic relevance of underreporting and support

our argument regarding green silence - that is, the adverse selection problem posed by non-reporting

firms in the carbon disclosure landscape. This issue warrants careful attention from regulators and

policymakers seeking to reduce the social cost of carbon emissions.

For illustrative purposes, we translate the unreported emissions gap into an equivalent number of

transatlantic flights operated by an Airbus A330 on the London (LHR) to New York (JFK) route. A

single one-way flight on this route emits approximately 150 tCO2. Framing the emissions gap in this

way - equivalent to several thousand flights per year - helps convey the magnitude of underreporting

in tangible terms. Over the full sample period, the underestimation due to selection bias corresponds

to more than 6 million such flights.

Likewise, to assess the impact of regularisation bias, we also quantify the pecuniary impact of sample

selection bias on the estimation of firm carbon emissions using θ̂ estimates from Table IA.3. In Table

IA.4 , the underestimation of emissions for non-reporting firms is not as sizeable as observed for the

DML approach accounting for regularisation bias in Table IA.7. The pecuniary impact linked to

underreported emissions and the associated shortage of carbon tax revenue is relatively lower. Such

11https://www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/carbon-pricing-and-energy-taxes/

carbon-pricing-united-states.pdf
12https://www.irs.gov/individuals/international-taxpayers/yearly-average-currency-exchange-rates
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an evidence documents that neither the sample selection bias nor the regularisation bias should be

neglected in the estimation of firm carbon emissions.

Finally, the social cost of capital includes broader considerations and is usually different from the

carbon price. It reflects the current value of futures damages generated by future carbon emissions.

Given the multiplicity of parameters used to computed this social cost, it can lean on a wide range.

Van den Bremer and Van der Ploeg (2021) recently provide a risk-adjusted measure of the social

cost of capital, from $6.6 per tCO2e (market-based estimate) to $66.3 per tCO2e (ethics-based

estimate). On the other hand, Pastor et al. (2025) advocates use of the social cost of carbon provided

by the US EPA agency (EPA (2023)) which is also in a wide range. A meta-analysis of existing

estimates of this cost by Tol (2023) provides a range from $9 to $525 per tCO2e. Given that

total underestimation is close to 1 GtCO2e, this implies that underestimating carbon emissions is

tantamount to underestimating the social cost of carbon by at least $9 billion - and possibly by as

much as $525 billion for the period 2010-2023.

One final consideration concerns the role of firm size in estimating emissions. As shown above, while

size plays a central role in the sample selection process, it does not appear in the variable selection for

imputation. This is notable given that prior literature has emphasized the importance of size in the

estimation procedures used by data vendors. To explore this further, we repeated our analysis using

only firm size or revenue to impute missing emissions data. The results, reported in Table IA.10 for

scope 1 and illustrated in Figure 7, highlight the implications of relying on such näıve imputations.

Figure 7: Underestimation in Scope 1 Emissions by Naive imputation.

While the total underestimation under the M2 model amounts to 167,622,445 tCO2e, this figure

rises sharply when using näıve imputation methods - reaching 675,978,583 tCO2e when based solely

on firm size, and an even more pronounced 3,250,987,006 tCO2e when using revenue. The associated

pecuniary costs increase proportionally. In relative terms, revenue stands as the worst univariate

screening characteristic for carbon emissions imputation. This evidence provides strong support for
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the use of high-dimensional approaches to correct for selection bias in carbon emissions estimation.

6 Concluding thoughts

We address the issue of sample selection bias in the context of firm-level carbon emissions estimation,

which has been largely overlooked in the literature. The economic cost of this bias is substantial,

as it leads to significant underestimation of firm-level carbon emissions. We assert green silence to

describe adverse selection in non-reporting firms which possess private information on their carbon

emissions and use it to their benefit.

Our approach not only quantifies the statistical and economic significance of this bias but also

enables an empirical inference about the extent of green silence. To get consistency of variable

selection for carbon estimation, we extend the two-step procedure of Heckman (1979) to a three-

step procedure. In the theorecial side, we establish asymptotic normality of the estimated carbon

regression parameter in the presence of sample selection. Such an asymptotic analysis decouples

from Heckman (1979) because joint asymptotic analysis on parameter of sample selection bias and

nuisance parameters is impossible in the presence of the curse of dimensionality. Here, nuisance

parameters are potentially biased from regularisation and we need to rely on an extension exploiting

a DML approach (Chernozhukov et al. (2018)).

Our empirical analysis reveals that sample selection substantially biases firm-level carbon emissions

estimates, leading to understatements that distort both carbon tax revenue projections and social

cost of carbon calculations. We anticipate that similar selection biases afflict other climate- and

environment-related disclosures, from pollution-control investments to ecosystem impact assessments.

By applying the correction methodology developed here, researchers and policymakers can mitigate

these biases - thereby obtaining more accurate measures of firm pollution-control adoption, associated

costs, and the true valuation of environmental externalities.

Carbon emissions are also pivotal for quantifying the effects of impact investing via the cost-of-capital

channel. Recent studies - despite differing on the methodology for measuring the carbon premium as

well - rely almost exclusively on vendor-provided emissions data (e.g., Aswani et al. (2024), Bolton

and Kacperczyk (2021, 2023), Zhang (2025)). Because these third-party estimates understate actual

emissions (as documented in our empirical study), many firms are misclassified - appearing in the

wrong “high-emitter” or “low-emitter” buckets. Consequently, long–short carbon factors designed

to capture the carbon premium will mechanically mismeasure it. An accurate measure of the car-

bon premium is a prerequisite for disentangling investor varied motivations for engaging in impact
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investing (Starks (2023)).
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Appendix

A Proof of theorems

Proof of Theorem 2. Under Conditions 1- 4, we establish the proof for selection consistency of char-

acteristics. By the Karush-Kuhn-Tucker (KKT) conditions, b̂ ≡ b̂(θ̂) is the unique solution of (4) if

we satisfy

−k(j)>
(
Y − kb̂

)
+ λwj

Kj b̂j∥∥∥b̂j∥∥∥
Kj

= 0, ∀b̂j 6= 0,

∥∥∥−k(j)>
(
Y − kb̂

)∥∥∥ ≤ λwj ‖Kj‖ , ∀b̂j = 0.

Let sh = wh sgn(bh) for h ∈ Ab, and s1 = vec{sh;h ∈ Ab}. Let b̂1 be the estimated active subset of b̂

b̂1 =
(
k>1 k1

)−1(
k>1 Y − λns1

)
= b10 +

1

n
Σ−1

k1

(
k>1 ε− λns1

)
. (A.1)

If b̂1 =s b10, then KKT condition holds for b̂ =
(
b̂>1 ,0

>)>. Since kb̂ = k1b̂1 and k(j) are linearly

independent for j ∈ Ab, we deduce

b̂ =s b0, if

b̂1 =s b10,∥∥∥k(j)>
(
Y − k1b̂1

)∥∥∥ < λnwj ‖Kj‖ , ∀j 6= Ab,
(A.2)

Let Hn = 1n − k1Σ−1
k1

k>1 /n be the projection to the oracle k>1 . By (A.1), it follows that Y − k1b̂1 =

ε− k1

(
b̂1 − b10

)
= Hnε+ k1Σ−1

k1
s1λn/n, and by (A.2), we get

b̂ =s b0, if


k(j)>

(
Hnε+ k1Σ−1

k1
s1λn/n

)
= λnwj

Kj sgn(b̂j)

‖b̂j‖
Kj

, ∀j ∈ Ab,∥∥k(j)>
(
Hnε+ k1Σ−1

k1
s1λn/n

)∥∥ < λnwj ‖Kj‖ , ∀j /∈ Ab.

For j /∈ Ab, it suffices to show limn→∞ P[j ∈ Ab]→ 0. For j /∈ Ab, λnwj →∞. By the adaptive irrepre-

sentable condition in Condition 4, we know that n−1
∥∥k(j)>k1Σ−1

k1
s1

∥∥ = n−1
∑

h∈Ab

∥∥k(j)>k(h)Σ−1
h sh

∥∥
is bounded below η and η < 1, and k(j)>

(
Hnε

)
converges to normality asymptotically. Hence, we

complete the proof since limn→∞ P[j ∈ Ab] = P

[ ∥∥k(j)>
(
Hnε+ k1Σ−1

k1
s1λn/n

)∥∥ = λnwj
Kj sgn(b̂j)

‖b̂j‖
Kj

]
→

0.
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Proof of Theorem 3. We present a limiting distribution with selection bias correction. Let b = b0+ u√
n

where u ∈ RJL×1 and uj ∈ RL×1. Ln(u) = 1
2

∥∥∥ 1√
n
kµ+ ε

∥∥∥2

+ λn
2

∑J
j=1 wj

(
bj0 +

uj√
n

)>
Kj
(
bj0 +

uj√
n

)
. Let ûn = arg minLn(u) such that b̂ = b0 + ûn√

n
, or ûn =

√
n
(
b̂ − b0

)
. Define V (n)(u) =

Ln(u)−Ln(0) and a decomposition of it, V (n)(u) = V
(n)

1 (u) + V
(n)

2 (u), where V
(n)

1 (u) = 1
2
u>Σku−

1√
n
u>k>ε and V

(n)
2 (u) = λn

2

∑J
j=1wjKj

[(
bj0 +

uj√
n

)>(
bj0 +

uj√
n

)
−b>j0bj0

]
. We get V

(n)
1 (u) = 1

2
u>Σku−

1√
n
u>k>(Γ̂+ε) = 1

2
u>Σku−u>W −u>M, where W := 1√

n
k>ε

d→ N (0, σ2ΣkA
) and M := 1√

n
k>Γ̂

d→
N
(
0,
(
Γ′ΘΣΘ(Γ′Θ)>

)
ΣkA

)
. The term ε = Γ̂ + ε is contaminated by the selection bias, and thus u>M is

an induced estimation error from that bias, which impacts the consistency and efficiency of limiting

distribution. If θ = 0, the proof boils down to the conventional lasso-based asymptotic analysis.

Now, for bj0 6= 0, we have

[(
bj0 +

uj√
n

)>(
bj0 +

uj√
n

)
− b>j0bj0

]
= ‖uj‖. Under Assumption 6 and milder

regularisation λn/
√
n→ 0, λn√

n

∑
wjKj

[(
bj0 +

uj√
n

)>(
bj0 +

uj√
n

)
− b>j0bj0

]
= op(1) by Slutsky theorem

for bj0 6= 0, we get V
(n)

2 (u)
p→ 0. Denoting u1 = (uj)j∈Ab and combining V

(n)
1 (u) and V

(n)
2 (u),

we obtain V (n)(u1)
d→ 1

2
u>1 ΣkA

u1 − u>1 W − u>1 M . Besides, V (n)(u) is convex and there exists a

global minimum to satisfy u>1 ΣkA
−W −M = 0. As a result, û1 = (W + M)Σ−1

kA
. Following the

epiconvergence results of Fu and Knight (2000), we conclude to the asymptotic normality result:
√
n
(
b̂− b0

) d→ N
(

0,
(
σ2 + Γ′ΘΣΘ(Γ′Θ)>

)
Σ−1

kA

)
.

B Kernel methods

We refer to Berlinet and Thomas-Agnan (2011) for introductory material related to reproducing

kernel Hilbert spaces in probability and statistics.

Reproducing Kernels

Define a kernel function k : X × X → R, for all xs, xt ∈ X , satisfying

k(xs, xt) = 〈φ(xs) , φ(xt)〉, (B.3)
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with feature mapping φ(x) = k(., x) that maps x ∈ X into some inner product space H, called feature

space. The feature space can be potentially infinite. Approximating a function m(x) is challenging

under this circumstance. Thanks to the representer theorem (Smola and Schölkopf (1998)), we can

express m(.) in terms of kernel expansions which takes the form,

m(xt) =
T∑
s=1

αik(xs, xt) = α′kt (B.4)

An important insight is that feature mapping φ(x) = k(., x) has the reproducing property, in the sense

φ(x) = k(., x) spans the inner product space H which is called a Reproducing Kernel Hilbert Space

(RKHS). Hence, any function m(.) ∈ H can be linearly spanned by k(., x). In our context, m(xt) is

a linear span of nonlinear transformation of the characteristic-based x, namely φ(xt) = k(., xt) ≡ kt.

α = (α1, · · · , αT )′ is a weighting vector for a desired linear span.

There exists some nice properties in (B.3) that are important to our context. First, since k is

symmetric, i.e., k(xs, xt) = k(xs, xt), it can be seen as the metric for similarity in a nonlinear fashion.

It encodes the similarity of high-dimensional variables at time point s and t, and xs, xt ∈ Rp. Second,

for x1, · · · , xp ∈ X , a kernel matrix, i.e., a real T × T symmetric matrix K :=
(
k(xs, xt)

)
s,t

, is

positive definite matrix, implying that K is automatically invertible. Besides, the kernel matrix K

that encodes the similarity between any arbitrary high-dimensional variables at different time point

is not limited to a linear structure, rather it encapsulates high-order moments similarity. The last

nice property is the so-called ”kernel trick” that links to (B.3). If xs ∈ Rp lives in a high dimensional

space, say p = 500, the corresponding feature map φ(xs) that takes p variables into a (infinite) feature

space is spanned by their high-order moments. The kernel trick side-steps computational challenge

by choosing a mapping φ(.) that leads to an easy-to-compute kernel function k. Instead of working

on a tedious inner product of feature maps 〈φ(xs) , φ(xt)〉, it means that we can easily evaluate the

corresponding kernel function k(xs, xt).

Some popular kernel functions

Within the kernel function class, the polynomial kernel and Gaussian kernel bring salient implications

into asset pricing context. The polynomial kernel evaluates the similarity of a high-dimensional

characteristic-based factor vector at two arbitrary time points in a feature space spanned by all

monomials of degree d in the input vector comprising of p characteristic-based variables. For a
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polynomial kernel of degree d, it takes the form,

k(xs, xt) =

(
1 +

x′sxt
σ2

)d
(B.5)

where σ controls the contribution from higher-order terms, higher value of σ less contribution from

higher-order terms. (B.5) corresponds to feature maps φ(xs)that consists of all polynomials in the

elements of a of degree at most d.

If there is no specific preference driven by prior knowledge of the true prediction function, the

Gaussian kernel is a good candidate. The Gaussian kernel acts as a ”catch-all” device as it never

performs poorly than other ones (Exterkate (2013)), which explains why we choose it in our empirics.

Because smart choices of feature maps φ(.) enable us to avoid exhaustive computations due to the

curse of dimensionality, the Gaussian kernel can operate even if the feature space is infinite. Taking

inner product of the power series expansion of φ(x) = ex leads to

k(xs, xt) = exp(
−1

2σ2
‖xs − xt‖2), (B.6)

where ‖.‖ is the Euclidean norm. With respect to the frequency domain, the Gaussian kernel allows

all frequencies (high and low) to be present (as opposed to polynomial kernels), albeit with very large

penalties for high frequencies (considered as noise). The parameter σ controls the roughness of the

kernel. A higher value of σ leads to a smoother kernel function.
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θ̂ σψ
θ̂
σψ

p-value θ̂
σψ

sn p-value sn

2010 -0.083 0.031 -2.638 0.008 5.758 0.016
2011 -0.193 0.038 -5.112 0.000 7.155 0.007
2012 -0.148 0.032 -4.648 0.000 8.477 0.004
2013 -0.082 0.028 -2.963 0.003 6.392 0.011
2014 -0.159 0.032 -4.902 0.000 7.500 0.006
2015 -0.226 0.023 -9.797 0.000 5.813 0.016
2016 -0.070 0.032 -2.213 0.027 8.325 0.004
2017 -0.131 0.026 -4.963 0.000 6.067 0.014
2018 -0.172 0.022 -7.941 0.000 4.669 0.031
2019 -0.111 0.022 -5.091 0.000 4.661 0.031
2020 -0.146 0.018 -7.990 0.000 4.976 0.026
2021 -0.164 0.016 -10.015 0.000 4.615 0.032
2022 -0.196 0.016 -12.290 0.000 5.111 0.024
2023 -0.161 0.017 -9.492 0.000 5.630 0.018

Table IA.1: Significance of θ̂ and score test for Scope 2.

θ̂ σψ
θ̂
σψ

p-value θ̂
σψ

sn p-value sn

2010 -0.064 0.019 -3.289 0.001 3.678 0.055
2011 -0.162 0.020 -8.221 0.000 4.825 0.028
2012 -0.112 0.016 -7.136 0.000 4.792 0.029
2013 -0.080 0.026 -3.017 0.003 7.919 0.005
2014 -0.094 0.016 -5.800 0.000 4.851 0.028
2015 -0.159 0.017 -9.186 0.000 6.167 0.013
2016 -0.123 0.015 -8.261 0.000 5.840 0.016
2017 -0.113 0.017 -6.668 0.000 6.348 0.012
2018 -0.129 0.014 -9.086 0.000 6.160 0.013
2019 -0.108 0.015 -7.280 0.000 6.626 0.010
2020 -0.156 0.015 -10.127 0.000 5.915 0.015
2021 -0.112 0.014 -8.036 0.000 7.875 0.005
2022 -0.139 0.016 -8.573 0.000 9.398 0.002
2023 -0.183 0.018 -10.225 0.000 14.818 0.000

Table IA.2: Significance of θ̂ and score test for Scope 3
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θ̂ σψ
θ̂
σψ

p-value θ̂
σψ

sn p-value sn

2010 -0.054 0.032 -1.664 0.096 5.471 0.019
2011 -0.126 0.035 -3.611 0.000 9.168 0.002
2012 -0.108 0.024 -4.454 0.000 7.632 0.006
2013 -0.039 0.023 -1.701 0.089 7.792 0.005
2014 0.007 0.020 0.344 1.269 9.725 0.002
2015 -0.107 0.025 -4.267 0.000 9.423 0.002
2016 -0.036 0.021 -1.680 0.093 8.318 0.004
2017 -0.028 0.019 -1.443 0.149 7.461 0.006
2018 -0.046 0.022 -2.139 0.032 7.251 0.007
2019 -0.031 0.014 -2.190 0.029 5.438 0.020
2020 -0.078 0.014 -5.534 0.000 6.301 0.012
2021 -0.054 0.018 -3.030 0.002 7.149 0.008
2022 -0.145 0.017 -8.337 0.000 8.043 0.005
2023 -0.105 0.020 -5.140 0.000 10.078 0.002

Table IA.3: Significance of θ̂ and score test without mitigating impact of regularisation bias for Scope
1

Year Ton of CO2e Carbon price ($) A330 flight
2010 13 983 750 35 518 725 93 225
2011 14 213 031 36 101 098 94 754
2012 9 943 236 25 255 819 66 288
2013 8 831 187 22 431 214 58 875
2014 5 335 667 13 552 594 35 571
2015 9 570 923 24 310 144 63 806
2016 6 168 000 15 666 720 41 120
2017 6 422 712 16 313 688 42 818
2018 17 535 256 44 539 550 116 902
2019 19 270 978 48 948 284 128 473
2020 9 982 329 25 355 115 66 549
2021 5 279 789 13 410 664 35 199
2022 4 566 150 11 598 021 30 441
2023 2 268 535 5 762 078 15 124

Total 133 371 543 338 763 719 889 145

Table IA.4: Underestimation of M2 in tCO2e without DML
The first column is the estimated underestimation of emitted tCO2e. The second column is to have first column

multiplied by carbon price in the US ETS and carbon tax, amounting to $2.54 per tCO2e. The third column

translates the first column tino the number of trip operated by A330 aircraft from London (GB), LHR to: New York

(US), JFK, single trip, ca. 5,550 km, amounting to 150 tCO2e.
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Year MSE of M1 MSE of M2 Relative error
2010 1.076 2.626 0.410
2011 1.432 1.881 0.761
2012 1.043 1.503 0.693
2013 1.935 5.199 0.372
2014 1.452 2.862 0.507
2015 2.381 2.482 0.959
2016 1.667 2.044 0.815
2017 2.091 2.534 0.825
2018 1.940 2.281 0.851
2019 1.599 1.707 0.937
2020 1.807 2.905 0.622
2021 1.647 1.931 0.853
2022 1.522 2.166 0.703
2023 1.143 1.367 0.836

Table IA.5: Prediction performance (Scope 2)
The third column is the relative MSE, a ratio of column 1 and column 2.

Year MSE of M1 MSE of M2 Relative error
2010 0.445 0.783 0.569
2011 0.572 0.652 0.877
2012 0.833 0.901 0.925
2013 0.607 0.653 0.930
2014 0.885 0.961 0.920
2015 0.578 0.637 0.907
2016 0.732 0.780 0.938
2017 0.662 0.728 0.909
2018 0.833 0.994 0.838
2019 0.828 0.854 0.970
2020 0.664 0.682 0.973
2021 0.628 0.678 0.926
2022 0.826 0.904 0.913
2023 1.236 1.349 0.916

Table IA.6: Prediction performance (Scope 3)
The third column is the relative MSE, a ratio of column 1 and column 2.
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Year median (tCO2e) aggregation (tCO2e) Carbon price ($) A330 flight
Underestimation of M2

2010 41977 24514421 62266629 163429
2011 32103 17495903 44439595 116639
2012 23488 11462330 29114319 76416
2013 28347 13323021 33840474 88820
2014 16282 7310741 18569282 48738
2015 15330 7986919 20286775 53246
2016 15581 7681483 19510966 51210
2017 13200 8804215 22362705 58695
2018 13763 25943442 65896344 172956
2019 9748 18404425 46747240 122696
2020 4465 8183527 20786159 54557
2021 3740 6806420 17288306 45376
2022 3045 6047800 15361412 40319
2023 1947 3657797 9290804 24385

Total 223015 167622445 425761010 1117483
Underestimation of Trucost

2010 98928 57774234 146746553 385162
2011 78996 43053067 109354790 287020
2012 51962 25357583 64408260 169051
2013 64663 30391413 77194189 202609
2014 53936 24217067 61511351 161447
2015 51326 26741100 67922395 178274
2016 49835 24568629 62404319 163791
2017 33223 22159449 56285000 147730
2018 36445 68698410 174493960 457989
2019 33597 63431194 161115233 422875
2020 18336 33610077 85369596 224067
2021 13089 23821485 60506573 158810
2022 10343 20540901 52173889 136939
2023 6840 12851731 32643398 85678

Total 601518 477216340 1212129504 3181442

Table IA.7: Underestimation in tCO2e and pecuniary measures (Scope1)
The first column is the estimated underestimation of emitted tCO2e. The second column is to have first column

multiplied by carbon price in the US ETS and carbon tax, amounting to $2.54 per tCO2e. The third column

translates the first column into the number of trip operated by A330 aircraft from London (LHR) to New York

(JFK), single trip, ca. 5,550 km, amounting to 150 tCO2e.
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Year median (tCO2e) aggregation (tCO2e) Carbon price ($) A330 flight
Underestimation of M2

2010 27338 15965250 40551736 106435
2011 38091 20759361 52728777 138396
2012 28262 13791728 35030990 91945
2013 40296 18939315 48105861 126262
2014 28760 12913380 32799986 86089
2015 35813 18658645 47392959 124391
2016 12360 6093689 15477970 40625
2017 21300 14207004 36085789 94713
2018 10181 19191484 48746369 127943
2019 6990 13196269 33518522 87975
2020 8981 16463026 41816086 109754
2021 7462 13580253 34493843 90535
2022 4048 8040073 20421786 53600
2023 3080 5787979 14701467 38587

Total 272963 197587457 501872141 1317250
Underestimation of Trucost

2010 114161 66670024 169341860 444467
2011 107260 58456519 148479558 389710
2012 88458 43167713 109645991 287785
2013 117031 55004749 139712062 366698
2014 88699 39826022 101158095 265507
2015 115833 60349148 153286836 402328
2016 66366 32718432 83104816 218123
2017 66397 44286548 112487831 295244
2018 32028 60372461 153346051 402483
2019 29991 56622360 143820794 377482
2020 28500 52239716 132688878 348265
2021 34642 63048245 160142542 420322
2022 15328 30440664 77319286 202938
2023 9871 18547476 47110588 123650

Total 914564 681750075 1731645190 4545000

Table IA.8: Underestimation in tCO2e and pecuniary measures (Scope2)
The first column is the estimated underestimation of emitted tCO2e. The second column is to have first column

multiplied by carbon price in the US ETS and carbon tax, amounting to $2.54 per tCO2e. The third column

translates the first column into the number of trip operated by A330 aircraft from London (LHR) to New York

(JFK), single trip, ca. 5,550 km, amounting to 150 tCO2e.
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Year median (tCO2e) aggregation (tCO2e) Carbon price ($) A330 flight
Underestimation of M2

2010 70615 41239063 104747221 274927
2011 131158 71481293 181562484 476542
2012 67862 33116863 84116833 220779
2013 63695 29936843 76039581 199579
2014 64378 28905751 73420608 192705
2015 114140 59466822 151045727 396445
2016 61723 30429252 77290299 202862
2017 57635 38442409 97643719 256283
2018 40008 75415331 191554940 502769
2019 26220 49503875 125739843 330026
2020 25546 46825024 118935560 312167
2021 24141 43936446 111598572 292910
2022 27456 54527035 138498670 363514
2023 38719 72752577 184791545 485017

Total 813296 675978583 1716985601 4506524
Underestimation of Trucost

2010 315008 183964797 467270585 1226432
2011 362437 197528316 501721924 1316855
2012 242702 118438725 300834362 789592
2013 253915 119339895 303123332 795599
2014 261274 117311886 297972190 782079
2015 300161 156384047 397215479 1042560
2016 255064 125746602 319396369 838311
2017 217129 144824988 367855470 965500
2018 137773 259702638 659644700 1731351
2019 148722 280787886 713201230 1871919
2020 136384 249991820 634979223 1666612
2021 132416 240996251 612130478 1606642
2022 97794 194219689 493318009 1294798
2023 105642 198501421 504193610 1323343

Total 2966422 2587738961 6572856961 17251593

Table IA.9: Underestimation in tCO2e and pecuniary measures (Scope3)
The first column is the estimated underestimation of emitted tCO2e. The second column is to have first column

multiplied by carbon price in the US ETS and carbon tax, amounting to $2.54 per tCO2e. The third column

translates the first column into the number of trip operated by A330 aircraft from London (LHR) to New York

(JFK), single trip, ca. 5,550 km, amounting to 150 tCO2e.
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Year median (tCO2e) aggregation (tCO2e) Carbon price ($) A330 flight
Underestimation (Scope1) of using size only

2010 70615 41239063 104747221 274927
2011 131158 71481293 181562484 476542
2012 67862 33116863 84116833 220779
2013 63695 29936843 76039581 199579
2014 64378 28905751 73420608 192705
2015 114140 59466822 151045727 396445
2016 61723 30429252 77290299 202862
2017 57635 38442409 97643719 256283
2018 40008 75415331 191554940 502769
2019 26220 49503875 125739843 330026
2020 25546 46825024 118935560 312167
2021 24141 43936446 111598572 292910
2022 27456 54527035 138498670 363514
2023 38719 72752577 184791545 485017

Total 813296 675978583 1716985601 4506524
Underestimation (Scope1) of using revenue only

2010 441051 257573905 654237718 1717159
2011 516299 281382809 714712335 1875885
2012 375042 183020600 464872325 1220137
2013 372538 175092679 444735405 1167285
2014 370011 166134947 421982767 1107566
2015 433010 225598304 573019692 1503989
2016 354223 174631839 443564872 1164212
2017 308999 206102339 523499942 1374016
2018 147915 278819357 708201166 1858796
2019 167161 315599294 801622206 2103995
2020 138898 254599482 646682685 1697330
2021 150884 274609056 697507002 1830727
2022 115046 228480667 580340895 1523204
2023 122055 229341727 582527986 1528945

Total 4013131 3250987006 8257506996 21673247

Table IA.10: Underestimation casued by simply using size or revenue
The first column is the estimated underestimation of emitted tCO2e. The second column is to have first column

multiplied by carbon price in the US ETS and carbon tax, amounting to $2.54 per tCO2e. The third column

translates the first column into the number of trip operated by A330 aircraft from London (LHR) to New York

(JFK), single trip, ca. 5,550 km, amounting to 150 tCO2e.
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Figure IA.1: Correlation with firm size (log market cap)
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Figure IA.2: The non-zero β̂ estimated via lasso probit in (9)
The sample period spans 2010 to 2023.

IA - 9



(a) with bias correction (b) without bias correction

Figure IA.3: Characteristics determine Scope 1 emission

Figure IA.4: Active Characteristics Portfolios in Variable Selection, Scope 2 and 3
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(a) Predicted disclosed with correction (b) Predicted disclosed without correction (c) Predicted undisclosed without correction

(d) Predicted undisclosed with correction (e) Trucost’s prediction

Figure IA.5: Box plot of predictions



Figure IA.6: Underestimation in Scope Emissions
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