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Abstract

We consider consistent tests for stochastic dominance efficiency at any order of a

given portfolio with respect to all possible portfolios constructed from a set of assets.

We justify block bootstrap approaches to achieve valid inference in a time series

setting. The test statistics are computed using linear and mixed integer programming

formulations. Monte Carlo results show that the bootstrap procedure performs well

in finite samples. The empirical application reveals that the Fama and French market

portfolio is first and second order stochastic dominance efficient, although it is mean-

variance inefficient.
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1 Introduction

Stochastic dominance is a central theme in a wide variety of applications in economics,

finance and statistics, see e.g. the review papers by Kroll and Levy (1980) and Levy

(1992), the classified bibliography by Mosler and Scarsini (1993), and the books by

Shaked and Shanthikumar (1994) and Levy (1998). It aims at comparing random

variables in the sense of stochastic orderings expressing the common preferences of

rational decision-makers. Stochastic orderings are binary relations defined on classes

of probability distributions. They translate mathematically intuitive ideas like “being

larger” or “being more variable” for random quantities. They extend the classical

mean-variance approach to compare riskiness.

The main attractiveness of the stochastic dominance approach is that it is non-

parametric, in the sense that its criteria do not impose explicit specifications of an

investor preferences or restrictions on the functional forms of probability distribu-

tions. Rather, they rely only on general preference and belief assumptions. Thus,

no specification is made about the return distribution, and the empirical distribution

estimates the underlying unknown distribution.

Traditionally, stochastic dominance is tested pairwise. Only recently Kuosmanen

(2004) and Post (2003) have introduced the notion of stochastic dominance efficiency.

This notion is a direct extension of stochastic dominance to the case where full diver-

sification is allowed. In that setting both authors derive statistics to test for stochastic

dominance efficiency of a given portfolio with respect to all possible portfolios con-

structed from a set of financial assets. Such a derivation relies intrinsically on using

ranked observations under an i.i.d. assumption on the asset returns. Contrary to

the initial observations, ranked observations, i.e., order statistics, are no more i.i.d..

Besides, each order statistic has a different mean since expectations of order statistics

correspond to quantiles. However the approach suggested by Post (2003) based on

the bootstrap is valid (see Nelson and Pope (1992) for an early use of bootstrap in

stochastic dominance tests). Indeed bootstrapping the ranked observations or the
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initial observations does not affect bootstrap distributions of test statistics, at least

in an i.i.d. framework.

The goal of this paper is to develop consistent tests for stochastic dominance

efficiency at any order for time-dependent data. Serial correlation is known to pol-

lute financial data (see the empirical section), and to alter, often severely, the size

and power of testing procedures when neglected. We rely on weighted Kolmogorov-

Smirnov type statistics in testing for stochastic dominance. They are inspired by

the consistent procedures developped by Barrett and Donald (2003) and extended by

Horvath, Kokoszka, and Zitikis (2006) to accommodate noncompact support. Other

stochastic dominance tests are suggested in the literature; see e.g. Anderson (1996),

Beach and Davidson (1983), Davidson and Duclos (2000). However these tests rely on

pairwise comparisons made at a fixed number of arbitrary chosen points. This is not

a desirable feature since it introduces the possibility of test inconsistency. We develop

general stochastic dominance efficiency tests that compare a given portfolio with an

optimal diversified portfolio formed from a given finite set of assets. We build on the

general distribution definition of stochastic dominance in contrast to the traditional

expected utility framework.

Note that De Giorgi (2005) solves a portfolio selection problem based on reward-

risk measures consistent with second order stochastic dominance. If investors have

homogeneous expectations and optimally hold reward-risk efficient portfolios, then

in the absence of market frictions, the portfolio of all invested wealth, or the market

portfolio, will itself be a reward-risk efficient portfolio. The market portfolio should

therefore be itself efficient in the sense of second order stochastic dominance according

to that theory (see De Giorgi and Post (2005) for a rigorous derivation of this result).

This reasoning is similar to the one underlying the derivation of the CAPM (Sharpe

(1964), Lintner (1965)), where investors optimally hold mean-variance efficient port-

folios. A direct test for second order stochastic dominance efficiency of the market

portfolio can be viewed as a nonparametric way to test empirically for such a theory.
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The paper is organized as follows. In Section 2, we recall the notion of stochastic

dominance efficiency introduced by Kuosmanen (2004) and Post (2003), and discuss

the general hypotheses for testing stochastic dominance efficiency at any order. We

describe the test statistics, and analyse the asymptotic properties of the testing pro-

cedures. We follow Barrett and Donald (2003) and Horvath, Kokoszka, and Zitikis

(2006), who extend and justify the procedure of McFadden (1989) (see also Klecan,

McFadden and McFadden (1991), Abadie (2002)) leading to consistent tests of sto-

chastic dominance. We also use simulation based procedures to compute p-values.

From a technical point of view, we modify their work to accommodate the presence

of full diversification and time-dependent data. We rely on a block bootstrap method,

and explain this in Section 3.

Note that other resampling methods such as subsampling are also available (see

Linton, Maasoumi and Whang (2005) for the standard stochastic dominance tests).

Linton, Post and Whang (2005) follow this route in the context of testing procedures

for stochastic dominance efficiency. They use subsampling to estimate the p-values,

and discuss power issues of the testing procedures. We prefer block bootstrap to

subsampling since the former uses the full sample information. The block bootstrap

is better suited to samples with a limited number of time-dependent data: we have

460 monthly observations in our empirical application.

Linton, Post and Whang (2005) focus on the dominance criteria of order two and

three. In our paper, we also test for first order stochastic dominance efficiency as

formulated in Kuosmanen (2004), although it gives necessary and not sufficient con-

ditions for optimality (Post (2005)). The first order stochastic dominance criterion

places on the form of the utility function no restriction beyond the usual require-

ment that it is nondecreasing, i.e., investors prefer more to less. Thus, this criterion

is appropriate for both risk averters and risk lovers since the utility function may

contain concave as well as convex segments. Owing to its generality, the first order

stochastic dominance permits a preliminary screening of investment alternatives elim-
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inating those which no rational investor will ever choose. The second order stochastic

dominance criterion adds the assumption of global risk aversion. This criterion is

based on a stronger assumption and therefore, it permits a more sensible selection

of investments. The test statistic for second order stochastic dominance efficiency is

formulated in terms of standard linear programming. Numerical implementation of

first order stochastic dominance efficiency tests is much more difficult since we need

to develop mixed integer programming formulations. Nevertheless, widely available

algorithms can be used to compute both test statistics. We discuss in detail the com-

putational aspects of mathematical programming formulations corresponding to the

test statistics in Section 4.

In Section 5 we design a Monte Carlo study to evaluate actual size and power of the

proposed tests in finite samples. In Section 6 we provide an empirical illustration. We

analyze whether the Fama and French market portfolio can be considered as efficient

according to first and second order stochastic dominance criteria when confronted to

diversification principles made of six Fama and French benchmark portfolios formed

on size and book-to-market equity ratio (Fama and French (1993)). The motivation to

test for the efficiency of the market portfolio is that many institutional investors invest

in mutual funds. These funds track value-weighted equity indices which strongly

resemble the market portfolio. We find that the market portfolio is first and second

order stochastic dominance efficient. We give some concluding remarks in Section

7. Proofs and detailed mathematical programming formulations are gathered in an

appendix.

2 Tests of stochastic dominance efficiency

We consider a strictly stationary process {Y t; t ∈ Z} taking values in Rn. The

observations consist in a realization of {Y t; t = 1, ..., T}. These data correspond to

observed returns of n financial assets. For inference we also need the process being
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strong mixing (α-mixing) with mixing coefficients αt such that αT = O(T−a) for

some a > 1 as T →∞ (see Doukhan (1994) for relevant definition and examples). In

particular returns generated by various stationary ARMA, GARCH and stochastic

volatility models meet this requirement (Carrasco and Chen (1998)). We denote by

F (y), the continuous cdf of Y = (Y1, ..., Yn)′ at point y = (y1, ..., yn)′.

Let us consider a portfolio λ ∈ L where L := {λ ∈ Rn
+ : e′λ = 1} with e for

a vector made of ones. This means that short sales are not allowed and that the

portfolio weights sum to one. Let us denote by G(z, λ; F ) the cdf of the portfolio

return λ′Y at point z given by G(z, λ; F ) :=

∫
Rn

I{λ′u ≤ z}dF (u).

Further define for z ∈ R:

J1(z, λ; F ) := G(z, λ; F ),

J2(z, λ; F ) :=

∫ z

−∞
G(u, λ; F )du =

∫ z

−∞
J1(u, λ; F )du,

J3(z, λ; F ) :=

∫ z

−∞

∫ u

a

G(v, λ; F )dvdu =

∫ z

−∞
J2(u, λ; F )du,

and so on. The integral Jj(z, λ; F ) is finite if E[(−λ′Y )j−1
+ ] is finite for j ≥ 2, where

(x)+ = max(x, 0) (Horvath, Kokoszka, and Zitikis (2006)).

From Davidson and Duclos (2000) Equation (2), we know that

Jj(z, λ; F ) =

∫ z

−∞

1

(j − 1)!
(z − u)j−1dG(u, λ, F ),

which can be rewritten as

Jj(z, λ; F ) =

∫
Rn

1

(j − 1)!
(z − λ′u)j−1I{λ′u ≤ z}dF (u). (2.1)

The general hypotheses for testing the stochastic dominance efficiency of order j

of τ , hereafter SDEj, can be written compactly as:

Hj
0 : Jj(z, τ ; F ) ≤ Jj(z, λ; F ) for all z ∈ R and for all λ ∈ L,

Hj
1 : Jj(z, τ ; F ) > Jj(z, λ; F ) for some z ∈ R or for some λ ∈ L.

In particular we get first and second order stochastic dominance efficiency when j = 1

and j = 2, respectively. The hypothesis for testing the stochastic dominance of
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order j of the distribution of portfolio τ over the distribution of portfolio λ take

analoguous forms but for a given λ instead of several of them. The notion of stochastic

dominance efficiency is a straightforward extension where full diversification is allowed

(Kuosmanen (2004), Post (2003)).

The empirical counterpart to (2.1) is simply obtained by integrating with respect

to the empirical distribution F̂ of F , which yields:

Jj(z, λ; F̂ ) =
1

T

T∑
t=1

1

(j − 1)!
(z − λ′Y t)

j−1I{λ′Y t ≤ z}, (2.2)

and can be rewritten more compactly for j ≥ 2 as:

Jj(z, λ; F̂ ) =
1

T

T∑
t=1

1

(j − 1)!
(z − λ′Y t)

j−1
+ .

Since
√

T (F̂ − F ) tends weakly to a mean zero Gaussian process B ◦ F in the

space of continuous functions on Rn (see e.g. the multivariate functional central limit

theorem for stationary strongly mixing sequences stated in Rio (2000)), we may derive

the limiting behaviour of (2.2) using the Continuous Mapping Theorem (as in Lemma

1 of Barrett and Donald (2003)).

Lemma 2.1.
√

T [Jj(·; F̂ )−Jj(·; F )] tends weakly to a Gaussian process Jj(·;B ◦F )

with mean zero and covariance function given by:

- for j = 1:

Ω1(z1, z2, λ1, λ2) := E[G(z1, λ1;B ◦ F )G(z2, λ2;B ◦ F )]

=
∑
t∈Z

E [I{λ′1Y 0 ≤ z1}I{λ′2Y t ≤ z2}]−G(z1, λ1; F )G(z2, λ2; F ),

- for j ≥ 2:
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Ωj(z1, z2, λ1, λ2) := E [Jj(z1, λ1;B ◦ F )Jj(z2, λ2;B ◦ F )]

=
∑
t∈Z

1

((j − 1)!)2
E

[
(z1 − λ′1Y 0)

j−1
+ (z2 − λ′2Y t)

j−1
+

]
−Jj(z1, λ1; F )Jj(z2, λ2; F ),

with (z1, z2)
′ ∈ R2 and (λ′1, λ

′
2)
′ ∈ L2.

For i.i.d. data the covariance kernel reduces to

Ω1(z1, z2, λ1, λ2) = E [I{λ′1Y ≤ z1}I{λ′2Y ≤ z2}]−G(z1, λ1; F )G(z2, λ2; F ),

and for j ≥ 2:

Ωj(z1, z2, λ1, λ2)

=
1

((j − 1)!)2
E

[
(z1 − λ′1Y )j−1

+ (z2 − λ′2Y )j−1
+

]
− Jj(z1, λ1; F )Jj(z2, λ2; F ).

Let us consider the weighted Kolmogorov-Smirnov type test statistic

Ŝj :=
√

T sup
z,λ

q(z)
[
Jj(z, τ ; F̂ )− Jj(z, λ; F̂ )

]
,

and a test based on the decision rule:

“ reject Hj
0 if Ŝj > cj ”,

where cj is some critical value that will be discussed in a moment. We introduce the

same positive weighting function q(z) as in Horvath, Kokoszka, and Zitikis (2006),

because we have no compactness assumption on the support of Y . However Horvath,

Kokoszka, and Zitikis (2006) show that there is no need to introduce it for j = 1, 2.

Then we can take q(z) = I{z < +∞}. Under that choice of q the statement of

Proposition 2.2 below remains true for j = 1, 2, without the technical assumption on

G needed for the general result with a higher j.

7



The following result characterizes the properties of the test, where

S̄j := sup
z,λ

q(z) [Jj(z, τ ;B ◦ F )− Jj(z, λ;B ◦ F )] .

Proposition 2.2. Let cj be a positive finite constant. Let the weighting function

q : R → [0, +∞) satisfy sup
z

q(z)(1 + (z)+)j−2 < +∞, j ≥ 2, and assume that the

distribution function G satifies

∫
R
(1 + (−z)+)j−2

√
G(z, λ; F )(1−G(z, λ; F ))dz <

+∞ for all λ ∈ L, j ≥ 2, then:

(i) if Hj
0 is true,

lim
T→∞

P [rejectHj
0 ] ≤ P [S̄j > cj] := α(cj),

with equality when G(z, λ; F ) = G(z, τ ; F ) for all z ∈ R and some λ ∈ L ;

(ii) if Hj
0 is false,

lim
T→∞

P [rejectHj
0 ] = 1.

The result provides a random variable that dominates the limiting random variable

corresponding to the test statistic under the null hypothesis. The inequality yields

a test that never rejects more often than α(cj) for any portfolio τ satisfying the

null hypothesis. As noted in the result the probability of rejection is asymptotically

exactly α(cj) when G(z, λ; F ) = G(z, τ ; F ) for all z ∈ R and some λ ∈ L. The

first part implies that if we can find a cj to set the α(cj) to some desired probability

level (say the conventional 0.05 or 0.01) then this will be the significance level for

composite null hypotheses in the sense described by Lehmann (1986). The second

part of the result indicates that the test is capable of detecting any violation of the

full set of restrictions of the null hypothesis.

We conjecture that a similar result holds with supz,λ q(z)Jj(z, λ;B◦F ) substituted

for S̄j. We have not been able to show this because of the complexity of the covariance

of the empirical process which impedes us to exploit the Slepian-Fernique-Marcus-

Shepp inequality (see Proposition A.2.6 of van der Vaart and Wellner (1996)) as in

Barrett and Donald (2003). In stochastic dominance efficiency tests this second result
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would not bring a significant improvement in the numerical tractability as opposed

to the context of Barrett and Donald (2003).

In order to make the result operational, we need to find an appropriate criti-

cal value cj. Since the distribution of the test statistic depends on the underlying

distribution, this is not an easy task, and we decide hereafter to rely on a block

bootstrap method to simulate p-values. The other method suggested by Barrett and

Donald (2003), namely a simulation based multiplier method, would only provide an

approximation in our case since it does not work for dependent data.

3 Simulations of p-values with block bootstrap

Block bootstrap methods extend the nonparametric i.i.d. bootstrap to a time series

context (see Barrett and Donald (2003) and Abadie (2002) for use of the nonpara-

metric i.i.d. bootstrap in stochastic dominance tests). They are based on “blocking”

arguments, in which data are divided into blocks and those, rather than individual

data, are resampled in order to mimick the time dependent structure of the original

data. An alternative resampling technique could be subsampling, for which similar

results can be shown to hold as well (see Linton, Maasoumi, and Whang (2005) for use

in stochastic dominance tests and comparison between the two techniques in terms of

asymptotic and finite sample properties). We focus on block bootstrap since we face

moderate sample sizes in the empirical applications, and wish to exploit the full sam-

ple information. Besides a Monte Carlo investigation of the finite sample properties

of subsampling based tests is too time consuming in our context (see Section 5 on

how we solve that problem in a bootstrap setting based on a suggestion of Davidson

and MacKinnon (2006a,b)).

Let b, l denote integers such that T = bl. We distinguish hereafter two different

ways of proceeding, depending on whether the blocks are overlapping or nonoverlap-

ping. The overlapping rule (Kunsch (1989)) produces T − l + 1 overlapping blocks,
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the kth being Bk = (Y ′
k, ...,Y

′
k+l−1)

′ with k ∈ {1, ..., T − l + 1}. The nonoverlap-

ping rule (Carlstein (1986)) just asks the data to be divided into b disjoint blocks,

the kth being Bk = (Y ′
(k−1)l+1, ...,Y

′
kl)

′ with k ∈ {1, ..., b}. In either case the

block bootstrap method requires that we choose blocks B∗
1, ...,B

∗
b by resampling

randomly, with replacement, from the set of overlapping or nonoverlapping blocks.

If B∗
i = (Y ∗′

i1, ...,Y
∗′
il )
′, a block bootstrap sample {Y ∗

t ; t = 1, ..., T} is made of

{Y ∗
11, ...,Y

∗
1l, Y

∗
21, ...,Y

∗
2l, ...,Y

∗
b1, ...,Y

∗
bl}, and we let F̂ ∗ denote its empirical distri-

bution.

Let Ê∗ denote the expectation operator with respect to the probability mea-

sure induced by block bootstrap sampling. If the blocks are nonoverlapping, then

Ê∗Jj(z, λ; F̂ ∗) = Jj(z, λ; F̂ ). In contrast Ê∗Jj(z, λ; F̂ ∗) 6= Jj(z, λ; F̂ ) under an

overlapping scheme (Hall, Horowitz, and Jing (1995)). The resulting bias decreases

the rate of convergence of the estimation errors of the block bootstrap with overlap-

ping blocks. Fortunately this problem can be solved easily by recentering the test

statistic as discussed in Linton, Maasoumi and Whang (2005) and the review paper

of Haerdle, Horowitz and Kreiss (2003) (see also Hall and Horowitz (1996), Andrews

(2002) for a discussion of the need for recentering to avoid excessive bias in tests

based on extremum estimators). Let us consider

S∗j :=
√

T sup
z,λ

q(z)
{[
Jj(z, τ ; F̂ ∗)− Ê∗Jj(z, τ ; F̂ ∗)

]
−

[
Jj(z, λ; F̂ ∗)− Ê∗Jj(z, λ; F̂ ∗)

]}
,

with, for the overlapping rule,

Ê∗Jj(z, λ; F̂ ∗) =
1

T − l + 1

T∑
t=1

w(t, l, T )
1

(j − 1)!
(z − λ′Y t)

j−1I{λ′Y t ≤ z},

where

w(t, l, T ) =


t/l if t ∈ {1, ..., l − 1},

1 if t ∈ {l, ..., T − l + 1},

(T − t + 1)/l if t ∈ {T − l + 2, ..., T},

and with, for the nonoverlapping rule, Ê∗Jj(z, λ; F̂ ∗) = Jj(z, λ; F̂ ).
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From Hall, Horowitz, and Jing (1995) we have in the overlapping case:

Ê∗Jj(z, λ; F̂ ∗)− Jj(z, λ; F̂ ) = [l(T − l − 1)]−1[l(l − 1)Jj(z, λ; F̂ )− V1 − V2],

where V1 =
l−1∑
t=1

(l− t)
1

(j − 1)!
(z−λ′Y t)

j−1I{λ′Y t ≤ z}, and V2 =
T∑

t=T−l−2

[t− (T − l+

1)]
1

(j − 1)!
(z − λ′Y t)

j−1I{λ′Y t ≤ z}, and thus the difference between the two rules

vanishes asymptotically.

Let us define p∗j := P [S∗j > Ŝj]. Then the block bootstrap method is justified by

the next statement.

Proposition 3.1. Assuming that α < 1/2, a test for SDEj based on the rule:

“ rejectHj
0 if p∗j < α ”,

satisfies the following

lim P [rejectHj
0 ] ≤ α if Hj

0 is true,

lim P [rejectHj
0 ] = 1 if Hj

0 is false.

In practice we need to use Monte-Carlo methods to approximate the probability.

The p-value is simply approximated by p̃j =
1

R

R∑
r=1

I{S̃j,r > Ŝj}, where the averag-

ing is made on R replications. The replication number can be chosen to make the

approximations as accurate as we desire given time and computer constraints.

4 Implementation with mathematical programming

In this section we present the final mathematical programming formulations corre-

sponding to the test statistics for first and second order stochastic dominance effi-

ciency. In the appendix we provide the detailed derivation of the formulations.
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4.1 Formulation for first order stochastic dominance

The test statistic Ŝ1 for first order stochastic dominance efficiency is derived using

mixed integer programming formulations. The following is the full formulation of the

model:

max
z,λ

Ŝ1 =
√

T
1

T

T∑
t=1

(Lt −Wt) (4.1a)

s.t. M(Lt − 1) ≤ z − τ ′Y t ≤ MLt, ∀ t (4.1b)

M(Wt − 1) ≤ z − λ′Y t ≤ MWt, ∀ t (4.1c)

e′λ = 1, (4.1d)

λ ≥ 0, (4.1e)

Wt ∈ {0, 1}, Lt ∈ {0, 1}, ∀ t (4.1f)

with M being a large constant.

The model is a mixed integer program maximizing the distance between the sum

over all scenarios of two binary variables,
1

T

T∑
t=1

Lt and
1

T

T∑
t=1

Wt which represent

J1(z, τ ; F̂ ) and J1(z, λ; F̂ ), respectively (the empirical cdf of portfolios τ and λ at

point z). According to Inequalities (4.1b), Lt equals 1 for each scenario t ∈ T for

which z ≥ τ ′Y t, and 0 otherwise. Analogously, Inequalities (4.1c) ensure that Wt

equals 1 for each scenario for which z ≥ λ′Y t. Equation (4.1d) defines the sum of all

portfolio weights to be unity, while Inequality (4.1e) disallows for short positions in

the available assets.

This formulation permits to test the dominance of a given portfolio τ over any

potential linear combination λ of the set of other portfolios. So we implement a test

of efficiency and not simple stochastic dominance.

When some of the variables are binary, corresponding to mixed integer program-

ming, the problem becomes NP-complete (non-polynomial, i.e., formally intractible).

The best and most widely used method for solving mixed integer programs is
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branch and bound (an excellent introduction to mixed integer programming is given

by Nemhauser and Wolsey (1999)). Subproblems are created by restricting the range

of the integer variables. For binary variables, there are only two possible restrictions:

setting the variable to 0, or setting the variable to 1. To apply branch and bound, we

must have a means of computing a lower bound on an instance of the optimization

problem and a means of dividing the feasible region of a problem to create smaller

subproblems. There must also be a way to compute an upper bound (feasible solution)

for at least some instances; for practical purposes, it should be possible to compute

upper bounds for some set of nontrivial feasible regions.

The method starts by considering the original problem with the complete feasible

region, which is called the root problem. The lower-bounding and upper-bounding

procedures are applied to the root problem. If the bounds match, then an optimal

solution has been found, and the procedure terminates. Otherwise, the feasible re-

gion is divided into two or more regions, each strict subregions of the original, which

together cover the whole feasible region. Ideally, these subproblems partition the fea-

sible region. They become children of the root search node. The algorithm is applied

recursively to the subproblems, generating a tree of subproblems. If an optimal so-

lution is found to a subproblem, it is a feasible solution to the full problem, but not

necessarily globally optimal. Since it is feasible, it can be used to prune the rest of

the tree. If the lower bound for a node exceeds the best known feasible solution, no

globally optimal solution can exist in the subspace of the feasible region represented

by the node. Therefore, the node can be removed from consideration. The search

proceeds until all nodes have been solved or pruned, or until some specified thresh-

old is met between the best solution found and the lower bounds on all unsolved

subproblems.

In our case, the number of nodes is several hundreds of millions. Under this form,

this is a very difficult problem to solve. It takes more than two days to find the

optimal solution for relatively small time series. We reformulate the problem in order
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to reduce the solving time and to obtain a tractable formulation.

We can see that there is a set of at most T values, say R = {r1, r2, ..., rT},

containing the optimal value of the variable z. A direct consequence is that we can

solve first order stochastic dominance efficiency by solving the smaller problems P (r),

r ∈ R, in which z is fixed to r. Then we can take the value for z that yields the best

total result. The advantage is that the optimal values of the Lt variables are known

in P (r).

The reduced form of the problem is as follows (see the appendix for the derivation

of this formulation and details on practical implementation):

min
T∑

t=1

Wt

s.t. λ′Y t ≥ r − (r −Mt)Wt, ∀t,

e′λ = 1,

λ ≥ 0,

Wt ∈ {0, 1}, ∀t. (4.2a)

4.2 Formulation for second order stochastic dominance

The model to derive the test statistic Ŝ2 for second order stochastic dominance effi-

ciency is the following:

14



max
z,λ

Ŝ2 =
√

T
1

T

T∑
t=1

(Lt −Wt) (4.3a)

s.t. M(Ft − 1) ≤ z − τ ′Y t ≤ MFt, ∀ t, (4.3b)

−M(1− Ft) ≤ Lt − (z − τ ′Y t) ≤ M(1− Ft), ∀ t, (4.3c)

−MFt ≤ Lt ≤ MFt, ∀ t (4.3d)

Wt ≥ z − λ′Y t, ∀ t, (4.3e)

e′λ = 1, (4.3f)

λ ≥ 0, (4.3g)

Wt ≥ 0, Ft ∈ {0, 1}, ∀ t (4.3h)

with M being a large constant.

The model is a mixed integer program maximizing the distance between the

sum over all scenarios of two variables,
1

T

T∑
t=1

Lt and
1

T

T∑
t=1

Wt which represent the

J2(z, τ ; F̂ ) and J2(z, λ; F̂ ), respectively. This is difficult to solve since it is the max-

imization of the difference of two convex functions. We use a binary variable Ft,

which, according to Inequalities (4.3b), equals 1 for each scenario t ∈ T for which

z ≥ τ ′Y t, and 0 otherwise. Then, Inequalities (4.3c) and (4.3d) ensure that the vari-

able Lt equals z−τ ′Y t for the scenarios for which this difference is positive, and 0 for

all the other scenarios. Inequalities (4.3e) and (4.3h) ensure that Wt equals exactly

the difference z − λ′Y t for the scenarios for which this difference is positive, and 0

otherwise. Equation (4.3f) defines the sum of all portfolio weights to be unity, while

Inequality (4.3g) disallows for short positions in the available assets.

Again, this is a very difficult problem to solve. It takes more than a day for the

optimal solution. The model is easily transformed to a linear one, which is very easy

to solve.

We solve second order stochastic dominance efficiency by solving again smaller

problems P (r), r ∈ R, in which z is fixed to r, before taking the value for z that
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yields the best total result.

The new model is the following:

min
T∑

i=1

T∑
t=1

Wi,t

s.t. Wi,t ≥ ri − λ′iY t, ∀i, ∀t ∈ T

e′λi = 1, ∀i,

λi ≥ 0, ∀i,

Wi,t ≥ 0, ∀i, ∀t. (4.4a)

The optimal portfolio λi and the optimal value ri of variable z are for that i, that

gives min
T∑

t=1

Wi,t. Now, the computational time for this formulation of the problem

is less than a minute.

5 Monte Carlo study

In this section we design Monte Carlo experiments to evaluate actual size and power

of the proposed tests in finite samples. Because of the computational burden of

evaluating bootstrap procedures in a highly complex optimization environment, we

implement the suggestion of Davidson and McKinnon (2006a,b) to get approximate

rejection probabilities. We consider two financial assets in a time series context. We

assume that their returns behave like a stationary vector autoregressive process of

order one Y t = A + BY t−1 + νt, where νt ∼ N(0,Σ) and all the eigenvalues of B

are less than one in absolute value. The marginal distribution of Y is Gaussian with

µ = (Id−B)−1A and covariance matrix Ω satisfying vec Ω = (Id−B⊗B)−1 vec Σ

(vec D is the stack of the columns of matrix D).

5.1 Approximate rejection probabilities

According to Davidson and MacKinnon (2006a,b), a simulation estimate of the re-

jection probability of the bootstrap test at order j and for significance level α is
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R̂P j(α) =
1

R

R∑
r=1

I{Ŝj,r < Q̂∗
j(α)} where the test statistics Ŝj,r are obtained under

the true data generating process on R subsamples, and Q̂∗
j(α) is the α-quantile of the

bootstrap statistics Ŝ∗j,r. So, for each one of the two cases (first and second order), the

data generating process DGP0 is used to draw realizations of the two asset returns,

using the vector autoregressive process described above (with different parameters

for each case to evaluate size and power). We generate R = 300 original samples

with size T = 460. For each one of these original samples we generate a block boot-

strap (nonoverlapping case) data generating process D̂GP . Once D̂GP is obtained

for each replication r, a new set of random numbers, independent of those used to

obtain D̂GP , is drawn. Then, using these numbers we draw R original samples and

R block bootstrap samples to compute Ŝj,r and Ŝ∗j,r to get the estimate R̂Pj(α).

5.2 Data generating process and results

To evaluate the actual size, we test for first and second order stochastic dominance

efficiency of one portfolio τ containing the first asset only, i.e., τ = (1, 0)′, and

compare it to all other possible portfolios λ containing both assets with positive

weights summing to one.

According to Levy (1973,1982), portfolio τ dominates portfolio λ at the first

order if µτ > µλ and στ = σλ (with obvious notations). Otherwise we get a crossing.

To compute the crossing we solve (x − µτ )/στ = (x − µλ)/σλ. Then we test with a

truncation weighting before the crossing, i.e., the lowest point across all combinations.

By doing so we test on the part of the support where we have strict dominance

(see Levy (1982) for the definition of the truncated distributions). We take A =

(0.05, 0.05)′, vec B = (0.9, 0.1,−0.1,−0.9)′, and vec Σ = (0.1, 0, 0, 0.1)′ for the

parameters of the vector autoregressive process. The parameters of the Gaussian

stationary distribution are then µ = (0.5, 0)′, and vec Ω = (0.5, 0, 0, 0.5)′.

On the other hand, portfolio τ dominates portfolio λ at second order if (µτ −
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µλ)/(σλ − στ ) > 0 when µτ > µλ and στ < σλ. We choose here A = (0.05, 0.05)′,

vec B = (0.9, 0.1,−0.1,−0.9)′, and vec Σ = (0.1, 0, 0, 0.2)′. The parameters of the

Gaussian stationary distribution are then µ = (0.5, 0)′, and vec Ω = (0.5, 0, 0, 1)′.

We set the significance level α equal to 5%, and the block size to l = 10. We get

R̂P1(5%) = 4.33% for the first order stochastic dominance efficiency test, while we get

R̂P2(5%) = 4.00% for the second order stochastic dominance efficiency test. Hence

we may conclude that both bootstrap tests perform well in terms of size properties.

To evaluate the actual power, we take an inefficient portfolio as the benchmark

portfolio τ , and we compare it to all other possible portfolios λ containing both assets

with positive weights summing to one. Since portfolio τ is not the efficient one the

algorithm should find the first asset of the size design as the efficient one. We use

two different inefficient portfolios: the equally weighted portfolio, i.e., τ = (0.5, 0.5)′,

and the portfolio containing the second asset only, i.e., τ = (0, 1)′.

We find that the power of both tests is large. Indeed, we find R̂P1(5%) = 96.66%

for the first order stochastic dominance efficiency test when we take wrongly as effi-

cient the equally weighted portfolio. Similarly we find R̂P1(5%) = 97.33% when we

take wrongly the second asset as efficient. In the case of the second order stochastic

dominance efficiency, we find R̂P2(5%) = 98.33% and R̂P2(5%) = 98.66% under the

two different null hypotheses, respectively.

Finally we present Monte Carlo results in Table 5.1 on the sensitivity to the choice

of block length. We investigate block sizes ranging from l = 4 to l = 16 by step of 4.

This covers the suggestions of Hall, Horowitz, and Jing (1995), who show that optimal

block sizes are multiple of T 1/3, T 1/4, T 1/5, depending on the context. According to

our experiments the choice of the block size does not seem to dramatically alter the

performance of our methodology.
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Block size l 4 8 10 12 16

Size: τ = (1, 0)′

R̂P1(5%) 4.00% 4.00% 4.33% 4.00% 5.33%

R̂P2(5%) 3.66% 4.00% 4.00% 4.33% 4.66%

Power: τ = (.5, .5)′

R̂P1(5%) 97.66% 97.00% 96.66% 96.66% 95.33%

R̂P2(5%) 98.66% 98.33% 98.33% 98.00% 96.33%

Power: τ = (0, 1)′

R̂P1(5%) 97.66% 97.00% 97.33% 98.00% 96.66%

R̂P2(5%) 98.33% 98.33% 98.66% 98.66% 97.66%

Table 5.1: Sensitivity analysis of size and power to the choice of block length. We

compute the actual size and power of the first and second order stochastic dominance

efficiency tests for block sizes ranging from l = 4 to l = 16. The efficient portfolio is

τ = (1, 0)′ for the size analysis, and either τ = (.5, .5)′ or τ = (0, 1)′ for the power

analysis.

6 Empirical application

In this section we present the results of an empirical application. To illustrate the po-

tential of the proposed test statistics, we test whether different stochastic dominance

efficiency criteria (first and second order) rationalize the market portfolio. Thus, we

test for the stochastic dominance efficiency of the market portfolio with respect to all

possible portfolios constructed from a set of assets, namely six risky assets. Although

we focus the analysis on testing second order stochastic dominance efficiency of the

market portfolio, we additionally test for first order stochastic dominance efficiency

to examine the degree of the subject rationality (in the sense that they prefer more

to less).
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6.1 Description of the data

We use six Fama and French benchmark portfolios as our set of risky assets. They

are constructed at the end of each June, and correspond to the intersections of two

portfolios formed on size (market equity, ME) and three portfolios formed on the

ratio of book equity to market equity (BE/ME). The size breakpoint for year t is

the median NYSE market equity at the end of June of year t. BE/ME for June

of year t is the book equity for the last fiscal year end in t − 1 divided by ME

for December of t − 1. Firms with negative BE are not included in any portfolio.

The annual returns are from January to December. We use data on monthly excess

returns (month-end to month-end) from July 1963 to October 2001 (460 monthly

observations) obtained from the data library on the homepage of Kenneth French

(http://mba.turc.dartmouth.edu/pages/faculty/ken.french). The test portfolio is the

Fama and French market portfolio, which is the value-weighted average of all non-

financial common stocks listed on NYSE, AMEX, and Nasdaq, and covered by CRSP

and COMPUSTAT.

First we analyze the statistical characteristics of the data covering the period

from July 1963 to October 2001 (460 monthly observations) that are used in the

test statistics. As we can see from Table 6.1, portfolio returns exhibit considerable

variance in comparison to their mean. Moreover, the skewness and kurtosis indicate

that normality cannot be accepted for the majority of them. These observations

suggest adopting the first and second order stochastic dominance efficiency tests which

account for the full return distribution and not only the mean and the variance.

One interesting feature is the comparison of the behavior of the market portfolio

with that of the individual portfolios. Figure 6.1 shows the mean-standard deviation

efficient frontier of the six Fama and French benchmark portfolios. The plot also shows

the mean and standard deviation of the individual benchmark portfolio returns and of

the Fama and French market (M) portfolio return. We observe that the test portfolio

(M) is mean-standard deviation inefficient. It is clear that we can construct portfolios
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Descriptive Statistics

No. Mean Std. Dev. Skewness Kurtosis Minimum Maximum

Market Portfolio 0.462 4.461 -0.498 2.176 -23.09 16.05

1 0.316 7.07 -0.337 -1.033 -32.63 28.01

2 0.726 5.378 -0.512 0.570 -28.13 26.26

3 0.885 5.385 -0.298 1.628 -28.25 29.56

4 0.323 4.812 -0.291 -1.135 -23.67 20.48

5 0.399 4.269 -0.247 -0.706 -21.00 16.53

6 0.581 4.382 -0.069 -0.929 -19.46 20.46

Table 6.1: Descriptive statistics of monthly returns in % from July 1963 to October

2001 (460 monthly observations) for the Fama and French market portfolio and the

six Fama and French benchmark portfolios formed on size and book-to-market equity

ratio. Portfolio 1 has low BE/ME and small size, portfolio 2 has medium BE/ME

and small Size, portfolio 3 has high BE/ME and small size, ..., portfolio 6 has high

BE/ME and large size.

that achieve a higher expected return for the same level of standard deviation, and a

lower standard deviation for the same level of expected return. If the investor utility

function is not quadratic, then the risk profile of the benchmark portfolios cannot be

totally captured by the variance of these portfolios. Generally, the variance is not a

satisfactory measure. It is a symmetric measure that penalizes gains and losses in

the same way. Moreover, the variance is inappropriate to describe the risk of low

probability events. Figure 6.1 is silent on return moments other than mean-variance

(such as higher-order central moments and lower partial moments). Finally, the mean-

variance approach is not consistent with second order stochastic dominance. This is
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Figure 6.1: Mean-standard deviation efficient frontier of six Fama and French bench-

mark portfolios. The plot also shows the mean and standard deviation of the individ-

ual benchmark portfolio returns and of the Fama and French market (M) portfolio

return, which is the test portfolio.

well illustrated by the mean-variance paradox, and motivates us to test whether the

market portfolio is first and second order stochastic dominance efficient. These criteria

avoid parameterization of investor preferences and the return distribution, and at the

same time ensures that the regularity conditions of nonsatiation (first order stochastic

dominance efficiency) and risk aversion (second order stochastic dominance efficiency)

are satisfied. In brief, the market portfolio must be first order stochastic dominance

efficient for all asset pricing models that use a nonsatiable representative investors.

It must be second order stochastic dominance efficient for all asset pricing models
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that use nonsatiable and additionally risk-averse representative investor. This must

hold regardless of the specific functional form of the utility function and the return

distribution.

6.2 Results of the stochastic dominance efficiency tests

We find a significant autocorrelation of order one at a 5% significance level in bench-

mark portfolios 1 to 3, while ARCH effects are present in benchmark portfolio 4 at

a 5% significance level. This indicates that a block bootstrap approach should be

favoured over a standard i.i.d. bootstrap approach. Since the autocorrelations die

out quickly, we may take a block of small size to compute the p-values of the test

statistics. We choose a size of 10 observations. We use the nonoverlapping rule be-

cause we need to recenter the test statistics in the overlapping rule. The recentering

makes the test statistics very difficult to compute, since the optimization involves a

large number of binary variables. The p-values are approximated with an averaging

made on R = 300 replications. This number guarantees that the approximations are

accurate enough, given time and computer constraints.

For the first order stochastic dominance efficiency, we cannot reject that the mar-

ket portfolio is efficient. The p-value p̃1 = 0.55 is way above the significance level of

5%. We also find that the market portfolio is highly and significantly second order

stochastic dominance efficient since p̃2 = 0.59. Although Figure 6.1 shows that the

market portfolio is inefficient compared to the benchmark portfolios in the mean-

variance scheme, the first and second stochastic dominance efficiency of the market

portfolio prove the opposite under more general schemes. These results indicate that

the whole distribution rather than the mean and the variance plays an important

role in comparing portfolios. This efficiency of the market portfolio is interesting for

investors. If the market portfolio is not efficient, individual investors could diversify

across diverse asset portfolios and outperform the market.

Our efficiency finding cannot be attributed to a potential lack of power of the test-
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ing procedures. Indeed, we use a long enough time series of 460 return observations,

and a relatively narrow cross-section of six benchmark portfolios. Further even if our

test concerns a necessary and not a sufficient condition for optimality of the market

portfolio (Post (2005)), this does not influence the output of our results. Indeed, the

conclusion of the test if that the market portfolio dominates all possible combinations

of the other portfolios, and this for all nonsatiable decision-makers; thus, it is also

true for some of them.

6.3 Rolling window analysis

We carry out an additional test to validate the second order stochastic dominance

efficiency of the market portfolio and the stability of the model results. It is possible

that the efficiency of the market portfolio changes over time, as the risk and pref-

erences of investors change. Therefore, the market portfolio may be efficient in the

total sample, but inefficient in some subsamples. Moreover, the degree of efficiency

may change over time, as pointed by Post (2003). To control for that, we perform a

rolling window analysis, using a window width of 10 years. The test statistic is calcu-

lated separately for 340 overlapping 10-year periods, (July 1963-June 1973), (August

1963-July 1973),...,(November 1991-October 2001).

Figure 6.2 shows the corresponding p-values. Interestingly, we observe that the

market portfolio is second order stochastic dominance efficient in the total sample

period. The second order stochastic dominance efficiency is not rejected on any

subsamples. The p-values are always greater than 15%, and in some cases they reach

the 80%−90%. This result confirms the second order stochastic dominance efficiency

that was found in the previous subsection, for the whole period. This means that

we cannot form an optimal portfolio from the set of the six benchmark portfolios

that dominates the market portfolio by second order stochastic dominance. The line

exhibits large fluctuations; thus the degree of efficiency is changing over time, but

remains always above the critical level of 5%.
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Note that the computational complexity and the associated large solution time

of the first order stochastic dominance efficiency test are prohibitive for a rolling

window analysis. It involves a large number of optimization models: 340 rolling

windows times 300 bootstraps for each one times 460 programs, where 460 is the

number of discrete values of z, a discretization that reduces the solution time, as

explained in the appendix.

SSD Efficiency of the market portfolio (Rolling Window Analysis)
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Figure 6.2: p-values for the second order stochastic dominance efficiency test using

a rolling window of 120 months. The test statistic is calculated separately for 340

overlapping 10-year periods, (July 1963-June 1973), (August 1963-July 1973),...,(No-

vember 1991-October 2001). The second order stochastic dominance efficiency is not

rejected once.
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7 Concluding remarks

In this paper we develop consistent tests for stochastic dominance efficiency at any

order for time-dependent data. We study tests for stochastic dominance efficiency of

a given portfolio with respect to all possible portfolios constructed from a set of risky

assets. We justify block bootstrap approaches to achieve valid inference in a time

series setting. Linear as well as mixed integer programs are formulated to compute

the test statistics.

To illustrate the potential of the proposed test statistics, we test whether differ-

ent stochastic dominance efficiency criteria (first and second order) rationalize the

Fama and French market portfolio over six Fama and French benchmark portfolios

constructed as the intersections of two ME portfolios and three BE/ME portfolios.

Empirical results indicate that we cannot reject that the market portfolio is first and

second order stochastic dominance efficient. The result for the second order is also

confirmed in a rolling window analysis. In contrast, the market portfolio is mean-

variance inefficient, indicating the weakness of the variance to capture the risk.

The next step in this line of work is to develop estimators of efficiency lines as

suggested by Davidson and Duclos (2000) for poverty lines in stochastic dominance.

For the first order we should estimate the smallest return at which the distribution

associated with the portfolio under test and the smallest distribution generated by

any portfolios built from the same set of assets intersect. Similarly we could rely on

an intersection between integrals of these distributions to determine efficiency line at

higher orders.

Another future step in this direction is to extend inference procedures to prospect

stochastic dominance efficiency and Markowitz stochastic dominance efficiency. These

concepts allows to take into account that investors react differently to gains and losses

and have S-shaped or reverse S-shaped utility functions. The development of con-

ditions to be tested for other stochastic dominance efficiency concepts is of great

interest.
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APPENDIX

In the proofs we use the shorter notation: Dj(z, τ , λ; F ) := Jj(z, τ ; F )−Jj(z, λ; F ).

We often remove arguments, and useˆto indicate dependence on the empirical distri-

bution. All limits are taken as T goes to infinity.

A Proof of Proposition 2.2

1. Proof of Part (i):

By the definition of Ŝj and Dj ≤ 0 for all z and for all λ under Hj
0 , we get:

Ŝj ≤
√

T sup q[D̂j − Dj] +
√

T sup qDj ≤
√

T sup q[D̂j − Dj]. Writing the latter ex-

pression with the sum of the following six quantities:

Q̂1
j(L, z, τ , λ) :=

I{−∞ < z ≤ −L}q(z)

√
T

(j − 1)!

∫
Rn

d
[
F̂ (u)− F (u)

]
[
(z − τ ′u)j−1I{τ ′u ≤ z} − (z − λ′u)j−1I{λ′u ≤ z}

]
,

Q̂2
j(L, z, τ , λ) :=

I{−L < z ≤ L}q(z)

√
T

(j − 1)!

∫
Rn

d
[
F̂ (u)− F (u)

]
[
(z − τ ′u)j−1I{τ ′u ≤ −L} − (z − λ′u)j−1I{λ′u ≤ −L}

]
,

Q̂3
j(L, z, τ , λ) :=

I{−L < z ≤ L}q(z)

√
T

(j − 1)!

∫
Rn

d
[
F̂ (u)− F (u)

]
[
(z − τ ′u)j−1I{τ ′u ≤ z} − (z − λ′u)j−1I{λ′u ≤ z}

]
,

Q̂4
j(L, z, τ , λ) :=

I{L < z ≤ +∞}q(z)

√
T

(j − 1)!

∫
Rn

d
[
F̂ (u)− F (u)

]
[
(z − τ ′u)j−1I{τ ′u ≤ −L} − (z − λ′u)j−1I{λ′u ≤ −L}

]
,

Q̂5
j(L, z, τ , λ) :=

I{L < z ≤ +∞}q(z)

√
T

(j − 1)!

∫
Rn

d
[
F̂ (u)− F (u)

]
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[
(z − τ ′u)j−1I{−L ≤ τ ′u ≤ L} − (z − λ′u)j−1I{−L ≤ λ′u ≤ L}

]
,

Q̂6
j(L, z, τ , λ) :=

I{L < z ≤ +∞}q(z)

√
T

(j − 1)!

∫
Rn

d
[
F̂ (u)− F (u)

]
[
(z − τ ′u)j−1I{L ≤ τ ′u ≤ z} − (z − λ′u)j−1I{L ≤ λ′u ≤ z}

]
,

we get for |θ| ≤ 1:

√
T sup q[D̂j −Dj] = sup[Q̂3

j + Q̂5
j ] + θ[sup |Q̂1

j |+ sup |Q̂2
j |+ sup |Q̂4

j |+ sup |Q̂6
j |].(A.1)

A similar equality holds true for the limit S̄j but based on B◦F instead of
√

T (F̂−F ),

namely for |θ̄| ≤ 1

S̄j = sup[Q3
j + Q5

j ] + θ̄[sup |Q1
j |+ sup |Q2

j |+ sup |Q4
j |+ sup |Q6

j |]. (A.2)

Then as in Horvath, Kokoszka, and Zitikis (2006) we deduce the weak convergence

of Ŝj to S̄j by letting L go to infinity since only the first supremum in the right hand

side of (A.1) and (A.2) contributes asymptotically under the stated assumptions on

q and G.

2. Proof of Part (ii):

If the alternative is true, then there exists some z and some λ, say z̄ ∈ R and

λ̄ ∈ L, for which Dj(z̄, τ , λ̄; F ) =: δ > 0. Then the result follows using the inequality

Ŝj ≥ q(z̄)
√

TDj(z̄, τ , λ̄; F̂ ), and the weak convergence of q(·)
√

T [Dj(·; F̂ )−Dj(·; F )].

B Proof of Proposition 3.1

Conditionally on the sample, we have that

√
T (F̂ ∗ − F̂ )

p
=⇒ B∗ ◦ F, (B.1)

where B∗ ◦ F is an independent copy of B ◦ F (Bühlmann (1994), Peligrad (1998)).
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We can see that the functional Dj(·; F ) is Hadamard differentiable at F by induc-

tion. Indeed D1(·; F ) is a linear functional, while Dj(·; F ) is also a linear functional

of a Hadamard differentiable mapping Dj−1(·; F ). The delta method (van der Vaart

and Wellner (1996) Chapter 3.9), the continuous mapping theorem and (B.1) then

yields:

S∗j
p

=⇒ sup
z,λ

q(z)Dj(z, τ , λ;B∗ ◦ F ), (B.2)

where the latter random variable is an independent copy of S̄j.

Note that the median of the distribution P 0
j (t) of supz,λ q(z)Dj(z, τ , λ;B′ ◦ F ) is

strictly positive and finite. Since q(z)Dj(z, τ , λ;B′ ◦ F ) is a Gaussian process, P 0
j is

absolutely continuous (Tsirel’son (1975)), while cj(α) defined by P [S̄j > cj(α)] = α

is finite and positive for any α < 1/2 (Proposition A.2.7 of van der Vaart and Wellner

(1996)). The event {p∗j < α} is equivalent to the event {Ŝj > c∗j(α)} where

inf{t : P ∗
j (t) > 1− α} = c∗j(α)

p−→ cj(α), (B.3)

by (B.2) and the aforementioned properties of P 0
j . Then:

lim P [reject Hj
0 |H

j
0 ] = lim P [Ŝj > c∗j(α)]

= lim P [Ŝj > cj(α)] + lim(P [Ŝj > c∗j(α)]− P [Ŝj > cj(α)])

≤ P [S̄j > cj(α)] := α,

where the last statement comes from (B.3), part i) of Proposition 2.2 and cj(α) being

a continuity point of the distribution of S̄j. On the other hand part ii) of Proposition

2.2 and cj(α) < ∞ ensure that lim P [reject Hj
0 |H

j
1 ] = 1.

C Mathematical programming formulations

C.1 Formulation for first order stochastic dominance

The initial formulation for the test statistic Ŝ1 for first order stochastic dominance

efficiency is Model (4.1).
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We reformulate the problem in order to reduce the solving time and to obtain a

tractable formulation. The steps are the following:

1) The factor
√

T/T can be left out in the objective function, since T is fixed.

2) We can see that there is a set of at most T values, say R = {r1, r2, ..., rT},

containing the optimal value of the variable z.

Proof: Vectors τ and Y t, t = 1, ..., T being given, we can rank the values of

τ ′Y t, t = 1, ..., T , by increasing order. Let us call r1, ..., rT the possible different

values of τ ′Y t, with r1 < r2 < ... < rT (actually there may be less than T different

values). Now, for any z such that ri ≤ z ≤ ri + 1,
∑

t=1,...,T

Lt is constant (it is equal to

the number of t such that τ ′Y t ≤ ri). Further, when ri ≤ z ≤ ri + 1, the maximum

value of −
∑

t=1,...,T

Wt is reached for z = ri. Hence, we can restrict z to belong to the

set R.

3) A direct consequence is that we can solve first order stochastic dominance

efficiency by solving the smaller problems P (r), r ∈ R, in which z is fixed to r. Then

we take take the value for z that yields the best total result. The advantage is that

the optimal values of the Lt variables are known in P (r). Precisely,
∑

t=1,...,T

Lt is equal

to the number of t such that τ ′Y t ≤ r. Hence problem P (r) boils down to:

min
T∑

t=1

Wt

s.t. M(Wt − 1) ≤ r − λ′Y t ≤ MWt, ∀t ∈ T

e′λ = 1,

λ ≥ 0,

Wt ∈ {0, 1}, ∀t ∈ T. (C.1a)

Note that this becomes a minimization problem.

Problem P (r) amounts to find the largest set of constraints λ′Y t ≥ r consistent

with e′λ = 1 and λ ≥ 0.
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Let Mt = min Y t,i, i = 1, ..., n, i.e., the smallest entry of vector Y t.

Clearly, for all λ ≥ 0 such that e′λ = 1, we have that λ′Y t ≥ Mt. Hence, Problem

P (r) can be rewritten in an even better reduced form:

min
T∑

t=1

Wt

s.t. λ′Y t ≥ r − (r −Mt)Wt, ∀t ∈ T

e′λ = 1,

λ ≥ 0,

Wt ∈ {0, 1}, ∀t ∈ T. (C.2a)

We further simplify P (r) by fixing the following variables:

- for all t such that r ≤ Mt, the optimal value of Wt is equal to 0 since the half

space defined by the t-th inequality contains the simplex.

- for all t such that r ≥ Mt, the optimal value of Wt is equal to 1 since the half

space defined by the t-th inequality has an empty intersection with the simplex.

The computational time for this mixed integer programming formulation is sig-

nificantly reduced. For the optimal solution (which involves 460 mixed integer op-

timization programs, one for each discrete value of z) it takes less than two hours.

The problems are optimized with IBM’s CPLEX solver on an Intel Xeon workstation

(with a 2*2.4 GHz Power, 6Gb of RAM). We note the almost exponential increase in

solution time with the increasing number of observations. We stress here the com-

putational burden that is managed for these tests. The optimization problems are

modelled using two different optimization languages: GAMS and AMPL. The General

Algebraic Modeling System (GAMS) is a high-level modeling system for mathemati-

cal programming and optimization. It consists of a language compiler and a stable of

integrated high-performance solvers. GAMS is tailored for complex, large scale mod-

eling applications. A Modeling LAnguage for Mathematical Programming (AMPL)

is a comprehensive and powerful algebraic modeling language for linear and nonlinear
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optimization problems, in discrete or continuous variables

We solve the problem using both GAMS and AMPL. These languages call special

solvers (CPLEX in our case) that are specialized in linear and mixed integer programs.

CPLEX uses the branch and bound technique to solve the MIP program. The Matlab

code (where the simulations run) calls the AMPL or GAMS program, which calls the

CPLEX solver to solve the optimization. This procedure is repeated thousand times

for the needs of the Monte Carlo experiments and of the empirical application. The

procedure codes are available on request from the authors.

The problems could probably be solved more efficiently by developing specialized

algorithms that exploit the structure of the mixed integer programming models. How-

ever, issues of improving computational efficiency beyond what we manage are not of

primary concern in this study.

C.2 Formulation for second order stochastic dominance

The initial formulation for the test statistic Ŝ2 for second order stochastic dominance

efficiency is Model (4.3).

We reformulate the problem, following the same steps as for first order stochastic

dominance efficiency. Then the model is transformed to a linear program, which is

very easy to solve.

We solve second order stochastic dominance efficiency by solving again smaller

problems P (r), r ∈ R, in which z is fixed to r, before taking the value for z that

yields the best total result. The advantage is that the optimal values of the Lt

variables are known in P (r). Precisely, Lt = r − τ ′Y t, for the scenarios for which

this difference is positive, and zero otherwise. Hence problem P (r) boils down to the

linear problem:
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min
T∑

t=1

Wt

s.t. Wt ≥ r − λ′Y t, ∀t ∈ T

e′λ = 1,

λ ≥ 0,

Wt ≥ 0, ∀t ∈ T. (C.3a)

The computational time for this linear programming formulation is very small.

To get the optimal solution (which involves 460 linear optimization programs, one for

each discrete value of z) using the CPLEX solver, it takes three minutes on average.

We can have an even better formulation of this latter model. Instead of solving it for

each discrete time of z, we can reformulate the model in order to solve for all discrete

values ri, i = 1, ..., T simultaneously. The new model is the following:

min
T∑

i=1

T∑
t=1

Wi,t

s.t. Wi,t ≥ ri − λ′iY t, ∀i, ∀t,

e′λi = 1, ∀i,

λi ≥ 0, ∀i,

Wi,t ≥ 0, ∀i, ∀t. (C.4a)

The optimal portfolio λi and the optimal value ri of variable z are for that i, that

gives min
T∑

t=1

Wi,t. Now, the computational time for this formulation of the problem

is less than a minute.
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