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We develop and implement methods for determining whether introducing new securities or

relaxing investment constraints improves the investment opportunity set for prospect investors.

We formulate a new testing procedure for prospect spanning for two nested portfolio sets based

on sub-sampling and Linear Programming. In an application, we use the prospect spanning

framework to evaluate whether well-known anomalies are spanned by standard factors. We find

that of the strategies considered, a few of them expand the opportunity set of the prospect type

investors, thus have real economic value for them, and involve absence of loss aversion. Those

are the Net Stock Issue anomaly under the FF-5 model, the Momentum and Net Stock Issue
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1 Introduction

Traditional models in economics and finance assume that investors evaluate portfolios according to

the expected utility framework. The theoretical motivation for this goes back to Von Neumann

and Morgenstern (1944). Nevertheless, experimental and empirical work has shown that people

systematically violate expected utility theory when choosing among risky assets. Prospect theory,

first described by Kahneman and Tversky (1979) (see also Tversky and Kahneman (1992)), is widely

viewed as a better description of how people evaluate risk in experimental settings. While the theory

contains many remarkable insights, it has proven challenging to apply these insights in asset pricing,

and it is only recently that there has been real progress in doing so (Barberis et al. (2021)). Barberis

and Thaler (2003) and Barberis (2013) are excellent reviews on behavioral finance and prospect

theory.

Stock market anomalies are key drivers of innovation in asset pricing. These are tradable portfolio

strategies, usually constructed as long-short portfolios based on the top and bottom deciles of sorted

stocks, according to specific characteristics (anomalies). Under the standard Mean-Variance (M-V)

paradigm, establishing a cross-sectional return pattern as an anomaly involves testing for pricing

based on a factor model. If factors are traded, spanning regressions relate to M-V criterion. Arbitrage

pricing stipulates that a portfolio of factors is M-V efficient and no other portfolio can achieve a

higher Sharpe Ratio (SR). In that sense, an anomaly is a strategy that exhibits higher SR and should

be traded away. However, we can question M-V spanning for portfolio selection if returns do not

follow elliptical distributions, or investor preferences depend on more than the first two moments of

the return distribution. Chalamandaris et al. (2020) compare the M-V spanning and second-order

stochastic spanning of 13 standard empirical asset pricing anomalies under various factor models

using the Huberman-Kandel M-V spanning test (Huberman and Kandel (1987)). They show that

the M-V spanning tests do not reconcile in-sample and out-of-sample. In the in-sample tests, almost

all these anomalies reject the M-V spanning, but out-of-sample only a few of them are genuine

anomalies. On the contrary, the results under second-order stochastic spanning match in-sample

and out-of-sample. Our paper shows that this finding holds as well for prospect stochastic spanning

on those 13 anomalies and 5 additional ones used by Barberis et al. (2021). Besides, experimental
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evidence (Baucells and Heukamp (2006)) suggests that investors do not always act as risk averters.

Instead, they behave in a much more complex fashion, exhibiting characteristics of both risk-loving

and risk-averting. They behave differently on gains and losses, and they are more sensitive to losses

than to gains (loss aversion, i.e., the tendency to prefer avoiding losses to acquiring equivalent gains).

The relevant utility function could be concave for gains and convex for losses (S-Shaped).

The present study contributes to this literature by introducing, operationalizing and applying

new prospect spanning tests for portfolio analysis. The general research question is whether a

given investment possibility set K, namely the benchmark set, contains portfolios which prospect

dominate all alternatives in an expanded investment possibility set L. Imposing less restrictive

assumptions and allowing for risk-seeking preferences, prospect spanning tests may include portfolios

in the efficient set that the M-V criterion may exclude. On the other hand, the less informationally

demanding M-V criterion may include portfolios that the stochastic spanning criterion may exclude.

Therefore, efficient portfolio sets under the stochastic spanning and M-V criterion may be non-

nested, in the sense that neither of them is a subset of the other. The use of a M-V criterion by a

prospect investor might induce an opportunity cost coming from an expected utility loss caused by

wrong decision making in terms of investments.

Stochastic spanning (Arvanitis et al. (2019)) is a model-free alternative to M-V spanning of Hu-

berman and Kandel (1987) (see also Jobson and Korkie (1989), De Roon et al. (2001)). Spanning

occurs if introducing new securities or relaxing investment constraints does not improve the invest-

ment possibility set for a given class of investors. M-V spanning checks if the M-V frontier of a set of

assets is identical to the M-V frontier of a larger set made of those assets plus additional assets (Kan

and Zhou (2012), Penaranda and Sentana (2012)). Here, we investigate such a problem for investors

with prospect type preferences which are interested in the whole return distributions generated by

two sets of assets, namely we study stochastic dominance.

As in Arvanitis et al. (2019), we have that any prospect spanning set provides an outer ap-

proximation of the set of prospect efficient portfolios. It is useful in at least two ways. First, if

the spanning set is small enough, the problem of optimal choice is reduced to a potentially simpler

problem. Indeed, a spanning set is a reduction of the original portfolio set without loss of investment

opportunities for any investor with S-shaped preferences. Second, if an algorithm for the choice of
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non-trivial candidate spanning sets is available, we can use it to construct decreasing sequences of

prospect spanning sets that ensure the convergence to the efficient set. Given the complexity of

the prospect efficient set (see for example Ingersoll (2016)), such an approach can be useful for the

determination of its properties.

Moreover, the rejection of prospect spanning admits an interpretation in conjunction with SSD

spanning. Our theory indicates that whenever SSD spanning holds, rejection of its prospect coun-

terpart with an optimal utility threshold large enough implies investment opportunities for some

prospect-type investors that at least exhibit absence of loss aversion. This association of loss aver-

sion to the combination of SSD and PSD spanning is, to our knowledge, new in the literature and

is used here to empirically study market anomalies w.r.t. standard factor models.

Thus, the second contribution of the paper is to examine if well-known stock market anomalies

expand the investment opportunity set for prospect investors. To do so, we test if trading strategies

are genuine violations of standard factor models. More precisely, in our in-sample analysis, we use

the prospect spanning test in order to check whether a portfolio set originating from a standard factor

model, K, spans the same set augmented with a market anomaly, L. If the hypothesis of prospect

spanning holds, the particular market anomaly can be explained by the factor model in the framework

of S-shaped utilities. Then, the trading strategy that is identified in the literature as market anomaly

may not be an attractive investment opportunity for prospect investors. On the contrary, if the

hypothesis is not true, the anomaly expands the opportunity set for prospect investors, and is useful

to that extent. As discussed above, if SSD spanning is additionally not rejected, the anomaly

appears attractive to some prospect investors exhibiting absence of loss aversion. We thus also test

for SSD spanning, and focus particularly in the anomalies that reject PSD spanning but not SSD

spanning. In those cases, we also identify smoothed versions of the empirically optimal S-shaped

utilities, their associated curvature properties and their local levels of loss aversion. We are the first

in the literature to unveil those empirical features associated to a PSD setting.

In our out-of-sample analysis, we examine whether the cross-sectional patterns that are found to

expand the set of factors in-sample, maintain their abnormal returns out-of-sample. Therefore, we

use out-of-sample back-testing experiments as an independent criterion for robustness of in-sample

test results (Harvey et al. (2016)). It turns out that prospect spanning tests produce remarkably
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consistent results both in- and out-of-sample in identifying trading strategies as genuine market

anomalies for prospect investors. We complement the out-of-sample analysis for the cases where

SSD-spanning is not empirically rejected, yet prospect spanning cannot be accepted, by performing

a Rosenberg and Engle (2002) pricing kernel analysis. It relies on conditional distributions (GARCH

model) and a modification of the pricing kernel to suit our S-shaped utility setting. We report the

out-of-sample time variation of the associated risk aversion/seeking coefficients that appear in the

pricing kernel in conjunction to the business cycle. We further show that there are asymmetries for

the links between risk aversion, risk seeking, and consumer confidence measured by the US index of

Consumer Sentiment (UMCSENT).

The third contribution of the paper is to compare prospect spanning with M-V spanning both in-

as well as out-of-sample. That comparison reveals several differences, for example, in terms of port-

folio performance and weight allocations. Here, we opt for the portfolio perspective and contribute

to the anomalies literature by asking whether the so-called anomalies are a good investment oppor-

tunity for prospect investors. Prospect theory is a valid alternative to M-V for building portfolios

(and judging anomalies as investment opportunities). Andrew (2014), as well as Cochrane’s NBER

keynote speech (2021), criticise M-V optimizers as too sensitive on mean and covariance estimates.

The portfolio optimization using average return and covariance matrix estimates could be devilishly

unstable. They both argue for using alternative utility functions when building portfolios.

Let us now briefly review applications of prospect theory in finance. Benartzi and Thaler (1995)

utilize prospect theory to present an approach called myopic loss aversion which consists of two

behavioural concepts, namely loss aversion and mental accounting. Barberis et al. (2001) study

asset prices in an economy where investors derive direct utility not only from consumption but also

from fluctuations in the value of their financial wealth. They are loss averse over these fluctuations

and how loss averse they are depends on their prior investment performance. The design of their

model is influenced by prospect theory. Barberis and Huang (2008) study the pricing of financial

securities when investors make decisions according to cumulative prospect theory. Several other

papers confirm that positively skewed stocks have lower average returns (Boyer et al. (2010), Bali

et al. (2011), Kumar (2009), Conrad et al. (2013)). Barberis and Xiong (2009, 2012) and Ingersoll

and Jin (2013) show that theoretical investment models based on S-Shape utility maximisers help
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to understand the disposition effect found empirically in many studies (see, e.g., Odean (1988),

Grinblatt and Han (2005), Frazzini (2006), Calvet et al. (2009)). Kyle et al. (2006) provide a formal

framework to analyze the liquidation decisions of economic agents under prospect theory. He and

Zhou (2011) study the impact of prospect theory on optimal risky exposures in portfolio choice

through an analytical treatment. Ebert and Strack (2015) set up a general version of prospect

theory and prove that probability weighting implies a strong skewness preference. Barberis et al.

(2016) test the hypothesis that, when thinking about allocating money to a stock, investors mentally

represent the stock by the distribution of its past returns and then evaluate this distribution in the

way described by prospect theory. Moreover, Barberis et al. (2021) present a model of asset prices

in which investors evaluate risk according to prospect theory and examine its ability to explain

prominent stock market anomalies.

The paper is organised as follows. Sections 2 and 3 include our methodological, statistical, and

numerical contributions. Specifically, in Section 2 we review the definition of prospect stochastic

dominance relation and define the concept of prospect spanning. We provide a new representation of

the dominance relation based on a class of S-shaped utility functions constructed as convex mixtures

of appropriate “ramp functions”, in the spirit of Russel and Seo (1989). It avoids the differentiability

assumption in the representation of Levy and Levy (2002) and constitutes a convenient setting for

numerical analysis as well as economic interpretation in terms of expected utility. We explain how

no rejection of SSD spanning together with rejection of PSD Spanning points to loss aversion. Using

an empirical approximation of the representation of the dominance relation, we construct a test for

the null hypothesis of spanning based on sub-sampling. We also derive the limiting power of the

test under particular local alternatives in the Online Appendix.

In Section 3 we provide a numerical approximation of the statistic based on the utility rep-

resentation derived before. For every such utility representation, we solve two embedded linear

maximization problems. It is an improvement over the implementation in Arvanitis and Topaloglou

(2017) and Arvanitis et al. (2020) where they formulate tests in terms of Mixed-Integer Program-

ming (MIP) problems. MIP problems are known in Operations Research to be NP-complete, and far

more difficult to solve. Our numerical approximations are simple and fast since they are based on

standard LP. They better suit re-sampling methods, which otherwise quickly become computation-
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ally demanding in empirical applications. We also show that the numerical approximation converges

to the test statistic for each sample size when the number of piece-wise linear components of the

utilities approaches infinity.

In Section 4, we perform an empirical application where we use the prospect spanning tests to

evaluate stock market anomalies using standard factor models. We consider three such models that

build on the pioneer three-factor model of Fama and French (1993): the four-factor model of Hou et

al. (2015), the five-factor model of Fama and French (2015), and the four-factor model of Stambaugh

and Yuan (2017). Given the extensive set of results produced under alternative spanning criteria,

the analysis is confined to 11 well-known strategies used to construct Stambaugh-Yuan factors, along

with 7 extra (18 overall) that attracted significant attention, namely Betting against Beta, Quality

minus Junk, Size, Growth Option, Value (Book-to-Market), Idiosyncratic Volatility and Profitability.

The 11 anomalies used in Stambaugh and Yuan (2017) are realigned appropriately to yield positive

average returns. In particular, anomaly variables that relate to investment activity (Asset Growth,

Investment to Assets, Net Stock Issues, Composite Equity Issue, Accruals) are defined low-minus-

high decile portfolio returns, rather than high-minus-low. All the other anomalies are constructed

as high-minus-low decile portfolio returns. We emphasize that this paper is not intended to compare

factor models in terms of their ability to capture the cross-section of expected returns under prospect

preferences. Each factor model is our initial system of investment coordinates which we take as a

granted opportunity set, without questioning its asset pricing validity. We view here the factors

solely as investable assets (since they correspond to tradable strategies based on asset portfolios),

and similarly for the anomalies. The anomalies might be labelled by other authors as factors if

indeed priced in the cross-section, but we do not address such a research question in this paper.

In the empirical analysis under our portfolio perspective, we also investigate the post-publication

period for each anomaly as in Chinco et al. (2021) to test which anomalies survive after publication.

We conduct the empirical analysis described above both in- and out-of-sample. In-sample, we also

focus on how we can use our smooth approximation approach to find strong empirical evidence of

absence of loss aversion, and identify the underlying S-Shaped utilities for the investors that have

investment opportunities. We find empirical evidence of investment opportunities combined with

absence of loss aversion for the Net Stock Issue anomaly under the FF-5 model, the Momentum and
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Net Stock Issue anomalies under the M-4 model, and the Momentum anomaly under the q model.

Out-of-sample, we focus on the representative prospect theory investor and derive the time-variation

properties of the associated pricing kernels.

Finally, Section 5 concludes the paper. In Appendix A, we provide a short description of the

stock market anomalies used in the empirical application. In Appendix B, we also provide a short

description of the performance measures used in the out-of-sample analysis. We give in a separate

Online Appendix: i) the limiting properties of the testing procedures under sequences of local

alternatives, ii) Monte Carlo studies of the finite sample properties of the test, iii) the proofs of the

main results, as well as several auxiliary lemmata and their proofs, iv) summary statistics of the

factor and anomaly returns over our sample period from January 1974 to December 2016, additional

empirical results on the v) in- and vi) out-of-sample analysis of market anomalies, and vii) outline

of the pricing kernel approach.

2 Prospect Stochastic Dominance and Stochastic Spanning

The theory of stochastic dominance (SD) gives a systematic framework for analyzing investor be-

havior under uncertainty (see Chapter 4 of Danthine and Donaldson (2014) for an introduction

oriented towards finance). Stochastic dominance ranks portfolios based on general regularity condi-

tions for decision making under risk (see Hadar and Russell (1969), Hanoch and Levy (1969), and

Rothschild and Stiglitz (1970)). SD uses a distribution-free assumption framework which allows for

nonparametric statistical estimation and inference methods. We can see SD as a flexible model-free

alternative to M-V dominance of Modern Portfolio Theory (Markowitz (1952)). The M-V crite-

rion is consistent with expected utility for elliptical distributions such as the normal distribution

(Chamberlain (1983), Owen and Rabinovitch (1983), Berk (1997)), but has limited economic mean-

ing when we cannot completely characterize the probability distribution by its location and scale.

Simaan (1993), Athayde and Flores (2004), and Mencia and Sentana (2009) develop a mean-variance-

skewness framework based on generalizations of elliptical distributions that are fully characterized

by their first three moments. SD presents a further generalization that accounts for all moments of

the return distributions without necessarily assuming a particular family of distributions.
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Inspired by previous work, Levy and Levy (2002) formulate the notions of prospect stochastic

dominance (PSD) (see also Levy and Wiener (1998), Levy and Levy (2004)) and Markowitz stochas-

tic dominance (MSD). Those notions extend the well-known first-degree stochastic dominance (FSD)

and second-degree stochastic dominance (SSD). PSD and MSD investigate choices by investors who

have S-shaped utility functions and reverse S-shaped utility functions. Arvanitis and Topaloglou

(2017) develop consistent tests for PSD and MSD efficiency which is an extension to the case where

full diversification is allowed. Arvanitis et al. (2020) investigate MSD spanning. This paper extends

those works to prospect spanning, which is consistent with prospect preferences.

2.1 Stochastic Spanning for Prospect Dominance and Analytical Representation

Given a probability space (Ω,F ,P), suppose that F denotes the cdf of some probability measure on

Rn. Let G(z, λ, F ) be
´
Rn 1{λTu≤z}dF (u), i.e., the cdf of the linear transformation x ∈ Rn → λTx

where λ assumes its values in L, which denotes the portfolio space. We suppose that the portfolio

space is a closed non-empty subset of S = {λ ∈ Rn+ : 1Tλ = 1}, possibly formulated by further

economic, legal restrictions, etc. In many applications, we have that L = S. Let us further explain

the meaning of the weight constraints λ ∈ Rn+ and 1Tλ = 1 in economic terms when we work with

excess returns and long-short portfolios as in our empirical application. The positivity constraints

means that we impose to keep the sign of the long leg and short leg of the long-short portfolio

tracking the anomaly. It does not mean that we do not allow short positions. The sum to one

implies a constraint on the gross leverage. Gross leverage adds the short and long positions in

securities, divided by asset under management, while net leverage is the difference between long and

short positions in securities, divided by asset under management. In our setting, the sum to one

implies that the gross leverage of the portfolio is 200% since we have 100% invested in long legs and

100% invested in short legs, while the net leverage is zero since the long and short legs compensate.

On the contrary, when we work with returns and long-only portfolios, the sum to one implies a gross

leverage of 100% and a net leverage of 100%, and the economic interpretation is different.

We denote a distinguished sub-collection of L by K and generic elements of L by λ, κ, etc. We

assume that L, K are convex (which is needed for the proof of Lemma 4 below). This assumption

is in line with our empirical applications where the associated portfolio spaces are constructed as
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convex hulls of base assets. The base assets are simply considered as the vertices of the underlying

space, hence need not necessarily be individual securities. The assumption thus allows for base assets

that are themselves constructed via complicated portfolio constraints on the underlying individual

securities; e.g. short sales, position limits, restrictions on factor loadings, etc. Hence it is a mild

assumption. In order to define the concepts of PSD and subsequently of stochastic spanning, we

consider J (z1, z2, λ;F ) :=
´ z2
z1
G (u, λ, F ) du.

Definition 1. κ weakly Prospect-dominates λ, written as κ <P λ, iff we have the system of

inequalities P1 (z, λ, κ, F ) := J (z, 0, κ, F ) − J (z, 0, λ, F ) ≥ 0, ∀z ∈ R− and P2 (z, λ, κ, F ) :=

J (0, z, κ, F )− J (0, z, λ, F ) ≤ 0, ∀z ∈ R++.

The expected utility representation of the relation in Levy and Levy (2002), as well as the Russel

and Seo (1989) ramp function construction, show that the conditions on P2 are consistent with

concave preferences on the positive domain, while the conditions on P1 are consistent with convex

preferences on the negative domain. PSD is thus associated with non-global dispositions towards

risk: risk loving preferences in the negative domain and risk aversion in the positive domain. As

such, it is fundamentally different from SSD which involves the class of utilities that represent global

risk aversion. The following simple example demonstrates the discrepancy between the two forms of

stochastic dominance.

Consider the pair κ, λ, with

G (u, κ, F ) :=



0, for u < −1,

1
8 , for − 1 ≤ u < 0,

Φ (u) , for 0 ≤ u,

G (u, λ, F ) :=



0, for u < −1,

1
4 (u+ 1) , for − 1 ≤ u < 0,

Φ (u) , for 0 ≤ u,

where Φ denotes the standard Normal cdf. Here, while λ dominates κ w.r.t. SSD, we have on

the contrary that κ <P λ. On the negative domain, every risk loving agent chooses κ over λ due

to the behavior of the two cdf on the interval [−1, 0). That behavior also implies that κ is not

chosen over λ by any risk averse agent on that interval. However, whenever the base assets vector is

entirely supported on the positive real line, then Prospect dominance is equivalent to second-order

dominance. If the joint distribution is further elliptical, it is then also equivalent to M-V dominance
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(see Arvanitis et al. (2018)).

Given the stochastic dominance relation above, stochastic spanning occurs when augmentation

of the portfolio space does not enhance investment opportunities, or equivalently, investment op-

portunities are not lost when the portfolio space is reduced. The following definition clarifies the

concept w.r.t. the Prospect dominance relation.

Definition 2. K Prospect-spans L (K <P L) iff for any λ ∈ L, ∃κ ∈ K : κ <P λ. If K = {κ}, the

element κ of the singleton K is termed as Prospect super-efficient.

The efficient set of the dominance relation is the subset of L that contains the maximal elements.

The efficient set is a spanning subset of the portfolio space. Thereby, any superset of the efficient

set is also a spanning subset of L. We can consider a spanning set as an outer approximation

of the efficient set. Given a candidate spanning set exists, the question is whether it actually

spans the portfolio space. If a method for answering such a question also exists, we can accurately

approximate the efficient set via the choice of finer spanning subsets of the portfolio space. It helps

in understanding decision making and investment choice.

Hence, the question we address here is: given a candidate K, is K <P L? The following lemma

provides an analytical characterization by means of nested optimizations, which, along with the

economic representation of the relation in terms of expected utility in the following section, is key

for a numerical implementation on real data and statistical inference. Its proof (see the Online

Appendix) is based on parameter continuity arguments for the functionals involved. It is of similar

form to the analogous functional employed in the SSD spanning by Arvanitis et al. (2017), yet

containing an additional layer of optimization, a supplementary complexity to be handled in the

proof. It is due to the two component system of inequalities that appears in the definition of the

relation and it is analogous to the representation of spanning w.r.t. the Markowitz dominance relation

in Arvanitis et al. (2020).

Lemma 3. Suppose that K is closed. Then K <P L iff we get the condition

ρ (F ) := max
i=1,2

sup
λ∈L

sup
z∈Ai

inf
κ∈K

Pi (z, λ, κ, F ) = 0, where A1 = R−, A2 = R++.
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2.2 Representation By Utility Functions

Here, we provide an expected utility characterization of spanning. First, it generalizes the utility

characterization of PSD in Levy and Levy (2002), in that it does not require two-sided differentiabil-

ity of the utilities involved. Local representations of the convex/concave components of the utilities

involved imply that they have locally integrable one sided derivatives (see Appendix C.3 of Pollard

(2002)), but need not have integrable derivatives. Hence, our representation enriches the class of

functions involved. It allows us to analyze markets that contain investors with non-smooth prefer-

ences. Such preferences can be associated with situations in which information about the optimality

of the equilibrium allocation is not fully characterized by equilibrium prices (see Ohtaki (2019)).

Hence, our extension permits market conditions potentially involving ambiguity about asset equi-

librium allocations. Second and foremost, our approach is in the spirit of the Russel and Seo (1989)

representations for SSD. We rely on utilities represented as unions of graphs of convex mixtures of

appropriate “ramp functions” on each half-line. Aside its economic interpretation, and given Lemma

3, it is key to the numerical LP implementation of the inferential procedures. In the next section,

it enables a finite dimensional approximation of the utility class by functions with piece-wise linear

components (see Arvanitis et al. (2017) for a simpler construction for SSD).

To this end, we denote with W−,W+, the sets of Borel probability measures on the real line

with supports that are closed subsets of R− and R+, respectively, with existing first moments and

uniformly integrable. The latter requirement is convenient yet harmless since orderings are invariant

to utility re-scaling. Those sets are convex, closed w.r.t. the topology of weak convergence and their

union contains the set of degenerate measures.

Define V− :=
{
vw : R− → R, vw (u) =

´
R− [z1u≤z + u1z≤u≤0] dw (z) , w ∈ W−

}
, and

V+ :=
{
vw : R+ → R, vw (u) =

´
R+

[u10≤u≤z + z1z≤u<+∞] dw (z) , w ∈ W+

}
. Every element of V+

is increasing and concave, and dually every element of V− is increasing and convex. Furthermore,

any function defined by the union of the graph of an arbitrary element of V+ with the graph of an

arbitrary element of V− is the graph of an S-shaped utility function as defined by Levy and Levy

(2002). Such a utility function is concave for gains and convex for losses. Denote the set of S-shaped

utility functions obtained by such graph unions as V . Thereby,
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V :=

v : R→ R, v (u) =


v−w (u) , u ≤ 0

v+
w (u) , u ≥ 0

, where v−w ∈ V−, v+
w ∈ V+

 .

Lemma 4. We have ρ (F ) = maxi=1,2 supvw∈Vi [supλ∈L Eλ [1u∈Aivw (u)]− supκ∈K Eκ [1u∈Aivw (u)]] ,

where Eλ denotes expectation w.r.t. G(z, λ, F ). If the hypotheses of Lemma 3 hold, then K <P L

iff, supv∈V [supλ∈L Eλ [v]− supκ∈K Eκ [v]] = 0.

The first part of the lemma connects the functional that represents spanning to the aforemen-

tioned classes of utilities. We exploit it below in order to obtain feasible numerical formulations

based on LP. Those formulations are reminiscent of the LP programs developed in the early papers

of testing for SSD efficiency of a given portfolio by Post (2003) and Kuosmanen (2004). The second

part of Lemma 4 crystalizes the economic characterization of spanning w.r.t. investment opportuni-

ties. It states that spanning holds if and only if the reduction of investment opportunities from L to

K does not reduce optimal choices uniformly w.r.t. this class of preferences. Equivalently, it essen-

tially states that when spanning does not hold, the restriction of the portfolio possibilities from L to

K results to the maximal expected utility loss given by supv∈V [supλ∈L Eλ [v]− supκ∈K Eκ [v]] > 0.

The reason is that K misses some PSD efficient elements. The proof (see the Online Appendix)

depends on standard integration by parts for Lebesgue-Stieljes integrals, and a min-max theorem.

2.3 Link Between Rejection of PSD Spanning and Loss Aversion

Lemma 4 implies a characterization of no-spanning by an optimal portfolio w.r.t. an optimal S-

shaped utility. Specifically, K does not span L if and only if there exists an S-shaped utility, and

an element of L that is strictly preferred to every portfolio in K by this utility. It implies that the

preferred portfolio lies necessarily in L − K, and is optimal, i.e., it must be the best choice of the

particular utility in comparison to every element in K (and also in L). The utility function is optimal

in the sense that it yields the maximal expected utility differences between the optimal portfolio

and every element of K.

Furthermore, the arguments in the proof of Lemma 4 and the linearity of the elements of V+, for

13



w ∈ W+, and V−, for w ∈ W−, imply that the optimal utility made of v−w for negative returns and v+
w

for positive returns corresponds to degenerate mixing measures, i.e., the negative part corresponds

to a probability measure w that is degenerate (point mass) at a supremum negative threshold z−,

and the positive part corresponds to a probability measure w that is degenerate to a supremum

positive threshold z+. It means that the optimal utility u? is a member of the set of extreme points

of V , and is characterized by a negative threshold z− and a positive threshold z+.

Under further conditions, we can associate the optimal S-shaped utility with absence of loss

aversion. We employ a slightly weaker localized-form of the Kahneman and Tversky (1979) definition

of loss aversion, in order to account for the specific piece-wise linear form of the extreme points of

V : an increasing S-shaped u exhibits local loss aversion if and only if (i) u (x) ≤ −u (−x), for

all x > 0, with at least some strict inequality; it exhibits loss aversion if and only if (i) holds

with strict inequalities, and, if the utility is also differentiable it exhibits strong loss aversion (see

Wakker and Tversky (1993)) if it exhibits loss aversion and (ii) u′ (x) < u′ (−x), for all x > 0. A

sufficient condition for absence of loss aversion is thus u (x) > −u (−x), for some x > 0. Local loss

aversion reversal holds when (i’) u (x) ≥ −u (−x), for all x > 0, with at least one strict inequality,

loss aversion reversal holds when (i’) holds strictly, and upon differentiability, strong loss aversion

reversal holds when (i’) holds strictly and moreover (ii’) u′ (x) > u′ (−x), for all x > 0. The following

lemma establishes the connection between rejection of spanning and absence of loss aversion:

Lemma 5. Suppose that, (a) the supports of the base assets in L are bounded below by −z < 0, (b)

PSD spanning does not hold, (c) SSD spanning holds, and (d) z+ ≥ z. Then the optimal utility u?

exhibits absence of loss aversion.

The proof of the lemma is straightforward. As mentioned above, non PSD spanning implies

the existence of the optimal S-shaped u? as an extreme point of V . The lower bound of the excess

returns is −z. Hence, the negative threshold cannot be less than that. It is due to that, if z− < −z,

then the expected optimal utility would be concave w.r.t. to the joint distribution of the returns,

and thus since SSD spanning holds, the optimal portfolio in L would not be strictly preferred over

every portfolio in K, and it would yield a contradiction. Hence, z− > −z, and since z+ ≥ z, we

have that |z−| < z+, and thereby u? (x) > −u? (−x), for all x ≥ |z−|.

14



The lower bound hypothesis is mild in our empirical finance framework. The returns for the

long legs are naturally bounded from below by −1. In theory, the short legs could lead to an

unbounded negative excess return if prices of the short leg portfolios are unbounded. In practice, we

have doubts about this happening and assuming a finite lower bound for excess returns induced by

bounded negative prices does not seem restrictive for our empirics. The minimum of the empirical

minima of every time series of weekly excess returns in our analysis is not lower than −12%; see

Table 5 in the Online Appendix.

As with loss aversion, absence of loss aversion is also documented in psychological and behav-

ioral experiments; see Yechiam and Hochman (2014) and Walasek and Stewart (2015). Our result

establishes that it can emerge as a characteristic of an optimal utility via a combination of spanning

w.r.t. different stochastic dominance relations under restrictions on the concave part.

Whenever absence of loss aversion is obtainable for the optimal utility, its piece-wise linear form

cannot ascertain whether it is due to (strong) loss aversion reversal. One way to obtain information

on whether absence of loss aversion or (strong) loss aversion reversal is the case at hand, is to

smooth the optimal utility by approximating it by an S-shaped utility with adequate curvature.

In our empirical analysis, we perform smoothing using the prospect theory exponential utilities of

Koebberling and Wakker (2005). Those S-shaped utilities exhibit a well-defined index of loss aversion

and enough curvature so as to ascertain whether conditions (i’) and (ii”) above hold. We focus on

cases where statistical inference does not accept PSD spanning, cannot reject SSD spanning, and

the empirical optimal positive threshold is large enough, with some predefined level of statistical

confidence. We then perform smoothing and test whether (i’) (and (ii’)) holds or not.

2.4 An Asymptotically Exact and Consistent Test for Spanning

We cannot directly rely on Lemma 3 for empirical work if F is unknown and/or the optimizations

are infeasible. We construct a feasible statistical test for the null hypothesis of K <P L by utilizing

an empirical approximation of F and by building feasible and fast optimizations with LP. The null

and alternative hypotheses take the following forms: H0 : ρ (F ) = 0, and Ha : ρ (F ) > 0. In the

special case of singleton K, the hypotheses write as in Arvanitis and Topaloglou (2017).

We consider a process (Yt)t∈Z taking values in Rn. Yi,t denotes the ith element of Yt. The sample
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path of size T is the random element (Yt)t=1,...,T . In our empirical finance framework, it represents

returns of n financial assets upon which we can construct portfolios via convex combinations. F is

the cdf of Y0 and FT is the empirical cdf associated with the random element (Yt)t=1,...,T . Under

our assumptions below, FT is a consistent estimator of F , so we consider the following Kolmogorov-

Smirnov type test statistic ρT :=
√
Tρ (FT ) =

√
T maxi=1,2 supλ∈L supz∈Ai

infκ∈K Pi (z, λ, κ, FT ) ,

which is the scaled empirical analog of ρ (F ). The consideration of empirical analogues of the func-

tionals that represent SD spanning properties, instead of traditional M-V spanning tests (Huberman

and Kandel (1987), Jobson and Korkie (1989), De Roon et al. (2001)) in the context of SSD, is

explained in Section 4 of Arvanitis et al. (2017) upon deviations from ellipticity. A fortiori, in our

context of S-shaped preferences, traditional M-V spanning tests are generally non-admissible due to

the fundamental differences between the M-V and Prospect dominance relations when the supports

include components of the negative domain as explained and shown with a counterexample in Sec-

tion 2.1. In addition to the economic interpretation of an estimated maximal expected utility loss

from the discussion after Lemma 4, we prefer to use a Kolmogorov-Smirnov type statistic, instead of,

say, a Cramer-von Mises type statistic, because of the availability and tractability of the numerical

approximation through LP that is exemplified in the next section.

The following assumption enables the derivation of the limit distribution of ρT under H0 and is

weaker than Assumption 2 in Arvanitis et al. (2020).

Assumption 6. F is absolutely continuous w.r.t. the Lebesgue measure on Rn with convex support,

and for some 0 < δ, E
[
‖Y0‖2+δ

]
< +∞. (Yt)t∈Z is a-mixing with mixing coefficients aT = O(T−a)

for some a > 1 + 2
η , 0 < η < 2, as T →∞.

The mixing part is readily implied by concepts such as geometric ergodicity which holds for

many stationary models used in the context of financial econometrics under parameter restrictions

and restrictions on the properties of the underlying innovation processes. Examples are the strictly

stationary versions of (possibly multivariate) ARMA or several GARCH and stochastic volatility

type of models (see Francq and Zakoian (2011) for several examples). The moment condition is

established in the aforementioned models via restrictions on the properties of building blocks and

the parameters of the processes involved.
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For the derivation of the limit theory of ρT under the null hypothesis, we consider the contact sets

Γi =
{
λ ∈ L, κ ∈ K�λ , z ∈ Ai : Pi (z, λ, κ, F ) = 0

}
, where K�λ := {κ ∈ K : κ <P λ} which under the

null contains elements different from λ for any element of L−K. For any i, the set Γi is non empty

since Γ?i := {(κ, κ, z) , κ ∈ K, z ∈ Ai} ⊆ Γi. Furthermore, (λ, κ, 0) ∈ Γ1, ∀λ, κ. Since z := infλ,Y0 λ
′Y0

exists from Assumption 6, we have that for all z ≤ z, (λ, κ, z) ∈ Γi, ∀λ ∈ L, κ ∈ K�λ for the i that

corresponds to the sign of z. In what follows, we denote convergence in distribution by  .

Proposition 7. Suppose that K is closed, Assumption 6 holds and that H0 is true. Then as T →∞,

ρT  ρ∞, where ρ∞ := maxi=1,2 supλ supz infκ Pi (z, λ, κ,GF ) , (λ, z, κ) ∈ Γi, and GF is a centered

Gaussian process with covariance kernel given by Cov(GF (x),GF (y)) =
∑

t∈ZCov
(
1{Y0≤x}, 1{Yt≤y}

)
and P almost surely uniformly continuous sample paths defined on Rn.

The limiting random variable ρ∞ obtained by optimization on a functional of a Gaussian process

is well defined since the following inequalities holdˆ +∞

0

∑
t∈Z

Cov
(

1{λTY0≤u}, 1{λTrYt≤u}

)
du ≤ 2

∞∑
t=0

√
aT

ˆ +∞

0

√
1−G (u, λ, F )du < +∞, and

ˆ 0

−∞

∑
t∈Z

Cov
(

1{λTY0≤u}, 1{λTrYt≤u}

)
du ≤ 2

∞∑
t=0

√
aT

ˆ 0

−∞

√
G (u, λ, F )du < +∞, where the first in-

equalities in each of the previous expressions follow from inequality 1.12b in Rio (2000), and the

second ones follow from Assumption 6 (see also p. 196 of Horvath et al. (2006)).

Since F and Γi are unknown in practice, we use the results of the previous lemma to construct

a decision procedure based on sub-sampling, in the spirit of Linton et al. (2014) (see also Linton et

al. (2005)).1

Algorithm 8. It consists of the following steps:

1. Evaluate ρT at the original sample value.

2. For 0 < bT ≤ T , generate subsample values

from the original observations (Yl)l=t,...t+bT−1 for all t = 1, 2, . . . , T − bT + 1.
1The partitioning used to get the results in Proposition 7 directly leads to the consideration of sub-sampling as

a re-sampling procedure. A testing procedure based on (block) bootstrap as in Scaillet and Topaloglou (2010), can,
due to the form of the recentering, be consistent, but can be too conservative asymptotically, and thereby suffer from
a lack of power compared to the sub-sampling under particular local alternatives (see also the relevant discussion
in Arvanitis et al. (2019)). The potential of asymptotic exactness for the sub-sampling test justifies the particular
re-sampling choice for inference.
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3. Evaluate the test statistic on each sub-sample value

thereby obtaining ρT,bT ,t for all t = 1, 2, . . . , T − bT + 1.

4. Approximate the cdf of the asymptotic distribution under the null of ρT

by sT,b(y) = 1
T−bT +1

∑T−bT +1
t=1 1 (ρT,bT ,t ≤ y) and calculate its 1− α quantile

qT,bT (1− α) = infy {sT,b(y) ≥ 1− α} , for the significance level 0 < α < .5.

5. Reject the null hypothesisH0 if ρT > qT,bT (1− α).

In order to derive the limit theory for the testing procedure, namely its asymptotic exactness and

consistency stated in the next theorem, we first use the following standard assumption that restricts

the asymptotic behaviour of bT governing the size bT + 1 of each subsample.

Assumption 9. Suppose that (bT ), possibly depending on (Yt)t=1,...,T , satisfies the condition

P (lT ≤ bT ≤ uT ) → 1, where (lT ) and (uT ) are real sequences such that 1 ≤ lT ≤ uT for all T ,

lT →∞ and uT
T → 0 as T →∞.

Theorem 10. Suppose Assumptions 6 and 9 hold. For the testing procedure described in Algorithm

8, we have that

1. If H0 is true, and for λ ∈ L − K, infY0 λ
TrY0 ≤ 0 there exists (κ, z) ∈ K�λ × R++ with

(λ, κ, z) ∈ Γ2 and that if (λ, κ?, z?) ∈ Γ2 for κ? 6= κ then z? 6= z, then for all α ∈ (0, .5)

limT→∞ P (ρT > qT,bT (1− α)) = α.

2. If Ha is true then limT→∞ P (ρT > qT,bT (1− α)) = 1.

When, for λ ∈ L − K, infY0 λ
TrY0 ≤ 0, then, due to Assumption 6 for any contact triple

(λ, κ, z) ∈ Γ2, we have that P2 (z, λ, κ,GF ) must be non-degenerate. Whenever z corresponds solely

to the particular κ, we obtain that ρ∞ is non-degenerate and if its cdf jumps at the infimum of its

support, then the jump magnitude is bounded above by .5. Hence, the test is asymptotically exact

for all the usual choices of the significance level since the probability of rejection under the null

hypothesis, i.e., the size of the test, reaches α in large samples. We combine Proposition 6 above

and Theorem 3.5.1 of Politis et al. (1999) in the proof of the exactness statement, namely point

1 of Theorem 10. To get exactness, the condition imposed on L − K is significantly weaker than
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the assumption on the relation between the extreme points of L and K adopted by Arvanitis et al.

(2020). It amounts to the existence of a spanned portfolio whose support is not strictly positive and

so that, in the event of positive returns, there exists an elementary increasing and concave utility

for positive returns and a unique portfolio such that the latter dominates the former and we are

indifferent between the two portfolios with this particular utility. Besides, the test is also consistent

since the probability of rejection under the alternative hypothesis, i.e., the power of the test, reaches

1 in large samples. We show in the proof of the consistency statement, namely point 2 of Theorem

10, that the test statistic diverges to +∞ under the alternative hypothesis when T goes to +∞.

We opt for the “bias correction” regression analysis of Arvanitis et al. (2019) to reduce the

sensitivity of the quantile estimates qT,bT (1−α) on the choice of bT in empirically realistic dimensions

for n and T (see also Arvanitis et al. (2020) for further evidence on its better finite sample properties).

Specifically, given α, we compute the quantiles qT,bT (1 − α) for a “reasonable” range of bT . In

the empirical section, we use bT ∈ {T 0.6, T 0.7, T 0.8, T 0.9}. Next, we estimate the intercept and

slope of the following regression line by OLS: qT,bT (1 − α) = γ0;T,1−α + γ1;T,1−α(bT )−1 + νT ;1−α,bT .

Finally, we estimate the bias-corrected (1 − α)-quantile as the OLS predicted value for bT = T :

qBCT (1− α) := γ̂0;T,1−α + γ̂1;T,1−α(T )−1. Since qT,bT (1− α) converges in probability to q(ρ∞, 1− α)

and (bT )−1 converges to zero as T → ∞, γ̂0;T,1−α converges in probability to q(ρ∞, 1 − α) and the

asymptotic properties are not affected. In the Online Appendix, we also show that, under further

assumptions, the test is asymptotically locally unbiased under given sequences of local alternatives.

Besides, the Monte Carlo analysis reported in the Online Appendix shows that the test performs

well with an empirical size close to 5% and an empirical power above 90% for a significance level

α = 5%.

3 Numerical Implementation

We exploit the results of Lemma 4 in order to provide with a finitary approximation of the test

statistic. We rely on this approximation to provide with a numerical implementation based on

LP below. We approximate the S-shaped utility function in the risk-seeking area using a finite

set of increasing and convex piece-wise-linear functions, while we approximate the risk-averse part
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by increasing and concave piece-wise-linear functions. The latter is also used in Arvanitis et

al. (2019) for SSD spanning. We denote expectation w.r.t. the empirical measure by EFT
. Let

R− denote maxi=1,...,nRange
(
Yi,t1Yi,t≤0

)
t=1,...,T

= [x, 0]. Partition R− into n1 equally-spaced

values as x = z1 < · · · < zn1 = 0, where zn := x − n−1
n1−1x, n = 1, · · · , n1; n1 ≥ 2. Fur-

thermore, partition the interval [0, 1], as 0 < 1
n2−1 < · · · < n2−2

n2−1 < 1, n2 ≥ 2. Similarly,

R+ := maxi=1,...,nRange
(
Yi,t1Yi,t≥0

)
t=1,...,T

= [0, x]. Partition R+ into p1 equally-spaced values

as 0 = z1 < · · · < zp1 = x, where zp := p−1
p1−1x, n = 1, · · · , p1; p1 ≥ 2, and again partition the interval

[0, 1], as 0 < 1
p2−1 < · · · <

p2−2
p2−1 < 1, p2 ≥ 2. Using the above, we consider the test statistic:

ρ?T :=
√
T max
i=1,2

sup
v∈V ?

i

[
sup
λ∈L

EFT

[
v
(
λTY

)]
− sup
κ∈K

EFT

[
v
(
κTY

)]]
, (1)

where the set of utility functions for negative returns is:

V ?
− :=

{
v : v(u) =

n1∑
n=1

wn
[
zn1x≤u≤zn + u1zn≤u≤0

]
, (w1, . . . , wn1)∈W−

}
,

W− :=

{
(w1, . . . ,wn1) ∈

{
0,

1

n2 − 1
, · · · , n2 − 2

n2 − 1
, 1

}n1

:

n1∑
n=1

wn = 1

}
,

and the set of utility functions for positive returns is:

V ?
+ :=

v : v(u) =

p1∑
p=1

wp
[
u10≤u≤zp + zp1zp≤u≤x

]
, (w1, . . . , wp1)∈W+

 ,

W+ :=

(w1, . . . ,wp1) ∈
{

0,
1

p2 − 1
, · · · , p2 − 2

p2 − 1
, 1

}p1

:

p1∑
p=1

wp = 1

 .

We obtain the following result on the approximation of ρT by ρ?T .

Proposition 11. As n1, n2, p1, p2 →∞, we have ρ?T → ρT , P a.s.

Our feasible computational strategy builds on LP formulations for the numerical evaluation using

the previous finitary approximation of the test statistic. We have a set of increasing and convex utility

functions: v(u) =
∑n1

n=1wn max(u, zn) for the negative part, namely the risk-seeking area. For every

v ∈ V ?
−, we have at most n2 line segments with knots at n1 possible outcome levels. Then, we can
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enumerate all n3 = 1
(n1−1)!

∏n1−1
i=1 (n2 + i−1) elements of V ?

−. Our application in Section 4 uses n1 =

10, and n2 = 5, which gives n3 = 715 distinct utility functions, and a total of 1430 small LP problems

for the two embedded maximization problems in (1). Solving (1) yields simultaneously the optimal

factor portfolio κ, and the optimal augmented portfolio λ that maximize the expected utility. Below,

we give the mathematical formulation for the first optimization problem supλ∈ΛEFN

[
u
(
λTY

)]
, that

yields the optimal augmented portfolio λ. The same formulation is used for the second optimization

supκ∈κEFN

[
u
(
κTY

)]
. Let us define: c0,n :=

∑n1
m=n (c1,m − c1,m+1) zm, c1,n :=

∑n1
m=nwm, and

N := {n = 1, · · · , n1 : wn > 0}
⋃
{n1}. For any given u ∈ V−, supλ∈ΛEFN

[
u
(
λTY

)]
is the optimal

value of the objective function of the following LP problem in canonical form: maxT−1
∑T

t=1 yt s.t.

yt ≤ λTYtc1,n+Q−t +Q+
t , yt ≤ c0,n+Q−t +Q+

t , Q
−
t ≥ c0,n−λTYtc1,n, Q

+
t ≥ λTYtc1,n−c0,n, Q

−
t ≥ 0,

Q+
t ,≥ 0,

∑M
i=1 λi = 1, λi ≥ 0, and yt being free, for t = 1, · · · , T , n ∈ N , i = 1, · · · ,M,

For the positive part, namely the risk-averse area, we take a set of concave utility functions:

v(u) =
∑p1

p=1wp min(u, zp). Again, for every v ∈ V ?
+, we have at most p2 line segments with knots at

p1 possible outcome levels. As before, the number of elements of V ?
+ is p3 = 1

(p1−1)!

∏p1−1
i=1 (p2+i−1) =

715, for p1 = 10 and p2 = 5. Let us define: c0,p :=
∑p1

m=p (c1,m − c1,m+1) zm, c1,p :=
∑p1

m=pwm, and

P := {p = 1, · · · , p1 : wp > 0}
⋃
{p1}. For any given u ∈ V+, supλ∈ΛEFN

[
u
(
λTY

)]
is the optimal

value of the objective function of the following LP problem in canonical form: maxT−1
∑T

t=1 yt

s.t. yt ≤ λTYtc1,p, yt ≤ c0,p,
∑M

i=1 λi = 1, λi ≥ 0, and yt being free, for t = 1, · · · , T, n ∈ P,

i = 1, · · · ,M . The total run time for each computation does not exceed one minute when we use

a desktop PC with a 3.6 GHz, 6-core Intel i7 processor, with 16 GB of RAM, using MATLAB and

GAMS with the Gurobi optimization solver.

4 Empirical Application

We examine whether we can explain well-known stock market anomalies by standard factors within

a new breed of asset pricing models, for prospect type investor preferences. For this purpose, we

use the prospect spanning tests, both in-sample and out-of-sample. We also test in-sample for SSD

spanning and we focus on the anomalies where prospect spanning is rejected while SSD spanning

is not rejected, and the empirical positive threshold of the optimal utility is large enough, since in
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these cases rejection is associated to absence of loss aversion.

4.1 Factor Models and Anomalies

We consider three models that build on the pioneer three-factor model of Fama and French (1993):

the four-factor model of Hou et al. (2015), the five-factor model of Fama and French (2015), and the

four-factor model of Stambaugh and Yuan (2017). Fama and French (1993) aim to capture the part

of average stock returns left unexplained in CAPM of Sharpe (1964) and Lintner (1965) by including,

in addition to the market factor, two extra risk factors relating to size (measured by market equity)

and the ratio of book-to-market equity. In addition to the market excess return, the influential three-

factor model of Fama and French (1993) includes a book-to-market or "value" factor, HML, and a

size factor, SMB, based on market capitalization. Motivated by Miller and Modigliani (1961), Fama

and French (2015) five-factor model (henceforth, FF-5) augments the original Fama-French three-

factor model by two extra factors, one for profitability and another for investment. Hou et al. (2015)

consider a four-factor model (dubbed the q factor model) that includes the original market and size

factors of Fama and French (1993) augmented by a profitability and investment factor. Stambaugh

and Yuan (2017) consider a four-factor model (henceforth, M-4) including the standard market and

size factors along with two composite factors for investment and profitability. To construct the

composite factors, they combine information from 11 market anomalies relating to investment and

profitability measures. We use alternative factor models as a robustness check, namely for testing

the consistency of in- and out-of-sample results under the prospect preferences, and not for a horse

race in cross-sectional asset pricing.

The stock market anomalies have a long history in the relevant literature. A common theme in the

original papers that first highlighted these patterns is that they all challenge the rational asset pricing

paradigm as they exhibit returns that are not in line with the risks taken. However, notwithstanding

whether they are caused by sentiment (a catch-all term that stands for all kinds of irrational decision-

making) and/or by market frictions (e.g., margin requirements), it is also acknowledged that most

of them persist because they cannot be “arbitraged” away. From the perspective of the Arbitrage

Pricing Theory, it implies that arbitrageurs cannot trade against them without exposing themselves

to significant risks. The anomalies are realigned appropriately to yield positive average returns.
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In particular, anomaly variables that relate to investment activity (Asset Growth, Investment to

Assets, Net Stock Issues, Composite Equity Issues, Accruals) are defined low-minus-high decile

portfolio returns, rather than high-minus-low, as in Hou et al. (2015). All the other anomalies

are constructed as high-minus-low decile portfolio returns. A short description of the 18 market

anomalies that we study in the paper is given in Appendix A (see Stambaugh and Yuan (2017) for

further details). 12 of these anomalies are used in Barberis et al. (2021). Returns of the Fama and

French 5 factors were downloaded from Kenneth French’s site. The dataset consists of all weekly

observations from January 1974 until December 2016, a total of 2236 weekly returns. M-4 factor

returns and anomaly spread return series were downloaded from the websites of Robert Stambaugh

and AQR. In the Online Appendix, we report summary statistics of the factor and anomaly returns

over our sample period.

4.2 In-Sample Analysis

The hypothesized portfolio manager with prospect preferences forms optimal portfolios from two

separate asset universes: the first universe, the set K, is solely formed of basis factors from a factor

model (FF-5, M-4, q). The second universe, the set L, is formed when the respective set of basis

factors is augmented by a single trading (spread) strategy. Portfolio managers are assumed to

solve portfolio optimization problems, effectively looking for a portfolio picked from the augmented

universe L that dominate all portfolios of the respective factor universe K w.r.t. some S-shaped

utility. Such a portfolio is empirically approximated by the the optimal portfolio λ that produces ρT

for the particular sample value, when the prospect spanning hypothesis is rejected. By construction

this portfolio is empirically efficient (see Definition 2.1 in Linton et al. (2014) for the SSD case which

we can be easily adapted to the PSD case).

Many of the anomalies employed were published post 1974 and since they build on

CRSP/Compustat data, they typically work at least from the mid 60s until the publication year. To

account for that, we repeat the analysis for each anomaly only post publication as in Chinco et al.

(2021), to test which anomalies survive after publication. We use weekly data to have enough obser-

vations. We also report tests of stochastic spanning for risk averse investors (Arvanitis et al. (2019)

to check whether rejection occurs solely due to the local risk-seeking behaviour of the investors. We
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additionally test for M-V spanning using the Huberman and Kandel (1987) test and compare the

results.

4.2.1 PSD and SSD Spanning Tests

We compute the sub-sampling distribution of the test statistic for sub-sample size

bT ∈ {T 0.6, T 0.7, T 0.8, T 0.9}. Using OLS regression on the empirical quantiles qT,bT (1 − α) for a

significance level α = 5%, we get the estimate qBCT for the bias-corrected critical value. We reject

spanning if the test statistic ρ?T is higher than the regression estimate qBCT . Tables 6-8 in the on-

line Appendix report the test statistics ρ?T as well as the regression estimates qBCT when we test

for prospect spanning of the alternative factor models w.r.t. each one of the 18 market anomalies,

both in the full period as well as in the post publication period. We additionally report the test

statistics η?T as well as the regression estimates gBCT for SSD spanning, to check whether there are

anomalies that reject spanning due to risk-seeking only behaviour. Chalamandaris et al. (2021) test

for SSD spanning of market anomalies. We repeat their tests and we also test for SSD spanning of

the additional market anomalies that we use.

For the full sample, we observe that the FF-5 model spans 6 out of 18 market anomalies, that is,

Accruals, Asset Growth, Return on Assets, Size, Growth Option, and Profitability. The M-4 model

spans the same 6 market anomalies, while the q model spans Return on Assets, Betting against Beta,

Size, and Profitability. Thus, in most cases, optimal portfolios based on the investment opportunity

set that includes a market anomaly is not spanned by the corresponding optimal portfolio strate-

gies based on the original factors. We also observe that Return on Assets, Size, and Profitability

are spanned by all the factor models, indicating the robustness of these characteristics being not

considered as genuine market anomalies by prospect investors. The lack of rejection for anomalies

such as size and profitability is not surprising given that these anomalies are related to factors in

the original investment sets.

In contrast to the full period, only 5 out of the 18 characteristics are not spanned by any factor

model in the post publication period. These genuine anomalies are the Composite Equity Issue,

Momentum, Betting Against Beta, Value and Idiosyncratic Volatility. Although Net Stock Issues

is not spanned by the first two factor models, it is spanned by the q model. The rejection for the
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value anomaly in the FF-5 model is not surprising given that, with the addition of profitability and

investment factors, the value factor of the FF-3 model becomes redundant for describing US average

returns (Fama and French (2015)). The descriptive statistics of Table 5 in the Online Appendix

show that the value anomaly and the HML factor have a different behaviour in terms of kurtosis,

Sharpe ratio, and minimum return. The observed differences in terms of their distributional features

come from different re-balancing schemes. Fama and French (1992) calculate B/M for each stock

and form the HML strategy by updating value once a year on June 30, using book and price as

of the prior December 31. They hold these values constant until re-balancing the portfolio on the

following June. We use the Asness and Frazzini (2013) Value strategy where the HML is constructed

using current prices instead of lagged fiscal year-end prices.

4.2.2 M-V Spanning Tests

Following Huberman and Kandel (1987), the set of factors M-V spans the augmented set with the

anomaly if the minimum-variance frontier of the factors is identical to the minimum-variance frontier

of the augmented set. For each anomaly i, we use their joint test of an intercept restriction αi = 0

and slope restriction δi = 1 − βie = 0, where e is a vector of ones, and αi and βi are the intercept

and factor loadings. The second restriction is consistent with the PSD spanning tests with portfolio

weights summing to one.

Tables 9-11 in the online Appendix report M-V spanning test results of each market anomaly

relative to FF-5, M-4 and q factors, respectively, using three test statistics. The first and second

columns in each table display the value and heteroskedasticity-adjusted t-statistic of alpha coefficient.

The third and fourth columns relate to the regression-based test of Huberman and Kandel (1987)

showing, respectively, the Lagrange Multiplier (LM) and Likelihood Ratio (LR) statistics, both of

which are suitable for asymptotic tests (Kan and Zhou (2008)). To be consistent with the prospect

spanning tests which use constrained portfolios, we perform the M-V spanning tests but we constrain

β to be non-negative in the optimization problem. M-V spanning tests broadly agree that most

strategies are market anomalies, irrespective of the factor set. It differs markedly from PSD spanning.

M-V spanning LM and LR tests agree that 18 out of 18 strategies represent anomalies (reject

spanning) with respect to FF-5 factors in the full sample, and 13 out of 18 in the post publication
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period. We observe qualitatively similar results when assessing trading strategies against M-4 factors.

In this case, test statistics agree that 15 out of 18 strategies represent market anomalies in the full

sample, and again 12 out of 18 post publication. Similar results obtain with respect to q factors,

where 16 out of 18 strategies represent market anomalies in the full sample, and 11 out of 18 post

publication. Although in the post publication period the number of anomalies is reduced, still many

strategies are found to be anomalies. The strategies that seem to be explained by the factor models

after publication are the Composite Issue, Gross Profitability, Investment/Assets, Net Operating

Assets, Return on Assets and Profitability. In-sample prospect spanning tests agree less often that

strategies are market anomalies in the post publication period than M-V spanning. Tables 1-3 below

summarise the results of the In-sample analysis.
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Table 1: Fama and French (FF-5) Factors
Variable SSD Spanning M-V Spanning PSD Spanning
Panel (a): Full period
Accruals - Reject -
Asset Growth - Reject -
Composite Equity Issue - Reject Reject
Distress - Reject Reject
Growth Profitability Premium - Reject Reject
Investment to Assets Reject Reject Reject
Momentum Reject Reject Reject
Net Operating Assets - Reject Reject
Net Stock Issues - Reject Reject
O-Score - Reject Reject
Return on Assets - Reject -
Betting against Beta Reject Reject Reject
Quality minus Junk Reject Reject Reject
Size - Reject -
Growth Option - Reject -
Value (Book to Market) Reject Reject Reject
Idiosyncratic Volatility Reject Reject Reject
Profitability - Reject -
Panel (b): Post publication period
Accruals - Reject -
Asset Growth - Reject -
Composite Equity Issue - - Reject
Distress - Reject -
Growth Profitability Premium - - -
Investment to Assets - Reject -
Momentum Reject Reject Reject
Net Operating Assets - Reject -
Net Stock Issues - - Reject
O-Score - Reject -
Return on Assets - - -
Betting against Beta Reject Reject Reject
Quality minus Junk - Reject -
Size - Reject -
Growth Option - Reject -
Value (Book to Market) Reject Reject Reject
Idiosyncratic Volatility Reject Reject Reject
Profitability - - -

Entries report the overall results of rejection for SSD, M-V and PSD spanning for the Fama and French (FF-5) model
with respect to each one of the 18 market anomalies. Panel (a) uses the full period of weekly returns while Panel (b)
uses the post publication period.
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Table 2: Stambaugh-Yuan (M-4) Factors
Variable SSD Spanning M-V Spanning PSD Spanning
Panel (a): Full period
Accruals - Reject -
Asset Growth - Reject -
Composite Equity Issue Reject Reject Reject
Distress - Reject Reject
Growth Profitability Premium - Reject Reject
Investment to Assets Reject - Reject
Momentum Reject - Reject
Net Operating Assets - Reject Reject
Net Stock Issues - Reject Reject
O-Score - Reject Reject
Return on Assets - Reject -
Betting against Beta Reject - Reject
Quality minus Junk - Reject Reject
Size - Reject -
Growth Option - Reject -
Value (Book to Market) Reject Reject Reject
Idiosyncratic Volatility Reject Reject Reject
Profitability - Reject -
Panel (b): Post publication period
Accruals - Reject -
Asset Growth - Reject -
Composite Equity Issue Reject - Reject
Distress - Reject -
Growth Profitability Premium - - -
Investment to Assets - - -
Momentum - Reject Reject
Net Operating Assets - - -
Net Stock Issues - Reject Reject
O-Score - Reject -
Return on Assets - - -
Betting against Beta Reject Reject Reject
Quality minus Junk - Reject -
Size - Reject -
Growth Option - Reject -
Value (Book to Market) Reject Reject Reject
Idiosyncratic Volatility Reject Reject Reject
Profitability - - -

Entries report the overall results of rejection for SSD, M-V and PSD spanning for the Stambaugh-Yuan (M-4) model
with respect to each one of the 18 market anomalies. Panel (a) uses the full period of weekly returns while Panel (b)
uses the post publication period.
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Table 3: Hou-Xue-Zhang (q) Factors
Variable SSD Spanning M-V Spanning PSD Spanning
Panel (a): Full period
Accruals - Reject Reject
Asset Growth - - Reject
Composite Equity Issue - Reject Reject
Distress - Reject Reject
Growth Profitability Premium - Reject Reject
Investment to Assets - Reject Reject
Momentum Reject Reject Reject
Net Operating Assets - Reject Reject
Net Stock Issues Reject Reject Reject
O-Score - Reject Reject
Return on Assets - - -
Betting against Beta Reject Reject Reject
Quality minus Junk - Reject Reject
Size - Reject -
Growth Option - Reject Reject
Value (Book to Market) Reject Reject Reject
Idiosyncratic Volatility Reject Reject Reject
Profitability - Reject -
Panel (b): Post publication period
Accruals - Reject -
Asset Growth - Reject -
Composite Equity Issue - - Reject
Distress - Reject -
Growth Profitability Premium - - -
Investment to Assets - - -
Momentum - Reject Reject
Net Operating Assets - - -
Net Stock Issues - - -
O-Score - Reject -
Return on Assets - - -
Betting against Beta - Reject Reject
Quality minus Junk - Reject -
Size - Reject -
Growth Option - Reject -
Value (Book to Market) Reject Reject Reject
Idiosyncratic Volatility Reject Reject Reject
Profitability - - -

Entries report the overall results of rejection for SSD, M-V and PSD spanning for the Hou-Xue-Zhang (q) model with
respect to each one of the 18 market anomalies. Panel (a) uses the full period of weekly returns while Panel (b) uses
the post publication period.
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4.2.3 Performance Measures

We compute a number of commonly used performance measures: the average return (Mean), the

standard deviation (SD), the Skewness and the Kurtosis of returns, the Sharpe ratio, the downside

Sharpe ratio (D. Sharpe ratio) of Ziemba (2005), the upside potential and downside risk (UP) ratio

of Sortino and van der Meer (1991), the opportunity cost of Simaan (2013), and a measure of the

portfolio risk-adjusted returns net of transaction costs (Return Loss) of DeMiguel et al. (2009). The

downside Sharpe and UP ratios are considered to be more appropriate measures of performance

than the typical Sharpe ratio given the asymmetric return distribution of the anomalies. For the

calculation of the opportunity cost, we use the following utility function which satisfies the curvature

of prospect theory (S-shaped): v(x) = xa if x ≥ 0 or −γ(−x)b if x < 0, where γ is the coefficient of

loss aversion and a, b < 1 (usually γ = 2.25, 0 < a = b = 0.88; see Tversky and Kahneman (1992)).

We provide a short description of those performance measures in Appendix B. In the next lines,

we only detail the results of the in-sample tests for the Momentum market anomaly in the post

publication period. The latter is well documented on diverse markets and asset classes (Asness et al.

(2013)). In the Online Appendix, we report the performance measures for the 5 Fama and French,

the 4 Stambaugh and Yuan and the 4 Hou-Xue-Zhang optimal factor portfolios, and the optimal

augmented portfolios for all the other market anomalies that we test, in the post publication period.

Table 4 reports the performance measures for the Momentum anomaly under each factor model

(Panels A, B and C, respectively). The results are consistent with the prospect and the M-V spanning

tests. All the performance measures of the augmented portfolios are improved w.r.t. the optimal

factor portfolios. In addition, we compare the M-V optimal portfolio to the prospect portfolio in

terms of prospect utility loss. We measure it by the opportunity cost θ, which is the return that

needs to be added to the M-V portfolio so that the investor is indifferent in prospect utility terms.

In Table 4, we see that the opportunity cost is always positive, indicating that the prospect investor

is better off compared to the M-V investor. In the Online Appendix, we present analogous Tables

for the other market anomalies, and similar remarks hold.
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Table 4: Performance measures of the optimal in-sample spanning portfolios. The Momentum
anomaly.

PSD spanning
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0026 0.0042 0.0021 0.0051 0.0028 0.0053
SD 0.0192 0.0194 0.0168 0.0204 0.0196 0.0217
Skewness -0.5644 -0.4576 -0.8799 -0.7566 -0.4733 -0.9655
Kurtosis 3.184 4.8577 2.6675 4.8555 2.9985 3.9066
Sharpe ratio 0.1354 0.2165 0.1250 0.2500 0.1429 0.2442
D. Sharpe ratio 0.3874 0.4692 0.4445 0.5017 0.3954 0.4761
UP ratio 0.7388 0.9456 0.8951 1.0115 0.7966 0.9601
Return Loss 0.056% 0.039% 0.028%
M-V spanning

Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0022 0.0032 0.0019 0.0042 0.0022 0.0044
SD 0.0172 0.0170 0.0160 0.0181 0.0182 0.0197
Skewness -0.2855 -0.3665 -0.9855 -0.8966 -0.8655 -0.9755
Kurtosis 2.9555 3.385 2.9556 3.3488 3.0622 3.3422
Sharpe ratio 0.1279 0.1882 0.1188 0.2320 0.1209 0.2234
D. Sharpe ratio 0.3906 0.4809 0.4500 0.4788 0.4003 0.4903
UP ratio 0.8332 0.9686 0.9059 0.9646 0.8062 0.9882
Return Loss 0.017% 0.019% 0.014%

Prospect utility loss
(Opportunity Cost)
α = β = 0.2 0.142% 0.245% 0.165% 0.258% 0.134% 0.185%
α = β = 0.4 0.113% 0.201% 0.123% 0.217% 0.102% 0.160%
α = β = 0.6 0.102% 0.194% 0.110% 0.185% 0.083% 0.125%

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside Sharpe ratio, UP ratio
and Returns Loss), Skewness and Kurtosis for the weekly realised returns of the factor optimal portfolios, and the
augmented with the Momentum optimal portfolio under PSD spanning and M-V spanning. Panel A reports measures
for the case of the FF-5 factors, Panel B for the case of the M-4 factors, and Panel C for the case of the q factors.
Table also shows the prospect utility loss of the M-V portfolios over the prospect portfolios.

4.2.4 Optimal Utilities: Evidence of Absence of Loss Aversion

In line with Paragraph 2.3, we now focus on anomalies where, in the post publication period, we reject

PSD spanning but cannot reject SSD spanning. Tables 1-3 suggest that these are the Composite

Equity Issue and Net Stock Issues for the FF-5 model, the Momentum and Net Stock Issues for the

M-4 model, and the Composite Equity Issue, Momentum and Betting against Beta for the q model.

We proceed by assuming a lower bound −z on weekly excess returns (see the discussion in Section

2.3). Table 5 in the Online Appendix shows that the minimum among all factors and anomalies on

the large sample from January, 1974 to December, 2016, that we study, does not go below −12%.

Since the minimum observed excess return is above −12%, we use a conservative value for the lower

bound on weekly excess returns equal to 10 times that value, namely we set z = 120%.

31



Table 5 exhibits the estimates of the thresholds of the optimal utilities for the above mentioned

anomalies, along with their bootstrap 95% confidence intervals (in brackets) evaluated from block

bootstrapping the original returns. The number of bootstrap samples is 100. For this significance

level, we observe that the lower bound of the confidence interval lies above z in all cases, except

for the Composite Equity Issue for the FF-5 model, and the Composite Equity Issue and Betting

against Beta for the q model anomalies. It indicates that, for the aforementioned level of significance

and our conservative choice of z, the Net Stock Issues for the FF-5 model, the Momentum and Net

Stock Issues for the M-4 model, and the Momentum for the q model all lie within the scope of

Lemma 5 and absence of loss aversion is expected. For comparison purposes, we provide thresholds

for the other anomalies in the Online Appendix.

Table 5: Evidence of Absence of Loss Aversion
Variable Factor Model z+ z−

FF-5

Composite Equity Issue 1.5708
[1.1716, 2.0015]

−0.085
[−0.1236,−0.0537]

Net Stock Issues 3.3879
[2.5756, 4.4016]

−0.1701
[−0.3419,−0.0374]

M-4

Momentum 2.0366
[1.6392, 2.5409]

−0.1138
[−0.1681,−0.0541]

Net Stock Issues 3.7391
[2.8714, 4.3582]

−0.1772
[−0.2891,−0.0333]

q

Composite Equity Issue 1.0157
[0.7807, 1.3277]

−0.0328
[−0.0432,−0.0229]

Momentum 2.1374
[1.5886, 2.5693]

−0.1261
[−0.182,−0.0687]

Betting against Beta 0.0621
[0.0123, 0.1284]

−0.0022
[−0.0029,−0.0013]

Entries report the estimated thresholds z+ and z− of the optimal utility function and their bootstrap confidence
intervals at 95%, for the anomalies for which PSD spanning is rejected while SSD spanning is not rejected. The
number of block bootstrap samples of weekly returns is 100.

4.2.5 Optimal Utilities: Smoothing and Absence of Loss Aversion

For the aforementioned four anomalies, we perform smoothing of the piece-wise linear optimal util-

ities using the prospect theory exponential utility class of Koebberling and Wakker (2005). The

members of this class are represented by v+(x) = (1 − e−δ
+
1 x)/δ+

1 , for x ≥ 0, and v−(x) =

−δ−0 (1 − e−δ
−
1 (−x))/δ−1 , for x < 0, with δ−0 > 0, δ+

1 > 0, and δ−1 > 0. They deliver well-defined
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indices of loss aversion as discussed by Koebberling and Wakker (2005) since they avoid v′ (0) = 0

exhibited by the often used prospect theory power utility function. We have that v+′(x) = e−δ
+
1 x,

for x ≥ 0, and v−′(x) = δ−0 e
−δ−1 (−x), for x < 0. For δ−0 ≥ 1 and δ−1 < δ+

1 , we get loss aversion

since −v(−x) > v(x), for all x > 0, and even its strong form (Wakker and Tversky (1993)) since

v′(−x) > v′(x), for all x > 0.

For a grid of return points, namely 1200 points, the parameters δ−0 , δ
+
1 , δ

−
1 are optimally selected

via a Nonlinear Least Squares regression of the optimal utility levels paired with the grid points

and obtained from the spanning analysis. Given the parameter choice, the absence of loss aversion

reversal index v+(x)− (−v−(−x)) and the strong loss aversion reversal index v+′(x)− v−′(−x) are

computed in the positive part of the grid. Confidence bands for the smoothed utilities and the

aforementioned indices are obtained via the block bootstrapping method of the previous paragraph.

Figure 1 shows the propect theory exponential utility, the loss aversion reversal index v+(x) −

(−v−(−x)), and the strong loss aversion reversal index v+′(x)−v−′(−x), as well as the corresponding

confidence bands at 95% for the Momentum anomaly under the M-4 model. The optimal parameters

are δ−0 = 1.8502, δ−1 = 16.1202, and δ+
1 = 0.3457, and their respective 95% bootstrap confidence

intervals are [1.8345, 1.8714], [10.7578, 34.3578], and [0.2222, 0.4882]. We face a strong asymmetry

between the two values of risk aversion and risk seeking and it contradicts the usual choice of taking

a common value for both such as the values a = b = .88 found by Tversky and Kahneman (1992)

for a prospect theory power utility function. The figure corroborates the absence of loss aversion

established in the previous paragraph. It moreover establishes that the optimal utility exhibits no

loss aversion reversal, neither in the weak nor, obviously, in the strong form for our 95% significance

level since we observe crossings of the zero horizontal line for low values of x. We also see in Figure 1

that the difference at x = 0 is such that v+′(0)−v−′(0) < 0 and so the index v+′(0)/v−′(0) advocated

by Koebberling and Wakker (2005) is below one and would conclude to presence of loss aversion

locally around zero. The results for the other anomalies are presented in the Online Appendix and

the results are analogous. Such a novel evidence in favour of absence of loss aversion and against

loss aversion or its reversal is a direct by-product of our testing procedure. It also clarifies that

δ−0 > 1 does not necessarily yield loss aversion since there is an interplay with the δ−1 and δ+
1 values

and it is why we need to look at Figure 1. It would be the case if δ−1 = δ+
1 , but we do not get that
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empirically.

Figure 1: The left upper Figure is the prospect theory exponential utility, the right upper Figure is the loss aversion
reversal index v+(x) − (−v−(−x)), and the lower Figure is the strong loss aversion reversal index v+′(x) − v−′(−x)
for the Momentum anomaly under the M-4 model. The confidence bands at 95% are computed by bootstrap.

4.3 Out-of-Sample Analysis

We conduct out-of-sample backtesting experiments using both prospect and M-V spanning in the

post publication period, to examine whether the inclusion of a market anomaly in the investment

opportunity set benefits to investors out-of-sample. Those experiments allow us to check the robust-

ness of in-sample results. Although we reject the null hypothesis of prospect spanning in some cases

for in-sample tests, it is not known a priori whether an optimal augmented portfolio also outperforms

an optimal portfolio made of factors only in an out-of-sample analysis. It is because by construction

we form these portfolios at time t, based on the information prevailing at time t, while we reap the

portfolio returns over [t, t + 1] (next week). The out-of-sample test is a real-time exercise avoiding

a potential look-ahead bias and mimicking the way that a real-time investor acts in practice.

We resort to back-testing experiments on a rolling horizon basis. The rolling windows cover the

period from 01/1974 to 12/2016. First, we specify the publication date of each anomaly. At each

week, we use the data from the previous 4 years (208 weekly observations) to calibrate the procedure.

We solve the resulting optimization problem for the prospect stochastic spanning test and record
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the optimal portfolios. The clock is advanced and we determine the realized returns of the optimal

portfolios from the actual returns of the various assets. Then, we repeat the same procedure for

the next time period and we compute the ex post realized returns over the entire period for both

portfolios.

Finally, we implement a Rosenberg and Engle (2002) pricing kernel analysis based on a prospect

type representative agent framework. Specifically, for each rolling window, we use a GARCH model

framework and estimate the pricing kernel emerging from a prospect theory exponential utility of

the aforementioned Koebberling and Wakker (2005) utility class. Thus, we assess the time variation

of the local risk seeking and risk aversion dispositions of the associated investors. We contrast those

series to recession periods. For this analysis, we use conditional distributions as opposed to the

in-sample analysis which by construction concerns a one-period ahead investment horizon and is

based on unconditional distributions. It is due to the conditional setting of the pricing relations.

4.3.1 Performance Measures

Table 6 reports the performance measures for the Momentum anomaly under each factor model

(Panels A, B and C, respectively). These performance measures supplement the evidence obtained

from the in-sample analysis. For PSD spanning, we observe that the Mean, the Sharpe ratio,

downside Sharpe ratio and UP ratio of the optimal augmented portfolio are improved with respect

to the optimal factor portfolio. Although these measures are based on the first two moments, they

support the in-sample result that the set enlarged with the momentum anomaly is not spanned by

any factor model. Moreover, Skewness is negative, while Kurtosis is higher. The Return Loss is

always positive. We observe that augmenting the factors by Momentum increases the performance

of the optimal portfolio with respect to each factor model. These results are consistent with the

in-sample tests.

In contrast, the out-of-sample results for M-V spanning are not consistent with in-sample tests.

Although in-sample the Momentum is found to be an anomaly in the M-V framework, out-of sample

we observe that the augmented portfolio is not improved compared to the factors optimal portfolio.

Thus, we confirm the robustness of in-sample and out-of sample results for PSD spanning but not

for M-V spanning. One possible reason for this inconsistency is that M-V optimization average
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return and covariance matrix estimates over each rolling window could be unstable. Moreover, we

compare the M-V optimal portfolio with the prospect portfolio in terms of prospect utility loss.

We measure it by the opportunity cost θ, which is the return that needs to be added to the M-V

portfolio so that the investor is indifferent in prospect utility terms. In Table 6, we see that the

opportunity cost is always positive, indicating that the prospect investor is better off compared to

choices under an M-V criterion. The Momentum characteristic is negatively skewed and leptokurtic,

which makes it attractive for prospect investors, and we can see in Table 6 that the kurtosis is larger

after including this anomaly under PSD spanning. In the Online Appendix, we present analogous

Tables for the other market anomalies. They indicate that the Composite Equity Issue, Momentum,

Betting against Beta, Value, and Idiosyncratic Volatility emerge as unambiguously genuine market

anomalies under all factor sets, both in-sample and out-of-sample.

Prospect investors would benefit from including these characteristics in their portfolios, expand-

ing the investment opportunity set offered by factor portfolios. They can also prefer strategies that

can produce opportunities with low skewed returns. All these anomalies have high Sharpe ratios,

and the skewness is low as expected. We stress that the PSD spanning approach is particularly

robust in- and out-of-sample. This remarkable consistency offers good incentives for adopting such

an approach when exploring instances of apparent market inefficiency. In the M-V framework, the

Composite Issue, Distress, Gross Profitability, Net Operating Assets, Return on Assets, Net Stock

Issues, Betting against Beta, Value and Idiosyncratic Volatility improve the opportunity set of M-V

investors out-of-sample. These characteristics exhibit high Sharpe ratio, which makes them attrac-

tive for investors that take into account the first two moments only. Finally, we observe that the

prospect utility loss is almost in all cases positive, indicating the superiority of the prospect port-

folios in prospect utility terms compared to the M-V portfolios. It means that one needs to give a

positive return equal to θ to a M-V investor so that she becomes as happy as a prospect investor in

expected utility terms.

Tables 47-49 in the Online Appendix report the average weight allocation of the optimal aug-

mented portfolios under the PSD spanning and the M-V spanning, to understand better how the

choices of a prospect investor and a M-V investor differ. Those vary substantially over time; prospect

investors often include a much higher proportion of their wealth in the anomaly than the M-V in-
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vestors, especially in the anomalies that provide clear portfolio improvements. They take concen-

trated positions in characteristics with joint low skewness and high kurtosis. The optimal weight of

Momentum is between 72.6% and 80.3% for the prospect investors, indicating the superior perfor-

mance of this anomaly for the prospect investor. For M-V investors, the weight of Momentum is

only between 0.2% and 18.3%.

Table 6: Performance measures of the optimal spanning portfolios. The Momentum anomaly.
PSD spanning

Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0020 0.0216 0.0021 0.0214 0.0028 0.0150
SD 0.0231 0.1938 0.0167 0.2367 0.0166 0.1270
Skewness -0.4319 -0.1734 -0.7125 -0.4311 -0.3655 -0.8107
Kurtosis 3.8235 5.8714 2.4895 4.2840 2.2883 5.7100
Sharpe ratio 0.08658 0.1114 0.1257 0.0904 0.1687 0.1181
D. Sharpe ratio 0.1408 0.6086 0.4433 0.0535 0.2468 0.4055
UP ratio 0.7435 1.2393 0.9736 1.2533 0.9946 1.1983
Return Loss 0.085% 0.024% 0.008%
M-V spanning

Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0016 0.0017 0.0019 0.0020 0.0027 0.0027
SD 0.0134 0.0140 0.0130 0.0141 0.0151 0.0167
Skewness -0.3618 -0.2596 -0.4854 -0.3591 -0.4563 -0.4475
Kurtosis 2.8533 3.8774 2.0232 3.9947 2.9675 3.9504
Sharpe ratio 0.1194 0.1214 0.1465 0.1418 0.1788 0.1616
D. Sharpe ratio 0.1102 0.1087 0.1653 0.1659 0.2812 0.2381
UP ratio 0.6120 0.5999 0.6650 0.6494 0.8010 0.7272
Return Loss -0.003% -0.004% -0.020%

Prospect utility loss
(Opportunity Cost)
α = β = 0.2 0.162% 1.139% 0.287% 0.491% 0.159% 0.839%
α = β = 0.4 0.146% 1.025% 0.228% 0.442% 0.143% 0.775%
α = β = 0.6 0.131% 0.923% 0.175% 0.398% 0.129% 0.617%

Entries report the performance measures, Skewness and Kurtosis for the weekly realised returns of
the factor optimal portfolios, and the augmented with the Momentum optimal portfolio under PSD
spanning and M-V spanning. Panel A reports measures for the case of the FF-5 factors, Panel B
for the case of the M-4 factors, and Panel C for the case of the q factors. The table also shows the
prospect utility loss of the M-V portfolios over the prospect portfolios.

In the in-sample tests, we find that we reject prospect spanning far less often than we reject

M-V spanning. The M-V model results in optimal portfolios under the assumption that investors

have quadratic utility functions. In contrast, the stochastic dominance framework is valid under less

restrictive assumptions on investor preferences but is informationally more demanding than the M-V

framework as it depends on the whole distribution of returns, rather than on the two first moments

only. Investors do not necessarily adhere to a M-V view, but have instead more complicated risk

37



preferences that may pay attention to higher-order moments. On one hand, as a result of imposing

less restrictive assumptions on investor preferences, SD spanning tests may include portfolios in

the efficient set that the MV criterion may exclude. On the other hand, the MV criterion, which

requires less information from the data, may include portfolios that PSD criterion may exclude

from the efficient set. Overall, we believe that the observed discrepancies between in-sample and

out-of-sample inference support the hypothesis that in-sample MV-spanning tests tend to classify

strategies as market anomalies far too easily.

4.3.2 Pricing Kernel Analysis and Time-Varying Risk Aversion/Seeking

We evaluate the empirical risk aversion (in periods of gains) as well as the empirical risk seeking

(in periods of losses) coefficients each week. We do so by modifying the approach of Rosenberg

and Engle (2002) (see also Ait-Sahalia and Lo (2000), Jackwerth (2003)) regarding the form of the

pricing kernel. Specifically, we assume that the pricing kernel at the end of each rolling window is:

M∗(rt+1; θt) =


θ0,te

−θ+1,trt+1 , rt+1 ≥ 0,

θ0,te
−θ−1,t(−rt+1), rt+1 < 0.

(2)

In order for such a pricing kernel to be compatible with S-shaped preferences, θ+
1,t and θ

−
1,t must be

strictly positive. The value θ+
1,t coincides with the Arrow-Pratt measure of absolute risk aversion.

Analogously, we can interpret θ−1,t as an absolute risk seeking measure. In the Online Appendix,

we explain the link between the pricing kernel (2) and the Koebberling and Wakker (2005) time-

varying utility function vt characterized by v+
t (x) = (1 − e−δ

+
1,tx)/δ+

1,t for x ≥ 0, and v−t (x) =

−δ−0,t(1 − e
−δ−1,t(−x))/δ−1,t for x < 0, with δ−0,t > 0, δ+

1,t > 0, and δ−1,t > 0. The parameter θ0,t =

ζte
−rf,t+1 is related to the discount factor, where rf,t+1 is the risk-free rate and ζt is a strictly

positive time-varying scale coefficient independent of the return level rt+1. The multiplicative loss

aversion coefficient δ−0,t in the exponential S-shape utility function is not identifiable from the pricing

kernel; δ−0,t cancels out from the ratio of marginal utilities at negative returns. Using the prices of

the anomaly portfolio and its associated optimal prospect portfolio, we estimate at each window

the values of the aforementioned measures keeping it the same over a month. We provide details
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of the estimation method based on specification (2) of the pricing kernel in the Online Appendix.

We also explain there why a standard power S-shaped utility function cannot rationalize a power

pricing kernel (Rosenberg and Engle (2002)): such a utility function has v′t(0) = 0 and yields an

infinite pricing kernel when we compute the ratio of marginal utilities. We report the risk aversion

coefficient only in periods of positive returns, and the risk seeking coefficient only in periods of

negative returns.

Figure 2 depicts the weekly empirical risk aversion or risk seeking, calculated each month for

the out-of-sample period for the Momentum anomaly under the M-4 model. The grey areas are the

NBER recession periods. Empirical evidence of time-varying risk seeking is new in the literature,

in particular the wide presence of risk seeking behaviour in recession times. Additionally, the risk

aversion is lower in the recession periods, and higher in boom periods. Over the sample period,

empirical risk aversion averages 4.3. However, the level fluctuates substantially, ranging from 1.16

to 9.3. Finally, the risk seeking is higher in the recession periods and lower in the boom periods.

Over the sample period, empirical risk seeking averages 5.0. The level ranges from 1.42 to 9.72.

In the Online Appendix, we present analogous Figures for the other market anomalies for which

prospect spanning empirically disagrees with SSD spanning.
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Figure 2: The Figure presents the monthly empirical risk aversion θ+1,t, or risk seeking θ−1,t, obtained by calibration
of weekly observations for the period from March 1997 to December 2016, for the momentum anomaly under the M-4
model.

Finally, we observe in Figure 2 that the risk aversion is low at times outside recession windows.

A potential explanation is an uptrend in the US index of Consumer Sentiment (UMCSENT) during

those periods. This index builds on the results of the University of Michigan’s monthly Survey of

Consumers, and is used to estimate future spending and saving. As we observe from Table 7, the

monthly changes in UMCSENT are negatively correlated with changes in the monthly risk aversion

(apart from the BaB anomaly for the years 2015-2016) during periods with positive returns. When we

have a marked improvement in sentiment, consumers show signs of more certainty over the trajectory

of the US economy, and become less risk averse. Similarly the correlation coefficients of monthly

changes in UMCSENT with the changes in monthly risk seeking during periods with negative returns

are positive in most of the cases, but not always, indicating that there are asymmetries for the links

between risk aversion, risk seeking, and consumer confidence.

The coefficient values in Figure 2 show empirical evidence of time-varying risk aversion and risk
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seeking, but they do not need to agree with the values obtained in the unconditional in-sample anal-

ysis of Section 4.2.5. Here, we get coefficients estimates from a conditional out-of-sample analysis.

We use rolling windows, but not the full sample, to calibrate a conditional distribution (GARCH

model) and generate out-of-sample prices to calibrate the empirical pricing kernel (see the Online

Appendix for details).

Table 7: Correlation coefficients
Corr with risk aversion Corr with risk seeking

Fama and French (FF-5) Factor Model
Composite Equity Issue -0.1081 -0.0102
Net Stock Issues -0.3812 0.4044
Stambaugh-Yuan (M-4) Factor Model
Momentum -0.0244 -0.0845
Net Stock Issues -0.1065 -0.0756
Hou-Xue-Zhang (q) Factor Model
Composite Equity Issue -0.2213 0.1168
Momentum -0.0197 0.0229
Betting against Beta 0.1142 0.1836

Entries report correlation coefficients of monthly changes in the US index of Consumer Sentiment
(UMCSENT) with changes in the monthly risk aversion during periods with positive returns and
changes in monthly risk seeking during periods with negative returns.

5 Conclusions

In this paper, we develop and implement methods for determining whether introducing new securities

or relaxing investment constraints improves the investment opportunity set for prospect investors.

We develop a testing procedure for prospect spanning for two nested portfolio sets based on sub-

sampling and standard LP. In the empirics, we apply the prospect spanning framework to asset prices

in which investors evaluate risk according to prospect theory and examine its ability to explain 18

well-known stock market anomalies. We find that of the strategies considered, a few expand the

opportunity set of prospect investors, and thus have real economic value for them. Moreover, when

they are additionally spanned by factor models in the global risk aversion framework (SSD spanning),

they present investment opportunities for prospect investors, associated to the pronounced absence

of loss aversion. Those are the Net Stock Issue anomaly under the FF-5 model, the Momentum and

Net Stock Issue anomalies under the M-4 model, and the Momentum anomaly under the q model.

Out of sample, we find through a pricing kernel approach that prospect representative agents have
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time-varying dispositions towards risk that seem more pronounced on the downturn periods of the

business cycle. We also find that there are asymmetries for the links between risk aversion, risk

seeking, and consumer confidence measured by the US index of Consumer Sentiment (UMCSENT).

Those empirical features for a PSD setting were not documented in the previous literature. Finally,

we show that the prospect spanning approach is particularly robust between in- and out-of-sample

analysis. We also compare the prospect spanning with M-V spanning both in- as well as out-of-

sample. We observe that M-V spanning results are not that robust in- and out-of-sample. Moreover,

in most cases, the prospect investors are better off compared to choices under an M-V criterion, as

measured by the prospect utility loss.

The paper contributes to a current strand of literature aiming to reevaluate published anomalies

and discern those with real economic content for prospect investors. From a practitioner perspective,

this robust framework for establishing investment opportunities for prospect investors can be of

real value, especially in the case of quantitative investment funds that combine talent, capital and

computational power to the purpose of exploiting the existing anomalies and discovering new ones.
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APPENDIX A: Description of Stock Market Anomalies

Below we provide the origin and a short description of the 18 market anomalies used in the

empirical application.

1. Accruals: Sloan (1996) argues that investors tend to overestimate in their earnings expecta-

tions the persistence of the earnings’ component that is due to accruals. As a result, firms with low

accruals earn on average abnormally higher returns than firms with high accruals.

2. Asset Growth: Cooper, Gulen, and Schill (2008) maintain that investors tend to overreact

positively right after asset expansions. According to the authors, this behavior causes firms with

high growth in their total assets to exhibit relatively lower returns over the subsequent fiscal years.

3. Composite Equity Issues: Daniel and Titman (2006) base their analysis on a measure of

equity issuance that they devised finding that equity issuers tend to under-perform non-issuer firms.

4. Distress: Campbell, Hilscher, and Szilagyi (2008) find that firms with high default probability

tend to exhibit lower subsequent returns. This pattern is counter-intuitive in the context of rational

asset pricing, given that according to the standard models high risk entails high expected return

and vice versa.

5. Gross Profitability Premium: Novy-Marx (2013) argues that gross profit is the most objective

profitability metric. As a result, firms with the strongest gross profit have on average higher returns

than the less profitable ones.

6. Investment to Assets: Titman, Wei, and Xie (2004) argue that investors are put off by

empire-building managers who over-invest. For this reason, firms showing a significant increase in

gross property, plant, equipment or inventories tend to under-perform the market.
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7. Momentum: Momentum (Jegadeesh and Titman (1993)) is perhaps the most cited anomaly

in asset pricing. Since Carhart factor model (1997), it has been included in various reduced-form

models of the Stochastic Discount Factor as a factor. The momentum effect is attributed to sentiment

and describes the pattern of “winner” stocks gaining higher subsequent returns and “loser” stocks

relatively lower.

8. Net Operating Assets: Hirshleifer et al. (2004) suggest that investors often neglect information

about cash profitability and focus instead on accounting profitability. Because of this bias, firms

with high net operating assets (measured as the cumulative difference between operating income

and free cash flow) get to have negative long-run stock returns.

9. Net Stock Issues: Ritter (1991) and Loughran and Ritter (1995) indicate that equity issuers

underperform non-issuers with similar characteristics. Fama and French (2008) demonstrate that

net stock issues are negatively correlated with subsequent returns.

10. O-Score: This anomaly coincides with the distress anomaly we mentioned earlier. In this

case, the spread portfolios are constructed from stock ranking based on the O-score (Ohlson (1980))

to measure distress likelihood.

11. Return on Assets: Chen, Novy-Marx, and Zhang (2010) associate high past return on assets

with abnormally high subsequent returns. Return on assets is measured as the ratio of quarterly

earnings to last quarter’s assets.

12. Betting against Beta: Black, Jensen and Scholes (1972) showed that low (high) beta stocks

have consistently positive (negative) risk-adjusted returns. Frazzini and Pedersen (2014) propose an

investment strategy (“betting-against-beta” (BAB)) that exploits this anomaly by buying low-beta

stocks and shorting high-beta stocks. Because of its robustness, this anomaly is currently one of the

most widely examined APT violations.

13. Quality minus Junk: Asness, Frazzini and Pedersen (2013) show that high-quality stocks

(safe, profitable, growing, and well managed) exhibit high risk-adjusted returns. The authors at-

tribute this pattern to mispricing.

14. Size: The market capitalization is computed as the log of the product of price per share and

number of shares outstanding, computed at the end of the previous month.

15. Growth Option: Growth Option measure represents the residual future-oriented firm growth
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potential. This future (yet-to-be exercised) growth option measure is calculated as the % of a

firm’s market value (V) arising from future-oriented growth opportunities (PVGO/V). It is inferred

by subtracting from the current market value of the firm (V) the perpetual discounted stream of

expected operating cash flows under a no-further growth policy (see, e.g., Kester (1984), Anderson

and Garcia-Feijoo (2006), Berk, Green, and Naik (1999)).

16. Value (Book to market): The log of book value of equity scaled by market value of equity,

computed following Asness and Frazzini (2013); firms with negative book value are excluded from

the analysis.

17. Idiosyncratic Volatility: Standard deviation of the residuals from a firm-level regression of

daily stock returns on the daily Fama-French three factors using data from the past month. See

Ang et al. (2006).

18. Profitability.: It is measured as revenue minus cost of goods sold at time t, divided by

assets at time t-1. Stocks with high profitability ratios tend to outperform on a risk-adjusted basis

(Novy-Marx (2013), Novy-Marx and Velikov (2015)). Recent research suggests that profitability is

one of the stock return anomalies that has the largest economic significance (see Novy-Marx (2013)).

APPENDIX B: Description of Performance Measures

For the downside Sharpe ratio, first we need to calculate the downside variance (or more precisely

the downside risk), σ2
P−

=
∑T

t=1(xt−x̄)2−
T−1 , where the benchmark x̄ is zero, and the xt taken are those

returns of portfolio P at month t below x̄, i.e., those t of the T months with losses. To get the

total variance, we use twice the downside variance namely 2σ2
P−

so that the downside Sharpe ratio

is, SP =
R̄p−R̄f√

2σP−
, where R̄p is the average period return of portfolio P and R̄f is the average risk

free rate. The UP ratio compares the upside potential to the shortfall risk over a specific target

(benchmark) and is computed as follows. Let Rt be the realized monthly return of portfolio P for

t = 1, ..., T of the backtesting period, where T = 216 is the number of experiments performed and

let ρt be respectively the return of the benchmark (risk free rate) for the same period. Then, we

have UP ratio =
1
K

∑K
t=1 max[0,Rt−ρt]√

1
K

∑K
t=1(max[0,ρt−Rt])2

. It is obvious that the numerator of the above ratio is the

average excess return over the benchmark and so reflects upside potential. In the same way, the
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denominator measures downside risk, i.e., shortfall risk over the benchmark.

Next, we use the concept of opportunity cost presented in Simaan (2013) to analyse the economic

significance of the performance difference of the two optimal portfolios. Let RAug and RF be the

realized returns of the optimal augmented and the optimal factors portfolios, respectively. Then, the

opportunity cost θ is defined as the return that needs to be added to (or subtracted from) the optimal

factors portfolio return RF , so that the investor is indifferent (in utility terms) between the strategies

imposed by the two different investment opportunity sets, i.e., E[U(1 +RF + θ)] = E[U(1 +RAug)].

A positive (negative) opportunity cost implies that the investor is better (worse) off if the invest-

ment opportunity set allows for the market anomaly factor prospect type investing. The opportunity

cost takes into account the entire probability distribution of asset returns and hence it is suitable

to evaluate strategies even when the asset return distribution is not normal. For the calculation of

the opportunity cost, we use the following utility function which satisfies the curvature of prospect

theory (S-shaped): U(R) = Rα if R ≥ 0 or −γ(−R)β if R < 0, where γ is the coefficient of loss

aversion (usually γ = 2.25) and α, β < 1.

Finally, we evaluate the performance of the two portfolios under the risk-adjusted (net of trans-

action costs) returns measure, proposed by DeMiguel et al. (2009) which indicates the way that

the proportional transaction cost, generated by the portfolio turnover, affects the portfolio returns.

Let trc be the proportional transaction cost, and RP,t+1 the realized return of portfolio P at time

t + 1. The change in the net of transaction cost wealth NWP of portfolio P through time is,

NWP,t+1 = NWP,t(1 +RP,t+1)[1− trc×
∑N

i=1(|wP,i,t+1−wP,i,t|). The portfolio return, net of trans-

action costs is defined as RTCP,t+1 =
NWP,t+1

NWP,t
− 1. Let µF and µAug be the out-of-sample mean of

monthly RTC factors and the Augmented optimal portfolio, respectively, and σF and σAug be the

corresponding standard deviations. Then, the return-loss measure is RLoss =
µAug

σAug
× σF − µF , i.e.,

the additional return needed so that the factors perform equally well with the optimal augmented

with the market anomaly portfolio. We follow the literature and use 35 bps for the transaction

costs.
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