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Abstract

We consider semiparametric asymmetric kernel density estimators when the unknown density

has support on [0,∞). We provide a unifying framework which relies on a local multiplicative bias
correction, and contains asymmetric kernel versions of several semiparametric density estimators

considered previously in the literature. This framework allows us to use popular parametric models

in a nonparametric fashion and yields estimators which are robust to misspecification. We further

develop a specification test to determine if a density belongs to a particular parametric family.

The proposed estimators outperform rival non- and semiparametric estimators in finite samples

and are easy to implement. We provide applications to loss data from a large Swiss health insurer

and Brazilian income data.
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1 Introduction

One of the major concerns of insurance companies is the study of a group of risks. For insurers, a

good understanding of the size of a single claim is of most importance. Loss distributions describe the

probability distribution of a payment to the insured. Traditional methods in the actuarial literature use

parametric specifications to model single claims. The most popular specifications are the lognormal,

Weibull and Pareto distributions. Hogg and Klugman (1984) and Klugman, Panjer and Willmot (1998)

describe a set of continuous parametric distributions which can be used for modelling a single claim

size. It is, however, unlikely that something as complex as the generating process of insurance claims

can be described by just a few parameters. A wrong parametric specification may lead to an inadequate

measurement of the risk contained in the insurance portfolio and consequently to a mispricing of insur-

ance contracts. These remarks also apply to financial losses, portfolio selection and risk management

procedures in a banking context.

In a totally different area of research, economists studying income distributions and income inequality

use similar parametric models to estimate the distribution of income and its evolution over time. Popular

models are the gamma, lognormal and Pareto distributions, see Cowell (1999). Whereas the lognormal

distribution is thought to have the best overall shape, the Pareto is considered to be a more suitable

distribution for individuals in the upper end of the income distribution. Although these densities

may capture some stylised facts of income distributions, it is again unlikely that income distributions

can be described by just a few parameters. The imposition of a wrong parametric model may lead

to inconsistent estimates and misleading inference, as well as to disputable conclusions in inequality

measurement for example.

A method which does not require the specification of a parametric model is nonparametric kernel

smoothing. This method provides valid inference under a much broader class of structures than those

imposed by parametric models. Unfortunately, this robustness comes at a price. The convergence rate

of nonparametric estimators is slower than the parametric rate, and the bias induced by the smoothing

procedure can be substantial even for moderate sample sizes. Since both income and losses are positive

variables, the standard kernel estimator proposed by Rosenblatt (1956) has a boundary bias. This

boundary bias is due to weight allocation by the fixed symmetric kernel outside the support of the

distribution when smoothing close to the boundary is carried out. As a result, the mode close to

the boundary typical for income and loss distributions is often missed. Additionally, standard kernel

methods yield wiggly estimation in the tail of the distribution since the mitigation of the boundary bias

leads to favour a small bandwidth which prevents pooling enough data. Precise tail measurement of

loss distributions is however of particular importance to get appropriate risk measures when designing

an efficient risk management system.
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We propose a semiparametric estimation framework for the estimation of densities which have sup-

port on [0,∞) . Our estimation procedure can deal with all problems of the standard kernel estimator
mentioned previously, and this in a single way. Although the above parametric models may be inaccu-

rate, they can be used in a nonparametric fashion to help to decrease the bias induced by nonparametric

smoothing. If the parametric model is accurate, the performance of our semiparametric estimator can

be close to pure parametric estimation. Following Hjort and Glad (1995) (H&G), we start with a para-

metric estimator of the unknown density (economic theory may help in providing the parametric start),

and then correct nonparametrically for possible misspecification. To decrease the bias even further,

we give some local parametric guidance to this nonparametric correction in the spirit of Hjort and

Jones (1996) (H&J). This is achieved by employing either local polynomial or log polynomial models,

where the latter method results always in nonnegative density estimates. We call this approach local

multiplicative bias correction, or LMBC to be short.

We emphasize that appropriate boundary bias correction is more important in a semiparametric

than a pure nonparametric setting. This is because the bias reduction achieved by semiparametric

techniques allows us to increase the bandwidth and thus to pool more data. This, however, increases

the boundary region where the symmetric kernel allocates weight to the negative part of the real

line. This motivates us to develop LMBC in an asymmetric kernel framework which eliminates the

boundary issue completely1. Asymmetric kernel estimators were recently proposed by Chen (2000)

as a convenient way to solve the boundary bias problem. The symmetric kernel is replaced by an

asymmetric gamma kernel which matches the support of the unknown density2. As an alternative

to the gamma kernel, Scaillet (2004) introduced kernels based on the inverse Gaussian and reciprocal

inverse Gaussian density. All of these kernel functions have flexible form, are located on the nonnegative

real line and produce nonnegative density estimates. Also, they change the amount of smoothing in

a natural way as one moves away from the boundary. This is particularly attractive when estimating

densities which have areas sparse in data because more data points can be pooled. As pointed out

by Cowell (1999) ”Empirical income distributions typically have long tails with sparse data”. The

same holds true for empirical loss distributions and we therefore think that these kernels are very well

suited in this context. The variance advantage of the asymmetric kernel comes, however, at the cost

of a slightly increased bias as one moves away from the boundary compared to symmetric kernels,

which highlights the importance of effective bias reduction techniques in the tails. In a comprehensive
1The theoretical results derived in this paper show that the form of the bias reduction achieved through LMBC is

analogous in the symmetric and asymmetric kernel case, although the mathematics and the strategy of the proof yielding

these results are totally different. Obviously we cannot exploit symmetry in the derivation of the results for asymmetric

kernels.
2Other remedies include the use of particular boundary kernels or bandwidths, see e.g. Rice (1984), Schuster (1985),

Jones (1993), Müller (1991) and Jones and Foster (1996).
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simulation study, Scaillet (2004) obtains attractive finite sample performance of these asymmetric kernel

estimators. He also reports that boundary kernel estimators lead too often to negative density estimates

without outperforming asymmetric kernel density estimators. Chen (2000) reports superior performance

of the gamma kernel estimator compared to other remedies proposed in the literature as the local linear

estimator of Jones (1993). A particular advantage of the gamma kernel estimator is its consistency when

the true density is unbounded at x = 0, which is important for the estimation of highly skewed loss and

income distributions. This is shown in Bouezmarni and Scaillet (2005) who also establish uniform and

L1 convergence results for asymmetric kernel density estimators. Furthermore they report nice finite

sample performance of the asymmetric kernel density estimator w.r.t. the L1 norm.

Our simulation study underlines the importance of efficient boundary correction in a semiparametric

framework. We find that LMBC in connection with asymmetric kernels yields excellent results. These

estimators perform better in a mean integrated squared error (MISE) sense than pure nonparametric

estimators. If the parametric information provided is accurate, we find that a MISE reduction of 50-80%

can be reasonably expected. Even if the misspecification considered is large, our LMBC estimator still

achieves a MISE reduction of around 25%. Asymmetric kernel based LMBC estimators outperform

their symmetric rivals: first because they eliminate the boundary bias issue more successfully (allowing

a larger bandwidth), and second because they have an intrinsic advantage in the tails of the density.

Furthermore, they are often easier to implement.

As a by-product of our approach, we propose a new attractive semiparametric specification test to

determine whether a particular unknown density belongs to a parametric class of densities. The test is

very simple to implement and should prove useful in empirical applications. We also explain how this

statistic can be used to determine which density can be felt as a suitable parametric start.

Although we concentrate in the empirical part on loss and income distributions, similar issues as

discussed above are also important in the finance literature. Aït-Sahalia (1996a) develops an estima-

tion procedure for diffusion models of the short term interest rate. Based on Bickel and Rosenblatt’s

(1973) work on density matching, Aït-Sahalia (1996b) also proposes a way to test various parametric

specifications for diffusion models of the short rate. In his estimation and specification framework, the

nonparametric estimation of the stationary distribution of the interest rate process plays a key role.

The intertemporal general equilibrium asset pricing model of Cox, Ingersoll and Ross (1985) implies

that this distribution follows a gamma probability law. Although this interest rate model may again be

overly restrictive, it gives some economic guidance about the likely form of the stationary distribution

of the short rate. This information can be incorporated in a semiparametric estimator like ours. Fur-

thermore, our results are potentially important for estimation and specification testing of the baseline

hazard function in financial duration analysis. In this literature parametric models like the Burr and

generalized gamma distribution are popular specifications for the baseline hazard. We refer to Engle
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(2000) for an overview of autoregressive conditional duration models (ACD), Tyurin (2003) for a recent

application of the competing risk model to the foreign exchange market, and Fernandes and Grammig

(2005) for exploitation of asymmetric kernels in financial duration analysis. Clearly the standard ker-

nel estimator is again not appropriate in these contexts, since it does not take into account that the

underlying variables, interest rates and durations, are nonnegative.

The outline of the paper is as follows. In Section 2 we introduce our semiparametric estimation

framework and relate it to the relevant associated literature. This unified framework embeds semipara-

metric density estimators developed by H&G, H&J, and Loader (1996), and allows us to fully clarify

the interdependence between these approaches. Section 3 recalls asymmetric kernel methods. Section

4 contains the main contribution of the paper, namely the extension of the LMBC framework to the

asymmetric kernel case. We develop several examples, which show that the estimation procedure is user

friendly and remarkably simple to implement in most cases3. The procedure is therefore appealing for

applied work. We also discuss bandwidth choice and model diagnostic tests. In Section 5 we compare

the performance of our estimators through an extensive simulation study. To the best of our knowledge,

it is the first time that the various semiparametric approaches mentioned above are compared on a

finite sample basis. In Section 6 we provide two empirical applications: the first one to loss data from a

large Swiss health insurer, the second one to Brazilian income data. Section 7 contains some concluding

remarks. An appendix gathers the proofs and technicalities related to the properties of the various

estimators considered in the text.

2 Local multiplicative bias correction

In nonparametric regression, local polynomial fitting is a very popular approach, e.g. Fan and Gijbels

(1996) and the references therein. Gozalo and Linton (2000) are the first to consider local fitting of a

general functional using a least squares criterion, a normal error distribution version of a local likelihood

estimator. For density estimation, the local likelihood approach was independently developed at the

same time by H&J and Loader (1996). For a recent extension of the approach with application to

Value-at-Risk (VaR) in risk management, see Gourieroux and Jasiak (2001). Whereas Loader (1996)

concentrates on local polynomial fitting to the logarithm of the density, H&J allow for general local

functionals like Gozalo and Linton (2000) in regression estimation.

In this section, we briefly introduce an estimation framework based on familiar symmetric kernel

methods, which contains as special cases the local likelihood and multiplicative bias correction approach

as described in H&J, Loader (1996), and H&G, respectively. This framework will allow us to derive the
3MATLAB code is available on request.
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properties of these methods using asymmetric kernels in a single step, instead of treating the methods

separately. Furthermore it allows us to shed some light on the intertwinning of these methods.

Let X1, ..., Xn be a random sample from a probability distribution F with an unknown density

function f (x) where x has support on [0,∞). We propose the following local model as a basis to
estimate the true density function f (x):

m (x, θ1, θ2 (x)) = f (x, θ1) r (x, θ2 (x)) . (2.1)

The first part of the local model m consists of f(x, θ1), which is a parametric family of densities indexed

by the global parameter θ1 = (θ11, ..., θ1p) ∈ Θ1 ∈ Rp. This term serves as a global parametric start and

is assumed to provide a meaningful but potentially inaccurate description of the true density f (x). The

second part of m denoted by r (x, θ2 (x)) with θ2 (x) = (θ21 (x) , ..., θ2q (x)) ∈ Θ2 ∈ Rq serves as the local

parametric model for the unknown function r(x) = f(x)/f(x, θ1). The role of this ’correction function’

is, as the name says, to correct the potentially misspecified global start density f(x, θ1) towards the true

density f (x). H&J briefly discuss this local model as a particular example in their paper, whereas we

use it to provide a general framework for several semiparametric estimators proposed in the literature.

We call this local multiplicative bias correction (LMBC) since only the multiplicative correction factor

is modelled locally. Note that the correction function r(x) is uniformly equal to one if the parametric

start is well specified. Hence when the degree of misspecification is not too severe it is intuitively more

natural to model the correction factor locally than the unknown density itself.

The procedure is as follows: first, estimate the parameter θ1, which does not depend on x, by

maximum likelihood. It is well known that when the parametric model f (x, θ1) is misspecified, θ1
converges in probability to the pseudo true value θ01 which minimizes the Kullback-Leibler distance

of f (x, θ1) from the true f (x), see e.g. White (1982) and Gourieroux, Monfort and Trognon (1984).

Second, choose θ2 (x) such that

1

n

nX
i=1

Kh(Xi − x)v(x,Xi, θ2)−
Z
Kh(t− x)v(x, t, θ2)f

³
t, θ̂1

´
r (t, θ2) dt = 0 (2.2)

holds, where Kh (z) = (1/h)K (z/h) is a symmetric kernel function, h is the bandwidth parameter
and v(x, t, θ2) is a q × 1 vector of weighting functions. We omit for notational simplicity the possible
dependence of the weighting function on θ1. If we choose the score ∂ logm (x, θ1, θ2 (x)) /∂θ2 as the

weighting function, then Equation (2.2) is just the first order condition of the local likelihood function

given in H&J. In general, the form of the weighting function is driven by the tractability of the implied

resulting estimator and is discussed in more detail as we proceed in the paper. The local multiplicatively

bias corrected density estimator is

f̂ (x) = f
³
x, θ̂1

´
r
³
x, θ̂2 (x)

´
. (2.3)
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From the theoretical results concerning bias and variance of the local likelihood estimator given in H&J,

it immediately follows that this estimator has the same variance as the standard kernel density estimator

introduced by Rosenblatt (1956). The bias is however different. Compared to H&J, we prefer to state

the bias in terms of the correction factor. This is more intuitive and simplifies the comparison between

different estimation strategies. To ease notation, we write f0 (x) = f
¡
x, θ01

¢
and r0 (x) = f (x) /f

¡
x, θ01

¢
.

When θ2 is one dimensional, the bias is4

Bias
³
f̂ (x)

´
= σ2Kh

2

µ
1

2
f0 (x)

h
r
(2)
0 (x)− r(2)(x, θ02)

i
(2.4)

+{v
(1)
0 (x)

v0(x)
f0 (x) + f

(1)
0 (x)}

h
r
(1)
0 (x)− r(1)(x, θ02)

i!
,

where σ2K =
R
z2K (z) dz and v0(x) denotes v(x, x, θ

0
2). The magnitude of this bias term depends on

how well the correction function can be approximated locally by a suitable parametric model. This is

so if r (x) is smooth, or equivalently, if the global parametric start is close to the true density. In the

single parameter case, the bias also depends on the weighting function and on the distance between the

slopes of the correction function and its local model. If dim (θ2) ≥ 2, the bias is free of this term and

only the first term in the brackets appears. For further details we refer to H&J.

Direct local modelling of the density can be obtained by choosing the parametric start density as

an improper uniform distribution. W.l.o.g. set f0 (x) to one. Then the only source of bias reduction is

provided by the local model r (x, θ). The bias is 1
2
σ2Kh

2
h
r
(2)
0 (x)− r(2)(x, θ02)

i
as in H&J.

The multiplicatively corrected kernel estimator of H&G emerges from choosing the weighting function

as 1/f
³
x, θ̂1

´
, and choosing the local model as a constant. From Equations (2.2) and (2.3) it follows

that the estimator is

f̂ (x) =
f
³
x, θ̂1

´
R Kh(t− x)dt

1

n

nX
i=1

Kh(Xi − x)
1

f
³
Xi, θ̂1

´ . (2.5)

From (2.4), the bias is (1/2)σ2Kh
2f0 (x) r

(2)(x), which is the bias obtained by H&G and does not depend

on the chosen weighting function. We remark that this is the only possible choice of weighting function

which sets the second bracket term in Equation (2.4) to zero. Assuming that K has support [−1, 1] 5,
the term in the denominator of Equation (2.5) integrates to one if x lies in the interior, meaning that

x/h → κ > 1. However, close to the boundary where 0 ≤ κ < 1, this integral term normalizes the

density estimate and therefore adjusts for the undesirable weight allocation of the symmetric kernel
4Since θ̂1 exhibits

√
n-convergence which is faster than the nonparametric rate, the additional variability introduced

through the first step estimation of θ1 does not influence the bias and variance of f̂ (x) up to negligible higher order terms.
5This setup can easily be extended to infinite support kernels. However, finite support is a standard assumption,

delineating boundary and interior regions.
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outside the support of the density. This adjustment is not optimal and boundary bias is still of the

undesirable order O (h). Like in nonparametric regression, see e.g. Fan and Gijbels (1992), one of the

possible boundary bias correction methods which achieves an O (h2) order is the popular local linear

estimator, see Jones (1993) for the density case. To obtain a local linear H&G version we propose

to choose the local model as r (t, θ2) = θ21 + θ22 (t− x) and the weight functions as 1/f (t, θ1) and

(t− x) /f (t, θ1). The resulting estimator is equivalent to the H&G estimator in the interior of the

density. Close to the boundary it provides however again a correction due to weight allocation of the

symmetric kernel to the negative part of the real line. Define αj (κ) =
R κ
−1K(u)ujdu, then the local

linear estimator in the boundary region is

f̂ (x) = f
³
x, θ̂1

´ r̂ (x)− [α1 (κ) /hα2 (κ)] ĝ (x)¡
α0 (κ)− α1 (κ)

2 /α2 (κ)
¢ , (2.6)

where ĝ (x) is the sample average of Kh (Xi − x)
h
(Xi − x) /f

³
Xi, θ̂1

´i
.

After presenting this unifying framework for previously proposed estimators, we now turn to an

asymmetric kernel version of the above approach. Since the support of these kernels matches the

support of the density under consideration, no boundary correction of the type presented above is

necessary by construction. We first briefly review asymmetric kernel estimators for densities defined on

the nonnegative real line introduced by Chen (2000) and Scaillet (2004). In Section 4 we will treat the

LMBC case.

3 Asymmetric kernel methods

The asymmetric kernel density estimator is

f̂b(x) =
1

n

nX
i=1

K (Xi;x, b) , (3.1)

where b is a smoothing parameter satisfying b→ 0 and bn→∞ as n→∞. The asymmetric weighting
function K is either a gamma density KG with parameters (x/b+ 1, b) as proposed by Chen (2000), an

inverse Gaussian density KIG with parameters (x, 1/b) , or a reciprocal inverse Gaussian density KRIG

with parameters (1/ (x− b) , 1/b) as proposed by Scaillet (2004). These kernel densities are

KG(t;
x

b
+ 1, b) =

tx/b exp (−t/b)
Γ (x/b+ 1) bx/b+1

,

KIG(t;x,
1

b
) =

1√
2πbt3

exp

µ
− 1

2bx

µ
t

x
− 2 + x

t

¶¶
,

KRIG(t;
1

x− b
,
1

b
) =

1√
2πbt

exp

µ
−x− b

2b

µ
t

x− b
− 2 + x− b

t

¶¶
.
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Note that these asymmetric kernels do not take the form ω (x− t, b) where ω is an asymmetric function

(instead of a symmetric one), and thus do not belong to the class of asymmetric kernels studied by

Abadir and Lawford (2004). Figure 1 displays the gamma kernel for some selected x-values. All

asymmetric kernels share the property that the shape of the kernel changes according to the value of x.

This varying kernel shape changes the amount of smoothing applied by the asymmetric kernel since the

variance of, for instance, KG(t;
x
b
+ 1, b) is xb + b2, which is increasing in x as we move away from the

boundary. This is also reflected in the bias and variance expressions, which we give here for the gamma

kernel estimator, and on which we concentrate below:

Bias
³
f̂Gb (x)

´
=

½
f (1) (x) +

1

2
xf (2) (x)

¾
b+ o (b) , (3.2)

Var
³
f̂Gb (x)

´
=

(
1

2
√
π
n−1b−1/2x−1/2f (x) if x/b→∞,
Γ(2κ+1)

21+2κΓ2(κ+1)
n−1b−1f(x) if x/b→ κ.

This estimator is not subject to boundary bias, but involves the first derivative of the unknown density.

This is because x is not the mean of the gamma kernel KG(t;
x
b
+1, b), rather its mode. This is different

for the inverse Gaussian and reciprocal inverse Gaussian kernel estimators, whose biases only involve the

second order derivative of the unknown density. To circumvent the first derivative in the bias expression,

Chen (2000) also proposes a second gamma kernel which is, as Scaillet (2004) reports, similar in shape

as the reciprocal inverse Gaussian kernel but has a slightly inferior finite sample performance.

Compared to other boundary correction techniques, the bias of gamma kernel estimators may be

larger as x increases, this is however compensated by a reduced variance. In the interior where x/b→∞,
it is apparent from (3.2) that the variance of the gamma kernel estimator decreases as x gets larger. This

is in contrast to symmetric kernel estimators whose variance coefficients remain constant outside the

boundary area. Also asymmetric kernels have a larger effective sample size than kernels with compact

support. This is desirable for estimating densities with sparse areas as more data points can be pooled.

In the following we address the question of semiparametric bias reduction techniques for asymmetric

kernel methods. This is important since as just reported, the bias may be larger than for standard

symmetric kernel methods. Effective bias reduction techniques combined with a variance decreasing as

we move away from the boundary is giving us hope for promising performance of our estimators for the

estimation of loss and income distributions. This will be confirmed later in the paper.
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4 Local multiplicative bias correction with asymmetric ker-

nels

Apart from being an attractive semiparametric bias reduction framework, LMBC allows us to implement

a popular boundary bias reduction by choosing a local linear model for the density or correction factor.

This boundary bias reduction is not necessary per se in the asymmetric kernel framework since no

weight is allocated outside the support of the unknown density. The effect of LMBC in an asymmetric

framework is just to reduce the potentially larger bias for asymmetric kernel techniques. In addition,

LMBC in connection with asymmetric kernels allows for the construction of user friendly estimators

despite the apparent complexity of the approach. Estimators based on symmetric kernels, like e.g.

the Gaussian kernel, often require numerical integration and optimization procedures. Bolancé et.

al. (2003) mention that nonparametric methods for loss distribution estimation are seldom applied

in practice because of implementation difficulties. Candidate estimators must be easy to implement to

have a chance of being applied in the non-academic world. Numerical tractability is also a key advantage

when resampling methods such as the bootstrap are used for inferential purposes.

We now extend the LMBC approach to the asymmetric kernel case, compute bias and variance of

the estimator and discuss the choice of bandwidth. We also consider the special cases of H&J, Loader

(1996), and H&G, and show how these methods can be applied to the estimation of income and loss

distributions.

4.1 Definition of the estimator

We follow the notation introduced in Section 2. The estimator is f̃b (x) = f
³
x, θ̂1

´
r
³
x, θ̂2 (x)

´
, where

θ̂1 is the global maximum likelihood estimator which does not depend on x, and θ̂2 (x) is chosen by

maximizing the local likelihood function

logLn

³
x, θ̂1, θ2

´
=

Z ∞

0

K (t;x, b) {logm
³
t, θ̂1, θ2

´
dFn (t)−m

³
t, θ̂1, θ2

´
dt}

=
1

n

nX
i=1

K (Xi;x, b) logm(Xi, θ̂1, θ2)−
Z ∞

0

K (t;x, b)m(t, θ̂1, θ2)dt, (4.1)

with Fn denoting the empirical distribution function. This criterion function is equivalent to the one

of H&J. However, the symmetric kernel is replaced by an asymmetric kernel, whose support matches

the support of the density we wish to estimate. For notational simplicity we omit the local dependency

of θ2 on x. The first term in (4.1) is the standard log-likelihood function weighted by an asymmetric

kernel function. Maximizing this term alone would lead to inconsistent results because the expectation

of its score is not equal to zero at the true parameter value θ02. The second term guarantees that this is
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the case; we refer to H&J. From (4.1), when b is very large, K (t;x, b) is independent of t and the above

expression is a constant times the ordinary, normalized log-likelihood function. The maximization of

the local likelihood then becomes the same as ordinary likelihood maximization. But if b is small, the

maximization of logLn

³
x, θ̂1, θ2

´
will provide the best local estimator of f(x). This follows since under

some regularity conditions,

logLn

³
x, θ̂1, θ2

´
p→ π(x, θ01, θ2) =

Z ∞

0

K (t;x, b) {f(t) logm(t, θ01, θ2)−m(t, θ01, θ2)}dt,

as n grows. Hence θ̂2, the maximizer of (4.1), aims at the parameter value θ02(x) that maximizes

π(x, θ01, θ2) when the above convergence is uniform over the parameter space. See for example Linton

and Pakes (2001). The solution to the above problem minimizes the following distance measure which

is a localized version of the Kullback-Leibler distance of f (x) from m(x, θ01, θ2):

d[f,m(·, θ01, θ2)] =
Z ∞

0

K (t;x, b)

∙
f(t) log

f(t)

m(t, θ01, θ2)
− {f(t)−m(t, θ01, θ2)}

¸
dt.

This shows that θ̂2 aims at the best local parametric approximant to the true f . The estimator de-

pends on the chosen smoothing parameter. For further details and justifications of the local likelihood

approach, see H&J, Loader (1996), and the references therein.

The estimator θ̂2 for general weight functions v(x, t, θ2) is defined to be the solution to

Vn
³
x, θ̂1, θ2

´
=
1

n

nX
i=1

K (Xi;x, b) v(x,Xi, θ2)−
Z ∞

0

K (t;x, b) v(x, t, θ2)m(t, θ̂1, θ2)dt = 0. (4.2)

This is identical to the first order condition of (4.1) in the case where v is chosen as the score u(t, θ2) =

(∂/∂θ2) log r(t, θ2). For identification reasons, assume that

Vn
³
x, θ̂1, θ2

´
p→ V

¡
x, θ01, θ2

¢
=

Z
K (t;x, b) v(x, t, θ2)f0 (x) {r0(t)− r(t, θ2)}dt = 0

has a unique solution at θ2 = θ02. This requires that the q weight functions are functionally independent,

and that the correction function r0 (t) is within reach of the parametric model r (t, θ2) as θ2 varies. This

is like M-estimation in a possibly misspecified case, since the true correction function does not have to

belong to the parametric family r (t, θ).

4.2 Large sample properties

We now develop the bias and variance of the LMBC estimator. The derivations of all results presented

here are given in the appendix. When not stated otherwise, we will focus on results for the gamma

kernel developed in Chen (2000) since other kernel choices can be handled in a similar fashion.

11



If we locally fit one parameter, the bias of the LMBC estimator is

Bias
³
f̃Gb (x)

´
= f0 (x)

∙
{r(1)0 (x)− r(1)(x, θ02)}+

1

2
x{r(2)0 (x)− r(2)(x, θ02)}

¸
b

+

Ã
v
(1)
0 (x)

v0 (x)
f0 (x) + f

(1)
0 (x)

!
x{r(1)0 (x)− r(1)(x, θ02)}b

+o (b) +O

µ
1

nb1/2

¶
, (4.3)

where we use the same notation as in the second section of this paper. H&J also note that the first

derivative will vanish automatically from the bias expression if the number q of locally fitted parameters

is larger than two. Equation (4.3) will then hold for any component vj,0 (x) of the weighting function,

which can only be true if
h
r
(1)
0 (x)− r(1)(x, θ02)

i
= o(1) as b→ 0. This is not generally the case with one

parameter. This means that for q ≥ 2, the bias reduces to

Bias
³
f̃Gb (x)

´
=
1

2
f0 (x) {r(2)0 (x)− r(2)(x, θ02)}xb+ o (b) +O

µ
1

nb1/2

¶
. (4.4)

H&J show that for q ≥ 3 one can argue that {r(2)0 (x) − r(2)(x, θ02)} is also o(1) and third and fourth

order derivatives appear in the bias term. This property also holds for asymmetric kernels. We also

note that Chen (2002) introduced a local linear regression estimator based on the first gamma kernel,

which has the first derivative removed from the bias expression compared to the standard local constant

regression smoother.

There are several worthwhile remarks. First, we obtain the same result as in the symmetric kernel

case albeit relying on different proof techniques adapted to our asymmetric framework. Comparing

Equations (3.2) and (4.4) , the first derivative vanished and the second derivative in the bias of the

asymmetric kernel estimator is replaced by f0 (x)
h
r
(2)
0 (x)− r(2)(x, θ02)

i
. So this estimator performs

better than pure asymmetric kernel methods if the latter expression is smaller than the former in absolute

values. This is the case if the unknown density exhibits high local curvature or if the parametric start

is close to the true density since then r
(2)
0 (x) is small. Additionally, the local model for the correction

factor can make this term even smaller if it can locally capture the curvature of the correction factor.

If the model is correct, the local likelihood estimator is unbiased up to the order considered.

The variance of the asymmetric LMBC estimator in the one parameter case is

Var
³
f̃Gb (x)

´
=

(
1

2
√
π
n−1b−1/2x−1/2f (x) if x/b→∞,
Γ(2κ+1)

21+2κΓ2(κ+1)
n−1b−1f(x) if x/b→ κ,

(4.5)

where κ is a positive constant. We therefore obtain exactly the same result for the variance as for

the pure nonparametric gamma kernel estimator. Also the variance of the LMBC estimator does not

12



depend on the chosen weighting functions. We therefore have some flexibility to select them to obtain

estimators which are tractable to implement.

The variance of the LMBC estimator in the multiple parameter case for a general asymmetric kernel

is

Var
³
f̃(x)

´
=

f(x)

n
et1τ (K) e1 −

f (x)2

n
+O (b/n) , (4.6)

where, using some simplified notation, τ (K) is given byµZ ∞

0

K (t)VtV
0
t dt

¶−1µZ ∞

0

K (t)2 VtV
0
t dt

¶µZ ∞

0

K (t)VtV
0
t dt

¶−1
and Vt is q × 1 vector containing in the jth position the elements (t− x)j−1 for j = 1, ..., q. This

expression depends on the kernel being used. Independent of the kernel used, the variance of the LMBC

estimator in the two parameter case is the same as in the single parameter case. We collect results for

all the asymmetric kernel estimators in the following proposition.

Proposition 1 The bias expressions of the asymmetric LMBC estimator in the cases where K is the

gamma, inverse Gaussian and reciprocal inverse Gaussian kernel are given for q ≥ 2 by:

Bias
³
f̃Gb (x)

´
=

1

2
xf0 (x)

h
r
(2)
0 (x)− r(2)(x, θ02)

i
b+ o(b),

Bias
³
f̃ IGb (x)

´
=

1

2
x3f0 (x)

h
r
(2)
0 (x)− r(2)(x, θ02)

i
b+ o(b),

Bias
³
f̃RIGb (x)

´
=

1

2
xf0 (x)

h
r
(2)
0 (x)− r(2)(x, θ02)

i
b+ o(b).

The variances of the asymmetric LMBC kernel estimator are the same as those in the pure nonpara-

metric case.

Note that global performance measures such as MISE are easy to derive from these results (see

Section 4.5).

4.3 Special cases

After developing the general LMBC framework, properties of special cases are now derived. As described

in Section 2, direct local modelling of the density can be obtained by choosing the parametric start den-

sity as an improper uniform distribution. W.l.o.g. we can set f0 (x) to one. The local model r (t, θ) is

then the only source of bias reduction. As soon as we fit two or more local parameters (q ≥ 2), Propo-
sition 1 implies that the bias of the asymmetric local likelihood estimator is 1

2
xa
h
r
(2)
0 (x)− r(2)(x, θ02)

i
b,

where a is equal to three for the inverse Gaussian and one for the other asymmetric kernels. The

asymmetric version of the multiplicatively corrected kernel estimator of H&G emerges from choosing

13



the weighting function as 1/f
³
t, θ̂1

´
and choosing the local model as a constant. From Equation (4.2)

it follows that the estimator is in this case

f̃b(x) = f(x, θ̂1)r̂(x) =
1

n

nX
i=1

K (Xi;x, b)
f(x, θ̂1)

f(Xi, θ̂1)
.

This estimator has the advantage that it is very simple to implement. Chen’s asymmetric kernel

estimator has therefore an implicit initial parametric start which is given by an improper uniform

distribution. The ratio f(x, θ̂1)/f(Xi, θ̂1) equals one in this case. This time, no boundary correction

terms are needed which contrasts with symmetric kernels. This is because the asymmetric kernel already

answers the boundary bias issue. An estimation technique closely related to H&G is the multiplicative

bias correction approach developed by Jones, Linton and Nielsen (1995) (JLN)6. The analogue of their

estimator for asymmetric kernels is

f̄(x) = f̂b(x)α̂(x) =
1

n

nX
i=1

K (Xi;x, b)
f̂b(x)

f̂b(Xi)
,

where f̂b(x) is the usual asymmetric kernel estimator given in Equation (3.1). For symmetric kernels,

this estimator has generally a smaller bias than the standard kernel estimator at the cost of a slightly

larger variance. We do not further pursue this idea here since the JLN bias correction procedure is

fully nonparametric. It should be possible to derive properties of this estimator in the asymmetric case

combining techniques given in JLN and Chen (2000).

4.4 Examples

After developing the general framework, we now show how this framework can be applied to the esti-

mation of densities with support on the nonnegative real line. We focus especially on examples which

are relevant for the estimation of loss and income distributions. We give examples for the asymmetric

LMBC and the asymmetric version of the H&G estimator, and also explore the case where the local

model is chosen to fit the density directly as in H&J and Loader (1996).

4.4.1 A gamma start

A parametric start which is sufficiently flexible and can be expected to be appropriate in applications

for unimodal and right skewed distributions is given by the gamma density7. This parametric start can
6This estimator can be obtained by choosing a nonparametric start estimator and choosing 1/f̂b (x) instead of

1/fb

³
x, θ̂1

´
as the weighting function. However, this time the first estimation step does influence the variance of the final

estimator, and therefore we can not embed this estimator in the LMBC framework.
7An example based on the gamma (and also log-normal) density using symmetric kernels can be found in H&G. Their

estimator suffers, however, from boundary bias like standard kernel estimators.
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be combined with a local polynomial model for the correction factor: r(t, θ2) = θ21 + θ22 (t− x) + ...+

θ2(q+1) (t− x)q. The estimator is f̃b(x) = f
³
x, θ̂1

´
θ̂21 (x) . The gamma start density in combination

with the gamma kernel yields easy to implement estimators, which is a further advantage of our method

and obviously of considerable importance for practical empirical investigations.

Example 1 Using the above model for the correction factor, choosing the weight functions (t− x)j for

j = 0, ..., q and using Equation (4.2) , one can easily establish that the semiparametric density estimator

with a gamma start fG
³
x, α̂, β̂

´
for a general order q is

f̃b (x, q) = fG
³
x, α̂, β̂

´
et1

⎡⎢⎢⎣
δ0 ... δq

... ... ...

δq ... δ2q

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

f̂0b (x)

...

f̂ qb (x)

⎤⎥⎥⎦ ,
where

δj =

Z ∞

0

KG

Ã
t;x/b+ α̂, b

β̂

β̂ + b

!
(t− x)j dt,

c =
Γ
¡
x
b
+ α̂

¢ ³
b β̂

β̂+b

´x/b+α̂
Γ (α̂) β̂

α̂
Γ (x/b+ 1) bx/b+1

, (4.7)

and f̂ jb (x) is the sample average of (Xi − x)j KG

¡
Xi;

x
b
+ 1, b

¢
. Choosing the local model as a constant

is not particularly attractive since the bias of this estimator contains also the first order derivative of

the correction function and the local model. These first derivative terms vanish if we choose a local

polynomial model for the correction factor with q ≥ 2. In particular, the local linear version of this
estimator has the same bias as the asymmetric H&G estimator if K is chosen as the RIG or IG kernel:

f̃b (x) =
1

n

nX
i=1

K (Xi;x, b)

µ
x

Xi

¶α̂−1
exp

n
−β̂ (x−Xi)

o
. (4.8)

Both estimators are attractive when the true density is close to the gamma family. Otherwise a local

model for the correction factor is desirable to capture curvature and further diminishes the bias. This

can be attained by choosing q ≥ 3. We will consider the gamma kernel version of the estimator in

Equation (4.8) in our simulation study and will refer to it as the AHGG estimator.

Example 2 An alternative to local polynomial modelling of the correction factor is fitting a polynomial

to the logarithm of the correction factor, choosing r(t, θ2) = θ21 exp
¡
θ22 (t− x) + ...+ θ2(q+1) (t− x)q

¢
.

Compared to direct polynomial fitting as described above, this ensures a positive estimator and promises

a better performance than the H&G estimator if the true density is not given by the parametric start8.
8Note from (4.4) that the leading term of the bias of this estimator is given by 1

2f0 (x) {r(2)0 (x)−r(2)(x, θ02)}xb compared
to the H&G estimator which has 12f0 (x) r

(2)
0 (x) as the leading term.
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We work out below the local log linear version of this estimator with a gamma start, again using the

gamma kernel. Using Equation (4.2) and the score as the weighting function, the equation system to

be solved is

f̂b(x) = cθ21 exp (−θ22x)ψ (θ22) , (4.9)

f̂1b (x) = cθ21 exp (−θ22x)
h
ψ(1) (θ22)− xψ (θ22)

i
, (4.10)

where ψ (θ22) is the moment generating function associated with KG

³
t;x/b+ α̂, b β̂

β̂+b

´
and c is as

defined in (4.7) . This function is9

ψ (θ22) = (1− β∗θ22)
−α∗ for θ22 ≤ β∗−1,

where α∗ = x/b+ α̂, β∗ = b β̂

β̂+b
. Since f̃b(x) = fG

³
x, α̂, β̂

´
θ̂21, θ̂22 is only somewhat "silently" present

in the local parameterization. Using this and Equations (4.9) and (4.10) one obtains

θ̂22 =
(q + x)− α∗β∗

β∗ (q + x)
, (4.11)

where q = f̂1b (x)/f̂b(x). From (4.9), we can then obtain a closed form expression for the LMBC estimator

with a gamma start and the log linear correction factor

f̃b(x) = fG
³
x, α̂, β̂

´ f̂b(x)

c exp
³
−θ̂22x

´
ψ
³
θ̂22
´ . (4.12)

So with a gamma start this estimator is clearly simple to implement and should reveal appropriate in

many circumstances because of the shape flexibility of the gamma distribution. We will refer in the

Monte Carlo Section to the estimator of Equation (4.12) as the ALMBC estimator. Unfortunately this

simplicity does not extend to other parametric starts than the gamma density. There the integrals

corresponding to those in Equation (4.2) have to be calculated numerically.

4.4.2 Lognormal and Weibull start

Whereas the integral in Equation (4.2) can be analytically evaluated when we use a gamma kernel in

combination with a gamma start, this is no longer true for other popular densities which have support

on the nonnegative real line. There, numerical integration techniques are required. It is therefore

convenient to choose the H&G weight function which automatically solves this problem. This simplicity

of the H&G estimator makes this approach particularly attractive. We develop here two examples based

on parametric start densities which are used in the literature for income and loss distribution modelling.

We follow the notation of Klugman et al. (1998).
9It can easily be checked that the solution θ̂22 always satisfies the restriction to be smaller than 1/β

∗.
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Example 3 One popular parametric model for loss and income distributions is given by the lognormal

probability law LN (μ, σ). This parametric model is usually thought as the best overall choice to fit

loss data. The asymmetric H&G estimator is

f̃b (x) =
1

n

nX
i=1

K (Xi;x, b)
exp

©−1
2
(log x− μ̂)2 /σ̂2

ª
exp

©−1
2
(logXi − μ̂)2 /σ̂2

ªXi

x
.

Example 4 Another useful parametric start is the Weibull W (θ, τ) probability law. The exponential

density results if τ = 1. We have then:

f̃b (x) =
1

n

nX
i=1

K (Xi;x, b)

µ
Xi

x

¶1−τ̂
exp

µµ
1

θ̂

¶τ ¡
X τ̂

i − xτ̂
¢¶

.

Klugman et al. (1998) provide many suitable parametric densities to model loss distributions. Any

of them or a mixture of densities yielding multimodal features can be used as a parametric start. We

show later in this paper how suitable parametric start densities can be selected and also propose a

semiparametric specification test to determine whether a density belongs to a particular parametric

family.

4.4.3 Direct density modelling

Whereas there exists a huge literature concerning parametric estimation of income and loss distributions,

in other areas of research it is often not clear what an appropriate parametric start for the density of

interest would be. In this case, direct local modelling of the density is an alternative option. Loader

(1996) concentrates on local polynomial fitting to the logarithm of the density under consideration and

H&J argue that this is more attractive in semiparametric terms than direct local polynomial fitting. We

refer to Hagmann and Scaillet (2003) for user friendly estimators based on the local polynomial model.

Below we concentrate on an asymmetric kernel version of the popular local log linear estimator which

is very simple to implement and yields, unlike the local linear estimator, always nonnegative density

estimates.

Example 5 We choose directly for the density a local model given by f(t, θ2) = θ21 exp (θ22 (t− x)) .

This choice of a local log-linear density is attempting to get the right local slope. If we take the score

as the weighting function and use the same procedure as in Example 2, the semiparametric density

estimator is

f̃b(x) =
f̂b(x)

exp
³
−θ̂22x

´
ψ
³
θ̂22
´ , (4.13)

where ψ (θ22) is the m.g.f. induced by KG (t;x/b+ 1, b) and θ̂22 is given in (4.11) for α∗ = x/b + 1

and β∗ = b. This estimator is, therefore, straightforward to implement and always nonnegative. In our
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simulation study, we will refer to this estimator as the ALLL estimator. Unfortunately this simplicity

does not extend to higher order approximations. There the integrals corresponding to those in Equation

(4.2) have to be calculated numerically.

We remark that one can also derive a semiparametric density estimator which fits locally a probability

density function. This could be of interest when the parameters of the density have some economic

interpretation, as in the case of measures of inequality for example. We refer to Hagmann and Scaillet

(2003) for a semiparametric estimator based on a local gamma model.

4.5 Choice of bandwidth

The mean square error optimal smoothing parameter at point x for the asymmetric LMBC estimator

using the gamma kernel is in the interior

b∗G (x) =
µ

1

2
√
π

¶2/5
x−1

⎛⎜⎝ f (x)n
f0(x)

h
r
(2)
0 (x)− r(2)(x, θ02)

io2
⎞⎟⎠
2/5

n−2/5.

Note that the optimal smoothing parameter is large if the parametric guess is close to the true model.

The optimal mean squared error is

MSE∗G(x) =
5

4

µ
f (x)

2
√
π

¶4/5 n
f0 (x)

h
r
(2)
0 (x)− r(2)(x, θ02)

io2/5
n−4/5,

and does not depend on x. The optimal MSE∗G(x) in the boundary is of a less desirable order. Chen

(2000) shows, however, that the impact on theMISE is asymptotically negligible. Therefore, regarding

global properties, the optimal bandwidth and mean integrated squared error for the gamma kernel are:

b∗∗G (x) =

⎛⎜⎝ R∞
0

1
2
√
π
x−1/2f (x) dxR∞

0
x2
h
f0(x)

h
r
(2)
0 (x)− r(2)(x, θ02)

ii2
dx

⎞⎟⎠
2/5

n−2/5,

MISE∗∗G (x) =
5

4

³R∞
0

1
2
√
π
x−1/2f (x) dx

´4/5
µR∞

0
x2
h
f0(x)

h
r
(2)
0 (x)− r(2)(x, θ02)

ii2
dx

¶−1/5n−4/5.
Hence these estimators achieve the optimal rate of convergence for the MISE within the class of non-

negative kernel density estimators. Corresponding expressions for the RIG kernel and the IG kernel can

be derived similarly.

A popular bandwidth selection method for symmetric kernels is unbiased least squares cross val-

idation (LSCV). The idea of this method is to estimate the MISE of the multiplicatively corrected
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asymmetric kernel estimator and then minimize this expression with respect to the smoothing parame-

ter. A nearly unbiased10 estimator of MISE− R f (x)2 dx is
LSCV (b) =

Z ∞

0

f̃b (x)
2 dx− 2

n

nX
i=1

f̃b(i) (Xi) , (4.14)

where f̃b(i) is the estimator constructed from the reduced data set that excludes Xi. For the asymmetric

H&G estimator, Equation (4.14) can be shown to evaluate as

1

n2

nX
i,j

1

f(Xi, θ̂)f(Xj, θ̂)

Z ∞

0

f(x, θ̂)2K (Xi;x, b)K (Xj;x, b) dx

− 2

n (n− 1)
X
i

X
j 6=i

K (Xj;Xi, b)
f(Xi, θ̂(i))

f(Xj, θ̂(i))
,

where θ̂(i) is computed without Xi. One could also consider a varying smoothing parameter. We do

not pursue this idea here since asymmetric kernels already vary the amount of smoothing through their

changing shape. Furthermore, second generation bandwidth selection methods such as the smoothed

bootstrap for symmetric kernels could be extended to the asymmetric kernel case. For a survey, see

Jones, Marron and Sheather (1996).

4.6 Model diagnostics

The estimated correction factor delivers useful information for model diagnostics. The correction factor

should equal one if the parametric start density coincides with the true density. We restrict our analysis

in this subsection to the H&G estimator. This is because this estimator is already unbiased under

true model conditions. Also, the specification test we propose below based on a parametric bootstrap

procedure requires fast computation of the estimator.

H&G propose to check model adequacy by looking at a plot of the correction factor for various

potential models with pointwise confidence bands to see if r (x) = 1 is reasonable. This plot allows to

spot easily where misspecification is locally the largest. For the gamma kernel estimator the bias and

variance of the correction factor are

E (r̂ (x)) = r (x) + b

∙
r(1) (x) +

1

2
xr(2) (x)

¸
+ o(b), (4.15)

Var (r̂ (x)) =

(
1

2
√
π
n−1b−1/2x−1/2 r(x)

f0(x)
if x/b→∞,

Γ(2κ+1)
21+2κΓ2(κ+1)

n−1b−1 r(x)
f0(x)

if x/b→ κ.
(4.16)

10H&G show that in the symmetric case this estimator is nearly unbiased already for small samples. Since the arguments

are not different in our case, we refer to their paper.
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Another possibility, in the symmetric case also proposed by H&G, is to plot the log correction factor

log r̂ (x) to see how far it is from zero. Hagmann and Scaillet (2003) derive bias and variance of this

curve. From the results given there, a simple graphical goodness-of-fit emerges: plot x against

Z (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log r̂(x)+(4

√
πn)

−1
(bx)−1/2f(x,θ̂)

−1n
(2
√
πn)

−1
(bx)−1/2f(x,θ̂)

−1o1/2 if x/b→∞,

log r̂(x)+Γ(2κ+1)(22(1+κ)Γ2(κ+1)nb)
−1

f(x,θ̂)
−1n

Γ(2κ+1)(21+2κΓ2(κ+1)nb)−1f(x,θ̂)
−1o1/2 if x/b→ κ.

(4.17)

When the parametric start coincides with the true density, this is approximately distributed as standard

normal for each x, meaning that the curve should move within ±1.96 about 95% of the time.

Figure 2 provides an example. 500 random values from a Gamma G (1.5, 1) were drawn and the

density was estimated by the asymmetric HG estimator with a gamma and a Weibull start. Figure

2 shows that both estimators perform well. As expected, the correction factor for the gamma start

estimator is close to one, whereas some nonparametric correction is done for the Weibull start estimator,

especially in the tail of the density. Figure 3 plots the Z-statistic given in (4.17) for both estimators.

Whereas the Z-statistic for the gamma start estimator is always within the confidence bands, the

Weibull start estimator is outside at some of the points. The violation is not large. This is because

the Weibull can capture the above gamma specification fairly well. Figure 4 shows the same procedure

when the true density is LN(0, 1). The correction factors for both estimators indicate that neither a

gamma nor a Weibull can capture the tail of lognormal data. Also the close fit shows that although the

parametric start is clearly wrong, the density is fitted quite well due to the nonparametric correction

for misspecification.

The present framework can also be used to test if the data was generated by a particular parametric

model f (x, θ) where θ ∈ Θ (H0). We propose the global test statistic

Tn = nb1/2
Z ∞

0

ϕ (x) [r̂ (x)− 1]2 dx, (4.18)

where ϕ (x) is some appropriately chosen weighting function. Asymptotic normality of this statistic

could be shown using results given in Fernandes and Monteiro (2005). It is, however, well known that

similar tests based on symmetric kernel estimators are very sensitive to the choice of the smoothing

parameter. Fan (1995, 1998) reports that for a wide range of values of the smoothing parameter the

test statistics can have large skewness and kurtosis exhibiting behaviour more like χ2 tests than normal

tests. Size distortions can therefore be quite large. Fan shows that the parametric bootstrap can solve

these problems, and we therefore propose the following standard procedure to determine the critical

value of the test:

Step 1. Draw a random sample of size n,
©
X∗

j

ªn
j=1
, from the distribution with density function f

³
x, θ̂
´
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where θ̂ is estimated by maximum likelihood from the original data. This is the bootstrap sample.

Hence conditional on the random sample {Xj}nj=1, the boostrap sample satisfies H0 with θ = θ0.

Step 2. Use the bootstrap sample
©
X∗

j

ªn
j=1

in place of the original data to compute Tn. Call it T ∗n .

Step 3. Repeat Step 1 and Step 2 for a large number of times, say B, and obtain the empirical

distribution function of
©
T ∗n,r

ªB
r=1
, called the bootstrap distribution.

Let Cα be the upper α−percentile of the calculated bootstrap distribution. Then reject the null
hypothesis at significance level α if Tn > Cα. Tn is small under the null hypothesis for two reasons.

First because the parametric model is correct and r̂ (x) should be close to one. Second because the

estimator is unbiased and should, therefore, be more precisely measured under the null than under the

alternative hypothesis. We therefore expect the power of this semiparametric test to be greater than

that of pure nonparametric versions of this kind of specification tests.

Furthermore the statistic given in (4.18) can be used for an adequate choice of a parametric start.

The density under consideration can be estimated with different parametric starts. Then one can choose

that parametric start density for which the value of the above statistic is the smallest.

4.7 Extensions

Before turning to the Monte Carlo results, we finally would like to mention that our approach can easily

be extended to the estimation of densities which have support on the interval [0, 1]. An application in

credit risk is the estimation of the density of recovery rates at default, see Renault and Scaillet (2004),

Hagmann, Renault and Scaillet (2005). To accommodate two known boundaries, Chen (1999) intro-

duced asymmetric kernels based on the beta distribution KB with parameters (x/b+ 1, (1− x) /b+ 1)

given by

KB

µ
t;
x

b
+ 1,

(1− x)

b
+ 1

¶
=

tx/b (1− t)(1−x)/b I (0 ≤ t ≤ 1)
B (x/b+ 1, (1− x) /b+ 1)

,

where B (·) denotes the beta function. The support of the kernel again matches the support of the
density and the resulting estimates are free of boundary bias. An obvious parametric start is given

by the beta family of densities. Writing Equation (4.2) using a beta kernel and performing analogous

calculations as before, one can establish the bias and variance of the beta kernel version of the LMBC

estimator.

Proposition 2 The bias and variance expressions of the asymmetric LMBC estimator in the case where
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K is the beta kernel is given for q ≥ 2 by:

Bias
³
f̃Bb (x)

´
=

1

2
x (1− x) f0 (x)

£
r(2)(x)− r(2)(x, θ02)

¤
b+ o (b) ,

Var
³
f̃Bb (x)

´
=

(
1

2
√
π
n−1b−1/2 {x (1− x)}−1/2 f (x) if x/b→∞,
Γ(2κ+1)

21+2κΓ2(κ+1)
n−1b−1f(x) if x/b→ κ.

The variance of this semiparametric density estimator coincides with that of the pure nonparametric

beta kernel estimator. We refer to Chen (1999). Compared to the bias of the nonparametric beta kernel

estimator, first order derivative terms of the true density vanish (as q ≥ 2) in the bias expression of the
semiparametric estimator. Also, f (2)(x) is replaced by f0 (x)

£
r(2)(x)− r(2)(x, θ02)

¤
. The same remarks

apply for the comparison of these biases as before.

Finally the LMBC approach could be extended to a multivariate setting through use of product

kernels without any particular difficulties .

5 Monte Carlo study

In this section we evaluate the finite sample performance of most of the estimators considered in the

previous section. For estimators involving asymmetric kernels, we focus on the gamma kernel. This

because, as demonstrated earlier on, the use of the gamma kernel allows us to obtain semiparametric

estimators in closed form. This attractive property of the asymmetric gamma kernel does not transfer

to the RIG kernel and the IG kernel, where numerical integration and optimization has to be used to

obtain density estimates. This makes the RIG kernel and the IG kernel somewhat less attractive for a

large scale simulation study as well as empirical work11. To the best of our knowledge, it is the first

time that various semiparametric density estimators are compared on a finite sample basis.

5.1 Semiparametric estimators and test densities

We run a Monte Carlo simulation for the following semiparametric density estimators:

• the pure nonparametric gamma kernel estimator (G1) ,
11We examined the performance of the RIG kernel and the IG kernel in case of the HG estimator, where a closed form

solution is available. Results for the RIG were similar as for the HG estimator relying on the gamma kernel, whereas

the IG version performed significantly worse. This is in line with results reported in Scaillet (2004), who examines the

performance of those asymmetric kernels in a pure nonparametric setting.

22



• the uncorrected semiparametric HG estimator with a gamma start, using the Epanechnikov kernel
(SHGG),

• the local linear HG estimator with a gamma start given in Equation (2.6), using the Epanechnikov
kernel (SHGGC),

• the semiparametric HG estimator with a gamma start given in Equation (4.8), using the gamma
kernel (AHGG) ,

• the LMBC estimator with a gamma start and a log linear correction factor, given in Equation
(4.12) (ALMBC) ,

• the local log linear estimator using the gamma kernel given in Equation (4.13) (ALLL) .

We compare these estimators on three different test densities: a Gamma G (1.5, 1), a Weibull

W (1, 1.5) and a lognormal LN (0, 1). The G1 estimator takes the role of the benchmark for the other

estimators. A useful semiparametric estimator should at least in some cases outperform its pure non-

parametric competitor. The SHGG, SHGGC and AHGG are all HG type estimators which use the

gamma as a start density. The only source of bias reduction achieved by these estimators is provided

by the global parametric start. Note that the SHGGC is a direct competitor to AHGG. Indeed they

are both free of boundary bias. We will see that the HG estimator with a symmetric kernel without

any boundary correction (SHGG) yields in fact very unsatisfactory results. All the considered HG type

density estimators should perform well for the gamma test density since the correction factor can be

estimated without bias. We also expect them to perform well for the Weibull test density. This because

the gamma start can come close to a Weibull density, implying that the correction factor exhibits only

small curvature and is therefore simple to estimate. This is demonstrated in the left panel of Figure 512,

where the Weibull and corresponding pseudo gamma density are plotted. The right panel shows the

pseudo gamma when the true data is drawn from the lognormal test density. In this case, the gamma

does not provide a reasonable start. The correction factor exhibits high curvature and is therefore

more difficult to estimate. Also recall our example in Figure 4. The ALMBC estimator should perform

better in this situation, since the additional local model for the correction factor theoretically leads to

an improvement over the HG type estimators. Finally, the performance of the ALLL estimator is of

interest because it does not need any global parametric start but provides a pure local bias correction13.
12The pseudo gamma parameter values are calculated via Monte Carlo integration based on a sample of one million

Weibull or lognormal random values.
13For comparison purposes, we also tried to implement a local log linear estimator with a symmetric kernel. However,

this estimator was not suitable for a large scale simulation study, since computation in the boundary of the density

requires numerical search procedures in each single step.
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5.2 Design of the Monte Carlo study

The performance measures we consider are the integrated squared error (ISE) and the weighted inte-

grated squared error (WISE) of the various estimators:

ISE =

Z +∞

−∞

n
f̃ (x)− f (x)

o2
dx,

WISE =

Z +∞

−∞

n
f̃ (x)− f (x)

o2
x2dx.

The WISE allows us to capture the tail performance of our estimators. The experiments are based on

1,000 random samples of length n = 100, n = 200, n = 500 and n = 1, 000. We provide a "best case"

analysis, meaning that for each simulated sample the ISE was computed over a grid of bandwidths

and the minimum value was chosen. The WISE is computed in each simulation step with the same

bandwidth as the ISE14. Numerical integration was performed by Gauss Legendre quadrature with 96

knots.

5.3 Numerical issues

In a first simulation step the SHGGC estimator surprisingly performed much worse than the uncorrected

estimator SHGG. The reason was that the correction factor can sometimes, especially in the boundary,

become too influential. Following H&G, we implemented a trimmed version of the estimator given in

Equation (2.6) using

f
³
x, θ̂1

´
r̂ (x) =

1

n

nX
i=1

Kh(Xi − x)min

⎛⎝ f
³
x, θ̂1

´
f
³
Xi, θ̂1

´ , a
⎞⎠ ,

f
³
x, θ̂1

´
ĝ (x) =

1

n

nX
i=1

Kh(Xi − x)(Xi − x)min

⎛⎝ f
³
x, θ̂1

´
f
³
Xi, θ̂1

´ , a
⎞⎠ ,

where a > 0. Similar "clipping" precautions in the density estimation setting are recommended by

Abramson (1982) and Terrell and Scott (1992). This trimming procedure successfully solved the nu-

merical problems for the symmetric kernel based estimator. From our experience, a ∈ [10, 50] is a
satisfactory choice. In fact within that range, the Monte Carlo results for this estimator were only

insignificantly influenced. The semiparametric asymmetric kernel density estimators did not suffer from
14Another procedure would be to compute the WISE as well over a grid of bandwidths and choose the minimum value

in each simulation step. We do not follow this because we want to evaluate the tail performance of our estimators given

that they fit the whole density well. This is achieved by computing the WISE with the ISE-minimizing bandwidth in

each simulation step.
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the same numerical problem and were implemented without any trimming in the form described in

Section 4.

5.4 Results

Table 1 shows the simulation results for the MISE criterion with standard errors of each simulation

experiment reported in brackets. The AHGG estimator brings large improvements over the G1 estimator

when the parametric start is true or close to the true density. Even for the lognormal example, its

performance is still slightly better. This is because the uniform distribution, which is the implicit

start for the G1 estimator, is quite a conservative start. The performance of the ALMBC is especially

interesting when the parametric start is a poor specification for the true density. Whereas the ALMBC

shows as expected a similar performance as the AHGG estimator for the gamma and Weibull test

densities, the additional local model for the correction factor brings another 20% improvement for the

lognormal test density. The ALMBC estimator also performs uniformly better than the ALLL estimator,

which yields compared to the G1 estimator an improvement between 15-25% across all test densities

and sample sizes. The ALLL however does not rely on a parametric start and may perform better when

misspecification is stronger than the one considered here.

The poor performance of the SHGG estimator demonstrates how important the boundary bias

feature is in the semiparametric framework considered in this paper. Even when the parametric start

is correct, SHGG performs worse than the pure nonparametric G1 estimator. Partly, this is because

the boundary bias prevents an enlarged bandwidth. Although the trimmed local linear version of this

estimator brings a large improvement compared to the uncorrected symmetric estimator, its performance

is considerably lower than that of the AHGG estimator. In the slightly misspecified Weibull case with

a sample size of 1,000, the MISE of the AHGG estimator shrinks to 46% of the MISE of the SHGGC

estimator. Chen (2000) has already reported that the asymmetric kernel estimator performs better than

its symmetric local linear competitor. The outperformance in our case is however much larger, since

the boundary bias problem magnifies in our semiparametric framework as mentioned earlier.

Table 2 shows the same information but for the WISE criterion and makes the power of the asymmet-

ric estimators obvious. Those estimators perform much better in the tail of the density than estimators

based on symmetric kernels. For the lognormal density which has the largest tail among the test den-

sities, the WISE of the AHGG estimator is just one third of the WISE of its symmetric kernel based

competitor SHGGC. We expect this relative advantage to increase for densities that have heavier tails

than the lognormal density, e.g. Pareto distributions. This tail advantage of the asymmetric kernel is

due to its changing shape as one moves away from the boundary. ALMBC exhibits excellent performance

also with respect to the WISE criterion.
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6 Empirical applications

In this section we illustrate the usefulness of our estimation approach with two empirical applications.

The first one deals with health insurance data provided by a large Swiss health insurer. The second

application deals with Brazilian income data.

6.1 Application to health insurance data

The Swiss health insurance system is heavily regulated by law. All residents in Switzerland have a

compulsory base insurance which covers general health expenses. In the year 2002, approximately one

third of total health expenses of 45 billion Swiss Francs were covered by this base insurance, which is

offered by different private insurers.

Since the cost structure among different cantons in Switzerland is very different, we focus here on

claims generated by residents of the canton of Zurich. The data considered is the net payment per client

in the year 2002, covering claims for the base insurance only. We show how our approach can be used to

compare the shape of the loss distribution for different subpopulations to better assess each underlying

risk.

Table 3 shows the descriptive statistics of our dataset. It is evident that this dataset is highly

skewed and exhibits large kurtosis. Also, the average payment varies significantly with the gender and

age of the subpopulations. Obviously, the claim structure is also very different depending on whether

the client lives in Zurich City or in rural area. We note that the "thought of solidarity" in the Swiss

health system implies that clients with an age above 26 years pay all the same premium for their base

insurance, independent of age and gender.

Figure 6 shows the loss distribution for the whole sample estimated for comparison purposes by

the SHGGC estimator and our ALMBC estimator, both using a gamma start. These two estimators

were the best symmetric and asymmetric estimators emerging from our Monte Carlo Study. To avoid

numerical overflow, the original dataset was divided by 2,000. Then the resulting density has been back

transformed. The bandwidth was calculated using the LSCV procedure described in Section 4.5. We

report the bandwidth chosen for the transformed data for all considered estimators in Table 4. We also

tried the ALLL estimator, but the resulting density cannot be distinguished by eye from that of the

ALMBC estimator and is therefore not plotted. The shape of the loss distribution is very typical; we

have a peak for the small claim sizes and then a very long tail. At first glance, the estimates for the

symmetric and asymmetric estimator seem quite similar. The correction factor in the right panel of

Figure 6 shows, however, that the asymmetric estimator produces a smooth tail, whereas the symmetric

estimator features a bumpy behaviour. The picture shows that we have to correct around the mode

and also in the tails. The correction factor further left to the picture (not shown) is increasing up to

26



a factor of 10. This is because the gamma start cannot fully capture the heavy tail of the underlying

density. The imperfect start and also the bandwidth selected for the ALMBC and ALLL estimator

implies that the performance of those estimators is quite similar in terms of precision. Both estimators

use a larger bandwidth than the gamma kernel estimator (not plotted), indicating that they both reduce

successfully the bias. This allows us to choose a larger bandwidth compared to the pure nonparametric

gamma kernel estimator, which reduces the variance of the estimate. Other parametric starts could be

used, e.g. a Pareto distribution to capture better the tail of the density.

Figures 7 and 8 show the loss distributions for different subpopulations, they all seem to be very

reasonable and as one would expect a priori. In particular, younger people have smaller claims than

older people and are less risky. Our estimators capture very well the heavy tail of clients with an age

above 55. Also, the loss distributions for the young people subpopulation does not have a mode, but

could be unbounded at zero. This because the majority of their claims are very small.

Although from a social point of view it may be human to charge gender and age independent

premiums for health insurance, it is hard to understand, why the Swiss system does not allow the

charging of location dependent premiums inside cantons. Figure 7 shows that clients living in Zurich City

have a completely different risk structure than people living in the close rural neighbourhood. However,

premiums within Canton of Zurich are legally restricted to be the same. Of course, to investigate that

point more closely, one would have to condition on the age and gender structure more carefully, but the

overall picture would hardly change dramatically.

We conclude that our proposed estimators, which are very simple to apply, seem to be a very

useful estimation device for risk managers in insurance companies, and should help to design more

differentiated premiums whenever allowed.

6.2 Application to Brazilian income data

Our second application concerns the analysis of the income distribution of Brazil in the year 1990. We

analyse a large micro data set (n=71,523), which has been collected by the PNAD annual national

household survey. The data set is interesting because Brazil is a major world economy (ninth largest

GDP) and faces a strong inequality in terms of percentage shares of income accruing to the richest and

to the poorest of its population. The evolution of the Brazilian income distribution in the 1980’s has

been examined by Cowell, Ferreira and Litchfield (1998). The data considered is monthly household

income per capita denominated in 1990 cruzeiros. The strong distributional inequality is revealed by

the high skewness of the income distribution, we refer to Table 5 for the descriptive statistics.

We start our analysis with the ALBMC estimator, featuring an implicit gamma start. The parame-

ters of the gamma start density, evaluated by maximum likelihood, are given by
³
α̂; β̂

´
= (0.89; 58, 861),
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which would imply that the Brazilian income density is unbounded at zero. Figure 9 shows however that

the ALMBC estimator does not confirm this gesture. The correction factor in the right panel approaches

zero to diminish this effect. Also the correction factor indicates that the gamma model underestimates

the mode of the true density as well as its tail. The ALLL estimator cannot be distinguished by eye

from the ALMBC and is therefore not plotted. The original dataset was divided by 10,000 and the

resulting density estimate back transformed. Again, the bandwidths for the different estimators were

chosen according to LSCV and are reported in Table 6 for the transformed data. It is interesting to see

that the bandwidths chosen for the ALMBC and ALLL estimators are much larger than that for the

gamma kernel estimator (not plotted). This is because both semiparametric estimators can successfully

reduce the bias, which allows us to increase the bandwidth and therefore reduces the variance of the

estimates.

Cowell et. al. (1998) mention that the Brazilian income distribution is well approximated by a

lognormal model. The above results indicate that this is not very likely at the boundary since f (0)

seems not to be zero. Apart from this, as can be seen in Figure 9, the lognormal start for an HG type

estimator seems to be very appropriate. The relatively large bandwidth chosen by the LSCV procedure

also confirms that the lognormal start contains valuable information.

At this stage we also provide a formal test for lognormality of the underlying income distribution

using the test statistic given in Equation (4.18). The estimated parameters for the lognormal model are

given by (μ̂, σ̂) = (10.20, 1.13). We use ϕ (x) = f
³
x, θ̂1

´
as a weighting function. This implies that we

impose a heavy penalty if the difference between the semiparametric and parametric density estimate

is large at those locations where the parametric model puts a lot of weight. We use the bootstrap

procedure described in Section 4.6 with B = 1, 000 to approximate the finite sample distribution of the

test statistic, using the empirical bandwidth chosen for this data set. We plot the bootstrap density,

estimated by the ALLL estimator, of the test statistic under the null hypothesis of lognormality in

Figure 10. Although the sample is very large, a Jarque-Bera statistic of 726 rejects normality of

this bootstrap density at any conventional significance level. This confirms that it is better to use

a parametric bootstrap rather than relying on asymptotic results for computing critical values. The

sample test statistic is given by 29.96 which compares to a critical value of 4.03 at the 1% level. So we

reject the null hypothesis of lognormality of the Brazilian income distribution. This is not surprising

since we work with a large sample size and it is unlikely that the underlying density can be described

by just two parameters. However as we demonstrated above, the lognormal start contains very valuable

information for our semiparametric modelling.
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7 Concluding remarks

In this paper we have presented a semiparametric estimation framework based on asymmetric kernels for

the estimation of densities on the nonnegative real line. This framework allows us to use popular para-

metric models from the field of actuarial science and income distribution estimation in a nonparametric

fashion. Although the approach may look cumbersome at first glance, it reduces in many important

cases to estimators that take closed forms and are thus very easy to implement. Our simulation results

show that our estimators, especially the ALMBC estimator with a parametric start and a local model

for the correction factor, exhibit excellent performance. They should therefore be useful in applied work

in economics, finance and actuarial science involving non- and semiparametric techniques. This point

has already been demonstrated with two empirical applications to health insurance data and Brazilian

income data. The results developed here could also be exploited with straightforward modifications in

regression curve and hazard rate estimation.
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8 Appendix

8.1 Bias and variance of the LMBC estimator

Along the same lines as H&J, we start with the asymptotic analysis assuming a fixed smoothing para-

meter. The estimator θ̂2 (x) we consider is the solution to Equation (4.2). For convenience we partly

suppress the fixed x in the notation now. A Taylor expansion around θ02 yields

(nb1/2)1/2(θ̂2 − θ02) ' −V ∗n (θ̂1, θ02)−1(nb1/2)1/2Vn
³
θ̂1, θ

0
2

´
,

where V ∗n (θ̂1, θ
0
2) is the p × p matrix of partial derivatives of the Vn,j(θ̂1, θ2) functions. Paralleling

arguments in the supplementary section of H&J15, we can establish asymptotic normality of the local

parameter estimator θ̂2 (x) : ¡
nb1/2

¢1/2 ³
θ̂2 − θ02

´
d→ N

³
0, J−1b Mb

¡
J−1b

¢t´
,

where

Jb (x) =

Z ∞

0

K (t;x, b)
£
v(t, θ02)u(t, θ

0
2)
tm(t, θ01, θ

0
2) + V ∗

¡
t, θ02

¢ ©
f(t)−m(t, θ01, θ

0
2)
ª¤

dt, (8.1)

Mb (x) = b1/2V arf
¡
K (Xi;x, b) v(x,Xi, θ

0
2)
¢

= b1/2
Z ∞

0

K (t;x, b)2 v(t, θ02)v(t, θ
0
2)

tf(t)dt− b1/2ξbξ
t
b, (8.2)

and ξb =
R∞
0

K (t;x, b) v(t, θ02)f(t)dt. By the delta method the asymptotic distribution of f̃b (x) for a

fixed smoothing parameter is¡
nb1/2

¢1/2 ³
f̃b (x)−m(x, θ01, θ

0
2)
´

d→ N
³
0,m(x, θ01, θ

0
2)
2u(x, θ02)

tJ−1b Mb

¡
J−1b

¢t
u(x, θ02)

´
. (8.3)

In a next step we evaluate the above expressions when the smoothing parameter b→ 0 as n→∞.
Note that

V (x, θ02) =

Z ∞

0

K (t;x, b) v(x, t, θ02)f0 (x) {r0(t)− r(t, θ02)}dt = E
£
q(γx, θ

0
2)
¤
,

where q(γx, θ
0
2) = v(γx, θ

0
2)f0 (γx) {r0(γx) − r(γx, θ

0
2)} is a p × 1 vector and γx is a random variable

whose distribution is determined by the choice of the asymmetric kernel. We develop below the bias

15We have the additional problem that Vn
³
θ̂1, θ

0
2

´
depends on the first step estimator θ̂1. A Taylor expansion of

Vn

³
θ̂1, θ

0
2

´
around θ01 and the fact that θ̂1 is

√
n convergent shows however immediately, that this is not an issue. To

ease notation, we partly suppress θ01 in the following.
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expression for the gamma kernel. In this case, γx is a G(
x
b
+ 1, b) random variable16. Concentrating on

component j of the vector q and noting that μx = E (γx) = x+ b and V ar (γx) = xb+ b2, we perform

a Taylor expansion around μx and obtain

E
£
qj(γx, θ

0
2)
¤
= qj(x, θ

0
2) +

∙
q
(1)
j (x, θ

0
2) +

1

2
xq

(2)
j (x, θ

0
2)

¸
b+ o(b), (8.4)

which equals zero at θ02 and therefore

vj,0 (x) f0 (x)
©
r0(x)− r(x, θ02)

ª
=

∙
q(1)(x, θ02) +

1

2
xq(2)(x, θ02)

¸
b+ o(b). (8.5)

From (8.5) it follows that r0(x) − r(x, θ02) = O(b). This together with the fact that E
h
f̃Gb (x)

i
=

f0 (x) r(x, θ
0
2) +O

¡
1

nb1/2

¢
can be used to obtain the bias of the LMBC gamma kernel estimator:

Bias
³
f̃Gb (x)

´
=

1

vj,0 (x)

½∙
q(1)(x, θ02) +

1

2
xq(2)(x, θ02)

¸
b+ o(b)

¾
+O

µ
1

nb1/2

¶
= f0 (x)

∙
{r(1)0 (x)− r(1)(x, θ02)}+

1

2
x{r(2)0 (x)− r(2)(x, θ02)}

¸
b

+

Ã
v
(1)
j,0 (x)

vj,0 (x)
f0 (x) + f

(1)
0 (x)

!
x{r(1)0 (x)− r(1)(x, θ02)}b+ o (b) +O

µ
1

nb1/2

¶
,

which is the result given in the text.

Concerning the variance of the LMBC estimator, we demonstrate here results in the one parameter

case. For full details in the multiple parameter case, we refer to Hagmann and Scaillet (2003).

We have to evaluate the expressions Jb (x) and Mb (x) as b approaches zero. In a first step

Jb (x) =

Z ∞

0

K (t;x, b) v(t, θ02)u(t, θ
0
2)m(t, θ

0
1, θ

0
2)dt+O(b)

= E
£
c
¡
γx, θ

0
2

¢¤
,

where c
¡
γx, θ

0
2

¢
= v(γx, θ

0
2)u(γx, θ

0
2)m(γx, θ

0
1, θ

0
2) and γx is random variable whose distribution depends

on the choice of the asymmetric kernel. We again demonstrate the result for the gamma kernel, where

γx follows a G(
x
b
+ 1, b)17. Proceeding as in (8.4)

E
£
c(γx, θ

0
2)
¤
= c(x, θ02) +

∙
c(1)(x, θ02) +

1

2
xc(2)(x, θ02)

¸
b+ o(b).

16For the inverse gaussian or reciprocal inverse gaussian kernel, γx is an IG (x, 1/b) or RIG (1/ (x− b) , 1/b) random

variable respectively. The bias derivation follows the same lines as demonstrated in this appendix for the gamma kernel,

but using different expressions in the taylor expansions as outlined in Scaillet (2004).
17The variance expression in the IG and RIG case can be developed in the same steps as for the gamma kernel, using

results described in Scaillet (2004).
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In the one parameter case the first integral term in Equation (8.2) isZ ∞

0

K (t;x, b)2 v(t, θ02)
2f(t)dt = Bb (x)E

£
η
¡
ζx, θ

0
2

¢¤
,

where ζx follows a G(
2x
b
+ 1, b

2
) random variable, η

¡
ζx, θ

0
2

¢
= v(ζx, θ

0
2)
2f(ζx) and

Bb(x) =
Γ (2x/b+ 1) /b

22x/b+1Γ2 (x/b+ 1)
.

Applying the same trick as in (8.4), one can show that the first term inMb (x) is b1/2Bb (x) v(x, θ
0
2)
2f(x)+

O(b3/2). Proceeding similarly with the second term in Equation (8.2) we get that

ξb = w(x, θ02) +O(b),

where w(x, θ02) = v(x, θ02)f(x). This yields

b1/2ξ2b = b1/2w(x, θ02)
2 +O(b3/2).

Collecting terms,

Mb (x) = b1/2
£
Bb (x) v(x, θ

0
2)
2f(x)− w(x, θ02)

2
¤
+O(b3/2).

Having derived these preliminary results and using (8.3), we can now tackle the variance of the asym-

metric LMBC gamma kernel estimator in the one parameter case.

Var
³
f̃Gb (x)

´
=

1

nb1/2
£
m(x, θ01, θ

0
2)
2u(t, θ02)

2J−2b Mb

¤
=

1

nb1/2
m(x, θ01, θ

0
2)
2u(t, θ02)

2

µ
1

c(x, θ02) +O (b)

¶2
× £b1/2 £Bb (x) v(x, θ

0
2)
2f(x)− w(x, θ02)

2
¤
+O(b3/2)

¤
=

1

n
Bb (x) f(x)− f(x)2

n
+O (b/n) .

Using the approximation result for Bb (x) given in Chen (2000, p. 474) proves Equation (4.5) in the

main text.
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Figure 1: The gamma kernel function for different x values.

Figure 2: HG estimator with gamma and Weibull start. True density: G(1.5,1) 
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Figure 3: The Z-statistics associated with the examples in Figure 2.

Figure 4: HG estimator with gamma and Weibull start. True density: LN(0,1) 
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Figure 5: Pseudo gamma densities for the LN(0,1) and W(1,1.5).

Figure 6: Loss distribution and correction factor for all clients. 
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Figure 7: Loss distribution for Zurich City and countryside clients.

Figure 8: Loss distribution for clients with different age structure.
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Figure 9: Brazilian income distribution and correction factors.

Figure 10: Density of the bootstraped test statistic values.



Table 1: Summary results for the monte carlo study for the MISE criterion, standard
deviations for each simulation are reported in brackets.

Test density G1 AHGG SHGG SHGGC ALMBC ALLL

G(1.5,1)

n=100 778 388 1040 456 404 659
(545) (433) (658) (499) (461) (521)

n=200 517 181 658 216 190 404
(341) (195) (366) (220) (209) (287)

n=500 268 71 396 83 75 205
(158) (79) (169) (85) (84) (126)

n=1000 173 38 267 44 39 130
(96) (39) (107) (44) (41) (74)

W(1,1.5)

n=100 1224 737 1210 915 735 1017
(957) (708) (770) (842) (707) (838)

n=200 782 412 793 561 417 625
(554) (354) (418) (466) (335) (432)

n=500 414 208 490 370 214 328
(265) (165) (209) (269) (161) (193)

n=1000 251 127 341 279 130 199
(142) (94) (120) (178) (90) (103)

LN(0,1)

n=100 1289 1192 1618 1431 968 1051
(727) (770) (799) (803) (600) (651)

n=200 790 733 1039 924 586 631
(433) (435) (450) (470) (350) (384)

n=500 394 367 561 486 294 313
(198) (193) (217) (233) (175) (187)

n=1000 240 225 356 303 184 194
(114) (109) (125) (135) (106) (111)
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Table 2: Summary results for the monte carlo study for the WISE criterion, standard
deviations for each simulation are reported in brackets.

Test density G1 AHGG SHGG SHGGC ALMBC ALLL

G(1.5,1)

n=100 1422 785 3010 1165 708 1111
(545) (918) (1799) (1012) (739) (829)

n=200 902 380 1897 580 355 686
(631) (443) (986) (484) (361) (471)

n=500 481 150 1107 238 141 352
(276) (168) (473) (206) (150) (219)

n=1000 295 83 712 120 74 216
(161) (100) (273) (109) (79) (124)

W(1,1.5)

n=100 895 492 1119 668 531 732
(753) (506) (833) (617) (496) (547)

n=200 548 275 704 403 303 443
(395) (275) (418) (328) (256) (295)

n=500 277 143 400 241 149 224
(180) (130) (209) (170) (122) (140)

n=1000 168 88 270 172 90 138
(106) (76) (127) (114) (70) (80)

LN(0,1)

n=100 2907 2946 7851 6850 2155 2285
(1623) (1745) (4085) (3755) (1261) (1265)

n=200 1762 1719 4940 4472 1284 1367
(851) (898) (2035) (1892) (669) (680)

n=500 859 824 2563 2308 620 656
(358) (363) (844) (817) (288) (294)

n=1000 518 495 1604 1438 380 402
(197) (197) (448) (437) (170) (175)
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 Wh. Sample Men Women Age 20-55 Age 55+ Zurich City Countryside
 
 Sample Size 42,722.00 17,478.00 25,244.00 15,579.00 12,098.00 8,737.00 8,670.00
 
 Mean payment 2,971.30 2,582.90 3,240.30 2,984.50 5,697.20 4,960.60 1,966.70
 
 Stand. Dev. 6,671.70 6,488.60 6,782.70 6,542.10 9,119.70 9,221.60 5,017.40
 
 Skewness 7.35 9.24 6.23 7.94 5.09 5.85 9.50
 
 Kurtosis 102.94 152.85 74.74 102.53 58.44 71.41 151.12
 
 Minimum 0.10 0.10 0.10 0.10 0.10 0.10 0.10
 
 Maximum 202,870.00 202,870.00 169,650.00 132,890.00 202,870.00 202,870.00 126,700.00
 
 1st quartile 320.30 278.80 359.35 403.20 1,051.80 575.40 237.25
 
 Median 923.28 761.65 1,067.00 1,165.30 2,473.80 1,804.90 612.95
 
 3rd quartile 2,695.80 2,193.40 3,039.20 3,014.40 6,000.10 4,879.10 1,749.50

Table 3: Sample Statistics for Health Insurance Data
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Whole Age 20-55 Age 55+ City Country

G1 0.0063 0.0116 0.0199 0.0135 0.0093

ALLL 0.0300 0.0711 0.1649 0.0873 0.0560

ALMBC 0.0443 0.1983 0.1331 0.1400 0.0975

SHGGC 0.2118 - - - -

Table 4: LSCV Bandwidth Health Data
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 Income Data Estimator Bandwidth
 
 Sample Size 71,523.00 G1 0.0233
 
 Mean payment 52,183.00 ALLL 0.0835
 
 Standard deviaton 90,661.00 ALMBC 0.0856

Skewness 11.01 AHGLOGN 0.2168

Kurtosis 319.32

Minimum 2.00

Maximum 5,011,000.00

1st quartile 12,165.00

Median 26,142.00

3rd quartile 57,000.00

Table 5: Sample Statistics Income Data Table 6: LSCV Bandwidth Income Data
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