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This file provides implementation details for the codes developed for the empirics and simula-

tion experiments. Section 1 provides details for implementation of the LR test for the number of

latent factors. Section 2 provides details for implementation of canonical correlation estimators to

investigate the stability of the factor structure within windows. Section 3 gives details for imple-

mentation of the RS and KP tests for spanning. Section 4 gives a table under equally-spaced grids

of values for νj and λj for the numerical checks of conditions (12). Section 5 reports Monte Carlo

results to assess size and power of the LR test in finite samples. Section 6 collects the analytical

characterization of the coefficients ck(λ1, ..., λdf ) and the maximum value of k as a function of T .

1 Implementation of LR test

We get the FA estimates via the zigzag routine (Magnus and Neudecker (2007), p. 407). We

compute the p-value for the LR test by simulating a large number of draws (10,000) from the variate∑df
j=1 µ̂jχ

2
j(1), where µ̂j are the nonzero eigenvalues of Ω̂Z̄∗ (see Proposition 4). To regularize the

estimate Ω̂Z̄∗ , we use the parametric structure from (D.14), and get the T −1 estimated parameters

by least squares, as detailed in OA Section D.4.3 i).

2 Implementation of canonical correlation estimators

We divide each window of 20 months into two overlapping subperiods of 16 months (overlap of 12

months). Let Y1 and Y2 denote the resulting two panels of returns, with the last 12 months of panel

1 corresponding to the first 12 months of panel 2. Moreover, let kc denote the number of common



factors between the two panels, defined as the number of factors having the same loadings in both

panels. We first estimate the total number of latent factors k1 and k2 in each panel by sequential

testing as in Section 6.1. Here, k1 and k2 include both common and specific factors. Then, we

obtain the estimates F̂l, β̂l, V̂l,ε, l = 1, 2, by performing FA separately on each panel. We define

the estimators of canonical correlations among the betas as the square roots of the eigenvalues

of R̂ = (
β̂′1β̂2
n
− B̂1,2)(

β̂′2β̂1
n
− B̂2,1), where B̂1,2 = (F̂ ′1V̂

−1
1,ε F̂1)−1F̂ ′1

 0 0

V̂ −1
c,ε 0

 F̂2(F̂ ′2V̂
−1

2,ε F̂2)−1,

B̂2,1 = B̂′1,2, and V̂c,ε is a consistent estimator of the idiosyncratic variances in the overlapping

subperiod of 12 months, i.e., an average of the estimates from panel 1 and panel 2; see also Andreou

et al. (2019, AGGR) in a large n, T setting. The term B̂1,2 corrects for the bias induced by the error-

in-variable (EIV) problem coming from beta estimates with fixed T , and by the overlap of the two

subperiods.

Using the FA expansions from Section 3.1, we can show that R̂ = R + Op(
1√
n
), where R is

a symmetric matrix whose kc largest eigenvalues are equal to 1, while the remaining eigenvalues

are strictly less than 1. It allows for consistent estimation of kc (see also AGGR). Indeed, let

g(n) be a function satisfying g(n) → 0 and
√
ng(n) → ∞, and let ξ(j) = ρ̂j − 1 + g(n) for

j = 1, . . . ,min(k̂1, k̂2), where ρ̂j denotes the jth largest canonical correlation estimate. Finally, let

k̂c = max{0 ≤ k ≤ k : ξ(k) > 0}, where we define ξ(0) := g(n). Then, we can show that k̂c = kc

with probability approaching 1 as n→∞. To implement this estimator of the number of common

factors, we use g(n) = (log n)2/
√
n, scaled by the average of estimated canonical correlations.

Unreported Monte Carlo experiments show good finite-sample performance of that choice. We

define the fraction of common factors as k̂c/min(k̂1, k̂2). We leave the formal derivation of the

asymptotic properties of such a procedure in a large-n fixed-T setting to future research.
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3 Implementation of spanning tests

In this section, we give estimator Ω̂Ψ and prove its consistency. To start let us provide the explicit

expression of ΩΨ. We use ηi,tft = (f ′t ⊗ IkO)(β̃i ⊗ [zi,t − E(zi,t)]). By the CLT, vec(Ψ′F 0,n) ⇒

N(0,Ω∗Ψ), where Ω∗Ψ = (Ω∗Ψ,t,s) has kO × kO blocks Ω∗Ψ,t,s = (f ′t ⊗ IkO)Qηη,ts(fs ⊗ IkO) +

1t,sVε,ttQzz,tt with Qηη,t,s = lim
n→∞

1
n

∑Jn
m=1

∑
i,j∈Im E[vec(ηi,t)vec(ηj,s)

′] and Qzz,tt :=

lim
n→∞

1
n

∑Jn
m=1

∑
i,j∈Im σi,jE[zi,tz

′
j,t]. Then, ΩΨ = KkO,TΩ∗ΨK′kO,T and we use the commutation

matrix KkO,T because ΩΨ is the asymptotic variance of the vec of ΨFO,n instead of Ψ′FO,n. To ease

estimation of Qηη,t,s we assume that the zi,t are i.i.d. across i within a block, weakly stationary

across t, t = 1, ..., T , with E[zi,t] = µz,m and Cov(zi,t, zi,s) = Vz,m(t − s) for i ∈ Im, and mu-

tually independent across blocks. Then, we have Qηη,ts = lim
n→∞

1
n

∑n
i=1(β̃iβ̃

′
i) ⊗ Cov(zi,t, zi,s) =

lim
n→∞

∑
mBm,nQβ̃,m ⊗ Vz,m(t − s) = Qβ̃ ⊗ V̄z(t − s) with Qβ̃,m := 1

bm,n

∑
i∈Im(β̃iβ̃

′
i), Qβ̃ =

lim
n→∞

1
n

∑n
i=1 β̃iβ̃

′
i = Ik + µβ̃µ

′
β̃
, µβ̃ = lim

n→∞
1
n

∑n
i=1 β̃i, V̄z(t− s) = lim

n→∞

∑
mBm,nVz,m(t− s), and

we assume that Qβ̃,m and Vz,m(h) are asymptotically uncorrelated across blocks. Then, the esti-

mator is Ω̂Ψ = KkO,T Ω̂∗ΨK′kO,T , where matrix Ω̂∗Ψ = (Ω̂∗Ψ,t,s) has kO× kO blocks given by Ω̂∗Ψ,t,s =

(f̂ ′t ⊗ IkO)Q̂ηη,ts(f̂s ⊗ IkO) + 1t,sV̂ε,ttQ̂zz,tt. Here, Q̂zz,tt = 1
n(T−k)

∑
m

∑
i,j∈Im(zi,tz

′
j,t)(ε̂

′
jV̂
−1
ε ε̂i)

where the GLS residuals are ε̂i = MF̂ ,V̂ε
(yi − rf ), and Q̂ηη,ts = Q̂β̃ ⊗ ̂̄V z(t− s), where ̂̄V z(h) =∑

mBm,nV̂z,m(h) with V̂z,m(h) = 1
(bm,n−1)(T−h)

∑
i∈Im

∑T
t=h+1(zi,t − z̄m,t)(zi,t−h − z̄m,t−h)

′ and

z̄m,t = 1
bm,n

∑
i∈Im zi,t, and Q̂β̃ = Ik + µ̂β̃(µ̂β̃)′ with µ̂β̃ = 1

n

∑n
i=1
̂̃βi being the average of the

estimated loadings ̂̃βi =
(
F̂ ′V̂ −1

ε F̂
)−1

F̂ ′V̂ −1
ε (yi − rf ).

Let us now show consistency of Ω̂Ψ. Let us first consider Q̂zz,tt. Let Ψ̂ := 1
n

∑
m

∑
i,j∈Im(zi,tz

′
j,t)⊗

(ε̂iε̂
′
j) and use that ε̂i = MF̂ ,V̂ε

Fβ̃i + MF̂ ,V̂ε
εi. Then, Ψ̂ = Ψ̂1 + Ψ̂2 + (Ψ̂2)′ + Ψ̂3, where Ψ̂1 =

1
n

∑
m

∑
i,j∈Im(zi,tz

′
j,t)⊗(MF̂ ,V̂ε

Fβ̃iβ̃
′
jF
′MF̂ ,V̂ε

), Ψ̂2 = 1
n

∑
m

∑
i,j∈Im(zi,tz

′
j,t)⊗(MF̂ ,V̂ε

Fβ̃iε
′
jM

′
F̂ ,V̂ε

),

Ψ̂3 = 1
n

∑
m

∑
i,j∈Im(zi,tz

′
j,t) ⊗ (MF̂ ,V̂ε

εiε
′
jM

′
F̂ ,V̂ε

). Using MF̂ ,V̂ε
F = Op(

1√
n
) and boundedness

conditions on the β̃i and zi,t, we get Ψ̂1 = Op

(
1
n2

∑
m b

2
m,n

)
= Op

(∑
mB

2
m,n

)
= op(1). Fur-

ther, from
∑

i∈Im zi,t ⊗ εi = Op

(√
bm,n

)
uniformly in m, we get Ψ̂2 = Op

(
1

n3/2

∑
m b

3/2
m,n

)
=

Op

(∑
mB

3/2
m,n

)
= op(1), using

∑
mB

3/2
m,n = o(1) as in the proof of Proposition 4 (c). Finally,
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Ψ̂3 = (IkO ⊗MF̂ ,V̂ε
)
(

1
n

∑
m

∑
i,j∈Im(zi,tz

′
j,t) ⊗(εiε

′
j)
)

(IkO ⊗M ′
F̂ ,V̂ε

) = (IkO ⊗MF,Vε)(Qzz,tt ⊗

Vε)(IkO ⊗M ′
F,Vε

) + op(1) = Qzz,tt ⊗ (MF,VεVε) + op(1). By post-multiplication with IkO ⊗ V̂ −1
ε ,

taking the trace in the second term of the Kronecker product and dividing by T − k, we deduce

that Q̂zz,tt = 1
n(T−k)

∑
m

∑
i,j∈Im(zi,tz

′
j,t)(ε̂

′
jV̂
−1
ε ε̂i) is a consistent estimator for Qzz,tt. Further, we

have V̂z,m(h) = 1
T−h

∑T
t=h+1 V̂z,m,t(h) with V̂z,m,t(h) = 1

bm,n−1

∑
i∈Im(zi,t− z̄m,t)(zi,t−h− z̄m,t−h)′.

We use that ˆ̄Vz,m,t(h) is an unbiased estimator of Vz,m(h) for any t. Then, E[V̂z,m(h)] = Vz,m(h)

and E[ ̂̄V z(h)] = Vz(h) + o(1). Moreover, ‖V (vec[V̂z,m,t(h)])‖ ≤ C/bm,n uniformly in t, and

‖V (vec[V̂z,m(h)])‖ ≤ C/bm,n because T is finite. Then, ‖V (vec[ ˆ̄Vz(h)])‖ ≤ C
∑

mB
2
m,n/bm,n =

O(1/n) = o(1). Consistency of estimator ˆ̄Vz(h) in mean-square error sense, and hence in proba-

bility, follows. Finally, µ̂β̃ is a consistent estimator of µβ̃ because ε̄ = op(1).

We conclude the section with a computational note. We can dispense of using the commu-

tation matrix for obtaining the values of the test statistics and critical values. Indeed we have

K′kO,T (V̂kO−r ⊗ ÛT−r) = KT,kO(V̂kO−r ⊗ ÛT−r) = (ÛT−r ⊗ V̂kO−r)KT−r,kO−r. Then, we get

Ω̂S = K′T−r,kO−rΩ̂
∗
SKT−r,kO−r with Ω̂∗S = (ÛT−r ⊗ V̂kO−r)′Ω̂∗Ψ(ÛT−r ⊗ V̂kO−r). Matrices Ω̂S and

Ω̂∗S have the same eigenvalues, and SKP = nvec(Ŝ ′22)′(Ω̂∗S)−1vec(Ŝ ′22). This symmetry holds

because we can construct the KP and RS statistics from the SVD of (F̂O)′.

4 Numerical checks of conditions (12) with equally-spaced grids

To further investigate the validity of Inequalities (12), we conduct a series of experiments us-

ing equally-spaced grids of values for νj and λj . Because the distribution of a weighted sum of

non-central chi-square variates is invariant under permutations of the pairs (νj, λj), j = 1, ..., df ,

w.l.o.g. we can assume that they are ranked in increasing order of the νj parameters, i.e., we rank

the eigenvalues of the variance-covariance matrix ΩZ̄∗ in increasing order. Thus, we check In-

equalities (12) only for the grid points with 0 ≤ ν2 ≤ ν3 ≤ · · · ≤ νdf . In each dimension νj and

λj we use the same number N of discretization points, and we adapt N to df in order to keep the

total number of grid points G smaller than 108, see Table 1.
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Let us focus first on the cases with ν̄ = 0.7. When λ = 0.5, we observe no violations of

Inequalities (12) for all considered df . It confirms the findings in OA Section E that violations

are confined to small values of the non-centrality parameters. When λ = 0.1, we observe some

violations for values of df up to 7. For instance, with df = 4, we find 483 violations out of

the 2.2 · 106 grid points, which correspond to frequency 0.220h in Table 1. They all involve at

least one non-centrality parameter at the lowest grid value λj = 0.1, especially in combination

with a large value νj for the same j. Such combinations of low non-centrality parameters for the

large eigenvalues correspond to alternatives that are close to the null hypothesis. Moreover, the

violations of Inequalities (12) typically occur for the coefficients with large m, say 12 or larger,

and the negative values are very small - of order 10−9 or smaller. These findings are similar for the

other values of df ≤ 7.

Overall, Table 1 of SMC corroborates the findings in Table 1 of the paper obtained with Monte

Carlo draws, namely we do not observe violations of Inequalities (12) for values of λ sufficiently

large, and ν̄ sufficiently small. The numerically larger frequencies of violations reported in Table

1 of SMC are explained by the grid yielding by construction higher weights for λj very close to

the lower boundary λ compared to uniform random draws.

5 Monte Carlo results

This section explores the finite sample properties of the test statistic LR(k). We first introduce

the Data Generating Process (DGP) that we use in our Monte Carlo analysis, and then present the

results for the size and power of the LR statistic.

5.1 Data Generating Process

In the DGP, the betas are βi
i.i.d.∼ N(0, Ik), with k = 3, and the matrix of factor values is F =

V
1/2
ε UΓ1/2, where U = F̃ (F̃ ′F̃ )−1/2 and vec(F̃ ) ∼ N(0, ITk). We generate the diagonal elements
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of Vε = diag(h1, ..., hT ) through a common time-varying component in idiosyncratic volatilities

(Renault, Van Der Heijden and Werker (2022)) via the ARCH ht = 0.6 + 0.5ht−1z
2
t−1, with zt ∼

IIN(0, 1). The diagonal matrix Γ = Tdiag(3, 2, n−κ̄) yields 1
T
F ′V −1

ε F = diag(3, 2, n−κ̄), i.e.,

the "signal-to-noise" ratios equal 3, 2 and n−κ̄ for the three factors. We take κ̄ = ∞ to study the

size of LR(2). To study the power of LR(2), we take κ̄ = 0 to get a global alternative and κ̄ = 1/2

to get a local alternative (weak factor). We generate the idiosyncratic errors by εi,t = h
1/2
t h

1/2
i,t zi,t,

where hi,t = ci + αihi,t−1z
2
i,t−1, with zi,t ∼ IIN(0, 1) mutually independent of zt. We use the

constraint ci = 1 − αi to ensure the normalization V [εi,t/h
1/2
t ] = σii = ci

1−αi
= 1. The ARCH

parameters are uniform draws αi
i.i.d.∼ U [0.2, 0.5] with an upper boundary of the interval ensuring

existence of fourth-order moments.

We generate 5, 000 panels of returns of size n × T for each of the 100 draws of the T × k

factor matrix F and common ARCH process ht, t = 1, ..., T , in order to keep the factor values

constant within repetitions, but also to study the potential heterogeneity of size and power results

across different factor paths. The factor betas βi and individual ARCH parameters αi are the

same across all repetitions in all designs of the section. We use three different cross-sectional

sizes n = 500, 1000, 5000, and three values of time-series dimension T = 6, 12, 24. The variance

matrix Ω̂Z̄∗ is computed using the parametric structure from (D.14). We get the T − 1 estimated

parameters by least squares, as detailed in OA Section D.4.3 i). The p-values are computed over

5, 000 draws.

5.2 Size and power results

We provide the size and power results in % in Table 2. Size of LR(2) is close to its nominal level

5%, with size distortions smaller than 1%, except for the case T = 24 and n = 500. The impact

of the factor values on size is small for T above 6. The labels global power and local power refer

to κ̄ = 0 and κ̄ = 1/2, and power computation is not size adjusted. The global power is close or

equal to 100%, while the local power ranges from 29% to 33% for T = 6, 69% to 89% for T = 12,
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and is equal to 100% for T = 24. The approximate constancy of local power w.r.t. n, for large n,

is coherent with theory implying convergence to asymptotic local power.

6 Additional material

6.1 Analytical characterization of the coefficients ck(λ1, ..., λdf)

We useQ(λ1, ..., λdf ) = 1
2
(Y1+Y2+...+Ydf ), where Yj = (

√
γjXj+

√
1− γjλj)2. By the binomial

theorem, we have: E[Q(λ1, ..., λdf )
k] = 1

2k
E[(Y1 + Y2 + ...+ Ydf )

k] = 1
2k

∑k
l=0Ck,lE[(Y1 + Y2 +

... + Ydf−1)l]E[Y k−l
df ] =

∑k
l=0 Ck,lE[Q(λ1, ..., λdf−1)l] 1

2k−lE[Y k−l
df ], where the Ck,l = k!

l!(k−l)! are

the combinatorial coefficients. Dividing both sides of the equation by k!, we get:

ck(λ1, ...., λdf ) =
k∑
l=0

cl(λ1, ..., λdf−1)dk−l(λdf ), (1)

where dm(λdf ) := 1
2mm!

E[Y m
df ]. We have E[Y m

df ] = E[(
√
γdfXdf +

√
1− γdfλdf )2m]

=
∑2m

l=0C2m,lγ
l/2
df E(X l

df )(1− γdf )(2m−l)/2λ2m−l
df =

∑m
l=0 C2m,2lγ

l
dfE(X2l

df )(1− γdf )m−l(λ2
df )

m−l =∑m
l=0C2m,2lγ

l
df

(2l)!
2ll!

(1−γdf )m−l(λ2
df )

m−l; so dm(λdf ) = 1
2mm!

∑m
l=0C2m,2l

(2l)!
2ll!
γldf (1−γdf )m−l(λ2

df )
m−l.

For computational purposes, we can rewrite (1) in matrix recursive form. Indeed, for a maxi-

mum index k̄, let us define the vector c(λ1, ..., λdf ) with elements ck(λ1, ..., λdf ) for k = 0, 1, ..., k̄.

Further, let us define the lower triangular matrix

D(λdf ) =



1 0 . . .

d1(λdf ) 1 0 . . .

d2(λdf ) d1(λdf ) 1 0 . . .
... . . . . . . 0

dk̄(λdf ) · · · d1(λdf ) 1


.

Then, we have the recursion c(λ1, ..., λdf ) = D(λdf )c(λ1, ..., λdf−1). By backward iteration, we

get: c(λ1, ..., λdf ) = D(λdf )D(λdf−1) · · ·D(λ2)c(λ1), where c(λ1) is the vector with elements
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1
2kk!

λ2k
1 , for k = 0, 1, ..., k̄. Such a recursive analytical characterization is particularly useful in the

numerical checks of conditions (12) of Proposition 7, when df becomes large (see OA Section E

and SMC Section 4).

6.2 Maximum value of k as a function of T

In Table 3 we report the maximal values for the number of latent factors k to have df ≥ 0, or

df > 0.

7 Additional references

Andreou, E., Gagliardini, P., Ghysels, E. and Rubin, M., 2019. Inference in group factor models

with an application to mixed frequency data. Econometrica, 87(4), 1267-1305.
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df 2 3 4 5 6 7 8 9 10 11 12

N 100 20 10 10 5 5 4 4 3 3 3

ν̄ = 0.2 λ = 0.01 1.551 0.466 0.072 0.005 0 0 0 0 0 0 0

λ = 0.1 0.047 0.000 0 0 0 0 0 0 0 0 0

λ = 0.5 0 0 0 0 0 0 0 0 0 0 0

λ = 1 0 0 0 0 0 0 0 0 0 0 0

ν̄ = 0.7 λ = 0.01 5.734 1.539 0.356 0.034 0.007 0.001 0 0 0 0 0

λ = 0.1 2.810 1.023 0.220 0.019 0.003 0.000 0 0 0 0 0

λ = 0.5 0 0 0 0 0 0 0 0 0 0 0

λ = 1 0 0 0 0 0 0 0 0 0 0 0

ν̄ = 0.9 λ = 0.01 8.855 2.279 0.504 0.052 0.011 0.001 0 0 0 0 0

λ = 0.1 5.579 1.672 0.375 0.036 0.009 0.001 0 0 0 0 0

λ = 0.5 0.164 0.064 0.012 0.000 0 0 0 0 0 0 0

λ = 1 0 0 0 0 0 0 0 0 0 0 0

ν̄ = 0.99 λ = 0.01 12.578 3.641 0.783 0.083 0.018 0.002 0.000 0.000 0 0 0

λ = 0.1 9.200 2.901 0.627 0.063 0.013 0.002 0.000 0.000 0 0 0

λ = 0.5 2.517 0.817 0.141 0.010 0.003 0.000 0.000 0.000 0 0 0

λ = 1 0.823 0.219 0.019 0.000 0 0 0 0 0 0 0

Table 1: Numerical check of Inequalities (12) by grid. We display the frequency of violations in

h of Inequalities (12), for m = 1, ..., 16, over a grid of equally-spaced points for the parameters

λj ∈ [λ, λ̄] and νj ∈ [0, ν̄], for λ̄ = 7 and different combinations of bounds λ, ν̄ and degrees of

freedom df . We useN discretization points in each parameter dimension, as reported in the second

line. The number of grid points with 0 ≡ ν1 ≤ ν2 ≤ ν3 ≤ ... ≤ νdf is G =
(
N+df−2
df−1

)
Ndf . It ranges

between 106 and 7.15 · 107 with the chosen values of N .
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Size (%) Global Power (%) Local Power (%)

T 6 12 24 6 12 24 6 12 24

n = 500 5.5 5.1 6.9 100 100 100 29 69 100

(1.8) (0.3) (0.4) (1.3) (0.0) (0.0) (11.3) (10.8) (0.1)

n = 1000 5.3 4.9 5.7 100 100 100 33 82 100

(1.7) (0.3) (0.4) (1.4) (0.0) (0.0) (16.9) (8.1) (0.1)

n = 5000 5.1 4.8 4.9 99 100 100 30 89 100

(1.5) (0.3) (0.3) (7.1) (0.0) (0.0) (14.1) (6.0) (0.1)

Table 2: For each sample size combination (n, T ), we provide the size and power in %. Nominal

size for statistic LR(2) is 5%. Power refers to rejection frequencies for statistic LR(2) under global

alternative κ̄ = 0 and local alternative κ̄ = 0.5. In parentheses, we report the standard deviations

for size and power across 100 different draws of the factor path.

T 1 2 3 4 5 6 7 8 9 10 11 12

df ≥ 0 0 0 1 1 2 3 3 4 5 6 6 7

df > 0 NA 0 0 1 2 2 3 4 5 5 6 7

T 13 14 15 16 17 18 19 20 21 22 23 24

df ≥ 0 8 9 10 10 11 12 13 14 15 15 16 17

df > 0 8 9 9 10 11 12 13 14 14 15 16 17

Table 3: Maximum value of k. We give the maximum admissible value k of latent factors so that

the order conditions df ≥ 0 and df > 0 are met, with df = 1
2
[(T −k)2−T −k], for different values

of the sample size T = 1, ..., 24. Condition df ≥ 0 is required for FA estimation, and condition

df > 0 is required for testing the number of latent factors.
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