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5. Abstract: We describe the basics and fundamentals of swap market models. We review the 

key modelling ingredients, namely the continuous time modelling of a set of forward swap 

rates on a tenor structure under different probability measures. We review the three main 

classes known as the co-terminal, co-initial and co-sliding models, and describe their use in 



interest rate derivative pricing. Finally we discuss numerical implementation via model 

calibration and approximation of pricing formulas. 

6. Main text: Swap Market Models 

Black formula ([1]) is popular among practitioners as a simple tool to price European options 

on Libor rates, i.e., caplets and floorlets, and on swap rates, i.e., swaptions. More recently, 

Brace et al. [2], Miltersen et al. [10], and Jamshidian [9] provided a sound theoretical basis to 

that practice by introducing a general framework to consistently price interest rate options by 

arbitrage. These works paved the way towards a broader acceptance of the so-called market 

models for interest rate derivatives by the academic community since they can be recasted 

within the general arbitrage-free framework of [7]. These models have the advantage, over 

those based on the evolution of the spot interest rate, of concentrating on rates that are market 

observable. 

    The Libor market model ([2], [10]) and the co-terminal swap market model ([9]) are the 

two major representatives of this class. These models are built by assigning arbitrage-free 

dynamics on a set of forward Libor rates and of co-terminal forward swap rates, respectively. 

The advent of new kinds of exotic (over-the-counter) derivatives in fixed income markets has 

recently inspired the introduction of “hybrid” or “generalized” market models where the 

underlying variables constitute a mixed set comprising both Libor and swap rates 

simultaneously. In this context, an extensive study is provided in Galluccio et al. [4]. Without 

doubt the availability of a general setup to build market models with mixed sets is of great 

interest in the applications, e.g., to better capture the risk embedded in some complex 

financial derivatives. 

TENOR STRUCTURE AND FORWARD SWAP RATES 

We assume that we are given a pre-specified collection of reset/settlement 

dates { }MTT ,...,1=Τ , referred to as the tenor structure, with kj TT <  , Mkj ≤<≤1 , and 



starting time 10 TT < . Let us denote the year fraction between any two consecutive dates by 

1−−= jjj TTδ , for Mj ,...,1= . We write ),( jTtB , Mj ,...,1= , to denote the price at time t of 

a discount bond that matures at time tT j > . The forward swap rate ),,( kj TTtS , with j and k 

satisfying Mkj ≤<≤1 , is defined through 
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Here, ),,( kj TTtG is the price of the annuity (or level) numéraire. Swap market models are 

based on the continuous time modelling of ),,( kj TTtS  and, generally, assume that forward 

swap rates follow a multi-dimensional diffusion process.  In particular, ),,( kj TTtS  is a kj TT ,Ρ -

martingale so that, under kj TT ,Ρ , 
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where ),,( kj TTtλ  is a vector valued volatility function. The probability measure kj TT ,Ρ  is 

equivalent to the historical probability measure P, and is called the forward swap probability 

measure associated with the dates jT  and kT , or simply the forward swap measure. For every  

i = 1,…,M,  the relative (or “deflated”) bond ),,(/),( kii TTtGTtB , [ ]),min(,0 1+∈∀ ji TTt , 

follows a local martingale process under kj TT ,Ρ . We denote the corresponding Brownian 

motion under kj TT ,Ρ by kj TTW , . The forward Libor rate ),( jTtL , j = 1,…,M-1, defined as 
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 [ ]jTt ,0∈∀  , is itself a forward swap rate ),,( kj TTtS  

corresponding to k = j + 1, whose volatility function is denoted by ),( jTtλ . Accordingly, we 

denote by jTΡ  the corresponding forward probability measure associated to the discount bond 

price ),( jTtB , and by jTW  a Brownian motion under jTΡ . Then, for every i = 1,…,M, the 



relative bond price )),(/(),( 11 ++ jjj TtBTtB δ , [ ]),min(,0 1+∈∀ ji TTt , follows a local martingale 

under 1+Ρ jT . We refer to [11] (Chapters 12-13) for further material on the theoretical side. 

In [4] the aim is to introduce a so-called “Market Model Approach”. It concerns the weakest 

condition under which a general specification of a model that concentrates on modelling 

observable forward swap rates directly yields a unique specification in all equivalent pricing 

measures. In this respect, the concept of admissibility of a set is introduced, and its theoretical 

and practical implications are discussed. Interestingly, the properties of these admissible sets 

can be best understood with the use of graph theory. This mapping allows to graphically 

characterize all admissible sets in a simple and intuitive way. In fact, it is possible to prove 

that admissible sets are topologically equivalent to a tree graph. In this way, the selection of 

admissible models out of a given tenor structure can be done by visual inspection, and the 

model construction problem is largely simplified. Further, it is possible to prove that the class 

of admissible market models is very large: for a given tenor structure { }MTT ,...,1=Τ  

comprising M dates there exist 2−MM  admissible sets (and models). Admissible models 

comprise all “standard” market models ([2], [9]) as special cases. Three major subclasses 

denominated co-initial, co-sliding and co-terminal (according to the nature of the family of 

forward swap rates) can be identified. We hereby briefly discuss their respective features. 

Remarkably, the Libor market model is the only admissible model of co-sliding type. 

CO-TERMINAL SWAP MARKET MODEL 

The co-terminal swap market model dates back to [9], and is built from an admissible set of 

forward swap rates with different start dates { }11,..., −MTT  and equal maturity date MT , so that 

forward swap rates satisfy (1). The model is best suited to price Bermudan swaptions (and 

related derivatives; see [4], [13]) where the holder has the right to enter at times 11,..., −MTT  

into a plain-vanilla swap maturing at MT . In this case, the only relevant European swaptions 



from a pricing and hedging perspective are those expiring at 11,..., −MTT , and maturing at MT . 

Hence, it is natural to introduce a market model where the relevant underlying set coincides 

with the associated co-terminal forward swap rates. In this context, apart from the 

aforementioned Bermudan swaptions, we mention callable cap and reverse floaters, ratchet 

cap floaters and LIBOR knock-in/out swaps. 

CO-INITIAL SWAP MARKET MODEL 

The co-initial swap market model ([4], [5]) is built from an admissible set of forward swap 

rates with different end dates { }MTT ,...,2  and equal start date 1T , so that forward swap rates 

satisfy (1). The model is best suited to price (complex) European-style derivatives, where the 

holder owns the right to exercise an option at a single future date T. In this case the option 

payoff, no matter how complex, is measurable with respect to the information available at 

time T, by definition. Qualitatively speaking, a set of admissible forward swap rates sharing 

the same initial date T contains all the information needed to evaluate the payoff, the latter 

being a function of a set of admissible co-initial forward swap rates at that time. Hence a 

model market approach based on a set of co-initial forward swap rates provides a powerful 

tool to price and hedge a large variety of European-style derivatives including forward-start, 

amortizing and zero-coupon swaptions.  

CO-SLIDING SWAP MARKET MODEL 

In [4] it is shown that there exists a unique admissible co-sliding swap market model and that 

it coincides with the Libor market model ([2], [10]). The model is built from an admissible set 

of forward swap rates with start date jT and end date 1+jT  )1,...,1( −= Mj , so that forward 

swap rates satisfy (1). Non-overlapping forward swap rates of that form are indeed forward 

LIBOR rates. The co-sliding model is best suited to price structured CMS-linked derivatives 

(with possibly Bermudan features) whose pay-off function depends on a set of fixed-maturity 

instruments. More precisely, in a constant-maturity swap (CMS) the variable coupon that 



settles at a generic time jT  is linked to the value of a swap rate prevailing at that time (the 

latter being associated to a swap of a given maturity). In this context, the LIBOR market 

model provides an optimal modelling framework since (sliding) CMS rates can be easily 

described in terms of linear combinations of forward LIBOR rates.  

NUMERICAL IMPLEMENTATION 

In the applications one needs to calibrate a generic swap market model to the available prices 

of liquid vanilla derivatives to avoid potential arbitrage in the risk-management process. 

Implied model calibration is a reverse engineering procedure aimed at identifying the relevant 

model characteristics, such as volatility parameters, from such a set of instruments. In interest 

rate derivatives markets, these instruments are plain-vanilla options written on forward swap 

and LIBOR rates, i.e., swaptions and caplets, respectively. To achieve a fast and robust model 

calibration one should ideally aim at closed or quasi-closed form formulae for plain-vanilla 

option prices. When these are not available, good analytical approximations are called for. 

The accuracy of these methods is studied in several papers. They rely on the so-called 

“freezing” approach ([8], [12]) or, alternatively, on the “rank-one approximation” method 

([2]). In turn, the specification of the instantaneous volatility function ),,( kj TTtλ  in (1) is 

generally done by introducing flexible functional forms ([3], [13]) that are meant to reproduce 

the observed shape of implied swaption and cap/floor volatility term structures through a low-

dimensional parameterisation. One of the most appreciated features of the instantaneous 

volatility function among practitioners is time-stationarity. This is generally imposed to 

reproduce the analogous temporal evolution of the volatility term structure observed in the 

market. However, the constraint of perfect model stationarity is generally incompatible with 

the observed implied volatility market for a generic well-behaved instantaneous volatility 

function. This market feature forces practitioners to introduce explicit calendar-time 

dependent functions ),,( kj TTtλ  to mimic a “perturbation mode” around the time-stationary 



solution. Efficient simulation algorithms are also available to price exotic interest rate 

derivatives by Monte-Carlo methods ([6]). 
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