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Abstract

This paper introduces a Kolmogorov-type test for the shortfall order (also known in
the literature as the right-spread or excess-wealth order) against parametric alternatives.
In the case of the null hypothesis corresponding to the Negative Exponential distribution,
this provides a test for the new better than used in expectation (NBUE) and for the new
worse than used in expectation (NWUE) properties. Such a test is particularly useful in
reliability applications as well as duration and income distribution analysis. The theoretical
properties of the testing procedure are first established for uncensored data, and then for
censored and truncated data. Simulation studies reveal that the test based on a bootstrap
procedure performs well, even with moderate sample sizes. Applications to real data, namely
chief executive officer (CEO) compensation data, flight delay data and throttle failure data,
illustrate its empirical relevance.
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1 Introduction and motivation

An important aspect of reliability analysis is to find a lifetime distribution that can ad-
equately describe the ageing behaviour of the item under study (a motor, an electronic
component, a light bulb, etc.). Often, engineers are interested in the reliability of a non-
repairable item (that can be anything from a small component to a large system). For such
an item, the variable of interest is the time to failure or lifetime. This is the time elapsing
from when the item is put into operation until it fails for the first time. For an introduc-
tion to reliability theory, we refer the reader, e.g., to Barlow & Proschan (1981) and
Rausand & Hoyland (2004).

Ageing notions are used to explain how functioning items get used. Different ageing crite-
ria have been used to classify positive and negative ageing properties. For example increasing
failure rate (IFR), new better than used (NBU), decreasing mean remaining life (DMRL)
and new better than used in expectation (NBUE), and their duals are the main existing
ageing criteria; see Barlow & Proschan (1981). Ageing classes of life distributions are
often based on comparison between survival functions of new and used items.

The following ageing notions will be encountered throughout the text. Let X be a non-
negative random variable with distribution function F and survival function F ≡ 1 − F .
Then,

(i) X is said to be increasing failure rate (IFR, in short) if F is logconcave. It is said to be
decreasing failure rate (DFR, in short) if F is logconvex. These notions correspond to
the increasingness and decreasingness of the failure rate, respectively, when it exists.

(ii) X is said to be new better than used in expectation (NBUE, in short) if
∫ ∞

t
F (s) ds

F (t)
= E[X − t|X > t] ≤ E[X] =

∫ ∞

0

F (s) ds

for all t ≥ 0. It is said to be new worse than used in expectation (NWUE, in short) if
the reverse inequality holds for all t ≥ 0. The quantity E[X − t|X > t] is called the
mean residual life of the item with lifetime X: considering an item with time to failure
X that is still functioning at time t, it gives the expected extra time during which the
item will be working. Thus, X is NBUE if for all t ≥ 0 the mean residual life at time
t is not greater than the mean life of a new item.

A machine with lifetime X that is IFR or NBUE will age with the passage of time, in the
sense that its expected remaining lifetime will diminish as it gets older. On the contrary, if
the lifetime X is DFR or NWUE, this means that the reliability of the machine increases as
it gets older. Note that IFR implies NBUE, and that DFR implies NWUE. The boundary
members of each of these classes are the Negative Exponential distributions which, of course,
are appropriate for models where lifetimes neither improve nor deteriorate with age.

Several ageing notions can also be characterized by means of a stochastic comparison
with respect to the Negative Exponential distribution. We will see that the NBUE class can
be obtained in this way using the shortfall order. Through its links with the NBUE/NWUE
properties, the shortfall order also finds interesting and natural applications in the analysis
of duration and income distributions (see below).
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The present contribution proposes a Kolmogorov-Smirnov type test for the shortfall or-
der. References for this stochastic ordering include Shaked & Shanthikumar (1998),
Fagiuoli, Pellerey & Shaked (1999), and Fernandez-Ponce, Kochar & Muñoz-

Perez (1998). As it will be pointed out in the conclusion, our approach remains neverthe-
less applicable for many other stochastic orderings, defined by the pointwise comparison of
a transform associated with the underlying distribution functions.

The IFR/DFR classes have received the most study from an inferential point of view.
There are fewer papers devoted to the development of tests for NBUE/NWUE. The test
proposed in this paper can be applied to check for the validity of the NBUE/NWUE as-
sumptions. In contrast to most procedures found in the literature, Exponentiality will not
be taken as our null hypothesis to be tested against the NBUE/NWUE alternatives. In this
paper, the null hypothesis H0 supports NBUE/NWUE whereas the alternative hypothesis
H1 is the violation of one of these ageing properties. Let us briefly comment on this issue.
Hollander & Proschan (1975,1980) seem to have been the first authors to derive a test
of Exponentiality versus NBUE alternatives. Specifically, H0 corresponds to the Negative
Exponential distribution whereas H1 is NBUE but not exponential. The test obtained is
the total time on test procedure, and is consistent against NBUE alternatives. Similarly,
Fernandez-Ponce, Infante-Macias & Munoz-Perez (1996), Ahmad, Alwasel &

Mugdadi (2001), Ahmad, Hendi & Al-Nachawak (1999), and Belzunce, Pinar &

Ruiz (2001) take H0 as the Negative Exponential distribution, as well as Koul & Susarla

(1980) who consider incomplete data.
The approach developed in this paper differs from previous works in two respects. First,

we reverse the roles of the hypotheses: NBUE is now in H0 contrary to all previous works,
whereas the alternative hypothesis H1 is the converse of the null (and thus corresponds to
the violation of NBUE). Therefore, H0 ∪ H1 contains all possible distributions, which is
intuitively more appealing. Note that the null hypothesis is composite in our setting (in the
sense that it is true for many different distributions, namely all the NBUE ones). Second,
we do not test a necessary condition for NBUE/NWUE (as Hollander & Proschan

(1975,1980), Koul & Susarla (1980), Ahmad, Alwasel & Mugdadi (2001), Ahmad,

Hendi & Al-Nachawak (1999), and Belzunce, Pinar & Ruiz (2001) do), but we test
a null hypothesis that corresponds directly to the NBUE property.

Let us also mention that all the papers cited above (except Koul & Susarla (1980))
only deal with complete data whereas an extension to censored and truncated data is worked
out here as well. Since the testing procedure remains valid for incomplete data (which are
common in practice) this is a clear advantage of our approach.

The paper is organized as follows. Section 2 gathers some fundamental results about
the shortfall order. Section 3 presents the testing procedure. Section 4 is devoted to an
extension of the results to censored and truncated data. In Section 5, a simulation study is
provided to evaluate the finite sample performance of the test in terms of size. The power of
the test is also computed against different parametric alternatives, namely Weibull, Gamma,
and Pareto alternatives. Section 6 contains the empirical illustrations. First, we consider
compensation data for chief executive officers (CEO) of some of the largest US companies
(randomly sampled from the Executive Paywatch database). It will be seen that these data
support the NWUE property, and this feature will lead to interesting interpretations about
the allocation of compensations among CEO. Second, we study data about European flights
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gathered by Eurocontrol. Delays before departure are measured in time (minutes), and
delays after departure are measured as the increase in the route length (kilometers). Both
types of delays will be analyzed. In the latter case, NWUE will be detected, but not in the
former where NBUE seems to hold. Finally, we examine a censored data set about throttle
failures. In this case, the NBUE property cannot be rejected. Section 7 contains some
concluding remarks. Proofs are gathered in an appendix at the end of the paper.

2 Shortfall order

2.1 Expected shortfall and related notions

Let Q(u) = inf{x ∈ R|F (x) ≥ u} be the inverse of the distribution function F (also called the
quantile function). Having a probability level u and a random variable X with distribution
function F , the positive part (X−Q(1−u))+ of X−Q(1−u) is called the shortfall, denoted
by S(u). The quantile Q(1 − u) is the level that is exceeded with probability u (at most).
Hence, the shortfall S(u) represents the possible exceedance of X over the threshold Q(1−u)
exceeded by only 100u% of similar devices. The expected shortfall ES is then defined as the
average shortfall, that is

ES(u) = E[S(u)] = E[(X − Q(1 − u))+] =

∫ +∞

Q(1−u)

F (x)dx.

The expected shortfall is widely used in reliability, finance and insurance. It possesses
several nice properties, that make it appealing for practical applications. It is also closely
related to the so-called excess-wealth transform defined by

W (u) =
1

E[X]

∫ +∞

Q(u)

F (x)dx =
ES(1 − u)

E[X]
, u ∈ [0, 1]. (2.1)

In the context of economics, if X is thought of as an income, then W (u) can be viewed as the
proportion of the additional wealth (on top of the u-th percentile) of the richest 100(1−u)%
individuals in the population.

The expected shortfall is also closely related to the so-called total time on test transform.
Recall that the transform W has been introduced by Kochar, Li & Shaked (2002) to
compare probability distributions. Alternatively, u 7→ ES(1 − u) is also called the right-
spread function. This function is used to measure the average exceedance over a quantile
Q(u). It has been considered in Belzunce, Pinar & Ruiz (2001).

The total time on test (TTT) transform of the non-negative random variable X is defined
for u ∈ (0, 1) as

T (u) = E[X] − ES(1 − u) =

∫ Q(u)

0

F (x)dx.

The TTT transform is the theoretical counterpart of the empirical TTT transform that is
often used in statistical reliability theory. Broadly speaking, T (u) gives the average time
that an item spends on test if the test is terminated when a fraction u of all the items on
the test fail. For more details about the TTT transform, we refer the interested reader e.g.
to Pham & Turkkan (1994).
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2.2 Shortfall order

Having two random variables X and Y , X is said to be smaller than Y in the shortfall order
if the expected shortfall for X is always smaller than the corresponding expected shortfall
for Y , whatever the probability level u. Specifically, denoting by F and G the distribution
functions of X and Y , respectively, X precedes Y in the shortfall order, which is denoted as
X �SH Y , if ESF (u) ≤ ESG(u) for all u. When X and Y are two times to failure, X �SH Y
means that on average, the extra time elapsed after 100u% of the similar devices fail is larger
for Y than for X, whatever u.

There is also a scaled version of the shortfall order. Specifically, X is said to be smaller
than Y in the scaled shortfall order, denoted as X �SH,= Y if the inequality ESF (u)/E[X] ≤
ESG(u)/E[Y ] holds for all probability levels u. If E[X] = E[Y ] then we obviously have that
X �SH Y ⇔ X �SH,= Y .

The scaled shortfall order is called the excess wealth order in Shaked & Shanthikumar

(1998) where it is defined by means of the excess-wealth transform. The shortfall order is
also termed as the right-spread order e.g., in Belzunce, Pinar & Ruiz (2001). This name
originates in the fact that �SH is based on the pointwise comparison of the right-spread
functions associated with the distribution functions to be ordered.

2.3 Ageing notions and shortfall order

The classification of a lifetime according to the type of ageing structure it represents is useful,
e.g., to decide about the suitability of a parametric model for the data to be analyzed. By
ageing, we mean the phenomenon whereby an older system has a shorter lifetime, in a
statistical sense, than a younger one (after Bryson & Siddiqui (1969)). Some orderings
of distributions have been used to give characterizations of ageing classes. The idea is to
compare the actual distribution to the Negative Exponential distribution.

The Negative Exponential distribution is often taken as a benchmark in reliability theory.
An assumption of Exponentially distributed lifetimes implies that a used item is stochas-
tically as good as new, so there is no reason to replace a functioning item. The Negative
Exponential distribution is the most commonly used life distribution in applied reliability
analysis (mainly because of its mathematical simplicity). It is therefore of interest to detect
possible departures from exponentiality in the data, such as NBUE/NWUE, for instance.

Belzunce, Pinar & Ruiz (2001) proved that the class of the NBUE/NWUE distribu-
tions can be characterized with the help of the shortfall order with respect to the Negative
Exponential distribution with the same mean. Specifically, given a non-negative random
variable X with finite mean,

X NBUE ⇔ X �SH Exp(E[X]),

where Exp(E[X]) represents a random variable with survival function t 7→ exp(−t/E[X]).
Similarly,

X NWUE ⇔ Exp(E[X]) �SH X.

It is easy to check that if X is Exponentially distributed with mean µ, then ES(u) = uµ.
The NBUE property thus means that the expected shortfalls for X are smaller than the
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straight line with slope E[X], whereas the NWUE property places the expected shortfalls
for X above this straight line.

In the remainder of this paper, we only describe the testing procedure in the NBUE case.
The modification to accomodate the NWUE case is straightforward through changing the
sense of the inequalities.

3 Testing procedure

3.1 Nonparametric estimation of the expected shortfall

In this paper we consider an i.i.d. sampling scheme. Hence, we work on the basis of the
following hypothesis.

Assumption 3.1. {xi}N
i=1 is a random sample from a continuous distribution with distribu-

tion function F and mean m.

The probability density function is denoted as usual with a lower case, namely f .
Let us introduce the empirical distribution F̂ (z) := 1

N

∑N
i=1 I{xi ≤ z}. From the theory

of empirical processes we know that
√

N(F̂ − F ) converges weakly to a Brownian bridge
process BF ◦ F (see van Der Vaart & Wellner (1986), henceforth referred to as VW).

To build the test statistic we need empirical counterparts of the moments involved in the
definition of the shortfall order. Let us first deal with the nonparametric part ES(u)/m.
The mean m will be estimated with the empirical mean:

m̂ :=
1

N

N
∑

i=1

xi. (3.1)

Note that

ES(u) =

∫ +∞

Q(1−u)

(x − Q(1 − u))dF (u) =

∫ +∞

Q(1−u)

xdF (u) − uQ(1 − u).

The expected shortfall ES(u) can therefore be estimated as

ÊS(u) :=
1

N

N
∑

i=1

xiI{xi > Q̂(1 − u)} − uQ̂(1 − u), (3.2)

where Q̂(1 − u) := F̂−1(1 − u) is the empirical quantile.

3.2 Sample distribution of the empirical expected shortfalls

Note that the estimators (3.1) and (3.2) can be viewed as particular functionals of the
empirical distribution F̂ :

m̂ =

∫

xdF̂ (x),

ÊS(u) =

∫

xI{x > F̂−1(1 − u)}dF̂ (x) − uF̂−1(1 − u).
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To make explicit the dependence on F̂ , we will use the notation J (u; F̂ ) := ÊS(u)/m̂.
The characterisation of the test statistic in terms of a given map of the empirical dis-

tributions F̂ is instrumental in the proof of the following lemma. The lemma describes the
limiting behaviour of J (u; F̂ ), and is useful to deduce the properties of the testing procedure
(see proof of Proposition 3.7).

Lemma 3.2. Under Assumption 3.1,
√

N(J (u; F̂ )−J (u; F )) converges weakly in C((0, 1))
(the space of continuous functions on (0, 1)) to a mean zero Gaussian process J ′

F (u;BF ◦F )
with covariance kernel given by:

ΩF (u1, u2) = E[J ′
F (u1;BF ◦ F )J ′

F (u2;BF ◦ F )]

= Cov

[

1

m
(X − F−1(1 − u1) +

u1

f(F−1(1 − u1))
)I{X > F−1(1 − u1)} −

ES(u1)

m2
X,

1

m
(X − F−1(1 − u2) +

u2

f(F−1(1 − u2))
)I{X > F−1(1 − u2)} −

ES(u2)

m2
X

]

.

Remark 3.3. If we do not want to check the scaled version of the order, we can simply
rely on J̄ (u; F̂ ) := ÊS(u) to build the testing procedure. A weak convergence result simi-
lar to Lemma 3.2 holds, but with a limiting process J̄ ′

F (u;BF ◦F ), whose covariance kernel is:

Ω̄F (u1, u2) = E[J̄ ′
F (u1;BF ◦ F )J̄ ′

F (u2;BF ◦ F )]

= Cov

[

(X − F−1(1 − u1) +
u1

f(F−1(1 − u1))
)I{X > F−1(1 − u1)},

(X − F−1(1 − u2) +
u2

f(F−1(1 − u2))
)I{X > F−1(1 − u2)}

]

.

3.3 Sample distribution of the estimated parametric expected short-

falls

Let us now examine the parametric case ESθ(u)/mθ. An estimate ESθ̂(u)/mθ̂ obtained by

plug-in may be viewed as a functional of Fθ̂, i.e. J (u; Fθ̂), or as a functional of θ̂ itself, i.e.

Jθ̂(u) := J (u; Fθ̂). Hence we can easily characterize the limiting behavior of
√

N(J (u; Fθ̂)−
J (u; Fθ0)) if we know the limiting behaviour of

√
N(θ̂ − θ0).

Assumption 3.4.
√

N(θ̂−θ0) converges to a mean zero Gaussian random variable −V
−1
θ0

Gθ0.

Note that this assumption is satisfied by classical M-estimators (VW Section 3.2) and
Z-estimators (VW Section 3.3).

The next lemma is a direct consequence of the delta-method (VW Section 3.9), and is
analogous to Lemma 3.2. Hence we omit its proof.

Lemma 3.5. Under Assumptions 3.1 and 3.4,
√

N(J (u; Fθ̂) −J (u; Fθ0)) converges weakly
in C((0, 1)) (the space of continuous functions on (0, 1)) to a mean zero Gaussian process
J ′

θ0
(u;−V

−1
θ0

Gθ0) with covariance kernel given by:
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Ωθ0(u1, u2) = E[J̇ θ0(u1)V
−1
θ0

Gθ0G
⊤
θ0

V
−1
θ0

J̇ θ0(u2)
⊤]

where

J̇ θ0(u) =
∂

∂θ
Jθ(u)

∣

∣

∣

θ=θ0

.

3.4 Testing procedure

Since we wish to test for a dominance in the �SH-sense with respect to a parametric model,
namely

H0 : J (u; F ) ≤ J (u; Fθ) for all u ∈ (0, 1),

H1 : J (u; F ) > J (u; Fθ) for au ∈ (0, 1),

we consider the test statistic

Ŝ :=
√

N sup
u

(J (u; F̂ ) −J (u; Fθ̂)),

and a test based on the decision rule:

“ reject H0 if Ŝ > c ”,

where c is a critical value that will be approximated by an empirical quantile of bootstrap
values of the test statistic.

The following result characterizes the properties of the test, where

S̄ := sup
u

(J ′
F (u;BF ◦ F ) − J ′

θ0
(u;−V

−1
θ0

Gθ0)).

Proposition 3.6. Let c be a positive finite constant, then under Assumptions 3.1 and 3.4:

i) if H0 is true,
lim

N→∞
P [rejectH0] ≤ P [S̄ > c] := α(c),

with equality when J (u; F ) = J (u; Fθ0) for all u ∈ (0, 1);

ii) if H0 is false,
lim

N→∞
P [rejectH0] = 1.

The first part of the result provides a random variable that dominates the limiting random
variable corresponding to the test statistic under the null hypothesis. The inequality tells
us that the test will never reject more often than α(c) when the null hypothesis is satisfied.
Furthermore the probability of rejection will asymptotically be exactly α(c) when we have
strict equality. The first part also implies that if one could find a c to set the α(c) to a desired
probability level (say the conventional 0.05 or 0.01) then this would be the significance level
for composite null hypotheses in the sense described by Lehmann (1986). The second part
of the result indicates that the test is capable of detecting any violation of the full set of
restrictions of the null hypothesis.

Of course, in order to make the result operational, we need to find an appropriate critical
value c. Since the distribution of the test statistic depends on the underlying unknown
distributions, this is not an easy task, and we decide hereafter to rely on the bootstrap
method to simulate p-values.
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3.5 Simulating p-values

We rely on the traditional bootstrap (see Barrett & Donald (2003) and Abadie (2002)
for use in stochastic dominance tests). Alternatively we could use a subsampling method
(as presented in Politis, Romano & Wolf (1999)) instead of a bootstrap method to
get simulated p-values. The approach outlined in this section can be easily adapted to that
framework.

A bootstrap sample {x∗
i }N

i=1 is built from drawing N pairs with replacement from {xi}N
i=1.

Let F̂ ∗ denote the empirical distribution function associated to this bootstrap sample and
Fθ̂∗ the distribution function associated with parametric estimation on the bootstrap sample.
Let us further take

Ŝ∗ :=
√

N sup
u

((J (u; F̂ ∗) −J (u; F̂ )) − (J (u; Fθ̂∗) − J (u; Fθ̂)),

and define
p∗ := P [Ŝ∗ > Ŝ].

Then the bootstrap method is justified by the next statement.

Proposition 3.7. Assuming that α < 1/2, a test for dominance in the �SH-sense based on
the rule:

“ rejectH0 if p∗ < α ”,

satisfies the following

lim P [rejectH0] ≤ α if H0 is true,

lim P [rejectH0] = 1 if H0 is false.

In practice we need to use Monte-Carlo methods to approximate the probability and a
grid to approximate the supremum. The p-value is simply approximated by

p∗ ≈ 1

R

R
∑

r=1

I{Ŝ∗
r > Ŝ},

where the averaging is made on R bootstrap replications and Ŝ∗
r is computed from a fine

grid on (0, 1). Note that the replication number and the grid mesh can be chosen to make
the approximations as accurate as one desires given time and computer constraints.

4 Extension to censored and truncated data

In this section we briefly discuss the extension of previous results when data are incom-
plete. We first examine right censored data in the standard random censorship model before
examining truncated data.

Assumption 4.1. {zi, δi}N
i=1 is a random sample where zi = min(xi, yi) is either an observed

value, xi, or an observed censoring value, yi, and δi = I{xi = zi}. The observed values and
observed censoring values are independent with continuous distribution functions F and G,
respectively.
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The most commonly used estimator of F is the Kaplan-Meier estimator (see, e.g., An-

dersen, Borgan, Gill & Keiding (1993), hereafter ABGK) for a review of its properties
and applications) defined by :

F̃ (x) := 1 −
∏

z(i)≤x

(

N − i

N − i + 1

)δ(i)

,

where z(1) ≤ z(2) ≤ . . . ≤ z(N) denote the ordered values of z1, z2, . . . , zN , and δ(i) is the
indicator function associated with z(i).

In such a setting, Gill (1983) suggests to estimate the mean m with

m̃ :=

∫ z(N)

0

(1 − F̃ (x))dx = z(1) +
n−1
∑

i=1

(z(i+1) − z(i))
i

∏

j=1

(

n − j

n − j + 1

)δ(j)

.

Similarly we suggest to estimate the expected shortfall ES(u) with

ẼS(u) :=

∫ z(N)

Q̃(1−u)

(1 − F̃ (x))dx,

where Q̃(1 − u) := F̃−1(1 − u) is the empirical quantile induced by the Kaplan-Meier esti-
mator. As before we can put J (u; F̃ ) := ẼS(u)/m̃.

In order to describe the limiting behaviour of J (u; F̃ ) we need to introduce the distri-
bution H := 1 − (1 − F )(1 − G) from which the random sample {zi}N

i=1 is drawn, and the
(possibly infinite) bound τH := sup{x : H(x) < 1}. Let us also introduce the continuous,
nonnegative, nondecreasing functions:

Λ(x) :=

∫ x

0

dF (s)

1 − F (s)
,

C(x) :=

∫ x

0

dF (s)

(1 − F (s))2(1 − G(s))
=

∫ x

0

dΛ(s)

1 − H(s)
.

The function Λ is the so-called cumulative hazard function. Then we know that
√

N(F̃ −
F ) converges weakly to a zero-mean Gaussian martingale Z = BC ◦ C, whose covariance
function is Cov[Z(z1),Z(z2)] = C(min(z1, z2)), while

√
N(F̃−1 − F−1) converges weakly to

−(1− ι)(Z ◦F−1)/(f ◦F−1), where ι denotes the identity mapping (see, e.g., Doss & Gill

(1992), and ABGK Example IV.3.7).
Let us define the functions:

m(x) :=

∫ x

0

(1 − F (s))ds, m̄(x) := m − m(x).

Then Gill (1983) (ABGK Example IV.3.8) shows that
√

N(m̃−m) converges to
∫ τH

0
m̄dZ

if
∫ τH

0
m̄2dC < ∞ and

√
Nm̄(z(N)) goes to zero when N −→ ∞.

In an analogous way we define the functions:

ES(u, x) :=

∫ x

Q(1−u)

(1 − F (s))ds, ĒS(u, x) := ES(u) − ES(u, x),
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in order to deduce a result similar to Lemma 3.2, namely that, if
√

NĒS(u; z(N)) goes to

zero when N −→ ∞,
√

N(J (u; F̃ ) − J (u; F )) converges weakly to a zero-mean Gaussian
martingale given by

1

m

[
∫ τH

F−1(1−u)

ĒS(u, x)dZ(x) +
u2

f(F−1(1 − u))
Z(F−1(1 − u))

]

− ES(u)

m2

∫ τH

0

m̄(x)dZ(x).

Note that the presence of censoring does not affect the validity of Lemma 3.5 since
Assumption 3.4 remains true for classical parametric estimators under random censorship
(Borgan (1984)). Therefore we can easily design a test based on

S̃ :=
√

N sup
u

(J (u; F̃ ) −J (u; Fθ̂)),

whose properties are as in Proposition 3.6.
In order to implement the test in practice we can exploit the bootstrap procedure of

Efron (1981) relying on N drawings with replacement from {zi, δi}N
i=1 to build the bootstrap

sample {z∗i , δ∗i }N
i=1. Efron (1981) shows that such a bootstrap for data subject to right

censoring inherits the characteristics of the standard bootstrap. Therefore the use of

S̃∗ :=
√

N sup
u

((J (u; F̃ ∗) −J (u; F̃ )) − (J (u; Fθ̂∗) − J (u; Fθ̂)),

yields a bootstrap testing procedure matching the properties of Proposition 3.7.
Another case of practical interest concerns left truncated data, namely a random sample

{xi}N
i=1 only observed if xi is above a constant threshold T . Since none of the data are

observed below the threshold, we have no information on the part of the distribution below T ,
and we cannot identify that part nonparametrically. Nevertheless we might still be interested
in testing the NBUE property for the observable part above T , and in obtaining a consistent
test for that part. To this aim we suggest to modify the procedure described in Section
3 as follows. For the parametric part we have a) to estimate the hypothesized parametric
distribution on [0,∞) taking into account the presence of a truncation, b) to rescale the
estimated distribution on [T,∞) so that it is a properly defined distribution (integrate to
one), c) to compute the parametric expected shortfall under that truncated distribution.
For the nonparametric part the procedure remains unchanged since the empirical cdf of the
observed data converges to the true truncated distribution. The bootstrap method remains
unaffected as well. Here the only difference with respect to Section 3 lies in working with
truncated parametric distributions instead of distributions defined on [0,∞).

5 Monte Carlo results

In this section we examine the performance of the test in small and moderate samples. The
replication number R to approximate the p-value is set equal to 1,000. A total of 250 Monte
Carlo simulations are performed, and the rejection rates are computed for the bootstrap
method with respect to the standard significance levels of α = 0.01, 0.05 and 0.1.
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5.1 Size

We first evaluate the Type I error (i.e. the probability to reject H0 when it is true). Table
5.1 presents the results when the parametric distribution is the Negative Exponential with
unit mean. In this case, the true distribution and the parametric distribution coincide. Then
Proposition 3.6 suggests that the test should reject the null hypothesis H0 with a frequency
close to the chosen nominal significance level. This experiment should give us an idea about
the validity of the asymptotic theory and the bootstrap method used to simulate the p-
values in small samples in terms of size. The values displayed in Table 5.1 indicate that the
test tends to reject the true H0 less often than prescribed by the significance level in small
samples, but the distortion is smaller for samples of sizes N = 500 and 1,000.

Table 5.1: Proportion of Negative Exponential samples where H0 was rejected for different
sample sizes with 250 simulations and 1,000 bootstrap replications.

Significance Sample size
level N=25 N=50 N=100 N = 500 N = 1, 000

α=0.01 0.000 0.004 0.000 0.004 0.008
(0.000) (0.004) (0.000) (0.004) (0.006)

α=0.05 0.020 0.012 0.020 0.024 0.028
(0.009) (0.007) (0.009) (0.010) (0.010)

α=0.1 0.032 0.056 0.048 0.052 0.056
(0.011) (0.015) (0.014) (0.014) (0.015)

5.2 Power

Weibull alternative Table 5.2 gathers the results concerning power properties with a
Weibull alternative. The Weibull distribution is one of the most widely used life distribution
in reliability analysis. It has been initially developed for modelling the strength of materials.

Here, without loss of generality, we assume a value of one for the scale parameter. Thus
we use a one-parameter Weibull distribution with shape parameter less than 1, to mimic a
DFR behaviour. The associated probability density function is

f(x) = θxθ−1 exp
(

−xθ
)

, x > 0,

for a positive parameter θ. Note that when θ = 1 the Weibull distribution reduces to the
Negative Exponential one. When θ = 2, the resulting distribution is known as the Rayleigh
distribution. This distribution is DFR when the shape parameter θ is less than 1, and IFR
when θ is greater than 1. Therefore, the Weibull distributions are not NBUE for θ < 1, and
we expect a rejection of H0 in these cases.

We see from Table 5.2 that for small values of θ (0.25 and 0.5), the testing procedure
indeed rejects H0 for the vast majority of the samples, even for small sample sizes. The power
of the test is quite high (even for small sample sizes) and increases with the sample size.
For larger values of θ (i.e., when the true parent distribution is “closer” to the Exponential

11



one), the power is lower in small samples, but becomes reasonable in moderate samples (for a
sample of size 100 and θ = 0.75, the power for the usual levels of 0.05 and 0.1 are respectively
equal to 74.0% and 83.2%).

Table 5.2: Proportion of samples where H0 was rejected for different Weibull distributions
and for different sample sizes with 250 simulations and 1,000 bootstrap replications.

Weibull Significance Sample size
parameter θ level N=25 N=50 N=100

0.25 α=0.01 0.772 0.968 1
(0.027) (0.011) (0)

α=0.05 0.936 0.996 1
(0.015) (0.004) (0)

α=0.1 0.984 0.996 1
(0.008) (0.004) (0)

0.5 α=0.01 0.512 0.880 1
(0.032) (0.021) (0)

α=0.05 0.792 0.984 1
(0.026) (0.008) (0)

α=0.1 0.876 0.996 1
(0.021) (0.004) (0)

0.75 α=0.01 0.088 0.128 0.392
(0.018) (0.021) (0.031)

α=0.05 0.252 0.368 0.740
(0.027) (0.031) (0.028)

α=0.1 0.360 0.576 0.832
(0.030) (0.031) (0.024)

Gamma alternative The Gamma density is also commonly used in lifetime analysis. The
density function is

f(x) =
λ

Γ(θ)
(λx)θ−1 exp(−λx), x > 0,

where θ > 0 and λ > 0. When θ ≥ 1, the Gamma distributions are IFR. On the contrary, if
θ ≤ 1 the the Gamma distributions are DFR. For θ = 1, the Gamma distribution is reduced
to the Negative Exponential distribution. Here, we simulate Gamma samples with θ < 1
and λ = 1. These samples are not NBUE, and we expect the test procedure rejects the null
hypothesis. Table 5.3 is the analogue of Table 5.2 for Gamma alternatives.

The same conclusions apply. Note that the power is lower for Gamma distributions than
for Weibull distributions. However even if they share the same shape parameter value, they
are not directly comparable.

12



Table 5.3: Proportion of samples where H0 was rejected for different Gamma distributions
and for different sample sizes with 250 simulations and 1,000 bootstrap replications.

Gamma Significance Sample size
parameter θ level N=25 N=50 N=100

0.25 α=0.01 0.476 0.920 1
(0.032) (0.017) (0)

α=0.05 0.840 0.996 1
(0.023) (0.004) (0)

α=0.1 0.928 1 1
(0.016) (0) (0)

0.5 α=0.01 0.112 0.284 0.748
(0.020) (0.029) (0.027)

α=0.05 0.332 0.644 0.916
(0.030) (0.030) (0.018)

α=0.1 0.504 0.832 0.972
(0.032) (0.024) (0.010)

0.75 α=0.01 0.012 0.028 0.048
(0.007) (0.010) (0.014)

α=0.05 0.064 0.132 0.228
(0.015) (0.021) (0.027)

α=0.1 0.152 0.228 0.376
(0.023) (0.027) (0.031)

Pareto alternative The Pareto distribution can be obtained as a mixture of Negative
Exponential distributions, or as the exponential transform of a Negative Exponentially dis-
tributed random variable (suitably shifted to have the positive half real line as support).
The survival function corresponding to the one-parameter Pareto distribution is given by
F (x) = (1 + x)−θ, x ≥ 0, for a parameter θ > 0.

The Pareto distribution always exhibits a long-tailed behavior, and it is DFR for all the
values of the parameter θ. Therefore, the testing procedure should reject the null hypothesis.
Considering the results of the simulation study displayed in Table 5.4, we see that the
power of the test increases as the sample gets bigger and as the value of θ decreases. The
performance of the test is remarkable in moderate samples.

5.3 Power in the censored case

Let us now briefly investigate the power of the test in the incomplete case. The censoring
time Y is taken to be Exponentially distributed with mean µ. The proportion of censored
observations in the sample is then given by

P [Y < X] = 1 −
∫ ∞

0

exp(−x/µ)dF (x) = L(1/µ),
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Table 5.4: Proportion of samples where H0 was rejected for different Pareto distributions
and for different sample sizes with 250 simulations and 1,000 bootstrap replications.

Pareto Significance Sample size
parameter θ level N=25 N=50 N=100

1.50 α=0.01 0.420 0.740 0.924
(0.031) (0.028) (0.017)

α=0.05 0.616 0.880 0.992
(0.031) (0.021) (0.006)

α=0.1 0.724 0.928 0.996
(0.028) (0.016) (0.004)

2.00 α=0.01 0.324 0.520 0.768
(0.030) (0.032) (0.027)

α=0.05 0.528 0.696 0.924
(0.032) (0.029) (0.017)

α=0.1 0.600 0.796 0.956
(0.031) (0.025) (0.013)

2.50 α=0.01 0.220 0.296 0.580
(0.026) (0.029) (0.031)

α=0.05 0.400 0.548 0.848
(0.031) (0.032) (0.023)

α=0.1 0.492 0.656 0.912
(0.032) (0.030) (0.018)

where L(·) is the Laplace transform of the observation X. In the Monte Carlo experiments,
we consider Gamma samples with θ < 1 and λ = 1. We take 30% of censored observations.
The value of µ to reach this proportion is given by

(

1 +
1

µ

)−θ

= 0.7 ⇒ µ =
1

(0.7)−1/θ − 1
.

Considering the results of the simulation study displayed in Table 5.5, we see that the
power is higher in the censored case compared with complete Gamma samples (see Table
5.2). An intuitive explanation is as follows: the censoring mechanism tends to induce a
higher value for the test statistic, which in turn facilitates the rejection of H0.

6 Empirical illustrations

Before analyzing the data sets used in this paper to demonstrate the usefulness of the test
procedure in practice, let us mention that in many cases the NBUE behavior is so clear (in
the sense that the empirical expected shortfalls are dominated by the exponential ones for
all probability levels) that there is no need for a formal testing procedure (the p-values are
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Table 5.5: Proportion of samples where H0 was rejected in the censored case (about 30% of
censored observations, the censoring variable being exponentially distributed) for different
Gamma distributions and for different sample sizes with 250 simulations and 1,000 bootstrap
replications.

Gamma Significance Sample size
parameter θ level N=25 N=50 N=100

0.25 α=0.01 0.964 0.972 1
(0.012) (0.010) (0)

α=0.05 0.996 0.992 1
(0.004) (0.006) (0)

α=0.1 0.996 0.992 1
(0.004) (0.006) (0)

0.5 α=0.01 0.344 0.596 0.896
(0.030) (0.031) (0.019)

α=0.05 0.608 0.848 0.980
(0.031) (0.023) (0.009)

α=0.1 0.692 0.900 0.992
(0.029) (0.019) (0.006)

0.75 α=0.01 0.160 0.240 0.420
(0.023) (0.027) (0.031)

α=0.05 0.312 0.484 0.664
(0.029) (0.032) (0.030)

α=0.1 0.416 0.576 0.724
(0.031) (0.031) (0.028)

close or equal to unity). Therefore, we focus on cases where at least one crossing between
the empirical and exponential expected shortfalls is observed.

6.1 CEO compensation data

Compensation data of CEOs of some of the largest companies in the United States are
included in the Executive PayWatch database. This database is available online from
http://www.aflcio.org/corporateamerica/paywatch/ceou/database.cfm. CEO compensations
are listed for companies whose common stock comprises the Standard & Poor’s Super 1500.
We have randomly extracted 49 observations from the website database on March 8, 2005.

We have considered the total compensation, that is determined by adding the salary,
bonus, other compensation, the value of restricted stock awards, long-term incentive payouts
and the value of stock option awards in the fiscal year.

Figure 6.1 plots the (scaled) empirical shortfalls for the CEO compensation data (dotted
line) together with the linear shortfall corresponding to the unit Negative Exponential distri-
bution. Clearly, the empirical shortfalls dominate their Negative Exponential counterparts,
except for probability levels near 1. A crossing between the two shortfall curves is visible on
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Figure 6.1 for probability levels higher than 0.9.
We have performed the testing procedure to decide whether this crossing invalidate the

shortfall dominance of the CEO compensation parent distribution over Negative Exponential
(that is, the NWUE property). Note that we use here the NWUE version of the testing
procedure. A p-value of 98.2% is obtained (on the basis of 1,000 bootstrap samples drawn
from the original data set), so that the null hypothesis is not rejected (at any usual level).

Hence the CEO compensation data appear as NWUE. This indicates the “heavy-tailed
behavior” of the CEO compensations. This conclusion is quite appealing. Indeed, the
NWUE property ensures that E[X − t|X > t] ≥ E[X]. On average, the excess of the
CEO compensation above t is higher than the salary of the Standard & Poor’s Super 1500,
whatever t. This suggests that a large part of the total compensation is concentrated on
payrolls of the best paid CEOs.
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Figure 6.1: Empirical shortfalls for the CEO compensation data set (broken line) and the corre-
sponding linear Negative Exponential shortfalls (continuous line).

6.2 Delays in European flights

The data set comes from Eurocontrol. It contains all the characteristics of each flight over
Europe, day by day. In this paper, we consider September 5, 2004 (but the results are similar
for other days). We measure the delay first as the difference (in minutes) between the real
departure time and the scheduled one, and second as the difference (in kilometers) between
the real route length and the initially planned one.

Figure 6.2 displays the graphs of the (scaled) empirical expected shortfalls for the two
types of delay, together with the unit Negative Exponential benchmark. For the time delay,
we have randomly sampled 800 delayed flights among the 14,475 flights delayed on September
5, 2004. For the kilometer delay, we have worked with the 1,201 flights with a longer route
than initially planned. Considering the empirical shortfalls displayed in Figure 6.2, we expect
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that the delays before departure measured in time exhibit a NBUE behavior whereas the
flight delays measured in kilometers exhibit a NWUE behavior. Therefore, we test the null
hypothesis of NBUE for the time delay and the null hypothesis of NWUE for the kilometer
delay, against the violation of these ageing properties. In each case, we have performed 1,000
bootstrap replications of the data set. We obtain a p-value of 59% for the time delay, and
of 69.1% for the length delay supporting H0 in both cases.
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Figure 6.2: Empirical shortfalls for the Eurocontrol data set, September 5, 2004 (broken line) for
the delay measured in minutes (left panel) and in kilometers (right panel) and the corresponding
linear Negative Exponential shortfalls (continuous line).

We have then reached the somewhat surprising conclusion that when the delay before
departure is measured in minutes, it exhibits a NBUE behavior, whereas when the delay
during the flight is measured in kilometers, the data support the NWUE hypothesis. The
NBUE behavior might be explained by the effort of catching up with the initial schedule
by reducing lost time as much as possible. The NWUE might be explained by the initial
planned route being, in general, the shortest one and the alternative available routes being
relatively invariant in distance (fixed flight zones).

6.3 Throttle failures

We consider data on throttle failures in prototype models of general purpose load carrying
vehicles taken from Blischke & Murthy (2000, Case 2.19). The data consist of failure
times (measured in kilometers driven prior to failure) for 25 units and service times for 25
units that had not failed at the time of observation (and are thus censored).

Figure 6.3 displays the graph of the empirical expected shortfall for the throttle failures,
together with the Negative Exponential ones. Even if the empirical expected shortfalls are
below the Negative Exponential ones for most probability levels, we observe some crossings
for moderate levels. The question is therefore whether these crossings invalidate NBUE. The
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p-value obtained with 1,000 bootstrap replications is 24.1%, so that the null hypothesis of
NBUE is not rejected.
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Figure 6.3: Empirical shortfalls for the throttle failures data set (dotted line) and the correspond-
ing linear Negative Exponential shortfalls (continuous line).

7 Concluding remarks

In this paper, we introduce a method to test for the shortfall dominance against parametric
alternatives, with primary interest in testing for NBUE/NWUE ageing classes. The test is of
a Kolmogorov-Smirnov type, and distributional aspects of the test statistic for determining
the rejection region are determined by a bootstrap technique. Asymptotic properties of the
approach have been established, and finite sample performance is assessed through Monte
Carlo experiments. Empirical applications illustrate the practical relevance of the approach
followed in this paper.

It is worth mentioning that the procedure developed in this paper is applicable to any
stochastic ordering defined by means of the pointwise comparison of transforms associated
with the probability distributions. In particular, this applies to the moment generating
function order among two non-negative random variables X and Y defined as

X �MGF Y ⇔ E[exp(tX)] ≤ E[exp(tY )] for all t > 0.

The order �MGF can be tested using a Kolmogorov-Smirnov type test statistic based on
empirical moment generating function functions. The theoretical properties of the empirical
moment generating function process are derived in Csorgo (1982). It has been successfully
applied in various testing procedures for exponentiality, e.g., by Baringhaus & Henze

(1991,1992) and Henze (1993).
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Note that such a Kolmogorov-Smirnov type test should outperform the procedure pro-
posed by Klar (2005) to test for the so-called M-class of life distributions. For other
applications to testing for stochastic dominances, we refer the reader to Barrett & Don-

ald (2003), Horvat, Kokoszka & Zitikis (2005) and the references therein. Testing
procedures for stochastic dominances are also of interest in reliability applications since sev-
eral ageing notions are defined with the help of such comparisons with respect to the Negative
Exponential distribution. This is the case for instance with the ageing class known as HN-
BUE (for Harmonic New Better than Used in Expectation) consisting of the distributions
larger than the exponential one in the second order stochastic dominance (or, equivalently,
smaller than the exponential distribution in the convex order). For relationships between
ageing classes and convex order, see, e.g., Ahmad, Hendi & Al-Nachawati (1999).
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APPENDIX

All limits are taken as N goes to infinity.

A Proof of Lemma 3.2

The result is a direct consequence of the weak convergence of the empirical process
√

N(F̂ −
F ), the Hadamard differentiability of the map J , and the delta-method (see VW Section
3.9).

B Proof of Proposition 3.6

1. Proof of Part i):

From the definitions of Ŝ and the fact that under H0, J (u; F ) − J (u; Fθ0) ≤ 0 for all
u ∈ (0, 1), we get that

Ŝ ≤ sup
u

√
N((J (u; F̂ ) −J (u; Fθ̂)) − (J (u; F ) − J (u; Fθ0)))

+ sup
u

√
N(J (u; F ) − J (u; Fθ0))

≤ sup
u

√
N((J (u; F̂ ) −J (u; Fθ̂)) − (J (u; F ) − J (u; Fθ0))).

Hence the results follows from the weak convergence of
√

N((J (u; F̂ ) − J (u; Fθ̂)) −
(J (u; F ) −J (u; Fθ0))) induced by Lemmas 3.2 and 3.5, and the definition of S̄.

2. Proof of Part ii):

If the alternative is true, then there is a u, say ū ∈ (0, 1), for which J (ū; F )−J (ū; Fθ0) =

δ > 0. Then the result follows using the inequality Ŝ ≥
√

N(J (ū; F̂ )−J (ū; Fθ̂)) and almost
sure uniform convergence.

C Proof of Proposition 3.7

We know that
√

N(F̂ ∗−F̂ ) converges weakly to an independent copy of BF ◦F (VW Theorem
3.6.3). Then Hadamard differentiability, via the delta-method for bootstrap (VW Theorem
3.9.11), and the CMT, yield that Ŝ∗ converges in probabilility to a random variable, which
is an independent copy of S̄. Note that the distribution P 0(t) of this random variable is
absolutely continuous (Tsirel’son (1975)), while its median is strictly positive and finite.
Moreover c(α) defined by P (S̄ > c(α)) = α is finite and positive for any α < 1/2 (VW
Proposition A.2.7).

Note that the event {p∗ < α} is equivalent to the event {Ŝ > ĉ∗(α)} where

inf{t : P̂ ∗(t) > 1 − α} = ĉ∗(α)
p−→ c(α), (C.1)
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by the convergence of Ŝ∗ and the aforementioned properties of P 0. Then:

lim P [rejectH0|H0] = lim P (Ŝ > ĉ∗(α))

= lim P (Ŝ > c(α)) + lim(P (Ŝ > ĉ∗(α)) − P (Ŝ > c(α)))

≤ P (S̄ > c(α)) := α,

where the last statement comes from (C.1), part i) of Proposition 3.6 and c(α) being a
continuity point of the distribution of S̄. On the other hand part ii) of Proposition 3.6 and
c(α) < ∞ ensure that lim P [reject H0|H1] = 1.
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