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APPENDIX

A. Proofs of technical results

Proof of Theorem 1

Under Assumptions A to C, Lemma 3.1 of [1] implies that that√
Ti

(
ϑ̃i − ϑi

)
D−→ N (0,Γ(ϑi)) ,

conditionality on ϑi, where Γ(ϑ) is a continuous function in ϑ. Thus, we have

E
[
θ̂◦
]

=
K∑
i=1

wiE
[
ϑ̃i

]
= E

[
ϑ̃i

]
= E

[
E
[
ϑ̃i|ϑi

]]
= E [ϑi] + o(T−1/2) = θ∗0 + o(T−1/2),

where θ∗0 = E [ϑi] and where the last equality is due to the asymptotic normality of ϑ̃i and the

compactness of Θ. Moreover, using the expectation of quadratic forms, we have

E
[
||θ̂◦ − θ∗0||22

]
= tr

{
E
[(
θ̂◦ − θ∗0

)(
θ̂◦ − θ∗0

)>]}
= tr

{
var
(
θ̂◦
)}

+ tr
{
E
[
θ̂◦ − θ∗0

]
E>
[
θ̂◦ − θ∗0

]}
.

(A.1)

Focusing on the first term in (A.1) and using the law of total variance, the variance of θ̂◦ is of

the following order elementwise:

var
(
θ̂◦
)

=
K∑
i=1

w2
i var

(
ϑ̃i

)
=

K∑
i=1

w2
i

{
E
[
var
(
ϑ̃i|ϑi

)]
+ var

(
E
[
ϑ̃i|ϑi

])}
=

K∑
i=1

w2
i

{
var (ϑi) + o(T−1/2)

}
= O(K−1).

The intermediate results in the above development are based on the asymptotic normality of

ϑ̃i (which provides orders of convergence for the conditional expectations and variances), the

continuity of Γ(ϑ), the assumption on the weights (wi) as well as the compactness of Θ. As

for the second term in (A.1), elementwise we have the order

E
[
θ̂◦ − θ∗0

]
E
[
θ̂◦ − θ∗0

]>
= o(T−1).

Combining the above results back within (A.1) we obtain

E
[
||θ̂◦ − θ∗0||22

]
= o(T−1) +O(K−1) = o(1).
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By Markov’s inequality, for any M > 0, we have

Pr
{
||θ̂◦ − θ∗0||2 ≥M

}
≤ 1

M2
E
[
||θ̂◦ − θ∗0||22

]
= o(1).

Thus, we have θ̂◦ P−→ θ∗0 as K,T →∞ proving consistency of θ̂◦ for a target value represented

by θ∗0.

To demonstrate that, in general, θ∗0 = E [ϑi] 6= θ0, we provide the following example. Consider

a first-order moving-average process defined as

X
(i)
t = ϑiε

(i)
t−1 + ε

(i)
t ,

where ϑi
iid∼ U(0, 1/4), i.e. a uniform distribution between 0 and 1/4, and ε(i)

t is an iid sequence

such that E[ε
(i)
t ] = 0 and var[ε

(i)
t ] = 1. The theoretical WV at the first scale of such a process

(conditionally on ϑi) is given by ν1(θ) = θ2−θ+1
2

and, thus, we have µ1 := E [ν1(ϑ)] = 43
96

.

Considering only the first scale, we have

θ0 = argmin
θ

E
[
{ν1(ϑ)− ν1(θ)}2] = argmin

θ
{µ1 − ν1(θ)}2 =

6−
√

21

12
< E[ϑi] =

1

8
,

thus providing proof that there exist circumstances where θ∗0 6= θ0.

Proof of Theorem 2

Let ν̄j denote the jth element (for j ∈ {1, . . . , J}) of the vector ν̄ :=
∑K

i=1wiν̂i. Similarly,

we let ν̂i,j denote the jth element of ν̂i. Since ν̂i,j is an unbiased estimator and recalling the

properties of the weights (wi), we have

E [ν̄j] =
K∑
i=1

wiE [ν̂i,j] =
K∑
i=1

wiE [E [ν̂i,j|ϑi]] =
K∑
i=1

wiE [νj(ϑi)] = E [νj(ϑi)] =: ν0,j, (A.2)

where νj(ϑi) and ν0,j denote the jth element of the vectors ν(ϑi) and ν0 := E[ν(ϑi)], respec-

tively. Next, using the law of total variance, we have that the variance of ν̄j is of the following

order

var (ν̄j) =
K∑
i=1

w2
i var (ν̂i,j) =

K∑
i=1

w2
i {E [var (ν̂i,j|ϑi)] + var (E [ν̂i,j|ϑi])} = O(K−1),
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based on the compactness of Θ (Assumption A), the continuity of ν(ϑi) (Assumption B), the

asymptotic normality of ν̂i,j , the conditions on the weights (wi) as well as the continuity of the

asymptotic variance (Assumption C). Thus, by Chebyshev’s inequality we have that ν̄ P−→ ν0.

Next, we study the expected value of the objective function of θ̂†. Again by the expectation of

quadratic forms, we have

E[Q̂†(θ)] = E
[
‖ν̄ − ν(θ)‖2

Ω

]
= ‖ν0 − ν(θ)‖2

Ω + tr {Ω var (ν̄)} ,

using (A.2). Since the term tr {Ω var (ν̄)} is constant with respect to θ, we have

θ0 := argmin
θ∈Θ

E
[
‖ν(ϑi)− ν(θ)‖2

Ω

]
= argmin

θ∈Θ
Q∗(θ),

where Q∗(θ) := ‖ν0 − ν(θ)‖2
Ω. Using the consistency of ν̄ and the continuity of Q̂†(θ) in θ,

we have that for each θ ∈ Θ, |Q̂†(θ)−Q∗(θ)| P−→ 0. Moreover, for all θ1, θ2 ∈ Θ we have∣∣∣Q̂†(θ1)− Q̂†(θ2)
∣∣∣ =

∣∣‖ν̄ − ν(θ1)‖2
Ω − ‖ν̄ − ν(θ2)‖2

Ω

∣∣
=
∣∣∣‖ν(θ2)− ν(θ1)‖2

Ω − 2 {ν̄ − ν(θ2)}>Ω {ν(θ2)− ν(θ1)}
∣∣∣

≤ ‖ν(θ2)− ν(θ1)‖2
Ω + 2

∣∣∣‖ {ν̄ − ν(θ2)}>Ω {ν(θ2)− ν(θ1)}
∣∣∣

≤ ‖ν(θ2)− ν(θ1)‖2
2 ‖Ω‖F + 2‖ν(θ2)− ν(θ1)‖2‖ν̄ − ν(θ2)‖2‖Ω‖F

(A.3)

where the first inequality is due to the triangular inequality and the second to the Cauchy-Schwarz

inequality. The norms ‖ · ‖2 and ‖ · ‖F denote the L2 and the Frobenius norms, respectively.

Since ν(θ) is continuously differentiable (Assumption B) and Θ is compact (Assumption A)

we have that for all j ∈ {1, . . . , J} there exists a constant Cj such that

sup
θ∈Θ

∥∥∥∥ ∂∂θνj(ϑ)
∣∣∣
ϑ=θ

∥∥∥∥2

2

≤ Cj.

Next, we define the matrix A(θ1, . . . ,θJ), which is Jacobian matrix of ν(θ) whose jth row is

evaluated in θj . Based on Assumption A we have that

sup
θ1,...,θJ∈Θ

‖A(θ1, . . . ,θJ)‖F =

√√√√ J∑
j=1

sup
θ∈Θ

∥∥∥∥ ∂∂θνj(ϑ)
∣∣∣
ϑ=θ

∥∥∥∥2

2

≤

√√√√ J∑
j=1

Cj =: C. (A.4)
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By the mean value theorem, we have

‖ν(θ2)− ν(θ1)‖2
2 = ‖A (θ∗1, . . . ,θ

∗
J) (θ1 − θ2)‖2

2

= (θ1 − θ2)>A> (θ∗1, . . . ,θ
∗
J) A (θ∗1, . . . ,θ

∗
J) (θ1 − θ2)

≤ ‖θ1 − θ2‖2
2

∥∥A> (θ∗1, . . . ,θ
∗
J) A (θ∗1, . . . ,θ

∗
J)
∥∥
F

≤ ‖θ1 − θ2‖2
2 ‖A (θ∗1, . . . ,θ

∗
J)‖2

F ≤ C2 ‖θ1 − θ2‖2
2 ,

where the first two inequalities are consequences of Cauchy-Schwarz inequality and the last one

is due to (A.4). Returning to (A.3), we have∣∣∣Q̂†(θ1)− Q̂†(θ2)
∣∣∣ ≤ Bn ‖θ1 − θ2‖2 ,

where

Bn := C‖Ω‖F {C ‖θ1 − θ2‖2 + 2‖ν̄ − ν(θ2)‖2} .

Since Θ is compact (Assumption A), ‖Ω‖F is bounded (Assumption C) and ν̄ is consistent, we

have that Bn is bounded in probability. Thus, Corollary 2.2 of [2] implies that

sup
θ∈Θ
|Q̂†(θ)−Q∗(θ)| P−→ 0.

Finally, Theorem 2.1 of [3] implies that ‖θ̂† − θ0‖ P−→ 0, which concludes the proof.

Proof of Proposition 1

Under Assumptions A and B, the AWV and MS-GMWM estimators can be defined in terms

of their derivatives, i.e.,

θ̂† := argzero
θ∈Θ

∂

∂θ
Q̂†(θ),

and

θ̂ := argzero
θ∈Θ

∂

∂θ
Q̂(θ),

respectively, where argzero stands for the value of θ that allows the expression to be zero.
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Considering this, the derivative of Q̂(θ) is given by

∂

∂θ
Q̂(θ) =

∂

∂θ

K∑
i=1

wi‖ν̂i − ν(θ)‖2
Ω = −

K∑
i=1

2wi
∂

∂θ
ν(θ)Ω(ν̂i − ν(θ))

= −2
∂

∂θ
ν(θ)Ω

K∑
i=1

wi(ν̂i − ν(θ)).

Knowing that
∑K

i=1wi = 1, we finally have that

∂

∂θ
Q̂(θ) = −2

∂

∂θ
ν(θ)Ω

(
K∑
i=1

wiν̂i − ν(θ)

)
.

If we take the derivative of Q̂†(θ), we obtain

∂

∂θ
Q̂†(θ) =

∂

∂θ
‖

K∑
i=1

wiν̂i − ν(θ)‖2
Ω = −2

∂

∂θ
ν(θ)Ω

(
K∑
i=1

wiν̂i − ν(θ)

)
.

Since Q̂(θ) and Q̂†(θ) have the same derivative, under Assumptions A and B they have the

same solution in zero and, consequently, we have that θ̂† = θ̂ thus concluding the proof.

Proof of Proposition 2

This proof is adapted and closely follows the proof of Lemma 3.1 in [1]. More specifically,

given the results on the consistency in Theorem 2, the proof of asymptotic normality of θ̂†

naturally follows the standard proof of asymptotic normality for extremum estimators (see e.g.

[3]). Indeed, using again the notation ν̄ :=
∑K

i=1wiν̂i, we start by studying the asymptotic

distribution of this quantity. To do so, for s ∈ S :=
{
x ∈ IRJ | ‖x‖2 = 1

}
, we define Xi(s) =

s> (ν̂i − ν0). Unconditionally, we have that Xi(s), for i = 1, . . . , K, are mean-zero iid random

variables for which we define Υ := var(ν̂i), that allows us to define var [Xi(s)] = s>Υs =:

σ2(s). Moreover, for sufficiently large K, there exists a constant M such that

maxi=1,...,K w
2
i∑K

i=1w
2
i

≤ maxi=1,...,K w
2
i∑K

i=1wi
= max

i=1,...,K
w2
i ≤M2K−2 = O(K−2).

Considering the above definitions and properties, by Hajek-Sidak’s central limit theorem we

consequently have that∑K
i=1 wis

> (ν̂i − ν0)

σ(s)
√∑K

i=1w
2
i

=

∑K
i=1 wiXi(s)

σ(s)
√∑K

i=1w
2
i

D−→ N (0, 1).
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Recalling that by definition the weights are such that K
∑K

i=1w
2
i → c (where c is a positive

constant), by Slutsky’s theorem we have that

√
K

K∑
i=1

wis
> (ν̂i − ν0)

D−→ N
(
0, c σ2(s)

)
.

This allows us to use the Cramer-Wold device to finally obtain

√
K

K∑
i=1

wi (ν̂i − ν0)
D−→ N (0,Σ) . (A.5)

Having obtained this result, we proceed with the main proof. By Assumption B and by the

definition of θ̂†, we have

∂Q̂†(θ)

∂θ

∣∣∣∣
θ=θ̂†

= 0p×1 ⇐⇒
∂

∂θ
[(ν̄ − ν(θ))ᵀ Ω (ν̄ − ν(θ))]

∣∣∣∣∣
θ=θ̂†

= 0p×1,

which, up to a constant, yields(
∂

∂θ
(ν̄ − ν(θ))ᵀ

∣∣
θ=θ̂†

)
︸ ︷︷ ︸

B(θ̂†)

Ω
(
ν̄ − ν(θ̂†)

)
= 0p×1. (A.6)

The mean value theorem ensures that, based on Assumption A, there exists a matrix A(θ1, . . . ,θJ),

as defined in the proof of Theorem 2, that can be used to expand ν̄ − ν(θ̂†) around θ0 in the

following way

ν̄ − ν(θ̂†) = ν̄ − ν(θ0)−A(θ∗1, . . . ,θ
∗
J)
(
θ̂† − θ0

)
. (A.7)

Based on the derivatives in the proofs of Proposition 1 (whose solutions for zero occur when

ν̄ = ν(θ)) and using Theorem 2, we have that ν̄
p→ ν(θ0) and θ̂†

p→ θ0 such that the multivariate

mean value theorem also guarantees that the matrix A(θ∗1, . . . ,θ
∗
J) has the following property

A(θ∗1, . . . ,θ
∗
J)

p→ − ∂

∂θᵀ
(ν(θ0)− ν(θ))

∣∣∣∣
θ=θ0

=
∂

∂θᵀ
ν(θ)

∣∣∣∣
θ=θ0

= A(θ0),

given that ∂/∂θ ν(θᵀ) is continuous. Plugging (A.7) in the third factor of (A.6), multiplying by
√
K and using Assumption B allows us to state that

√
K
(
θ̂† − θ0

)
is equal to

−
[
B(θ̂†) Ω A(θ̂†,θ0)

]−1

B(θ̂†) Ω
√
K (ν̄ − ν(θ0)) . (A.8)

Knowing that B(θ̂†)
p→ −A(θ0)ᵀ by the continuous mapping theorem, and that θ̂†

p→ θ0 from



7

Theorem 2, by continuous mapping theorem (and the continuity of matrix inverse) we have that

−
[
B(θ̂†) Ω A(θ̂†,θ0)

]−1

B(θ̂†) Ω
p→ [A(θ0)ᵀΩA(θ0)]−1 A(θ0)ᵀΩ = H(θ0)−1A(θ0)ᵀΩ.

By again using Slutsky’s theorem with Theorem 1 of [4] (in conjunction with Assumption A)

as well as (A.5), we have that (A.8) has the following asymptotic distribution

√
K
(
θ̂† − θ0

)
D−→ N (0,Λ0),

with Λ0 being given by

Λ0 := H(θ0)−1A(θ0)ᵀΩΣΩA(θ0)H(θ0)−1,

where Σ is defined in (A.5), thus concluding the proof.

Proof of Proposition 3

When ν(θ) = Wθ, as shown in [5], the GMWM has an explicit solution given by

ϑ̄ = (WᵀΩW)−1WᵀΩν̂.

Hence, in this case the AGMWM estimator can be expressed as

θ̂◦ =
K∑
i=1

wiϑ̃i =
K∑
i=1

wi(W
ᵀΩW)−1WᵀΩν̂i = (WᵀΩW)−1WᵀΩ

K∑
i=1

wiν̂i︸ ︷︷ ︸
ν̄

.

Now, based on the proof in Proposition 1, we have that θ̂† is the solution in θ of the following

equation

2
∂

∂θ
ν(θ)Ω


K∑
i=1

wiν̂i︸ ︷︷ ︸
ν̄

−ν(θ)

 = 0,

which, in the case where ν(θ) = W (θ), delivers

2WᵀΩ (ν̄ −Wθ) = 0.

The solution is therefore given by

θ̂† = (WᵀΩW)−1WᵀΩν̄,
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which is the same as for the AGMWM and, based on Proposition 1, the same as for the MS-

GMWM.
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B. Individual fits
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Fig. B.1. Empirical WV (blue doted line) for the training sequences of accelerometer of a Bosch Sensortec BMI085 6-Axis IMU
and their respective 95% confidence intervals (blue shaded area). Red dotted line represent the implied WV from the individual
solution of the GMWM on sequence 1, . . . 8, while orange dotted line the implied WV from the MS-GMWM computed trough
the AWV.
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Fig. B.2. Empirical WV (blue doted line) for the training sequences of gyroscope of a Bosch Sensortec BMI085 6-Axis IMU
and their respective 95% confidence intervals (blue shaded area). Red dotted line represent the implied WV from the individual
solution of the GMWM on sequence 1, . . . 8, while orange dotted line the implied WV from the MS-GMWM computed trough
the AWV.
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C. Parameter distribution accelerometer and gyroscope
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Fig. C.1. Empirical parameter distribution of θ̃i for model Mi, i ∈ [1, ..., 8], with each individual estimates i represented by a
red dot, with the MS estimates θ̂† (blue dashed line) for model MMS for the accelerometers.

0.
28

0.
32

0.
36

Parameter distribution gyroscope

φ1

0.
99
98
8

0.
99
99
6

φ2

0.
99
99
95

0.
9
99
9
99

φ3

1.
2
·1
0
−
1
1

2
·1
0
−
1
1

η21

5.
0
·1
0
−
1
4

1.
5
·1
0
−
1
3 η22

5
·1
0
−
1
6

1.
5
·1
0
−
1
5

η23

θ̂† θ̃i for i ∈ [1, . . . , 8]

Fig. C.2. Empirical parameter distribution of θ̃i for model Mi, i ∈ [1, ..., 8], with each individual estimates i represented by a
red dot, with the MS estimates θ̂† (blue dashed line) for model MMS for the gyroscopes.
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D. Case Study II - Impact on Navigation
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Fig. D.1. WV implied by respective estimated models for the x-axis gyroscope (left plot) and x-axis accelerometer (right plot)
for the NavChipTM 6-Axis Intersense IMU based on the model WN +AR1+RW for the gyroscope and AR1+AR1+WN
for the accelerometer. For each plot the plain colored lines represent the WV implied by the model estimated via the GMWM on
each individual replicate (e.g. Model 1 fitted based on the first replicate), while the orange line with circles represents the AWV
fit on all replicates 1, . . . , 5 with the shaded areas consisting in the 95% confidence intervals for the WV for each replicate.

This section present a further evaluation similar to the one presented in Section. IV. This time,

we consider the NavChipTM 6-Axis IMU supplied by Intersense1, a high-quality MEMs IMU for

navigation applications, e.g., in UAVs [6]. Such an inertial module combines a 3-axis gyroscope

and a 3-axis accelerometer. We collect K = 5 replicates of sensor data in static conditions, each

one lasting 1.5 hours.

To identify the error process we visually analyse the empirical WV of the replicates and find

that the sum of a WN, an AR1 and a RW appears well suited for the gyroscope signal while

the sum of two AR1 processes and a WN fits the accelerometer WV well as shown in Fig. D.1.

More specifically: (i) the plain colored lines represent the WV implied by the processes fit to the

individual replicates fitted through the GMWM (Mi is the model fit on replicate i = 1, . . . , 5)

and (ii) the orange line with circles represents the model fitted through the AWV (MMS) on all

5 replicates with the shaded area representing the 95% confidence intervals for the WV. Each

fitted model lies within the confidence intervals of the empirical WV which, to avoid visual

cluttering, was omitted from the plot. Considering these representations, it is straightforward

to detect differences in the models fit to the signals via the individual and joint approaches.

1The Intersense NavChipTM family: https://www.intersense.com/navchip

https://www.intersense.com/navchip
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Given this, in order to confirm whether to use a single replicate or a multi-signal approach we

perform the near-stationarity test put forward in [7] by simulating 100 bootstrap replicates under

the estimated Fθ̂† which, keeping in mind the discrete nature of the bootstrapped test statistic,

gives us a zero p-value thereby allowing us to reject the null hypothesis that all replicates are

issued from the same data-generating process with ϑi = θ0 for all i (i.e. G is a Dirac point mass

distribution).

With the goal of producing further evidence for the argument that some (or all) fitted models

are different from each other (in terms of parameter values) we perform a Principal Component

Analysis (PCA) on the parameter vectors ϑ̃i as estimated by GMWM for all the models and on

θ̂† (AWV). The first two dimensions of the PCA are shown in Fig. D.2, where we can identify

three clusters of models, highlighting the differences in behaviour of those replicates. Based on

this result we can consider M2 (the model estimated by the GMWM applied to the second

replicate) as the replicate which is closest to the fit given by MMS.
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Fig. D.2. First two principal components on the parameter vectors ϑ̃i for models i = 1, . . . , 5 (Mi) and θ̂† on replicates 1 to
5 (MMS).

Given the similarities of the parameter vector ϑ̃2 ofM2 with θ̂† ofMMS, we compute the 95%

confidence intervals of their parameter values for both the gyroscope and accelerometer signals.

These are shown in Tab I and Tab II. The 95% confidence intervals for M2 are constructed by

parametric bootstrap, i.e., by simulating new samples under the stationary estimated model, while

the ones for MMS are obtained by re-sampling the different replicates X(i)
t (for i = 1, . . . , 5)

as described for example in [7]. Looking at these tables, while the parameter values can be

considered fairly close, we can clearly see how the AWV confidence intervals better capture the

uncertainty in the parameters due to the near-stationary setting.
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Parameter M2 MMS

φ1 9.99 · 10−1 9.99 · 10−1

(9.99 · 10−1, 9.99 · 10−1) (9.99 · 10−1, 9.99 · 10−1)
η2

1 4.76 · 10−14 2.82 · 10−13

(2.00 · 10−14, 7.53 · 10−14) (1.82 · 10−13, 4.09 · 10−13)
φ2 9.99 · 10−1 9.98 · 10−1

(9.99 · 10−1, 9.99 · 10−1) (9.97 · 10−1, 9.99 · 10−1)
η2

2 1.28 · 10−12 4.72 · 10−12

(1.08 · 10−12, 1.50 · 10−12) (2.40 · 10−12, 7.07 · 10−12)
σ2 1.39 · 10−6 1.39 · 10−6

(1.39 · 10−6, 1.40 · 10−6) (1.37 · 10−6, 1.43 · 10−6)

TABLE I
PARAMETER ESTIMATES AND 95% CONFIDENCE INTERVALS FOR THE AR1 + AR1 + WN MODEL FOR THE NAVCHIPTM

6-AXIS IMU ACCELEROMETER BASED ON SOLELY ON THE SECOND REPLICATE (M2) AND ON THE AWV (MMS).

Parameter M2 MMS

φ 9.99 · 10−1 9.99 · 10−1

(9.99 · 10−1, 9.99 · 10−1) (9.99 · 10−1, 9.99 · 10−1)
η2 1.79 · 10−12 6.99 · 10−13

(1.37 · 10−12, 2.22 · 10−12) (2.60 · 10−13, 1.13 · 10−12)
γ2 4.25 · 10−14 4.42 · 10−14

(2.00 · 10−14, 6.50 · 10−14) (2.55 · 10−14, 8.03 · 10−14)
σ2 1.29 · 10−6 1.22 · 10−6

(1.29 · 10−6, 1.29 · 10−6) (1.13 · 10−6, 1.33 · 10−6)

TABLE II
PARAMETER ESTIMATES AND 95% CONFIDENCE INTERVALS FOR THE WN + AR1 + RW MODEL FOR THE NAVCHIPTM

6-AXIS IMU GYROSCOPE BASED ON SOLELY ON THE SECOND REPLICATE (M2) AND ON THE AWV (MMS).

Having compared the different approaches in terms of model fit and uncertainty evaluation, we

investigate the navigation performance on the 6 different models. For this purpose, the estimated

stochastic models are used in an Extended Kalman Filter for INS/GNSS navigation in order

to compare the performance of these models in terms of position and orientation error as well

as consistency of the confidence intervals for the navigation state within a realistic navigation

scenario. The procedure is similar to the one presented in Section IV, with the difference that

the number of available data sequences (K = 5) is not sufficient to split those into a training

and validation set. Thus, the same data sequences used to fit models Mi, with i ∈ [1, ..., 5] and

MMS are also used to generate the noisy inertial readings during the Monte-Carlo navigation

simulations. The results are presented in Fig. D.3 and Fig. D.4.
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Fig. D.3. Mean position and orientation errors achieved by using each estimated model to predict the error on all replicates, Mi

represents the model estimated on replicate i and MMS represents the model estimated via the multi-signal AWV. The results
are expressed in percentage with respect the best performing model on one specific static acquisition. For instance, the model
based on the second replicate (M2) has the lowest position error on replicate 5 (0%) while, always referred to the position error
for replicate 5, the model based on the fourth replicate (M4) performs on average 5% worse (results based on 500 Monte-Carlo
runs).

M1 M2 M3 M4 M5 MMS

0.5

0.55

0.6

0.65

0.7

0.75

C
ov

er
ag

e

Replicate
1
2
3
4
5

Fig. D.4. Empirical coverage of the 70% confidence intervals derived from the EKF covariance matrices for each model
estimated on individual replicates (Mi) and via the multi-signal AWV (MMS). Results represent empirical coverage of each
individual model when applied to all replicates with the blue dashed lines representing confidence intervals for the true coverage.
For instance, the model based on the second replicate (M2) tends to “over-cover” the navigation states for all the other replicates
except for those of its reference signal which just lie within the confidence intervals of the required 70% coverage rate (results
based on 500 Monte-Carlo runs).

As expected, it is possible to see that each model fitted on a single replicate performs best

when employed against noise coming from the data replicate it was estimated on. However,

when the noise comes from a different static acquisition, the performances may degrade up to

5% in position and 6% in orientation. This is related to the overfitting of the model on a single

realisation of the stochastic error processes. On the contrary, the models estimated with the AWV

technique perform well, if not optimally, on each of the static acquisition replicates. This shows

that the proposed method is able to better capture the underlying nature of the data-generating
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process. This is also visible in the coverage of the confidence intervals for the navigation states

(position and orientation) as estimated by the EKF: the models estimated with the AWV have

the correct coverage, within 68% and 72%, given the number of Monte-Carlo runs, while the

coverage is often outside such bounds for the single-signal models.
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