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Abstract

We develop an econometric methodology to infer the path of risk premia from a large unbalanced panel of

individual stock returns. We estimate the time-varying risk premia implied by conditional linear asset pricing models

where the conditioning includes both instruments common to all assets and asset specific instruments. The estimator

uses simple weighted two-pass cross-sectional regressions, and we show its consistency and asymptotic normality

under increasing cross-sectional and time series dimensions. We address consistent estimation of the asymptotic

variance by hard thresholding, and testing for asset pricing restrictions induced by the no-arbitrage assumption.

We derive the restrictions given by a continuum of assets in a multi-period economy under an approximate factor

structure robust to asset repackaging. The empirical analysis on returns for about ten thousands US stocks from July

1964 to December 2009 shows that risk premia are large and volatile in crisis periods. They exhibit large positive

and negative strays from time-invariant estimates, follow the macroeconomic cycles, and do not match risk premia

estimates on standard sets of portfolios. The asset pricing restrictions are rejected for a conditional four-factor model

capturing market, size, value and momentum effects.
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1 Introduction

Risk premia measure financial compensation asked by investors for bearing systematic risk. Financial

and macroeconomic variables influence risk. Conditional linear factor models aim at capturing their time-

varying influence in a simple setting (see e.g. Shanken (1990), Cochrane (1996), Ferson and Schadt (1996),

Ferson and Harvey (1991, 1999), Lettau and Ludvigson (2001), Petkova and Zhang (2005)). Time variation

in risk biases time-invariant estimates of alphas and betas, and therefore asset pricing test conclusions (Ja-

gannathan and Wang (1996), Lewellen and Nagel (2006), Boguth et al. (2011)). Ghysels (1998) discusses

the pros and cons of modeling time-varying betas.

The workhorse to estimate equity risk premia in a linear multi-factor setting is the two-pass cross-

sectional regression method developed by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973).

A series of papers address its large and finite sample properties for linear factor models with time-invariant

coefficients, see e.g. Shanken (1985, 1992), Jagannathan and Wang (1998), Shanken and Zhou (2007),

Kan, Robotti, and Shanken (2013), and the review paper of Jagannathan, Skoulakis, and Wang (2009). The

literature has not yet formally addressed statistical inference for equity risk premia in conditional linear

factor models despite its empirical relevance.

In this paper, we study how we can infer the time-varying behaviour of equity risk premia from large

stock returns databases under conditional linear factor models. Our approach is inspired by the recent trend

in macro-econometrics and forecasting methods trying to extract cross-sectional and time-series informa-

tion simultaneously from large panels (see e.g. Stock and Watson (2002a,b), Bai (2003, 2009), Bai and

Ng (2002, 2006), Forni et al. (2000, 2004, 2005), Pesaran (2006)). Ludvigson and Ng (2007, 2009) ex-

emplify this promising route when studying bond risk premia. Connor, Hagmann, and Linton (2012) show

that large cross-sections exploit data more efficiently in a semiparametric characteristic-based factor model

of stock returns. The theoretical framework underlying the Arbitrage Pricing Theory (APT) also inspires

our approach relying on individual stocks returns. In this setting, approximate factor structures with nondi-

agonal error covariance matrices (Chamberlain and Rothschild (1983, CR)) answer the potential empirical

mismatch of exact factor structures with diagonal error covariance matrices underlying the original APT of

Ross (1976). Under weak cross-sectional dependence among idiosyncratic error terms, such approximate

factor models generate no-arbitrage restrictions in large economies where the number of assets grows to
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infinity. Our paper develops an econometric methodology tailored to the APT framework. Indeed, we let

the number of assets grow to infinity mimicking the large economies of financial theory.

The potential loss of information and bias induced by grouping stocks to build portfolios in asset pricing

tests further motivate our approach (e.g. Litzenberger and Ramaswamy (1979), Lo and MacKinlay (1990),

Berk (2000), Conrad, Cooper, and Kaul (2003), Phalippou (2007)). Avramov and Chordia (2006) have

already shown that empirical findings given by conditional factor models about anomalies differ a lot when

considering single securities instead of portfolios. Ang, Liu, and Schwarz (2008) argue that we loose a lot

of efficiency when only considering portfolios as base assets, instead of individual stocks, to estimate equity

risk premia in models with time-invariant coefficients. In our approach, the large cross-section of stock

returns helps to get accurate estimation of the equity risk premia even if we get noisy time-series estimates

of the factor loadings (the betas). Besides, when running asset-pricing tests, Lewellen, Nagel, and Shanken

(2010) advocate working with a large number of assets instead of working with a small number of portfolios

exhibiting a tight factor structure. The former gives us a higher hurdle to meet in judging model explanation

based on cross-sectional R2.

Our theoretical contributions are threefold. First, we derive no-arbitrage restrictions in a multi-period

economy (Hansen and Richard (1987)) under an approximate factor structure (Chamberlain and Rothschild

(1983)) with a continuum of assets. We explicitly show the relationship between the ruling out of asymptotic

arbitrage opportunities and an empirically testable restriction for large economies in a conditional setting.

We also formalize the sampling scheme so that observed assets are random draws from an underlying pop-

ulation (Andrews (2005)). Such a construction is close to the setting advocated by Al-Najjar (1995, 1998,

1999a) in a static framework with an exact factor structure. He discusses several key advantages of using

a continuum economy in arbitrage pricing and risk decomposition. A key advantage is robustness of factor

structures to asset repackaging (Al-Najjar (1999b)). Second, we derive a new weighted two-pass cross-

sectional estimator of the path over time of the risk premia from large unbalanced panels of excess returns.

We study its large sample properties in conditional linear factor models where the conditioning includes

instruments common to all assets and asset specific instruments. The factor modeling permits conditional

heteroskedasticity and cross-sectional dependence in the error terms (see Petersen (2008) for stressing the

importance of residual dependence when computing standard errors in finance panel data). We derive con-
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sistency and asymptotic normality of our estimators by letting the time dimension T and the cross-section

dimension n grow to infinity simultaneously, and not sequentially. We relate the results to bias-corrected es-

timation (Hahn and Kuersteiner (2002), Hahn and Newey (2004)) accounting for the well-known incidental

parameter problem in the panel literature (Neyman and Scott (1948)). We derive all properties for unbal-

anced panels to avoid the survivorship bias inherent to studies restricted to balanced subsets of available

stock return databases (Brown, Goetzmann, and Ross (1995)). The two-pass regression approach is simple

and particularly easy to implement in an unbalanced setting. This explains our choice over more efficient,

but numerically intractable, one-pass ML/GMM estimators or generalized least-squares estimators. When n

is of the order of a couple of thousands assets, numerical optimization on a large parameter set or numerical

inversion of a large weighting matrix is too challenging and unstable to benefit in practice from the theoret-

ical efficiency gains, unless imposing strong ad hoc structural restrictions. Third, we provide a test of the

asset pricing restrictions for the conditional factor model underlying the estimation. The test exploits the

asymptotic distribution of a weighted sum of squared residuals of the second-pass cross-sectional regression

(see Lewellen, Nagel, and Shanken (2010), Kan, Robotti, and Shanken (2013) for a related approach in

models with time-invariant coefficients and asymptotics with fixed n). The test statistic relies on consistent

estimation of large-dimensional sparse covariance matrices by hard thresholding (Bickel and Levina (2008),

El Karoui (2008), Fan, Liao, and Mincheva (2011)). As a by-product, our approach permits inference for

the cost of equity on individual stocks, in a time-varying setting (Fama and French (1997)). We know from

standard textbooks in corporate finance that cost of equity = risk free rate + factor loadings × factor risk

premia. It is part of the cost of capital and is a central piece for evaluating investment projects by company

managers.

For our empirical contributions, we consider the Center for Research in Security Prices (CRSP) database

and take the Compustat database to match firm characteristics. The merged dataset comprises about ten thou-

sands stocks with monthly returns from July 1964 to December 2009. We look at factor models popular in

the empirical finance literature to explain monthly equity returns. They differ by the choice of the factors.

The first model is the CAPM (Sharpe (1964), Lintner (1965)) using the excess market return as the single

factor. Then, we consider the three-factor model of Fama and French (1993) based on two additional factors

capturing the book-to-market and size effects, and a four-factor extension including a momentum factor
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(Jegadeesh and Titman (1993), Carhart (1997)). We study time-invariant and time-varying versions of the

factor models (Ferson and Schadt (1996), Ferson and Harvey (1999)). For the latter, we use both macrovari-

ables and firm characteristics as instruments. The estimated paths show that the risk premia are large and

volatile in crisis periods, e.g., the oil crisis in 1973-1974, the market crash in October 1987, and the recent fi-

nancial crisis. Furthermore, the time-varying risk premia estimates exhibit large positive and negative strays

from time-invariant estimates, follow the macroeconomic cycles, and do not match risk premia estimates

on standard sets of portfolios. The asset pricing restrictions are rejected for a conditional four-factor model

capturing market, size, value and momentum effects.

The outline of the paper is as follows. In Section 2, we consider a general framework of conditional

factor model for asset returns and derive the no-arbitrage pricing restrictions. We also show robustness of

factor structures to asset repackaging and describe the sampling scheme. In Section 3, we introduce para-

metric functional specifications for the time-varying model coefficients, where the instruments generating

conditional information can be either common to all stocks or stock-specific. We also present our estimation

and testing approaches. Section 4 contains the empirical results. In the Appendices, we gather the technical

assumptions and some proofs. We use high-level assumptions to get our results and show in the online

supplementary materials that we meet all of them under a block cross-sectional dependence structure on

the error terms in a time-invariant and serially i.i.d. framework. We place all omitted proofs and the Monte

Carlo simulation results in the online supplementary materials. There, we also include additional empirical

results, estimates of the cost of equity and robustness checks.

2 Conditional factor model of asset returns

In this section, we consider a conditional linear factor model with time-varying coefficients in order to

model possibly time-varying risk premia (see Connor and Korajczyk (1989) for an intertemporal competitive

equilibrium version of the APT yielding time-varying risk premia and Ludvigson (2013) for a discussion

within scaled consumption-based models). The setting includes models with time-invariant coefficients as a

particular case. This covers the CAPM where the excess market return is the single factor.
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2.1 Excess return generation and asset pricing restrictions

We start by describing the generating process for the excess returns before examining the implications of the

absence of arbitrage opportunities in terms of model restrictions. We combine the constructions of Hansen

and Richard (1987) and Andrews (2005) to define a multi-period economy with a continuum of assets having

strictly stationary and ergodic return processes. We use such a formal construction to guarantee that (i) the

economy is invariant to time shifts, so that we can establish all properties by working at t = 1, (ii) time series

averages converge almost surely to population expectations, (iii) under a suitable sampling mechanism (see

Section 2.3), cross-sectional limits exist and are invariant to reordering of the assets, (iv) the derived no-

arbitrage restriction is empirically testable. This construction allows reconciling finance and econometric

analysis in a coherent framework.

Let (Ω,F , P ) be a probability space. The random vector f admitting values in RK , the collection

of random variables ε(γ), γ ∈ [0, 1], and the collection of random vectors β(γ) = (a(γ), b(γ)′)′, γ ∈

[0, 1], admitting values in R × RK , are defined on this probability space. We describe the dynamics by a

measurable time-shift transformation S mapping Ω into itself. If ω ∈ Ω is the state of the world at time

0, then St(ω) is the state at time t, where St denotes the transformation S applied t times successively.

We assume transformation S to be measure-preserving and ergodic (i.e., any set in F invariant under S has

measure either 1, or 0). In order to define the information sets, let F0 ⊂ F be a sub sigma-field. Define

Ft = {S−t (A) , A ∈ F0}, t = 1, 2, ..., through the inverse mapping S−t and assume that F1 contains F0.

Then, the filtration Ft, t = 1, 2, ..., characterizes the flow of information available to investors. We assume

that random vectors f and β(γ), for γ ∈ [0, 1], are measurable w.r.t. F0.

Assumption APR.1 The excess returnsRt(γ) of asset γ ∈ [0, 1] at dates t = 1, 2, ..., satisfy the conditional

linear factor model:

Rt(γ) = at(γ) + bt(γ)
′
ft + εt(γ), (1)

where the random variables εt(γ), ft, at(γ) and bt(γ) are defined as εt(γ, ω) = ε[γ, St(ω)], ft(ω) =

f [St(ω)], at(γ, ω) = a[γ, St−1(ω)] and bt(γ, ω) = b[γ, St−1(ω)], for any ω ∈ Ω and γ ∈ [0, 1]. For any

γ ∈ [0, 1], we have E[εt(γ)|Ft−1] = 0 and Cov[εt(γ), ft|Ft−1] = 0.

Assumption APR.1 defines the excess return processes for an economy with a continuum of assets. Without
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loss of generality, the index set is the interval [0, 1], endowed with the Borel sigma-field B and a probability

distribution G that is absolutely continuous w.r.t. the Lebesgue measure. A countable collection of assets

from this economy is a sequence (γi) with elements in [0, 1]. We endow the set Γ = [0, 1]∞ of such

sequences with the product sigma-field B∞ and the product measure µΓ = G∞ (see e.g. Halmos (1950),

Theorem 38.B). The vector ft gathers the values of the K observable factors at date t. In Assumption

APR.1, the error terms have mean zero and are uncorrelated with the factors conditionally on information

Ft−1. This allows identification of at(γ) and bt(γ) as conditional regression coefficients since the intercept

at(γ) and factor sensitivities bt(γ) of asset γ ∈ [0, 1] are Ft−1-measurable. Since transformation S is

measure-preserving and ergodic, all processes are strictly stationary and ergodic (Doob (1953)). Define

further xt = (1, f
′
t )
′

and βt(γ) = (at(γ), bt(γ)′)′, which yields the compact formulation:

Rt(γ) = βt(γ)′xt + εt(γ). (2)

Let us now introduce supplementary assumptions on factor loadings and error terms to derive the main

result of this section. We denote byLp (Ω,F0, P ), p > 0, the space of p-th order integrable random variables

that are measurable w.r.t. information F0, and by ‖Z‖p = (E [|Z|p]) 1/p, the associated Lp-norm.

Assumption APR.2 (i) The mapping β : [0, 1] × Ω → RK+1 is measurable with respect to its bivariate

argument (γ, ω). (ii) The mapping β is such that β(γ) =
∞∑
j=1

cj(γ)ηj , where the cj : [0, 1] → RK+1 are

measurable vector functions, and the ηj are orthonormal random variables in L2(Ω,F0, P ). Moreover,

ηj ∈ L4(Ω,F0, P ) and
∞∑
j=1

‖cj(γ)‖‖ηj‖4 ≤M , for any γ ∈ [0, 1], for a constant M > 0. (iii) The random

matrix
ˆ
b (γ) b (γ)′ dG (γ) is positive definite and such that

∥∥∥∥∥
(ˆ

b (γ) b (γ)′ dG (γ)

)−1
∥∥∥∥∥ ≤M, P -a.s.,

for a constant M > 0. Moreover,
∥∥∥∥ˆ b (γ) a (γ) dG (γ)

∥∥∥∥ ≤M, P -a.s..

Assumption APR.2 (i) is the standard measurability condition for a stochastic process with sample space

Ω and parameter space [0, 1] (see e.g. Doob (1953)). In Assumption APR.2 (ii), function β maps the in-

terval [0, 1] into the Hilbert space L2 (Ω,F0, P ). Assumption APR.2 (ii) implies that the process β is a

bounded aggregate process in the terminology of Al-Najjar (1995). An aggregate process admits a repre-

sentation as an infinite linear combination of countable orthonormal random variables. We can interpret
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the ηj as orthonormal shocks common to the components βk(γ) of β(γ), for any k = 1, ...,K + 1, and

to all assets γ ∈ [0, 1], but with different loadings ck,j(γ). We can approximate an arbitrary aggregate

process by a finitely generated one, for example generated by the p shocks {η1, . . . , ηp}, so that we can

make the norm of the difference between the two small (Al-Najjar (1995), Proposition 1). As remarked in

Khan and Sun (1999, p. 555), assuming a bounded aggregate process is the same as assuming a strong mea-

surable process because of the Pettis measurability theorem (see also Al-Najjar (1995), Proposition B.1).

We use that notion of measurability to show Lemma 1 in Appendix A.2.1. Khan and Sun (1999 p. 555)

emphasizes that adding a non-trivial idiosyncratic part to an aggregate process induces the possibility of

non-measurability of realisations. This problem is known in the literature on the Law of Large Numbers

(LLN) for a continuum of random variables (Judd (1985), Uhlig (1996)). Under Assumption APR.2 (ii), we

show in the proof of Lemma 1 that the sample average
1

n

∑
i

βk (γi)βl (γi), with k, l = 1, ...,K + 1, for

the cross-products of the intercept and factor loadings converges in the L2 (Ω,F0, P ) norm to the Bochner

integral B −
ˆ
βk (γ)βl (γ) dG (γ) for µΓ-a.e. sequence (γi) ∈ Γ, where B −

ˆ
refers to the defini-

tion of the Bochner integral. The summability condition on L4-norms ‖ηj‖4 in Assumption APR.2 (ii) is

needed because we work with squares of the components of β, instead of β itself. Under Assumption APR.2

(i), we show that the Bochner integral B −
ˆ
βk(γ)βl(γ)dG (γ) is equal to the ω-wise Lebesgue integralˆ

βk (γ)βl (γ) dG (γ), P -a.s. In a time-invariant model, the coefficient vector β is independent of argu-

ment ω, and Assumptions APR.2 (i)-(ii) boil down to boundedness and Lebesgue measurability of β w.r.t.

argument γ, as assumed in an unconditional economy by Al Najjar (1998, p. 237). The a.s. convergence

of
1

n

∑
i

βk (γi)βl (γi) in Lemma 1 is then simply a consequence of the strong LLN. As soon as we depart

from a time-invariant setting, we have to be sure that we can make sense of the limit of the sample average of

the cross-products of the intercept and factor loadings by avoiding potential non-measurability issues. This

explains why we need something more restrictive than simple boundedness and Lebesgue measurability for

β in a time-varying framework. Assumptions APR.2 (i)-(ii) highlight key technical difficulties in the exten-

sion from a time-invariant framework to a time-varying framework. Ruling out a non-trivial idiosyncratic

part in Assumption APR.2 (ii) is a limitation of our setting even if we work with an infinite linear combina-

tion of common shocks. Since transformation S is measure-preserving, Assumption APR.2 (iii) implies that

the matrix
ˆ
bt(γ)bt(γ)′dG (γ) is positive definite, P -a.s., for any date t = 1, 2, ..., i.e., the non-degeneracy
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in the factor loadings across assets.

In Assumption APR.3 below, we impose an approximate factor structure for the conditional distribution

of the error terms given Ft−1 in almost any countable collection of assets. More precisely, for any se-

quence (γi) in [0, 1], let Σε,t,n denote the n × n conditional variance-covariance matrix of the error vector

[εt(γ1), ..., εt(γn)]′ given Ft−1, for n ∈ N.

Assumption APR.3 There exists a set J ⊂
{

(γi) ∈ Γ : n−1eigmax (Σε,t,n)
L2

→ 0, as n→∞
}

with

µΓ (J ) = 1, where eigmax (Σε,t,n) denotes the largest eigenvalue of matrix Σε,t,n.

CR (p. 1294) use a sequence of variance-covariance matrices of the error terms that have uniformly bounded

eigenvalues. Assumption APR.3 is weaker than boundedness of the largest eigenvalue almost surely, i.e.,

sup
n≥1

eigmax (Σε,t,n) ≤M, P -a.s., for a.e. (γi) and a constant M > 0. This is useful for the checks of

Appendix 6 under a block cross-sectional dependence structure. In the proof of Lemma 14, we give an ex-

plicit (nontrivial) example of a set J satisfying Assumption APR.3. A sufficient condition for measurability

of the set
{

(γi) ∈ Γ : n−1eigmax (Σε,t,n)
L2

→ 0, as n→∞
}

is the joint measurability of the conditional

covariance function E [εt (γ1) εt (γ2) |Ft−1 ] w.r.t. γ1, γ2 ∈ [0, 1] and ω ∈ Ω (see Al-Najjar (1998, 1999a)

in the unconditional case). As discussed in Khan and Sun (1999), such an assumption for the error term

might be restrictive, and may constitute a key difficulty in handling non-trivial idiosyncratic uncertainty.

This explains why we work with a subset J in APR.3, since measurability of a subset does not require the

measurability of the superset. The superset in Assumption APR.3 is measurable w.r.t. the completion of

measure µΓ.

Absence of asymptotic arbitrage opportunities generates asset pricing restrictions in large economies

(Ross (1976), CR). We define asymptotic arbitrage opportunities in terms of sequences of portfolios pn, n ∈

N. We characterize portfolio pn by the share α0,n invested in the riskfree asset and the shares αi,n invested

in the selected risky assets γi, for i = 1, ...., n. The shares are measurable w.r.t. F0. Then, C(pn) =
n∑
i=0

αi,n

is the portfolio cost at t = 0, and pn = C(pn)R0 +

n∑
i=1

αi,nR1(γi) is the portfolio payoff at t = 1, where

R0 denotes the riskfree gross return measurable w.r.t. F0. We can work with t = 1 because of stationarity.

9



Assumption APR.4 There are no asymptotic arbitrage opportunities in the economy, that is, there exists

no portfolio sequence (pn) such that lim
n→∞

P [C(pn) = 0, pn ≥ 0] = 1 and lim inf
n→∞

P [pn > 0] > 0.

Assumption APR.4 excludes portfolios that approximate arbitrage opportunities when the number of in-

cluded assets increases. Arbitrage opportunities are investments with zero cost and non-negative payoff in

each state of the world, and with positive payoff in some states of the world. Hansen and Richard (1987),

Definition 2.4, p. 594, uses non-positive cost, i.e., C(pn) ≤ 0, in their definition of arbitrage opportunities.

A weaker assumption of absence of arbitrage opportunities is sufficient for a linear pricing context. It is

weaker since we rule out asymptotic arbitrage opportunities based on a more restrictive concept of arbitrage

(the set of sequences (pn) with a cost exactly zero is a subset of the set of sequences with a non-positive

cost). The next proposition gives the asset pricing restriction.

Proposition 1 Under Assumptions APR.1-APR.4, for any date t = 1, 2, ... there exists a unique random

vector νt ∈ RK such that νt is Ft−1-measurable and:

at(γ) = bt(γ)′νt, (3)

for almost all γ ∈ [0, 1], P -a.s.

We can rewrite the asset pricing restriction as

E [Rt(γ)|Ft−1] = bt(γ)′λt, (4)

for almost all γ ∈ [0, 1], where λt = νt + E [ft|Ft−1] is the vector of the conditional risk premia. In an

unconditional factor model, the sigma-field F0 is trivial, and the coefficient functions a and b as well as the

vectors ν and λ are time-invariant, with λ = ν + E[ft]. In the CAPM, we have K = 1 and ν = 0. When a

factor fk,t is a portfolio excess return, we also have νk,t = 0, k = 1, ...,K.

Equation (4) for a strict factor structure in an unconditional economy (static case with time-invariant

coefficients) becomesE[Rt] = b(γ)′λ. Such a restriction is derived by Al-Najjar (1998) in his Proposition 2

under the definition of arbitrage used in CR. Through Proposition 1, we extend the latter equality to (4) un-

der an approximate factor structure in a conditional economy (dynamic case with time-varying coefficients)

with a definition of arbitrage analogous to Hansen and Richard (1987). Proposition 1 differs from CR The-

orem 3 in terms of the returns generating framework, the definition of asymptotic arbitrage opportunities,
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and the derived asset pricing restriction. Specifically, we consider a multi-period economy with conditional

information and time-varying coefficients as opposed to the single period unconditional economy in CR. We

prefer the definition underlying Assumption APR.4 since it corresponds to the definition of arbitrage that

is standard in dynamic asset pricing theory (e.g., Duffie (2001)). As pointed out by Hansen and Richard

(1987), Ross (1978) has already chosen that type of definition. It also eases the proof based on new argu-

ments. However, in Appendix 5 in the supplementary material, we derive the link between the no-arbitrage

conditions in Assumptions A.1 i) and ii) of CR, written conditionally on the information F0 and for almost

every countable collection of assets, and the asset pricing restriction (3) valid for the continuum of assets. In

a time-invariant setting, CR derive the pricing restriction
∞∑
i=1

(
a(γi)− b(γi)

′
ν
)2

<∞, for some ν ∈ RK

and for a given sequence (γi), while we derive the restriction (3), for almost all γ ∈ [0, 1]. In Appendix

5, we consider the completion µ̄Γ of measure µΓ (see e.g. Halmos (1950), Theorem 13.B) to assign mea-

sure zero to negligible sets. We show that the set of sequences (γi) such that, for any date t = 1, 2, ...,

inf
ν∈RK

∞∑
i=1

(
at(γi)− bt(γi)

′
ν
)2

<∞, P -a.s., has measure 1 under µ̄Γ, when the asset pricing restriction (3)

holds, and measure 0, otherwise. In other words, validity of the summability condition in CR for a countable

collection of assets without validity of the asset pricing restriction (3) is an impossible event. In a time-

invariant setting, the zero-one property for the µ̄Γ-measure of the set inf
ν∈RK

∞∑
i=1

(
a(γi)− b(γi)

′
ν
)2

<∞ in

Γ is a consequence of the Kolmogorov zero-one law (see e.g. Billingsley (1995)). The restriction in Propo-

sition 1 is testable with large equity datasets and large sample sizes (Section 3.5). Therefore, we are not af-

fected by the Shanken (1982) critique, namely the problem that finiteness of the sum
∞∑
i=1

(
a(γi)− b(γi)

′
ν
)2

for a given countable economy as in CR cannot be tested empirically.

2.2 Robustness of factor structures to asset repackaging

In this section, we prove the invariance of the approximate factor structure to asset repackaging. This

concern about robustness is already put forward in Shanken (1982). We follow Al-Najjar (1999b), Section

3.1, and define a repackaging by means of sequences of measurable functions wk : [0, 1] → [−1, 1] and

Gk : [0, 1] → [0, 1] for k = 1, 2, .... Functions Gk are bijective. The idea is that any asset γ ∈ [0, 1] is cut

in (at most countably many) slices, and after reshuffling the kth slice with relative weight wk(γ) is assigned
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to the new asset Gk(γ). Then, the excess returns in the repackaged economy are:

R̃t(γ) =
∑
k

wk[G
−1
k (γ)]Rt[G

−1
k (γ)]. (5)

The functions wk(·) are such that
∑
k

wk(γ) = 1, for any γ ∈ [0, 1], since they correspond to weights,

and are bounded: |wk(γ)| ≤ w̄k, for any γ and k, with
∑
k

w̄k <∞. In addition, the functions Gk(·) are

measure-preserving to guarantee that “no risk that is idiosyncratic to a negligible subset of assets in the

original economy can be blown up to have aggregate effects in the new economy" (Al-Najjar (1999b)).

From (2) and (5), the excess returns in the repackaged economy satisfy the conditional linear factor

model:

R̃t(γ) = β̃t(γ)′xt + ε̃t(γ), (6)

where β̃t(γ) =
∑
k

wk[G
−1
k (γ)]βt[G

−1
k (γ)] and ε̃t(γ) =

∑
k

wk[G
−1
k (γ)]εt[G

−1
k (γ)]. The vector of factors

is unchanged, and asset repackaging has no effect on the validity of Assumption APR.1. The following

proposition shows that the condition in Assumption APR.3 on the conditional variance-covariance matrix

of the error terms also holds in the new economy if it holds before repackaging.

Proposition 2 Let E[εt(γ)2|Ft−1] be bounded uniformly in γ ∈ [0, 1] and ω ∈ Ω. If the condition APR.3

holds for the original economy (2), the condition APR.3 with ε̃ substituted for ε holds for the repackaged

economy (6).

The next section describes how we get the data from sampling the continuum of assets.

2.3 Sampling scheme

We estimate the risk premia from a sample of observations on returns and factors for n assets and T dates. In

available databases, we do not observe asset returns for all firms at all dates. We account for the unbalanced

nature of the panel through a collection of indicator variables I(γ), γ ∈ [0, 1], and define It(γ, ω) =

I[γ, St(ω)]. Then It(γ) = 1 if the return of asset γ is observable by the econometrician at date t, and

0 otherwise (Connor and Korajczyk (1987)). To keep the factor structure linear, we assume a missing-at-

random design (Rubin (1976)), that is, independence between unobservability and return generation.
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Assumption SC.1 The random variables It(γ), γ ∈ [0, 1], are independent of εt(γ), γ ∈ [0, 1], and any

variable in Ft.

Another design would require an explicit modeling of the link between the unobservability mechanism and

the return process of the continuum of assets (Heckman (1979)); this would yield a nonlinear factor structure.

Assets are randomly drawn from the population according to the probability distribution G on [0, 1].

Assumption SC.2 The random variables γi, i = 1, ..., n, are i.i.d. indices, independent of εt(γ), It(γ),

γ ∈ [0, 1] and Ft, each with distribution G.

For any n, T ∈ N, the excess returns are Ri,t = Rt(γi) and the observability indicators are Ii,t = It(γi), for

i = 1, ..., n, and t = 1, ..., T . The excess return Ri,t is observed if and only if Ii,t = 1. Similarly, let βi,t =

βt(γi) = (ai,t, b
′
i,t)
′ be the characteristics, εi,t = εt(γi) the error terms, and σij,t = E[εi,tεj,t|Ft, γi, γj ] the

conditional variances and covariances of the errors of the assets in the sample. By random sampling, we get

a random coefficient panel model (e.g. Hsiao (2003), Chapter 6). The characteristic βi,t of asset i at time t

is random even conditionally on Ft−1. It is potentially correlated with the error terms εi,t, the observability

indicators Ii,t, and the conditional variances σii,t, conditionally onFt−1, through the random index γi. If the

coefficients ai,ts and bi,ts were treated as given parameters in the cross-section of assets at time t, and not as

realizations of random variables, invoking cross-sectional LLNs and CLTs as in some assumptions and parts

of the proofs would have no sense. Moreover, cross-sectional limits would be dependent on the selected

ordering of the assets. Instead, our assumptions and results do not rely on a specific ordering of assets.

Random elements
(
β′i,t, σii,t, εi,t, Ii,t

)′
, i = 1, ..., n, are exchangeable (Andrews (2005)). Hence, assets

randomly drawn from the population have ex-ante the same features. However, given a specific realization

of the indices in the sample, assets have ex-post heterogeneous features.

3 Two-pass approach for time-varying risk premium

In the setting of Section 2, we do not follow rolling short-window regression approaches to account for

time-variation (Fama and French (1997), Lewellen and Nagel (2006)); see also Cosemans et al. (2011) for

a recent proposal of a hybrid method to estimate a one-factor time-varying beta model based on Bayesian
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methodology and shrinkage. We favor a structural econometric framework taking into account the no-

arbitrage restrictions to conduct formal frequentist inference for multi-factor models in large cross-sectional

equity datasets. Besides, a five-year window of monthly data yields a very short time-series panel for which

asymptotics with fixed T and large n are better suited, but keeping T fixed impedes consistent estimation of

the risk premia (Shanken (1992)).

3.1 Functional specification of model coefficients

To have a workable version of Equations (1) and (3), we further specify the conditioning information and

how the model coefficients depend on it via a functional specification. The conditioning information is such

that instruments Z ∈ Rp and Z(γ) ∈ Rq, for γ ∈ [0, 1], are F0-measurable. Then, the information Ft−1

contains Zt−1 and Zt−1(γ), for γ ∈ [0, 1], where we define Zt(ω) = Z[St(ω)] and Zt(γ, ω) = Z[γ, St(ω)],

and denote Zt = {Zt, Zt−1, ...}. The lagged instruments Zt−1 are common to all stocks. They may include

the constant and past observations of the factors and some additional variables such as macroeconomic

variables. The lagged instruments Zt−1(γ) are specific to stock γ. They may include past observations of

firm characteristics and stock returns. To end up with a linear regression model, we specify in Assumption

FS.1 that the vector of factor loadings bt(γ) is a linear function of lagged instruments Zt−1 (Shanken (1990),

Ferson and Harvey (1991)) and Zt−1(γ) (Avramov and Chordia (2006)).

Assumption FS.1 The factor loadings are such that bt(γ) = B(γ)Zt−1 + C(γ)Zt−1(γ), where B(γ) ∈

RK×p and C(γ) ∈ RK×q, for any γ ∈ [0, 1] and t = 1, 2, ....

We can account for nonlinearities by including powers of some explanatory variables among the lagged

instruments.

Assumption FS.2 (i) The risk premia vector is such that λt = ΛZt−1, where Λ ∈ RK×p, for any t. (ii) We

have E [ft|Ft−1] = FZt−1, where F ∈ RK×p, for any t.

In Assumption FS.2 (i), we specify that the vector of risk premia is a linear function of lagged instruments

Zt−1 (Cochrane (1996), Jagannathan and Wang (1996)). Since ft is a subvector of Zt, Assumption FS.2

(ii) is satisfied if the conditional expectation of Zt given the information Ft−1 depends on Zt−1 only and is
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linear, as, for instance, in an exogenous Vector Autoregressive (VAR) model of order 1. Under the functional

specifications in Assumptions FS.1 and FS.2, the asset pricing restriction (3) implies that the intercept at(γ)

is a quadratic form in lagged instruments Zt−1 and Zt−1(γ), namely:

at(γ) = Z ′t−1B(γ)′ (Λ− F )Zt−1 + Zt−1(γ)′C(γ)′ (Λ− F )Zt−1. (7)

This shows that assuming a priori linearity of at(γ) in the lagged instruments Zt−1 and Zt−1(γ) is in general

not compatible with linearity of bt(γ) and E [ft|Zt−1].

The sampling scheme is defined in Section 2.3, and we use the additional notation Bi = B(γi), Ci =

C(γi) and Zi,t−1 = Zt−1(γi). In particular, we allow for potential correlation between parameters Bi, Ci

and asset specific instruments Zi,t−1 via the random index γi. Then, the conditional factor model (1) with

asset pricing restriction (7) written for the sample observations becomes

Ri,t = Z ′t−1B
′
i (Λ− F )Zt−1 + Z ′i,t−1C

′
i (Λ− F )Zt−1 + Z ′t−1B

′
ift + Z ′i,t−1C

′
ift + εi,t, (8)

which is nonlinear in the common parameters Λ, F and the asset-specific parameters Bi, Ci.

In order to implement the two-pass estimation methodology in our conditional context, we rewrite

model (8) as a model that is linear in transformed parameters and new regressors. The regressors in-

clude x2,i,t =
(
f ′t ⊗ Z ′t−1, f

′
t ⊗ Z ′i,t−1

)′
∈ Rd2 with d2 = K(p + q). The first components with com-

mon instruments take the interpretation of scaled factors (Cochrane (2005)), while the second compo-

nents do not since they depend on i. The regressors also include the predetermined variables x1,i,t =(
vech [Xt]

′ , Z ′t−1 ⊗ Z ′i,t−1

)′
∈ Rd1 with d1 = p(p + 1)/2 + pq, where the symmetric matrix Xt =

[Xt,k,l] ∈ Rp×p is such thatXt,k,l = Z2
t−1,k, if k = l, andXt,k,l = 2Zt−1,kZt−1,l, otherwise, k, l = 1, . . . , p.

The vector-half operator vech [·] stacks the elements of the lower triangular part of a p × p matrix as a

p (p+ 1) /2× 1 vector (see Chapter 2 in Magnus and Neudecker (2007, MN) for properties of this matrix

tool). Then, we can express model (8) through appropriate redefinitions of the regressors and loadings (see

Appendix A.3.1):

Ri,t = β′ixi,t + εi,t, (9)
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where xi,t =
(
x′1,i,t, x

′
2,i,t

)′
has dimension d = d1 + d2, and βi =

(
β′1,i, β

′
2,i

)′
is such that

β1,i =
((
Np

[
(Λ− F )′ ⊗ Ip

]
vec

[
B′i
])′
,
([

(Λ− F )′ ⊗ Iq
]
vec

[
C ′i
])′)′

, Np =
1

2
D+
p (Wp + Ip2),

β2,i =
(
vec

[
B′i
]′
, vec

[
C ′i
]′)′

. (10)

The vector operator vec [·] stacks the elements of an m×n matrix as a mn×1 vector. The matrix D+
p is the

p(p+1)/2×p2 Moore-Penrose inverse of the duplication matrixDp, such that vech [A] = D+
p vec [A] for any

matrix A ∈ Rp×p (see Chapter 3 in MN). The commutation matrix Wp,q is such that vec[A′] = Wp,qvec[A],

for any matrix A ∈ Rp×q, and Wp := Wp,p. When Zt = 1 and Zi,t = 0, we have p = 1 and q = 0, and

the model in (9) reduces to a factor model with time-invariant coefficients and regressor xt common across

assets (scaled factors).

In Equations (10), the d1 × 1 vector β1,i is a linear transformation of the d2 × 1 vector β2,i. This

clarifies that the asset pricing restriction (7) implies a constraint on the distribution of the random vector βi

via its support. The coefficients of the linear transformation depend on matrix Λ − F . For the purpose of

estimating the loading coefficients of the risk premia in matrix Λ, we rewrite the parameter restrictions as

(see Appendix A.3.2):

β1,i = β3,iν, ν = vec
[
Λ′ − F ′

]
, β3,i =

([
Np

(
B′i ⊗ Ip

)]′
,
[
Wp,q

(
C ′i ⊗ Ip

)]′)′
. (11)

Furthermore, we can relate the d1 ×Kp matrix β3,i to the vector β2,i (see Appendix A.3.3):

vec
[
β′3,i
]

= Jaβ2,i, (12)

where the d1pK × d2 block-diagonal matrix of constants Ja is given by Ja =

 J1 0

0 J2


with diagonal blocks J1 = Wp(p+1)/2,pK (IK ⊗ [(Ip ⊗Np) (Wp ⊗ Ip) (Ip ⊗ vec [Ip])]) and

J2 = Wpq,pK (IK ⊗ [(Ip ⊗Wp,q) (Wp,q ⊗ Ip) (Iq ⊗ vec [Ip])]). The link (12) is instrumental in deriving

the asymptotic results. In the time-invariant setting, β1,i = ai, β2,i = β3,i = bi, and the matrix J is equal to

IK . Hence, Equations (11) and (12) in the time-varying case are the counterparts of restriction ai = b′iν in

the time-invariant case.
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3.2 Two-pass estimation of time-varying risk premium

We consider a two-pass approach (Fama and MacBeth (1973), Black, Jensen, and Scholes (1972)) building

on Equations (9) and (11).

First Pass: The first pass consists in computing time-series OLS estimators

β̂i = (β̂′1,i, β̂
′
2,i)
′ = Q̂−1

x,i

1

Ti

∑
t

Ii,txi,tRi,t, for i = 1, ..., n, where Q̂x,i =
1

Ti

∑
t

Ii,txi,tx
′
i,t. In available

panels, the random sample size Ti for asset i can be small, and the inversion of matrix Q̂x,i can be numer-

ically unstable. This can yield unreliable estimates of βi. To address this, we introduce a trimming de-

vice: 1χi = 1
{
CN

(
Q̂x,i

)
≤ χ1,T , τi,T ≤ χ2,T

}
, where CN

(
Q̂x,i

)
=

√
eigmax

(
Q̂x,i

)
/eigmin

(
Q̂x,i

)
and eigmin

(
Q̂x,i

)
denote the condition number and the smallest eigenvalue of matrix Q̂x,i, respectively,

τi,T = T/Ti, and the two sequences χ1,T > 0 and χ2,T > 0 diverge asymptotically. The first trimming

condition {CN
(
Q̂x,i

)
≤ χ1,T } keeps in the cross-section only assets for which the time series regres-

sion is not too badly conditioned. A too large value of CN
(
Q̂x,i

)
indicates multicollinearity problems

and ill-conditioning (Belsley, Kuh, and Welsch (2004), Greene (2008)). The second trimming condition

{τi,T ≤ χ2,T } keeps in the cross-section only assets for which the time series is not too short. We also use

both trimming conditions in the proofs of the asymptotic results.

Second Pass: The second pass consists in computing a cross-sectional estimator of ν by regressing the

β̂1,i on the β̂3,i keeping non-trimmed assets only. We use a multivariate WLS approach. The weights are es-

timates of wi = (diag [vi])
−1, where the matrices vi are the asymptotic variances of the standardized errors

√
T
(
β̂1,i − β̂3,iν

)
in the cross-sectional regression for large T . We have vi = τiC

′
νQ
−1
x,iSiiQ

−1
x,iCν , where

Qx,i = E
[
xi,tx

′
i,t|γi

]
, Sii = plim

T→∞

1

T

∑
t

σii,txi,tx
′
i,t = E

[
ε2
i,txi,tx

′
i,t|γi

]
, τi = plim

T→∞
τi,T = E [Ii,t|γi]−1,

Cν =
(
E′1 −

(
Id1 ⊗ ν ′

)
JaE

′
2

)′, with E1 = (Id1 : 0d1×d2)′, E2 = (0d2×d1 : Id2)′. We use the

estimates v̂i = τi,TC
′
ν̂1Q̂

−1
x,i ŜiiQ̂

−1
x,iCν̂1 , where Ŝii =

1

Ti

∑
t

Ii,tε̂
2
i,txi,tx

′
i,t, ε̂i,t = Ri,t − β̂′ixi,t and

Cν̂1 =
(
E′1 −

(
Id1 ⊗ ν̂ ′1

)
JaE

′
2

)′. To estimate Cν , we use the multivariate OLS estimator

ν̂1 =

(∑
i

1χi β̂
′
3,iβ̂3,i

)−1∑
i

1χi β̂
′
3,iβ̂1,i, i.e., a first-step estimator with unit weights. The WLS estima-

tor is:

ν̂ = Q̂−1
β3

1

n

∑
i

β̂′3,iŵiβ̂1,i, (13)
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where Q̂β3 =
1

n

∑
i

β̂′3,iŵiβ̂3,i and ŵi = 1χi (diag [v̂i])
−1. Weighting accounts for the statistical precision

of the first-pass estimates and includes trimming. The final estimator of the risk premia is λ̂t = Λ̂Zt−1,

where we deduce Λ̂ from the relationship vec
[
Λ̂′
]

= ν̂ + vec
[
F̂ ′
]

with the estimator F̂ obtained by a SUR

regression of factors ft on lagged instruments Zt−1: F̂ =
∑
t

ftZ
′
t−1

(∑
t

Zt−1Z
′
t−1

)−1

.

In the time-invariant case, the estimator of the risk premia vector simplifies to

λ̂ = ν̂ +
1

T

∑
t

ft, ν̂ = Q̂−1
b

1

n

∑
i

ŵib̂iâi, (14)

where Q̂b =
1

n

∑
i

ŵib̂ib̂
′
i and (âi, b̂

′
i)
′ = Q̂−1

x,i

1

Ti

∑
t

Ii,txtRi,t. Hence, the model coefficients ai and bi

are estimated by time series OLS regression, and the estimate of the risk premium vector is obtained by

cross-sectional WLS regression of the âis on the b̂is augmented by the factor mean. Moreover, under

conditional homoskedasticity σii,t = σii and a balanced panel τi,T = 1, we have vi = c′νQ
−1
x cνσii, where

cν = (1,−ν ′)′ and Qx = E[xtx
′
t]. Then, vi is directly proportional to σii, and we can simply pick the

weights as ŵi = σ̂−1
ii , where σ̂ii =

1

T

∑
t

ε̂2
i,t (Shanken (1992)). In the time-invariant case, we can avoid

the trimming on the condition number if we substitute Q̂x =
1

T

∑
t

xtxt for Q̂x,i in the first-pass estimator

definition. However, this increases the asymptotic variance of the bias corrected estimator of ν, and does

not extend to the time-varying case. Starting from the asset pricing restriction E[Ri,t] = b′iλ in the time-

invariant case, another estimator of λ is λ̄ = Q̂−1
b

1

n

∑
i

ŵib̂iR̄i, where R̄i =
1

Ti

∑
t

Ii,tRi,t. This estimator

is numerically equivalent to λ̂ in the balanced case, where Ii,t = 1 for all i and t. In the unbalanced case,

it is equal to λ̄ = ν̂ + Q̂−1
b

1

n

∑
i

ŵib̂ib̂
′
if̄i, where f̄i =

1

Ti

∑
t

Ii,tft. Estimator λ̄ is often studied by the

literature (see, e.g., Shanken (1992), Kandel and Stambaugh (1995), Jagannathan and Wang (1998)), and

is also consistent. Estimating E [ft] with a simple average of the observed factor instead of a weighted

average based on estimated betas simplifies the form of the asymptotic distribution in the unbalanced case.

This explains our preference for λ̂ over λ̄.

3.3 Asymptotic properties of risk premium estimation

We derive the asymptotic properties under assumptions on the conditional distribution of the error terms.
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Assumption A.1 There exists a positive constant M such that for all n, T :

a)E
[
εi,t|{εj,t−1, γj , j = 1, ..., n},Ft

]
= 0,with εj,t = {εj,t, εj,t−1, · · · }; b)

1

M
≤ σii,t ≤M, i = 1, ..., n;

c) E

 1

n

∑
i,j

E
[
|σij,t|2 |γi, γj

]1/2

 ≤M, where σij,t = E [εi,tεj,t|Ft, γi, γj ].

Assumption A.1 allows for a martingale difference sequence for the error terms (part a)) including potential

conditional heteroskedasticity (part b)) as well as weak cross-sectional dependence (part c)). In particular,

Assumption A.1 c) is the same as Assumption C.3 in Bai and Ng (2002), except that we have an expectation

w.r.t. the random draws of assets. More general error structures are possible but complicate consistent

estimation of the asymptotic variances of the estimators (see Section 3.4).

Proposition 3 summarizes consistency of estimators ν̂ and Λ̂ under the double asymptotics n, T →∞.

Proposition 3 Under Assumptions APR.1-APR.4,SC.1-SC.2,FS.1-FS.2,A.1b) and B.1,B.4-B.6, we get

a) ‖ν̂ − ν‖ = op (1), b)
∥∥∥Λ̂− Λ

∥∥∥ = op (1), when n, T →∞ such that n = O (T γ̄) for γ̄ > 0.

Part b) implies sup
t

∥∥∥λ̂t − λt∥∥∥ = op (1) under boundedness of process Zt (Assumption B.4).

Consistency of the estimators holds under double asymptotics such that the cross-sectional size n grows

not faster than a power of the time series size T . For instance, the conditions in Proposition 3 allow for n

large w.r.t. T (short panel asymptotics) when γ̄ > 1. In the time-invariant setting, Shanken (1992) shows

consistency of ν̂ and λ̂ for a fixed n and T → ∞. This consistency does not imply Proposition 3. Shanken

(1992) (see also Litzenberger and Ramaswamy (1979)) further shows that we can estimate ν consistently in

the second pass with a modified cross-sectional estimator for a fixed T and n→∞. Since λ = ν + E [ft],

consistent estimation of the risk premia themselves is impossible for a fixed T (see Shanken (1992) for the

same point).

Proposition 4 below gives the large-sample distributions under the double asymptotics

n, T → ∞. Let us define τij,T = T/Tij , where Tij =
∑
t

Iij,t and Iij,t = Ii,tIj,t for i, j = 1, ..., n,

and τij = plim
T→∞

τij,T = E[Iij,t|γi, γj ]−1. We make use of matrices Qβ3 = E
[
β′3,iwiβ3,i

]
, Qz = E

[
ZtZ

′
t

]
,

Sij = plim
T→∞

1

T

∑
t

σij,txi,tx
′
j,t = E[εi,tεj,txi,tx

′
j,t|γi, γj ] and SQ,ij = Q−1

x,iSijQ
−1
x,j . The following assump-

tion describes the CLTs underlying the proof of the distributional properties.
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Assumption A.2 As n, T →∞, a)
1√
n

∑
i

τi

[
(Q−1

x,iYi,T )⊗ v3,i

]
⇒N (0, Sv3) ,with Yi,T =

1√
T

∑
t

Ii,txi,tεi,t,

v3,i = vec[β′3,iwi] and Sv3 = lim
n→∞

E

 1

n

∑
i,j

τiτj
τij

SQ,ij ⊗ v3,iv
′
3,j

= a.s.- lim
n→∞

1

n

∑
i,j

τiτj
τij

[SQ,ij ⊗ v3,iv
′
3,j ];

b)
1√
T

∑
t

ut ⊗ Zt−1 ⇒ N (0,Σu) , where Σu = E
[
utu
′
t ⊗ Zt−1Z

′
t−1

]
and ut = ft − FZt−1.

Assumptions A.2a) and b) require the asymptotic normality of cross-sectional and time series averages of

scaled error terms, and of time series averages of factor values, respectively. These CLTs hold under weak

serial and cross-sectional dependencies such as temporal mixing and block dependence (see Appendix 6).

In the online supplementary materials, we verify through simulations that the CLT in Assumption A.2a)

holds true for a design calibrated on our data. Assumption A.2a) would be debatable if we face a power law

behavior in the cross-section for the unknown multivariate products τi
[(
Q−1
x,iYi,T

)
⊗ v3,i

]
. Gabaix (2011)

reports such an issue for firm size distribution.

Assumption A.3 For any 1 ≤ t, s ≤ T, T ∈ N and γ ∈ [0, 1], we have E
[
εt(γ)2εs(γ)|FT

]
= 0.

Assumption A.3 is a symmetry condition on the conditional distribution of errors. It is used to prove that

the sampling variability of the estimated weights ŵi does not impact the asymptotic distribution of estimator

ν̂. Our setting differs from the standard feasible WLS framework since we have to estimate each incidental

parameter Sii. We can dispense with Assumption A.3 if we use OLS to estimate parameter ν, i.e., estimator

ν̂1, or if we put a more restrictive condition on the relative rate of n w.r.t. T .

Proposition 4 Under Assumptions APR.1-APR.4,SC.1-SC.2,FS.1-FS.2,A.1-A.3 and B.1-B.6, we have

a)
√
nT

(
ν̂ − ν − 1

T
B̂ν

)
⇒ N (0,Σν) where B̂ν = Q̂−1

β3
Jb

1

n

∑
i

τi,T vec
[
E′2Q̂

−1
x,i ŜiiQ̂

−1
x,iCν̂ŵi

]
and

Σν =
(
vec

[
C ′ν
]′ ⊗Q−1

β3

)
Sv3

(
vec

[
C ′ν
]
⊗Q−1

β3

)
, with Jb =

(
vec [Id1 ]′ ⊗ IKp

)
(Id1 ⊗ Ja), and

Cν̂ =
(
E′1 −

(
Id1 ⊗ ν̂ ′

)
JaE

′
2

)′; b)
√
Tvec

[
Λ̂′ − Λ′

]
⇒N (0,ΣΛ) where ΣΛ =

(
IK ⊗Q−1

z

)
Σu

(
IK ⊗Q−1

z

)
,

when n, T →∞ such that n = O (T γ̄) for 0 < γ̄ < 3.

Since λt = ΛZt−1 =
(
Z ′t−1 ⊗ IK

)
Wp,Kvec

[
Λ′
]
, part b) and the properties of commutation matrices imply

conditionally onZt−1 that
√
T
(
λ̂t − λt

)
⇒ N

(
0,
(
Z ′t−1Q

−1
z ⊗ IK

)
E[Zt−1Z

′
t−1 ⊗ utu′t]

(
Q−1
z Zt−1 ⊗ IK

))
.
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We can simplify the asymptotic variance matrix in Proposition 4 in the time-invariant setting to Σν =

Q−1
b SbQ

−1
b , whereQb = E[wibib

′
i] and Sb = lim

n→∞
E

 1

n

∑
i,j

wiwjvijbib
′
j

, with vij =
τiτj
τij

c′νQ
−1
x SijQ

−1
x cν ,

which gives vii = vi. We can also write the asymptotic variance matrix as a limit:

Σν = a.s.- lim
n→∞

Σν,n, Σν,n :=

(
1

n
B′nWnBn

)−1 1

n
B′nWnVnWnBn

(
1

n
B′nWnBn

)−1

, (15)

where Bn = (b1, ..., bn)′, Wn = diag(w1, ..., wn), and Vn = [vij ]i,j=1,...,n. In the conditionally ho-

moskedastic and balanced case, we further have c′νQ
−1
x cν = 1 + λ′V [ft]

−1λ and Vn = (1+λ′V [ft]
−1λ)Σε,n,

where Σε,n = [σij ]i,j=1,...,n. In particular, in the CAPM, we have K = 1 and ν = 0, which implies that√
λ2/V [ft] is equal to the slope of the Capital Market Line

√
E[ft]2/V [ft], i.e., the Sharpe Ratio of the

market portfolio.

Proposition 4 shows that the estimator ν̂ has a fast convergence rate
√
nT and features an asymptotic

bias term. Both β̂1,i and β̂3,i in the definition of ν̂ contain an estimation error; for β̂3,i, this is the well-known

Error-In-Variable (EIV) problem. The EIV problem does not impede consistency since we let T grow to

infinity. However, it induces the bias term B̂ν/T which centers the asymptotic distribution of ν̂. The upper

bound on the relative expansion rates of n and T in Proposition 4 is n = O(T γ̄) for γ̄ < 3. The control of

the first-pass estimation errors uniformly across assets requires that the cross-section dimension n is not too

large w.r.t. the time series dimension T .

In the above setting, we study a semiparametric framework with a double asymptotic treatment and

unbalanced panel under a general approximate factor structure. Ang, Liu, and Schwarz (2008) look at

a maximum likelihood analysis with a single asymptotic treatment (large T , n fixed) and balanced panel

under a particular approximate Gaussian factor structure (block diagonal covariance matrix of residuals)

and time-invariant coefficients. Their setting further assumes that the factors have zero mean. Such an

assumption gives λ̂ = ν̂ in a time-invariant setting (see (14)). Under a zero mean (or a known mean,

i.e., not to be estimated), the asymptotic variance of λ̂ corresponds to the asymptotic variance Σν of ν̂

and the rate of convergence is
√
nT . Our results for Σν yields their Equation (13), when their intercept

parameter α is assumed 0, for uncorrelated and conditionally homoskedastic idiosyncratic risks across

assets. On the contrary, if we do not know the mean of the factor and need to estimate it, we have

λ̂ = ν̂ +
1

T

∑
ft. The asymptotic variance of λ̂ corresponds to the asymptotic variance Σf of the sam-
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ple average of the factors, and the rate of convergence is
√
T . Jagannathan and Wang (2002) is an early

reference on the impact of knowing or not the mean of the factors for asymptotic analysis. With an un-

known mean, only the variability of the factor drives the asymptotic distribution of λ̂, since the estimation

error Op
(

1/
√
T
)

of the sample average
1

T

∑
t

ft dominates the estimation error Op
(

1/
√
nT + 1/T

)
of ν̂. This result is an oracle property for λ̂, namely that its asymptotic distribution is the same irrespec-

tive of the knowledge of ν. This property is in sharp difference with the single asymptotics with a fixed

n and T → ∞. In the balanced case and with homoskedastic errors for the time-invariant case, Theo-

rem 1 of Shanken (1992) shows that the rate of convergence of λ̂ is
√
T and that its asymptotic variance

is Σλ,n = Σf +
1

n
(1 + λ′V [ft]

−1λ)

(
1

n
B′nWnBn

)−1 1

n
B′nWnΣε,nWnBn

(
1

n
B′nWnBn

)−1

, for fixed n

and T → ∞. The two components in Σλ,n come from estimation of E[ft] and ν, respectively. In the

conditionally heteroskedastic setting with fixed n, a slight extension of Theorem 1 in Jagannathan and

Wang (1998), or Theorem 3.2 in Jagannathan, Skoulakis, and Wang (2009), to the unbalanced case yields

Σλ,n = Σf +
1

n
Σν,n, where Σν,n is defined in (15). Letting n → ∞ gives Σf under weak cross-sectional

dependence. Thus, exploiting the full cross-section of assets improves efficiency asymptotically, and the

positive definite matrix Σλ,n−Σf corresponds to the efficiency gain. Using a large number of assets instead

of a small number of portfolios does help to eliminate the contribution coming from estimation of ν.

Proposition 4 suggests exploiting the analytical bias correction B̂ν/T and using estimator ν̂B = ν̂ − 1

T
B̂ν

instead of ν̂. In the time-invariant setting, λ̂B = ν̂B +
1

T

∑
t

ft delivers a bias-free estimator of λ at order

1/T , which shares the same root-T asymptotic distribution as λ̂.

Finally, we can relate the results of Proposition 4 to bias-corrected estimation accounting for the well-

known incidental parameter problem (Neyman and Scott (1948)) in the panel literature (see Lancaster (2000)

for a review). To highlight the main idea, let us focus on the model with time-invariant coefficients. We can

write the factor model under restriction ai = b′iν as Ri,t = b′i(ft + ν) + εi,t. In the likelihood setting of

Hahn and Newey (2004) (see also Hahn and Kuersteiner (2002)), the bis correspond to the individual fixed

effects and ν to the common parameter of interest. Available results on the fixed-effect approach tell us: (i)

the ML estimator of ν is inconsistent if n goes to infinity while T is held fixed, (ii) the ML estimator of ν is

asymptotically biased even if T grows at the same rate as n, (iii) an analytical bias correction may yield an

estimator of ν that is root-(nT ) asymptotically normal and centered at the truth if T grows faster than n1/3.
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The two-pass estimators ν̂ and ν̂B exhibit the properties (i)-(iii) as expected by analogy with unbiased esti-

mation in large panels. This clear link with the incidental parameter literature highlights another advantage

of working with ν in the second-pass regression. Chamberlain (1992) considers a general random coeffi-

cient model nesting the factor model with time-invariant coefficients. He establishes asymptotic normality

of an estimator of ν for fixed T and balanced panel data. His estimator does not admit a closed-form and

requires a numerical optimization. This leads to computational difficulties in the conditional setting. This

also makes the study of his estimator under double asymptotics and cross-sectional dependence challenging.

Recent advances on the incidental parameter problem in random coefficient models for fixed T are Arellano

and Bonhomme (2012) and Bonhomme (2012).

3.4 Confidence intervals

We can use Proposition 4 to build confidence intervals by means of consistent estimation of the asymptotic

variance-covariance matrices. We can check with these intervals whether the risk of a given factor fk,t is

not remunerated, i.e., λk,t = 0, or the restriction ν = 0 holds when the factors are traded. We replace

the unknown quantities Qx,i, Qz , Qβ3 , and ν by their empirical counterparts Q̂x,i, Q̂z , Q̂β3 , and ν̂. We

estimate Σu (or Σf in the time-invariant setting), by a standard HAC estimator Σ̂u such as in Newey and

West (1994) or Andrews and Monahan (1992). Hence, the construction of confidence intervals with valid

asymptotic coverage for components of Λ̂ is straightforward. On the contrary, getting a HAC estimator

for Σ̄f appearing in the asymptotic distribution of λ̄ as discussed after Equation (14) is not obvious in the

unbalanced case.

The construction of confidence intervals for the components of ν̂ is more difficult. Indeed, the variance-

covariance matrix Σν through Sv3 involves a limiting double sum over Sij scaled by n and not n2. A naive

approach consists in replacing Sij by any consistent estimator such as Ŝij =
1

Tij

∑
t

Iij,tε̂i,tε̂j,txi,tx
′
j,t,

but this does not work here. To handle this, we rely on recent proposals in the statistical literature on

consistent estimation of large-dimensional sparse covariance matrices by hard thresholding (Bickel and

Levina (2008), El Karoui (2008)). Fan, Liao, and Mincheva (2011) focus on the estimation of the variance-

covariance matrix of the errors in large balanced panel with nonrandom time-invariant coefficients and i.i.d.

disturbances.
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The idea is to assume sparse contributions of the Sijs to the double sum. Then, we only have to account

for sufficiently large contributions in the estimation, i.e., contributions larger than a threshold vanishing

asymptotically. Thresholding permits an estimation invariant to asset permutations; the absence of any

natural cross-sectional ordering among the matrices Sijs motivates this choice of estimator. In the following

assumption, we use the notion of sparsity suggested by Bickel and Levina (2008) adapted to our framework

with random coefficients.

Assumption A.4 There exist constants q̄, δ̄ ∈ [0, 1) such that max
i

∑
j

‖Sij‖q̄ = Op

(
nδ̄
)

.

Assumption A.4 tells us that we can neglect most cross-asset contributions ‖Sij‖. As sparsity increases, we

can choose coefficients q̄ and δ̄ closer to zero. Assumption A.4 does not impose sparsity of the covariance

matrix of the returns themselves. Assumption A.1 c) is also a sparsity condition, which ensures that the limit

matrix Σν is well-defined when combined with Assumption B.4. We meet both sparsity assumptions, as well

as the approximate factor structure Assumption APR.3, under weak cross-sectional dependence between the

error terms, for instance, under a block dependence structure (see Appendix 6). We can also check that the

sparsity structure is robust to asset repackaging using the framework of Section 2.2.

As in Bickel and Levina (2008), let us introduce the thresholded estimator S̃ij = Ŝij1
{∥∥∥Ŝij∥∥∥ ≥ κ} of

Sij , which we refer to as Ŝij thresholded at κ = κn,T . We can derive an asymptotically valid confidence

interval for the components of ν̂ from the next proposition giving a feasible asymptotic

normality result based on the estimator Σ̃ν =
(
vec

[
C ′ν̂
]′ ⊗ Q̂−1

β3

)
S̃v3

(
vec

[
C ′ν̂
]
⊗ Q̂−1

β3

)
, with

S̃v3 =
1

n

∑
i,j

τi,T τj,T
τij,T

[S̃Q,ij ⊗ v̂3,iv̂
′
3,j ], and S̃Q,ij = Q̂−1

x,i S̃ijQ̂
−1
x,j .

Proposition 5 Under Assumptions APR.1-APR.4, SC.1-SC.2, FS.1-FS.2, A.1-A.4, B.1-B.6, we

have Σ̃−1/2
ν

√
nT

(
ν̂ − 1

T
B̂ν − ν

)
⇒ N (0, IK), when n, T → ∞ such that n = O

(
T γ̄
)

for 0 < γ̄ <

min

{
3, η

1− q̄
2δ̄

}
, and κ = M

√
log n

T η
for a constant M > 0 and η ∈ (0, 1] as in Assumption B.1.

In Assumption B.1, we define constant η ∈ (0, 1] which is related to the time series dependence of

processes (εi,t) and (xi,t). We have η = 1, when (εi,t) and (xi,t) are serially i.i.d. as in Appendix 6 and

Bickel and Levina (2008). The stronger the time series dependence (smaller η) and the lower the sparsity
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(q̄ and δ̄ closer to 1), the more restrictive the condition on the relative rate γ̄. We cannot guarantee all

thresholded blocks S̃ij to be semi definite positive (sdp). However, we expect that the double summation on

i and j makes Σ̃ν sdp in empirical applications. In case it is not, El Karoui (2008) discusses a few solutions

based on shrinkage.

3.5 Tests of asset pricing restrictions

From (11), the null hypothesis underlying the asset pricing restriction (3) is

H0 : there exists ν ∈ RpK such that β1(γ) = β3(γ)ν, for almost all γ ∈ [0, 1],

where β1 (γ) and β3 (γ) are defined as β1,i and β3,i in Equations (10) and (11) replacingB (γ) andC (γ) for

Bi and Ci. This null hypothesis is written on the continuum of assets. Under H0, we have

E
[
(β1,i − β3,iν)′ (β1,i − β3,iν)

]
= 0. Since we estimate ν via the WLS cross-sectional regression of the

estimates β̂1,i on the estimates β̂3,i, we suggest a test based on the weighted sum of squared residuals SSR

of the cross-sectional regression. The weighted SSR is Q̂e =
1

n

∑
i

ê′iŵiêi, with êi = β̂1,i − β̂3,iν̂ = C ′ν̂ β̂i,

which is an empirical counterpart of E
[
(β1,i − β3,iν)′wi (β1,i − β3,iν)

]
.

Let us define Sii,T =
1

T

∑
t

Ii,tσii,txtx
′
t and introduce the next assumption.

Assumption A.5 As n, T →∞, we have
1√
n

∑
i

τ2
i

[(
Q−1
x,i ⊗Q

−1
x,i

)
(Yi,T ⊗ Yi,T − vec [Sii,T ])

]
⊗ vec[wi]

⇒ N (0,Ω), where the asymptotic variance matrix is:

Ω = lim
n→∞

E

 1

n

∑
i,j

τ2
i τ

2
j

τ2
ij

[SQ,ij ⊗ SQ,ij + (SQ,ij ⊗ SQ,ij)Wd]⊗
(
vec[wi]vec[wj ]

′)
= a.s.- lim

n→∞

1

n

∑
i,j

τ2
i τ

2
j

τ2
ij

[SQ,ij ⊗ SQ,ij + (SQ,ij ⊗ SQ,ij)Wd]⊗
(
vec[wi]vec[wj ]

′) .
Assumption A.5 is a high-level CLT condition. We can prove this assumption under primitive conditions

on the time series and cross-sectional dependence. For instance, we prove in Appendix 6 that Assumption

A.5 holds under a cross-sectional block dependence structure for the errors. Intuitively, the expression of

the variance-covariance matrix Ω is related to the result that, for random d × 1 vectors Y1 and Y2 which
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are jointly normal with covariance matrix S, we have Cov (Y1 ⊗ Y1, Y2 ⊗ Y2) = S ⊗ S + (S ⊗ S)Wd (see

Section 3.1 and Chapter 3 of MN for the definition of the commutation matrix Wd).

Let us now introduce the following statistic ξ̂nT = T
√
n

(
Q̂e −

1

T
B̂ξ

)
, where the recentering term

simplifies to B̂ξ = d1 thanks to the weighting scheme. Under the null hypothesis H0, we prove ξ̂nT =

vec
[
C ′ν̂ ⊗ C ′ν̂

]′ 1√
n

∑
i

τ2
i

[(
Q−1
x,i ⊗Q

−1
x,i

)
(Yi,T ⊗ Yi,T − vec [Sii,T ])

]
⊗ vec[wi] + op(1), which implies

ξ̂nT ⇒ N (0,Σξ), where Σξ = 2 lim
n→∞

E

 1

n

∑
i,j

τ2
i τ

2
j

τ2
ij

tr
[(
C ′νQ

−1
x,iSijQ

−1
x,jCν

)
wj

(
C ′νQ

−1
x,jSjiQ

−1
x,iCν

)
wi

]
as n, T → ∞ (see Appendix A.2.6). Then, a feasible testing procedure exploits the consistent estimator

Σ̃ξ = 2
1

n

∑
i,j

τ2
i,T τ

2
j,T

τ2
ij,T

tr
[(
C ′ν̂Q̂

−1
x,i S̃ijQ̂

−1
x,jCν̂

)
ŵj

(
C ′ν̂Q̂

−1
x,jS̃jiQ̂

−1
x,iCν̂

)
ŵi

]
of the asymptotic variance Σξ.

Proposition 6 Under H0 and Assumptions APR.1-APR.4, SC.1-SC.2, FS.1-FS.2, A.1-A.5, and B.1-B.6, we

have Σ̃
−1/2
ξ ξ̂nT ⇒ N (0, 1) , as n, T →∞ such that n = O (T γ̄) for 0 < γ̄ < min

{
2, η

1− q̄
2δ̄

}
.

In the conditionally homoskedastic case for time-invariant coefficients, the asymptotic variance of ξ̂nT

reduces to Σξ = 2 a.s.- lim
n→∞

1

n

∑
i,j

τiτj
τ2
ij

σ2
ij

σiiσjj
. For fixed n, we can rely on the test statistic TQ̂e, which

is asymptotically distributed as
1

n

∑
j

eigjχ
2
j for j = 1, . . . , (n−K), where the χ2

j are independent chi-

square variables with 1 degree of freedom, and the coefficients eigj are the non-zero eigenvalues of matrix

V
1/2
n (Wn −WnBn(B′nWnBn)−1B′nWn)V

1/2
n (see Kan, Robotti, and Shanken (2013)). By letting n grow,

the sum of chi-square variables converges to a Gaussian variable after recentering and rescaling, which

yields heuristically the result of Proposition 6. The condition on the relative expansion rate of n and T for

the distributional result on the test statistic in Proposition 6 is more restrictive than the condition for feasible

asymptotic normality of the estimators in Proposition 5.

The alternative hypothesis is

H1 : inf
ν∈RpK

E
[
(β1,i − β3,iν)′ (β1,i − β3,iν)

]
> 0.

Let us define the pseudo-true value ν∞ = arg inf
ν∈RK

Qw∞(ν), whereQw∞(ν) = E
[
(β1,i − β3,iν)′wi (β1,i − β3,iν)

]
(White (1982), Gourieroux, Monfort, and Trognon (1984)) and population errors ei = β1,i − β3,iν∞ =

C ′ν∞βi, i = 1, ..., n, for all n. In the next proposition, we prove consistency of the test, namely that the
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statistic Σ̃
−1/2
ξ ξ̂nT diverges to +∞ under the alternative hypothesis H1 for large n and T . The test of the

nullH0 against the alternativeH1 is a one-sided test. We also give the asymptotic distribution of estimators

ν̂ and Λ̂ underH1.

Proposition 7 Under H1 and Assumptions APR.1-APR.4, SC.1-SC.2, FS.1-FS.2, A.1-A.5 and B.1-B.6,

we have: a)
√
n

(
ν̂ − 1

T
B̂ν − ν∞

)
⇒ N (0,Σν∞), where Σν∞ = Q−1

β3
E[β′3,iwieie

′
iwiβ3,i]Q

−1
β3

, and b)
√
Tvec

[
Λ̂′ − Λ′∞

]
⇒ N (0,ΣΛ), where vec [Λ′∞] = ν∞ + vec [F ′], as n, T → ∞ such that T/n =

o(1) and n = O (T γ̄) for γ̄ < 3; c) Σ̃
−1/2
ξ ξ̂nT

p→ +∞, as n, T → ∞ such that n = O (T γ̄) for

0 < γ̄ < min

{
2, η

1− q̄
2δ̄

}
.

Under the alternative hypothesis H1, the convergence rate of ν̂ is slower than under H0, while the conver-

gence rate of Λ̂ remains the same. The asymptotic distribution of the bias-adjusted estimator ν̂ − 1

T
B̂ν is

the same as the one got from a cross-sectional regression of βi,1 on βi,3. The condition T/n = o(1) in

Propositions 7 a) and b) ensures that cross-sectional estimation of ν has asymptotically no impact on the

estimation of Λ.

To study the local asymptotic power, we can adopt the local alternative hypothesis

H1,nT : inf
ν∈RK

Qw∞(ν) =
ψ√
nT

> 0, for a constant ψ > 0. We can show that ξ̂nT ⇒ N(ψ,Σξ), and

the test is locally asymptotically powerful. Pesaran and Yamagata (2008) consider a similar local analysis

for a test of slope homogeneity in large panels.

Finally, we can derive a test for the null hypothesis when the factors come from tradable assets, i.e., are

portfolio excess returns:

H0 : β1(γ) = 0 for almost all γ ∈ [0, 1],

against the alternative hypothesis

H1 : E
[
β′1,iβ1,i

]
> 0.

We only have to substitute Q̂a =
1

n

∑
i

β̂′1,iŵiβ̂1,i for Q̂e, and E1 = (Id1 : 0d1×d2)′ for Cν̂ . Since the

constrained form of β1,i in (11) comes from (7), we take directly into account the no-arbitrage restrictions

imposed by the model specification. This gives an extension of Gibbons, Ross and Shanken (1989) to the

conditional case with double asymptotics. Implementing the original Gibbons, Ross, and Shanken (1989)
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test, which uses a weighting matrix corresponding to an inverted estimated large variance-covariance matrix,

becomes quickly problematic. We face a large number nd1 of restrictions; each β1,i is of dimension d1 × 1,

and the estimated covariance matrix to invert is of dimension nd1 × nd1. We expect to compensate the

potential loss of power induced by a diagonal weighting via the larger number of restrictions. Our Monte

Carlo simulations show that the test exhibits good power properties against both risk-based and non risk-

based alternatives (e.g. MacKinlay (1995)) already for a thousand assets with a time series dimension similar

to the one in the empirical analysis.

4 Empirical results

4.1 Asset pricing model and data description

Our baseline asset pricing model is a four-factor model with ft = (rm,t, rsmb,t, rhml,t, rmom,t)
′, where rm,t

is the month t excess return on CRSP NYSE/AMEX/Nasdaq value-weighted market portfolio over the

risk free rate, and rsmb,t, rhml,t and rmom,t are the month t returns on zero-investment factor-mimicking

portfolios for size, book-to-market, and momentum (see Fama and French (1993), Jegadeesh and Titman

(1993), Carhart (1997)). We proxy the risk free rate with the monthly 30-day T-bill beginning-of-month

yield. To account for time-varying alphas, betas and risk premia, we use a conditional specification based on

two common variables and a firm-level variable. We take the instruments Zt = (1, Z∗t
′)′, where bivariate

vector Z∗t includes the term spread, proxied by the difference between yields on 10-year Treasury and

3-month T-bill, and the default spread, proxied by the yield difference between Moody’s Baa-rated and

Aaa-rated corporate bonds. We take a scalar Zi,t corresponding to the book-to-market equity of firm i as

defined in logarithmic terms by Fama and French (2008). We refer to Avramov and Chordia (2006) for

convincing theoretical and empirical arguments in favor of the chosen conditional specification. The vector

xi,t has dimension d = 25, and parsimony explains why we have not included e.g. the size of firm i as an

additional stock specific instrument. We report robustness checks with other time-varying specifications in

the supplementary materials.

We compute the firm characteristics from Compustat as in the appendix of Fama and French (2008). The

CRSP database provides the monthly stock returns data and we exclude financial firms (Standard Industrial
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Classification Codes between 6000 and 6999) as in Fama and French (2008). The dataset after matching

CRSP and Compustat contents comprises n = 9, 936 stocks, and covers the period from July 1964 to

December 2009 with T = 546 months. For comparison purposes with a standard methodology for small

n, we consider i) the 25 Fama-French (FF) portfolios and ii) 44 industry (Indu.) portfolios excluding four

financial sectors (banking, insurance, real estate, and trading) as base assets. In those cases, the asset specific

instrument Zi,t−1 is the book-to-market equity of the portfolio. We have checked that the reported results

for the 25 FF portfolios persist for the 100 FF portfolios. We have downloaded the time series of factors,

portfolio returns, and portfolio characteristics from the website of Kenneth French.

4.2 Estimation results for time-invariant specifications

We first present the estimates of a time-invariant specification (i.e. Zt = 1 and Zi,t = 0). We use χ1,T = 15

as advocated by Greene (2008), together with χ2,T = 546/12. In the data, we have observed condition

numbers as large as 1, 000. The number of assets whose condition number is below 15 is 9, 930 in the time-

invariant four-factor model. The weights ŵi are increasing w.r.t. the market capitalisation. This finding

is explained by the longer lifetimes and the smaller idiosyncratic variances of larger stocks. Thus, our

weighting scheme makes sure that the estimates are not entirely driven by small stocks. To check this

empirically, we also gather some results for value-weighted estimation of time-invariant and time-varying

specifications in Appendix 12 of the supplementary materials. There the weights directly account for the size

characteristics of the assets through their time-average market capitalisation. In the results reported for each

model, we denote by nχ the dimension of the cross-section after trimming. We compute confidence intervals

with a data-driven threshold selected by cross-validation as in Bickel and Levina (2008). Table 1 Panel A

gathers the estimated annual risk premia, with the corresponding confidence intervals at 95% level, for the

following time-invariant models: the four-factor model, the Fama-French model, and the CAPM. For the

Fama-French model and the CAPM, the trimming level χ1,T is not binding when χ2,T = 546/12. In Table

1 Panel B we display the estimates of the components of ν. For individual stocks, we use bias-corrected

estimates for λ and ν. For portfolios, we use asymptotics for fixed n and T →∞. The estimated risk premia

for the market factor are of the same magnitude and all positive across the three universes of assets and the

three models. For the four-factor model and the individual stocks, the size factor is positively remunerated

29



(2.86%) and it is not significantly different from zero. The value factor commands a significant negative

reward (-4.60%). The momentum factor is largely remunerated (7.16%) and significantly different from

zero. For the 25 FF portfolios, we observe that the size factor is not significantly positively remunerated

while the value factor is significantly positively remunerated (3.02% and 4.81%). The momentum factor

bears a significant positive reward (34.03%). For λm, λsmb, and λhml, we obtain similar inferential results

when we consider the Fama-French model. Our point estimates of λm, λsmb and λhml for large n agree with

Ang, Liu, and Schwarz (2008). Our point estimates and confidence intervals for λm, λsmb and λhml agree

with the results reported by Shanken and Zhou (2007) for the 25 FF portfolios. The large, but imprecise,

estimate for the momentum premium when n = 25 comes from the estimate for νmom (25.40%) that is much

larger and less accurate than the estimates for νm, νsmb and νhml (0.85%, -0.26%, 0.03%). Moreover, while

the estimates of νm, νsmb and νhml are statistically not significant for the 25 FF portfolios, the estimates of

νm and νhml are statistically different from zero for individual stocks. In particular, the estimate of νhml is

large and negative. This explains the negative estimate on the value premium for individual stocks displayed

in Table 1 Panel A, despite the positive time average of the value factor. Phalippou (2007) obtains a similar

growth premium for portfolios built on stocks with a high institutional ownership. The results with the 44

Indu. portfolios sharply differ from those with the 25 FF portfolios. The former are more alike the results

for individual stocks, in particular they yield negative estimates of coefficient νhml and value premium λhml

(albeit the latter not statistically significant).

The size, value and momentum factors are tradable in theory. In practice, their implementation faces

transaction costs due to rebalancing and short selling. A non zero ν might capture these market imperfections

(Cremers, Petajisto, and Zitzewitz (2012)). In Appendix 8 of the online supplementary materials, we also

get zero estimates with the FF portfolios, and non zero estimates with the Indu. portfolios and the individual

stocks, when we use a time-invariant model with long-only factors derived from the FF methodology. Market

imperfections are probably not the key drivers here (see Frazzini, Israel and Moskowitz (2012) for empirical

support based on live trading data from a large institutional money manager).

A potential explanation of the discrepancies revealed in Table 1 between individual stocks and the FF

portfolios is the much larger heterogeneity of the factor loadings for the former. As already discussed in

Lewellen, Nagel, and Shanken (2010), the FF portfolio betas are all concentrated in the middle of the cross-
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sectional distribution obtained from the individual stocks. Creating portfolios with an ad hoc methodology

distorts information by shrinking the dispersion of betas. The estimation results for the momentum factor

on the FF portfolios exemplify the problems related to a small number of portfolios exhibiting a tight factor

structure. In Appendix 14 of the online supplementary materials, we explore another potential explanation

of the discrepancy revealed in Table 1 due to the effects of model misspecification on the risk premia.

4.3 Estimation results for time-varying specifications

Let us now consider the time-varying four-factor specification. We use χ1,T = 15 and χ2,T = 546/60. The

number of assets whose condition number is below 15 is 3,909. Figure 1 plots the estimated time-varying

paths of the four risk premia from the individual stocks. For comparison purpose, we also plot the time-

invariant estimates and the average lambdas over time. A well-known bias coming from market-timing and

volatility-timing (Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth et al. (2011)) explains

the discrepancy between the time-invariant estimate and the average over time. After trimming, we compute

the risk premia on nχ = 3, 900 individual assets in the four-factor model. The observed discrepancy w.r.t.

the average over time is only marginally explained by the larger size of the stock universe used for the time-

invariant estimates. The risk premia for the market, size and value factors feature a counter-cyclical pattern.

Indeed, these risk premia increase during economic contractions and decrease during economic booms.

Gomes, Kogan, and Zhang (2003) and Zhang (2005) construct equilibrium models exhibiting a counter-

cyclical behavior in size and book-to-market effects. On the contrary, the risk premium for the momentum

factor is pro-cyclical. Furthermore, time-varying estimates of the value premium are often negative and

take positive values mostly in recessions. Growth firms are riskier in boom times because of their in-the-

money growth options; value firms are riskier in recession times because of default risk. However, empirical

evidence for such an interpretation is mixed. Some papers find that distress is related to size and book-to-

market effects (Griffin and Lemmon (2002), Vassalou and Xing (2004)) while other papers find the opposite

(Dichev (1998), Campbell, Hilscher, and Szilagyi (2008)). Chava and Purnanandam (2010) find support

for a positive relation and argue that conclusions regarding the risk-return trade-off can change significantly

depending on how the expected return is measured. Gomes and Schmid (2010) and Garlappi and Yan (2011)

argue that financial leverage provides a rationale for a positive relation. The time-varying estimates of the

31



size premium are most of the time slightly positive.

Figure 2 plots the estimated time-varying path of the four risk premia from the 25 FF portfolios. We

also plot the time-invariant estimates and the average lambdas over time. The discrepancy between the

time-invariant estimates and the averages over time is also observed for n = 25. The time-varying point

estimates for λmom,t are typically smaller than the time-invariant estimate in Table 1, but both estimates are

rather inaccurate. Finally, by comparing Figures 1 and 2, we observe that the patterns of risk premia look

similar except for the book-to-market factor. Indeed, the risk premium for the value effect estimated from

the 25 portfolios is pro-cyclical, contradicting the counter-cyclical behavior predicted by finance theory. In

Appendix 10 of the online supplementary materials, we display the paths of risk premia in the Fama-French

model estimated from the 25 FF portfolios. They look similar to the corresponding estimates for the four-

factor model in Figure 2. In Appendix 11, we provide the time-varying paths of risk premia for the 44

Indu. portfolios. They look similar to the corresponding estimates on individual stocks. This similarity,

also observed in Section 4.2 with time-invariant models, is likely linked with the relative stability of the

time-varying portfolio weights for the 44 Indu. portfolios compared to the weights of the 25 FF portfolios.

The time-varying risk premia involve both the conditional expectation of the factors, via the coefficients

matrix F , and the process νt, via the cross-sectional parameters vector ν. To disentangle their effects on

the risk-premia estimates, we report the estimates of the components of vector vec[F ′], and of vector ν for

the three universes of assets, in Table 2. As expected, the conditional means are positive for all factors,

when term spread and default spread are at their historical averages. The effect of term spread on the factor

conditional mean is positive for all factors, while the effect of default spread is negative for the value and

momentum factors. The regression coefficients for both instruments are not statistically significant at the

5% level, but their magnitude is economically important, especially for default spread. The estimates of ν

differ sharply between individual stocks and the 25 FF portfolios, especially for the value and momentum

factors, and this explains the differences in average level and dynamics in the risk premia estimates observed

in Figures 1 and 2. Let us focus on the value factor. The negative estimate −6.1642 of the intercept coef-

ficient for individual stocks compensates the corresponding coefficient 4.7772 in F , and yields a negative

value premium when default spread and term spread are at their historical averages. Similarly, the positive

estimate 3.5981 yields a value premium that depends positively on default spread and is counter-cyclical.
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The estimates of ν on the 25 FF portfolios are smaller than for stocks, and smaller than the estimates of

F , which explains the mostly positive and pro-cyclical value premium observed in Figure 2. Instead, the

estimates of ν on the 44 Indu. portfolios are rather close to the estimates for individual stocks. To speed up

the computation of the standard errors of ν̂ for individual stocks, we use here the numerically equivalent es-

timated variance-covariance matrix Σ̃ν = Q̂−1
β3

 1

n

∑
i,j

τi,T τj,T
τij,T

β̂′3,iŵiC
′
ν̂ S̃Q,ijCν̂ŵj β̂3,j

 Q̂−1
β3

instead of

the expression of Section 3.4 where the Kronecker products of the large dimensional matrices slow down

the computations. The coefficients of ν corresponding to the effect of default spread are statistically sig-

nificant at the 5% level for the size, value and momentum factors, while the coefficients of term spread are

statistically significant for the market and momentum factors. The confidence intervals for the estimates of

parameters ν on the individual stocks are narrower than the confidence intervals for parameters F , reflecting

the fast root-nT convergence rate of the former parameters. The confidence intervals for ν are also narrower

on the individual stocks than on portfolios.

Even if Table 2 displays some statistically significant coefficients for the effects of instruments, it is

useful to test formally whether risk premia indeed fluctuate over time. Time variation can pass through either

the conditional expectation of the factors, or the cross-sectional parameter ν. We distinguish accordingly

the null hypotheses HF0 : Avec [F ′] = 0 and Hν0 : Aν = 0, where the matrix A = I4 ⊗

 0 1 0

0 0 1


selects the instruments coefficients for K = 4. For individual stocks we build standard asymptotic chi-

square statistics with 8 degrees of freedom based on Propositions 4 and 5. The values of the test statistics

are 11.8765 for the null hypothesis HF0 (p-value 0.157), and 414.44 for the null hypothesis Hν0 (p-value

0.000). Hence, we cannot reject time-invariance of the factors conditional expectations, but we reject time-

invariance of the risk premia due to the dynamics induced by the cross-sectional parameter ν. We also reject

the time-invariance of the risk premia for the 44 Indu. portfolios. The value of the test statistic for the null

hypothesisHν0 is 26.2561 (p-value 0.001). Instead, the value of the test statistic for the null hypothesisHν0 is

1.5566 (p-value 0.992) when using the 25 FF portfolios. Hence, aggregation in the 25 portfolios completely

masks the time variation of the risk premia. From the point of view of risk premia dynamics, a time-varying

four-factor model estimated on the 25 FF portfolios is close to a time-invariant model.

The 95% confidence intervals for ν̂ in Table 2 show that all entries are not significantly different from
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zero when we look at the 25 FF portfolios except for the constant related to the momentum factor. However

an asymptotic chi-square test of the joint hypothesis ν = 0 suggests the nullity of all entries (p-value 0.695).

The hypothesis ν = 0 implies νt = 0 for all t, which holds true if the asset pricing restriction (3) is valid

and the factors are returns of tradable portfolios. Similarly, we do not reject the null hypothesis ν = 0 for

the time-varying Fama-French model estimated on the 25 FF portfolios (p-value 0.967). On the contrary,

we strongly reject the null hypothesis ν = 0 when we substitute individual stocks (p-value 0.000 for both

the Fama-French model and the four-factor model) or the 44 Indu. portfolios (p-value 0.000 for both the

Fama-French model and the four-factor model) for the base assets.

As a visual check, we have computed the estimated path of νt for the time-varying specifications in the

supplementary materials. We get estimates close to zero only for the Fama-French model estimated on the

FF portfolios (see Appendix 10). These estimates are consistent with a time-invariant model and tradable

factors, as already revealed by the parametric test results above. For the four-factor model estimated on

the 25 FF portfolios, we see that the path for the momentum factor is not centered around zero and is

very imprecise (see Appendix 9). A first explanation might be the misspecification induced by the ad hoc

portfolio aggregation based on size and value sorting and the time-varying specification for the momentum

factor sensitivity (see also the theory in Appendix 14). A second explanation of the statistical inaccuracy

might be the tight factor structure observed by Lewellen, Nagel, and Shanken (2010). The paths of νt

estimated from individual stocks move also a lot and are not centered on zero (see Figures in Appendix 9).

In Appendix 13 of the supplementary materials, we provide an empirical comparison between the esti-

mated time-varying betas for the portfolios and the individual stocks. The individual stock betas and Indu.

portfolio betas move over time substantially while the FF portfolio betas are more stable, albeit we find sta-

tistical evidence for their time variation. As an example, the median standard deviations range from 0.0311

to 0.1031 for the FF portfolios and from 0.3858 to 0.6275 for the individual stocks. We get a multiple of

roughly 10 times uniformly across factors. The null hypothesis of time-invariant betas in the four factor

model is not rejected at the 5% level for 2 out of the 25 FF portfolios, and for 6 out of the 44 Indu. portfo-

lios. The method used in Barras, Scaillet and Wermers (2010) for multiple testing (see also Bajgrowicz and

Scaillet (2012)) yields 11.67% as estimated proportion of individual stocks with time-invariant betas. This

means that the time-invariant models for the individual stocks and Indu. portfolios in Section 4.2 are likely
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misspecified because of the dynamics in betas and risk premia (see the theoretical arguments in Appendix

14 in the supplementary materials).

4.4 Results on testing the asset pricing restrictions

As already discussed in Lewellen, Nagel, and Shanken (2010), the 25 FF portfolios have four-factor market

and momentum betas close to one and zero, respectively. As depicted in Figure 1 by Lewellen, Nagel, and

Shanken (2010), this empirical concentration implies that it is easy to get artificially large estimates ρ̂2 of

the cross-sectional R2 for three- and four-factor models. On the contrary, the observed heterogeneity in the

betas coming from the individual stocks impedes this. This suggests that it is much less easy to find factors

that explain the cross-sectional variation of expected excess returns on individual stocks than on portfolios.

Reporting large ρ̂2, or small SSR Q̂e, when n is large, is much more impressive than when n is small.

Table 3 Panel A gathers the results for the tests of the asset pricing restrictions in factor models with

time-invariant coefficients. When n is large, we prefer working with test statistics based on the SSR Q̂e

instead of ρ̂2 since the population R2 is not well-defined with tradable factors under the null hypothesis

(its denominator is zero). For the individual stocks, we compute the test statistics Σ̃
−1/2
ξ ξ̂nT based on Q̂e

and Q̂a as well as their associated one-side p-value. Our Monte Carlo simulations show that we need to

set a stronger trimming level χ2,T to compute the test statistic than to estimate the risk premium. We use

χ2,T = 546/240. For the 25 and 44 Indu. portfolios, we compute weighted test statistics (Gibbons, Ross,

and Shanken (1989)) as well as their associated p-values. For individual stocks, the test statistics reject

both null hypotheses H0 : a (γ) = b (γ)′ ν and H0 : a (γ) = 0 for the three specifications at 5% level.

Instead, the null hypothesis H0 : a (γ) = b (γ)′ ν is not rejected for the four-factor specification at 1%

level. Similar conclusions are obtained when using the 25 FF portfolios as base assets. For the 44 Indu.

portfolios, we do not reject the null hypothesis H0 : a (γ) = b (γ)′ ν, but we reject H0 : a (γ) = 0.

Table 3 Panel B gathers the results for tests of the asset pricing restrictions in time-varying specifications.

Contrary to the time-invariant case, we do not report the values of the weighted test statistics (Gibbons,

Ross and Shanken (1989)) computed for portfolios because of the numerical instability in the inversion of

the covariance matrix. The latter has dimension 1, 100×1, 100 for the time-varying four-factor specification

with the 44 Indu. portfolios. Instead, we report the values of the test statistics TQ̂e and TQ̂a. For individual
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stocks, the test statistics reject both null hypotheses H0 : β1 (γ) = β3 (γ) ν and H0 : β1 (γ) = 0 for the

three specifications at 5% level, but not for the conditional CAPM at 1% level. For the 25 FF portfolios, the

two null hypotheses are not rejected under the conditional CAPM even at 5% level.

For individual stocks, the rejection of the asset pricing restriction using a time-varying multi-factor

specification (at 1% level), and the non rejection under a time-invariant specification, might seem counter-

intuitive. Indeed, for a given choice of the factors and instruments, the set of time-invariant specifications

satisfying the no-arbitrage restriction a (γ) = b (γ)′ ν, is a strict subset of the collection of time-varying

specifications with at (γ) = bt (γ)′ νt. However, what we are testing here is whether the pseudo-true model,

obtained by the projection of the DGP on a given time-varying or time-invariant specification, is compatible

with no-arbitrage. The set of time-invariant models is included in the set of time-varying factor models, and

it may well be the case that the projection of the DGP on the former set satisfies the no-arbitrage restrictions,

while the projection on the latter does not. Therefore, the results in Table 3 for individual stocks are not

incompatible with each other. A similar argument might explain why in Table 3 Panel B we fail to reject

the asset pricing restrictionH0 : β1 (γ) = β3 (γ) ν under the conditional CAPM (at level 1% for individual

assets, and 5% for portfolios), while this restriction is rejected under the three- and four-factor specifications.

For the time-varying Fama-French factor model estimated on the 25 FF portfolios, Table 3 Panel B

shows that the time-varying intercept does not vanish. In the light of this observation, the finding of zero

estimated νt in Figure 8 of Appendix 10 implies that the betas do not explain the alphas cross-sectionally

for the 25 FF portfolios, and not that these alphas are zero.

In Appendix 15 of the supplementary materials, we compare the cross-sectional distributions of β̂′1,iβ̂1,i,

the idiosyncratic risk (square root of residual variance), and the estimated time-series coefficient of determi-

nation ρ̂2
i (ratio of explained variance and total variance) for the time-invariant and time-varying four-factor

model on the different asset universes. We can view those estimates as measures of limits-to-arbitrage and

missing factor impact (Pontiff (2006), Lam and Wei (2011), Ang et al. (2009)). The cross-sectional average

of the β̂′1,iŵiβ̂1,i is the basis for the test statistic TQ̂a. We relate these measures to characteristics such as

size, book-to-market, and sample size. The 25 FF portfolios exhibit small β̂′1,iβ̂1,i, small idiosyncratic risks,

and large estimates ρ̂2
i compared to individual stocks as expected from the results of Sections 4.2 and 4.3.

The heterogeneity is much larger for the Indu. portfolios and individual stocks. Our preliminary results
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based on linear quantile regressions reveal that stocks with small size tend to yield large β̂′1,iβ̂1,i, large id-

iosyncratic risks, and small estimated ρ̂2
i . We also find that firms with short observation periods tend to be

associated with large values of both idiosyncratic and systematic risks (with a larger proportion of systematic

risk to total risk), as well as small market capitalisation. Measuring and understanding limits-to-arbitrage

and missing factor impact on individual stocks certainly await more work.

The analysis of the validity of the asset pricing restrictions could be completed by an analysis of correct

specification of the different time-varying and time-invariant factor models. A specification test would

assess whether the proposed set of linear factors captures the systematic risk component in equity returns,

and whether the proposed parametric beta dynamics correctly reflects the time-variation of loadings. It

clearly differs from the test of the no-arbitrage restrictions introduced above. Developing a test of correct

specification of time-varying factor models with an unbalanced panel and double asymptotics is beyond the

scope of the paper. We leave this interesting topic for future research.
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Table 2: Estimated annualized components of vec [F ′] and ν for the time-varying four-factor model

vec [F ′] ν (n = 9, 936) ν (n = 25) ν (n = 44)

const
4.8322

(0.2653, 9.3990)

1.3744

(0.7069, 2.0419)

0.5251

(−0.4713, 1.5216)

1.4225

(0.1000, 2.7449)

m dst−1
3.0353

(−2.6803, 8.7509)

−0.6032

(−1.2688, 0.0623)

−0.2916

(−1.1622, 0.5790)

0.6266

(−1.0651, 2.3182)

tst−1
1.8677

(−2.8399, 6.5754)

−0.9254

(−1.5626, −0.2881)

0.0828

(−0.6666, 0.8323)

−0.9464

(−2.1876, 0.2948)

const
3.2739

(0.0410, 6.5067)

−0.2130

(−0.8680, 0.4421)

0.0607

(−0.9808, 1.1122)

−4.6894

(−7.7028, −1.6760)

smb dst−1
2.5468

(−0.5998, 5.6934)

−0.5948

(−1.1499, −0.0396)

0.4134

(−0.6139, 1.4407)

−1.3207

(−4.1131, 1.4717)

tst−1
0.2855

(−2.6271, 3.1982)

−0.2157

(−0.7443, 0.3128)

−0.1966

(−0.9686, 0.5753)

−1.0377

(−3.3182, 1.2428)

const
4.7772

(1.7905, 7.7639)

−6.1642

(−6.8543, −5.4741)

−0.2267

(−1.3144, 0.8611)

−3.5006

(−6.6784, −0.3229)

hml dst−1
−1.7898

(−5.5963, 2.0167)

3.5981

(2.8995, 4.2967)

0.2187

(−1.0365, 1.4740)

4.2977

(1.6510, 6.9444)

tst−1
0.8933

(−2.2598, 4.0465)

−0.4292

(−1.0043, 0.1458)

−0.0073

(−0.8766, 0.8620)

−1.3221

(−4.1853, 1.5411)

const
8.6543

(−4.2482, 13.0605)

−2.5592

(−3.4153, −1.7031)

9.0179

(0.4294, 17.6064)

5.5584

(−0.6835, 11.8002)

mom dst−1
−7.3714

(−14.6656, −0.0771)

6.0148

(5.1168, 6.9131)

1.9403

(−6.0003, 9.8808)

7.9407

(2.0813, 13.8001)

tst−1
1.5804

(−2.8226, 5.9833)

−3.2960

(−4.0246, −2.5673)

−2.5080

(−9.9869, 4.9710)

−5.9833

(−10.8890, 0.4623)

The table contains the estimated annualized components of vector vec [F ′], and of vector ν, and their con-

fidence intervals at 95% probability level, for the individual stocks (n = 9, 936 and nχ = 3, 900) and

portfolios (n = 25, 44). We report the bias corrected estimates ν̂B of ν for individual stocks. In order to

build the confidence intervals for ν for individual stocks, we use the thresholded variance-covariance matrix

of Proposition 5. When we consider the 25 FF and 44 Indu. portfolios as base assets, we compute an esti-

mate of the variance-covariance matrix Σν,n defined in Section 3.3. The default spread dst−1 and the term

spread tst−1 are centered and standardized.
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Appendix 1 Regularity conditions

In this Appendix, we list and comment the additional assumptions used to derive the large sample proper-

ties of the estimators and test statistics. We use below the extended vector of common and firm-specific

regressors xt(γ) :=
(
vech(Xt)

′, Z ′t−1 ⊗ Zt−1 (γ)′ , f ′t ⊗ Z ′t−1, f
′
t ⊗ Zt−1(γ)′

)′ ∈ Rd (see Section 3.1).

Assumption B.1 There exist constants η, η̄ ∈ (0, 1] and C1, C2, C3, C4 > 0 such that, for all δ > 0 and

T ∈ N, we have:

a) sup
γ∈[0,1]

P

[∥∥∥∥∥ 1

T

∑
t

(
xt(γ)xt(γ)′ − E

[
xt(γ)xt(γ)′

])∥∥∥∥∥ ≥ δ
]
≤ C1T exp

{
−C2δ

2T η
}

+ C3δ
−1 exp

{
−C4T

η̄
}

.

Furthermore, for all δ > 0, T ∈ N, and 1 ≤ k, l,m ≤ d, the same upper bound holds for:

b) sup
γ∈[0,1]

P

[∥∥∥∥∥ 1

T

∑
t

It(γ)
(
xt(γ)xt(γ)′ − E

[
xt(γ)xt(γ)′

])∥∥∥∥∥ ≥ δ
]

;

c) sup
γ∈[0,1]

P

[∥∥∥∥∥ 1

T

∑
t

It(γ)xt(γ)εt(γ)

∥∥∥∥∥ ≥ δ
]

;

d) sup
γ,γ̃∈[0,1]

P

[∣∣∣∣∣ 1

T

∑
t

(It(γ)It(γ̃)− E[It(γ)It(γ̃)])

∣∣∣∣∣ ≥ δ
]

;

e) sup
γ,γ̃∈[0,1]

P

[∥∥∥∥∥ 1

T

∑
t

It(γ)It(γ̃)
(
εt(γ)εt(γ̃)xt(γ)xt(γ̃)′ − E

[
εt(γ)εt(γ̃)xt(γ)xt(γ̃)′

])∥∥∥∥∥ ≥ δ
]

;

f) sup
γ,γ̃∈[0,1]

P

[∣∣∣∣∣ 1

T

∑
t

It(γ)It(γ̃)xt,k(γ)xt,l(γ)xt,m(γ̃)εt(γ)

∣∣∣∣∣ ≥ δ
]

.

Assumption B.2 There exists a constant M > 0 such that, for all T ∈ N, we have:

sup
γ∈[0,1]

E

[
1

T

∑
t1,t2,t3

|cov(ε2
t1(γ), εt2(γ)εt3(γ)|FT )|

]
≤M .

Assumption B.3 There exists a constant M > 0 such that, for all n, T ∈ N, we have for ηi,t = ε2
i,t − σii,t:

a) E

 1

nT

∑
i,j

∑
t1,t2

E
[∣∣cov (ε2

i,t1 , ε
2
j,t2 |FT , γi, γj

)∣∣2 |γi, γj]1/2

 ≤M .

b) E

 1

nT 2

∑
i,j

∑
t1,t2,t3,t4

E
[
|cov (εi,t1εi,t2 , εj,t3εj,t4 |FT , γi, γj)|

2 |γi, γj
]1/2

 ≤M ;

c) E

 1

nT 2

∑
i,j

∑
t1,t2,t3,t4

E
[
|cov (ηi,t1εi,t2 , ηj,t3εj,t4 |FT , γi, γj)|

2 |γi, γj
]1/2

 ≤M ;

d) E

 1

nT 2

∑
i,j

∑
t1,t2,t3,t4

E
[
|cov (ηi,t1ηi,t2 , ηj,t3ηj,t4 |FT , γi, γj)|

2 |γi, γj
]1/2

 ≤M ;
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e) E

 1

nT 3

∑
i,j

∑
t1,...,t6

E
[
|cov (εi,t1εi,t2εi,t3 , εj,t4εj,t5εj,t6 |FT , γi, γj)|

2 |γi, γj
]1/2

 ≤M ;

f) E

 1

nT 3

∑
i,j

∑
t1,...,t6

E
[
|cov (ηi,t1εi,t2εi,t3 , ηj,t4εj,t5εj,t6 |FT , γi, γj)|

2 |γi, γj
]1/2

 ≤M .

Assumption B.4 a) There exists a constant M > 0 such that sup
γ∈[0,1]

‖xt(γ)‖ ≤M , P -a.s.. Moreover,

b) sup
γ∈[0,1]

‖B(γ)‖ <∞, sup
γ∈[0,1]

‖C(γ)‖ <∞, c) inf
γ∈[0,1]

E[It(γ)] > 0, and d) inf
γ∈[0,1]

eigmin(E[xt(γ)xt(γ)′]) > 0.

Assumption B.5 The trimming constants satisfy χ1,T = O ((log T )κ1) and χ2,T = O ((log T )κ2), with κ1,

κ2 > 0.

Assumption B.6 There exists a constant M > 0 such that
∥∥E [utu′t|Zt−1

]∥∥ ≤M for all t, where ut =

ft − E[ft|Ft−1].

Assumptions B.1 and B.2 restrict the serial dependence of the factors and the individual processes of

observability indicators and error terms. Specifically, Assumption B.1 a) gives an upper bound for large-

deviation probabilities of the sample average of random matrices xt(γ)xt(γ)′, uniformly w.r.t. γ ∈ [0, 1].

It implies that the sample moment of squared components of the regressor vector converge in probability

to the corresponding population moments at a rate Op(T−η/2(log T )c), for some c > 0. Assumptions B.1

b)-f) give similar upper bounds for large-deviation probabilities of sample averages of processes involving

regressors, observability indicators and error terms, uniformly w.r.t. γ ∈ [0, 1]. We use these assumptions to

prove the convergence of time series averages uniformly across assets. Assumption B.2 involves conditional

covariances of products of error terms. Assumptions B.1 and B.2 are satisfied e.g. when the individual

processes of the regressors, observability indicators and error terms feature mixing serial dependence, with

mixing coefficients uniformly bounded w.r.t. γ ∈ [0, 1] (see e.g. Bosq (1998), Theorems 1.3 and 1.4).

Assumptions B.3 a)-f) restrict both serial and cross-sectional dependence of the error terms. They involve

conditional covariances between products of error terms εi,t and innovations ηi,t = ε2
i,t − σii,t for different

assets and dates. These assumptions can be satisfied under weak serial and cross-sectional dependence of

the errors, such as temporal mixing and block dependence across assets. Assumptions B.4 a) and b) require

uniform upper bounds on regressor values, model coefficients and intercepts. Assumption B.4 c) implies
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that asymptotically the fraction of the time period in which an asset return is observed is bounded away

from zero uniformly across assets. Assumption B.4 d) excludes asymptotically multicollinearity problems

in the first-pass regression uniformly across assets. Assumptions B.4 a)-d) ease the proofs. Assumption B.5

gives an upper bound on the divergence rate of the trimming constants. The slow logarithmic divergence

rate allows to control the first-pass estimation error in the second-pass regression. Assumption B.6 requires

a bounded conditional variance-covariance matrix for the linear innovation ut associated with the factor

process. We use this assumption to prove that we can consistently estimate matrix F of the coefficients of

the linear projection of factor ft on variables Zt−1 by a SUR regression.

Appendix 2 Proofs

A.2.1 Proof of Proposition 1

To ease notations, we assume w.l.o.g. that the distribution G is uniform on [0, 1]. We can work at t =

1 because of stationarity, and use that a(γ), b(γ), for γ ∈ [0, 1], are F0-measurable from Assumption

APR.1. For a given countable collection of assets (γi) in Γ, we get from Assumption APR.1 that the

mean vector and the variance-covariance matrix of asset excess returns (R1(γ1), ..., R1(γn))
′

conditional

on F0 are equal to µn = An + BnE[f1|F0] and Σn = BnV [f1|F0]B′n +Σε,1,n, for n ∈ N, where An =

[a(γ1), ..., a(γn)]′, and Bn = [b(γ1), ..., b(γn)]
′
. Let en be the residual of the orthogonal projection of the

mean vector of asset excess returns conditional on F0 onto the columns of Bn. Under Assumption APR.1,

we have that en = µn − Bn
(
B
′
nBn

)−1
B
′
nµn = An − Bn

(
B
′
nBn

)−1
B
′
nAn, i.e., en is also equal to the

residual of the orthogonal projection of An onto the columns of Bn. Let Qn(ν) =
1

n

∑
i

[a(γi)− b(γi)′ν]2,

and let νn = arg inf
ν∈RK

Qn(ν) = (B′nBn)−1B′nAn be the associated vector of projection coefficients, so that

Qn(νn) =
1

n
e′nen under Assumption APR.1. Furthermore, let Pn denote the set of portfolios pn that invest

in the risk-free asset and risky assets γ1, ..., γn, for n ∈ N, with portfolio shares measurable w.r.t. F0.

For portfolio pn ∈ Pn, the cost, the conditional expected return, and the conditional variance are given by

C(pn) = α0,n + α
′
nιn, E [pn|F0] = R0C(pn) + α

′
nµn, and V [pn|F0] = α

′
nΣnαn, where ιn = (1, ..., 1)

′

and αn = (α1,n, ..., αn,n)
′
. For expository purpose, we do not make explicit the dependence of µn, Σn, en,

and Pn on the collection of assets (γi).
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The statement of Proposition 1 is proved by contradiction. Suppose that there exists a set A ∈ F0 with

P (A) > 0, and a constant δ > 0, such that

δ(ω) ≥ δ (16)

for any ω ∈ A, where δ(ω) := inf
ν∈RK

Q∞(ω, ν)= Q∞(ω, ν∞(ω)), withQ∞(ω, ν) =

ˆ
[a(γ, ω)− b(γ, ω)′ν]2dγ

and ν∞ =

(ˆ
b(γ)b(γ)′dγ

)−1 ˆ
b(γ)a(γ)dγ. From Assumption APR.2 (iii), we have ‖ν∞‖ ≤ ρ, P -a.s.,

for the constant ρ = M2. The next lemma, which is proved at the end of this section, gives a law of large

numbers for the cross-products of the intercept and the factor loadings.

Lemma 1 Under Assumptions APR.2 (i)-(ii), there exists a set J1 ⊂ Γ, with measure µΓ(J1) = 1, such

that: ∥∥∥∥∥ 1

n

∑
i

β(γi)β(γi)
′ −
ˆ
β(γ)β(γ)′dγ

∥∥∥∥∥ L2

→ 0, (17)

as n→∞, for any sequence (γi) in J1, where L2

→ denotes convergence in the L2 (Ω,F0, P ) norm.

Moreover, from Assumption APR.3, there exists a set J ⊂ Γ with measure µΓ(J ) = 1, such that

n−1eigmax(Σε,1,n)
L2

→ 0, for any sequence (γi) in J . Let us now show that an asymptotic arbitrage portfolio

exists based on any sequence (γi) in J
⋂
J1. Consider any given such sequence (γi) and a constant ε > 0.

Define the sequence of sets Sn :=

{∥∥∥∥∥ 1

n

∑
i

β(γi)β(γi)
′ −
ˆ
β(γ)β(γ)′dγ

∥∥∥∥∥ ≤ ε
}

. Equation (17) and the

Chebyshev inequality imply P (Sn) → 1 as n → ∞. Moreover, for ε > 0 small enough, from Assumption

APR.2 (iii) we have ‖νn − ν∞‖ ≤ ρ, for all ω ∈ Sn. Hence, we get ‖νn‖ ≤ 2ρ, for all ω ∈ Sn. From (17),

we get:∣∣∣∣ 1n‖en‖2 − δ
∣∣∣∣ 1Sn =

∣∣∣∣ inf
ν∈RK

Qn(ν)− inf
ν∈RK

Q∞(ν)

∣∣∣∣ 1Sn =

∣∣∣∣ inf
ν∈RK :‖ν‖≤2ρ

Qn(ν)− inf
ν∈RK :‖ν‖≤2ρ

Q∞(ν)

∣∣∣∣ 1Sn
≤ sup

ν∈RK :‖ν‖≤2ρ

|Qn(ν)−Q∞(ν)|

≤ (1 + 4ρ2)

∥∥∥∥∥ 1

n

∑
i

β(γi)β(γi)
′ −
ˆ
β(γ)β(γ)′dγ

∥∥∥∥∥ L2

→ 0. (18)

This implies that the set S∗n :=

{∣∣∣∣ 1n‖en‖2 − δ
∣∣∣∣ ≤ δ/2} ∩ Sn is such that P (S∗n)→ 1 as n→∞, and from

Inequality (16), we get:
1

n
‖en‖21A∩S∗n ≥ 2−1δ1A∩S∗n . (19)
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Define the portfolio sequence (qn) as follows. The portfolio is based on sequence (γi) with investments

αn =
1

‖en‖2
en and α0,n = −ι′nαn, if ω ∈ A ∩ S∗n, and is the zero-investment portfolio, if ω ∈ (A ∩ S∗n)c.

This portfolio has a cost exactly zero, i.e., C(qn) = 0, as in the definition of an asymptotic arbitrage

opportunity in APR.4. Let us now consider its conditional mean and variance. If ω ∈ A ∩ S∗n, we have

E [qn|F0] = 1 and V [qn|F0] ≤ eigmax(Σε,1,n)‖en‖−2 from the choice of αn, α0,n. Moreover, V [qn|F0] =

E
[
(qn − E [qn|F0])2 |F0

]
≥E

[
(qn − E [qn|F0])2 |F0, qn ≤ 0

]
P [qn ≤ 0|F0] ≥ P [qn ≤ 0|F0] . Hence,

we get: P [qn > 0|F0] ≥ 1− V [qn|F0] ≥ 1− eigmax(Σε,1,n)‖en‖−2, if ω ∈ A ∩ S∗n. Thus:

1A ≥ P [qn > 0|F0] 1A ≥ P [qn > 0|F0] 1A∩S∗n ≥ 1A∩S∗n − eigmax(Σε,1,n)‖en‖−21A∩S∗n

≥ 1A − (1A − 1A∩S∗n)− n−1eigmax(Σε,1,n)2δ−1,

from Inequality (19), and then |P [qn > 0|F0] 1A − 1A| ≤ 1A − 1A∩S∗n + n−1eigmax(Σε,1,n)2δ−1. By us-

ing n−1eigmax(Σε,1,n)
L2

→ 0, from Assumption APR.3, and P (S∗n)→ 1, we get

P [qn > 0|F0] 1A
L2

→ 1A. (20)

Then, E [P (qn > 0|F0) 1A] → P (A). Since P [qn > 0] = E [P (qn > 0|F0)] ≥ E [P (qn > 0|F0) 1A],

this implies lim inf
n→∞

P [qn > 0] ≥ P (A) > 0. Moreover, since P [qn ≥ 0|F0] 1Ac = 1Ac , and 1Ac = 1− 1A,

we get P [qn ≥ 0|F0]
L2

→ 1 from (20). Thus, P [qn ≥ 0] → 1. Hence, portfolio (qn) is an asymptotic

arbitrage opportunity. Since asymptotic arbitrage portfolios are ruled out by Assumption APR.4, it follows

that Inequality (16) is incorrect, and we must have
ˆ

[a(γ)− b(γ)′ν∞)]2dγ < δ, P -a.s., for any δ > 0,

that is, a(γ) = b(γ)′ν, with ν = ν∞, for almost all γ ∈ [0, 1], P -a.s. Such random vector ν is unique by

Assumption APR.2 (iii) and is F0-measurable. Then, Proposition 1 follows.

Proof of Lemma 1: We have seven steps to show that
1

n

∑
i

β
(2)
k,l (γi)

L2

→
ˆ
β

(2)
k,l (γ)dγ as n → ∞, where

β
(2)
k,l := βkβl, for µΓ-a.e. sequence (γi) ∈ Γ and all k, l = 1, ...,K + 1.

Step 1: For any k = 1, ...,K + 1, we show that βk is a L4-bounded process, i.e., ‖βk(γ)‖4 ≤M , for

any γ ∈ [0, 1] and a constant M > 0. Consider the sequence of partial sums βk,N (γ) =

N∑
j=1

ck,j(γ)ηj ,

for any γ ∈ [0, 1], where ck,j denotes the k-th component of function cj . From Assumption APR.2 (ii),

this sequence converges to βk(γ) in norm ‖ · ‖2 as N → ∞. From the same assumption, the sequence
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(ck,j(γ)ηj)j∈N in L4(Ω,F0, P ) is absolutely summable. Since the space L4(Ω,F0, P ) is complete, from

Theorem III.3 in Reed and Simon (1980), sequence βk,N (γ) converges in L4(Ω,F0, P ) as N → ∞. Since

convergence in norm ‖ · ‖4 implies convergence in norm ‖ · ‖2, and the L2 limit is unique, it follows that

βk(γ) ∈ L4(Ω,F0, P ), for any γ ∈ [0, 1]. The convergence of βk,N (γ) to βk(γ) in L4(Ω,F0, P ) implies

the convergence of the norm: ‖βk,N (γ)‖4 → ‖βk(γ)‖4 as N → ∞. From the triangular inequality and

Assumption APR.2 (ii), we have ‖βk,N (γ)‖4 ≤
N∑
j=1

|ck,j(γ)|‖ηj‖4 ≤
∞∑
j=1

‖cj(γ)‖‖ηj‖4 ≤M , for any γ

and N . Since the inequality is maintained in the limit N →∞, we get ‖βk(γ)‖4 ≤M for any γ.

Step 2: For any k, l = 1, ...,K + 1, function β(2)
k,l is weakly measurable, i.e., for any h ∈ L2(Ω,F0, P )

the mapping γ → H(γ) := E[β
(2)
k,l (γ)h] is measurable. Let β(2)

k,l,N := βk,Nβl,N . We have:

‖β(2)
k,l,N (γ)− β(2)

k,l (γ)‖2 = ‖(βk,N (γ)− βk(γ))βl,N (γ)‖2 + ‖βk(γ)(βl,N (γ)− βl(γ))‖2

≤ ‖βk,N (γ)− βk(γ)‖4‖βl,N (γ)‖4 + ‖βk(γ)‖4‖βl,N (γ)− βl(γ)‖4

≤ M (‖βk,N (γ)− βk(γ)‖4 + ‖βl,N (γ)− βl(γ)‖4)→ 0,

as N → ∞, for any γ. Therefore, β(2)
k,l,N (γ) converges to β(2)

k,l (γ) in the L2 norm, for any γ. It follows that

functionHN (γ) := E[β
(2)
k,l,N (γ)h] converges toH(γ) pointwise in γ asN →∞. SinceHN is a measurable

function, and the pointwise limit of a sequence of measurable functions is measurable (see Halmos (1950),

Theorem 20.A), function H is measurable.

Step 3: Function β(2)
k,l has an essentially separable range. Define the setA = span{ηjηk : j, k = 1, 2, ...}.

Since ηj ∈ L4(Ω,F0, P ), we get that A is a subset of L2(Ω,F0, P ). Random variable β(2)
k,l,N (γ) belongs

to set A, for any N and γ. Since β(2)
k,l,N (γ) converges to β(2)

k,l (γ) in the L2 norm (see step 2), β(2)
k,l (γ) is

in the L2-closure Ā, for any γ. Thus, Ā is the essential range of β(2)
k,l . Moreover, by orthonormalizing the

functions {ηjηk : j, k = 1, 2, ...}, we get a countable orthonormal basis for Ā. Thus, Ā is separable.

Step 4: By using the Pettis measurability theorem, from steps 2 and 3 it follows that process β(2)
k,l is

measurable (see e.g. Al-Najjar (1995), Section A.2, p. 1219, Khan and Sun (1999), p. 555).

Step 5: Since function β(2)
k,l is measurable (step 4) and L2 bounded (from step 1 and the Cauchy-Schwarz

inequality), it follows that β(2)
k,l is Bochner integrable (see e.g. Al-Najjar (1995), Section A.3, p. 1219, Khan

and Sun (1999), p. 553).

Step 6: By using Theorem 2.4 and remarks on pages 301 and 304 in Hoffman-Jorgensen (1985) (see
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also Al-Najjar (1995), p. 1221), the Bochner integrability property of β(2)
k,l implies:

1

n

∑
i

β
(2)
k,l (γi)

L2

→ B −
ˆ
β

(2)
k,l (γ)dγ, as n→∞, for µΓ-a.e. (γi).

Step 7: The conclusion follows since, from the measurability condition in Assumption APR.2 (i), the

Bochner integral B −
ˆ
β

(2)
k,l (γ)dγ is equal to the ω-wise Lebesgue integral

ˆ
β

(2)
k,l (γ)dγ, P -a.s. Let us

prove this statement. From the definition of Bochner integral, let (sj) be a sequence of simple functions

sj : [0, 1]→ L2(Ω,F0, P ) with ˆ
‖β(2)

k,l (γ)− sj(γ)‖2dγ ≤ 2−j , (21)

for all integers j. Then:

B −
ˆ
β

(2)
k,l (γ)dγ = lim

j→∞

ˆ
sj(γ)dγ, (22)

where the limit is w.r.t. the L2(Ω,F0, P ) norm, and the integral of simple functions is defined ω-wise. Let

us now relate the r.h.s. with the Lebesgue integral of β(2)
k,l . From Inequality (21), we have:

E

ˆ ∞∑
j=1

|β(2)
k,l (γ)− sj(γ)|dγ

 =
∞∑
j=1

ˆ
E
[
|β(2)
k,l (γ)− sj(γ)|

]
dγ

≤
∞∑
j=1

ˆ
‖β(2)

k,l (γ)− sj(γ)‖2dγ ≤
∞∑
j=1

2−j = 1 <∞,

where we use the Fubini and Lebesgue dominated convergence theorems to interchange the integral over γ,

the expectation, and the summation over j. In particular, it follows:
ˆ ∞∑

j=1

|β(2)
k,l (γ)− sj(γ)|dγ <∞, (23)

for all ω ∈ N and a set N ⊂ Ω with P (N ) = 1. Thus, we have |β(2)
k,l (γ) − sj(γ)| → 0 for j → 0, for

a.e. γ ∈ [0, 1], for all ω ∈ N . Moreover, |β(2)
k,l (γ)− sj(γ)| is dominated by the sum

∞∑
j=1

|β(2)
k,l (γ)− sj(γ)|,

which is integrable, for all ω ∈ N , by Inequality (23). Then, from the Lebesgue dominated convergence

theorem, we get: ˆ
β

(2)
k,l (γ)dγ = lim

j→∞

ˆ
sj(γ)dγ, (24)

where convergence is pointwise for all ω ∈ N . Equations (22) and (24) imply that
ˆ
sj(γ)dγ converges in

probability to B −
ˆ
γ

(2)
k,l (γ)dγ and to

ˆ
β

(2)
k,l (γ)dγ, and therefore the two integrals coincide P -a.s.
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A.2.2 Proof of Proposition 2

The conditional covariance function of the error terms in the repackaged economy is given by:

E[ε̃(γ1)ε̃(γ2)|F0] =
∑
k

∑
l

wk[G
−1
k (γ1)]wl[G

−1
l (γ2)]E[ε(G−1

k (γ1))ε(G−1
l (γ2))|F0]. (25)

Let us show that the repackaged economy satisfies the condition of approximate factor structure in Assump-

tion APR.3, namely, there exists a set J̃ ⊂
{

(γi) ∈ Γ : n−1eigmax(Σε̃,1,n)
L2

→ 0

}
which has µΓ-measure

1, where Σε̃,1,n is the n×n conditional variance-covariance matrix of [ε̃(γ1), ..., ε̃(γn)]′. By using Equation

(25) and the Cauchy-Schwarz inequality, we prove the following Lemma.

Lemma 2 We have:

eigmax(Σε̃,1,n) ≤
∑
k

∑
l

w̄kw̄leigmax(Σε,1,n(Gk))
1/2eigmax(Σε,1,n(Gl))

1/2,

where Σε,1,n(Gk) is the symmetric n× n matrix with elements Cov(ε[G−1
k (γi)], ε[G

−1
k (γj)]|F0).

From Lemma 2, the triangular inequality and the Cauchy-Schwarz inequality, we get:

‖n−1eigmax(Σε̃,1,n)‖2 ≤
∑
k

∑
l

w̄kw̄l‖n−1eigmax(Σε,1,n(Gk))‖
1/2
2 ‖n

−1eigmax(Σε,1,n(Gl))‖
1/2
2 . (26)

Now, let us define the sets Jk = G∞k (J ), for any k, where the set J is defined in Assumption APR.3 for

the original economy and has µΓ-measure 1, and G∞k is the mapping on Γ defined by G∞k (γ1, γ2, ...) =

(Gk(γ1), Gk(γ2), ...). Then, Jk ⊂
{

(γi) ∈ Γ : n−1eigmax(Σε,1,n(Gk))
L2

→ 0

}
. Moreover, since the map-

ping Gk is measure-preserving on [0, 1], the mapping G∞k is measure-preserving on Γ. Thus, it follows that

µΓ(Jk) = 1 for all k, and J̃ :=
⋂
k

Jk has µΓ measure 1. We now prove that J̃ ⊂{
(γi) ∈ Γ : n−1eigmax(Σε̃,1,n)

L2

→ 0

}
. Indeed, let us assume that (γi) ∈ Jk for all k. Then, by tak-

ing the limit n → ∞ on both sides of (26), and interchanging the limit and the double sum, we get

‖n−1eigmax(Σε̃,1,n)‖2 → 0. The limit and the double sum can be interchanged by applying the Lebesgue

dominated convergence theorem. Indeed, the summands are uniformly dominated since n−1eigmax(Σε,1,n(Gk))

≤ sup
γ∈[0,1]

E[εt(γ)2|Ft−1] ≤M , P -a.s., and the w̄k are summable.
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A.2.3 Proof of Proposition 3

a) Consistency of ν̂. By definition of ν̂, we have: ν̂ − ν = Q̂−1
β3

1

n

∑
i

β̂′3,iŵi

(
β̂1,i − β̂3,iν

)
. From Equa-

tion (12) and MN Theorem 2 p. 35, we get β̂3,iν = vec[ν ′β̂′3,i] =
(
Id1 ⊗ ν ′

)
vec[β̂′3,i] =

(
Id1 ⊗ ν ′

)
Jaβ̂2,i.

Moreover, by using the selection matricesE1 andE2, we obtain β̂1,i− β̂3,iν = [E′1 − (Id1 ⊗ ν ′) JaE′2] β̂i =

C ′ν β̂i = C ′ν

(
β̂i − βi

)
, from Equation (11). It follows that

ν̂ − ν = Q̂−1
β3

1

n

∑
i

β̂′3,iŵiC
′
ν

(
β̂i − βi

)
. (27)

The consistency of ν̂ follows from the next Lemma, which is proved in Section A.2.3 c) below. The notation

In,T = Op,log(an,T ) means that In,T /an,T is bounded in probability by some power of the logarithmic term

log(T ) as n, T →∞.

Lemma 3 Under Assumptions A.1 b), SC.1-SC.2, B.1, B.4 and B.5, we have:

(i) sup
i

1χi ‖β̂i − βi‖ = Op,log

(
T−η/2

)
; (ii) sup

i
‖wi‖ = O(1); (iii)

1

n

∑
i

‖ŵi − wi‖ = op(1);

(iv) Q̂β3 −Qβ3 = op(1), when n, T →∞ such that n = O (T γ̄) for γ̄ > 0.

b) Consistency of Λ̂. By definition of Λ̂, we deduce
∥∥∥vec [Λ̂′ − Λ′

]∥∥∥ ≤ ‖ν̂ − ν‖ +
∥∥∥vec [F̂ ′ − F ′]∥∥∥ . By

part a), ‖ν̂ − ν‖ = op (1).By the LLN and Assumptions B.1a), B.4a) and B.6, we have
1

T

∑
t

Zt−1Z
′
t−1 = Op (1)

and
1

T

∑
t

utZ
′
t−1 = op (1). Then, by Slustky theorem, we get that

∥∥∥vec [F̂ ′ − F ′]∥∥∥ = op (1). The result

follows.

c) Proof of Lemma 3: (i) We use β̂i − βi =
τi,T√
T
Q̂−1
x,iYi,T and 1χi τi,T ≤ χ2,T . Moreover, from the

definition of condition number CN , ‖Q̂−1
x,i‖

2 = Tr
(
Q̂−2
x,i

)
=

d∑
k=1

λ−2
k,i ≤ dCN

(
Q̂x,i

)4
, where the λk,i are

the eigenvalues of matrix Q̂x,i and we use eigmax
(
Q̂x,i

)
≥ 1, which implies 1χi ‖Q̂

−1
x,i‖ ≤ Cχ

2
1,T . Thus,

sup
i

1χi ‖β̂i − βi‖ =Op,log

(
T−1/2 sup

i
‖Yi,T ‖

)
from Assumption B.5. Now let δT := T−η/2(log T )(1+γ̄)/(2C2),

where η, C2 > 0 are as in Assumption B.1 and γ̄ > 0 is such that n = O(T γ̄). We have:

P

[
T−1/2 sup

i
‖Yi,T ‖ ≥ δT

]
≤ nP

[
T−1/2‖Yi,T ‖ ≥ δT

]
= nE

[
P
(
T−1/2‖Yi,T ‖ ≥ δT |γi

)]
≤ n sup

γ∈[0,1]
P

[∥∥∥∥∥ 1

T

∑
t

It(γ)xt (γ) εt(γ)

∥∥∥∥∥ ≥ δT
]
≤ n

(
C1T exp

{
−C2δ

2
TT

η
}

+ C3δ
−1
T exp

{
−C4T

η̄
})

= O(1),
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from Assumption B.1 c). Part (i) follows. By using wi = (diag[vi])
−1, τi ≥ 1 and eigmin(Sii) ≥

M−1eigmin (Qx,i) ≥M−1 inf
γ∈[0,1]

eigmin(E[xt(γ)xt(γ)′]) > 0 from Assumptions A.1 b) and B.4 d), part

(ii) follows. Part (iii) is proved in the supplementary materials by using Assumptions B.1, B.4 and B.5.

Finally, part (iv) follows from Q̂β3 −Qβ3 =
1

n

∑
i

(β̂′3,iŵiβ̂3,i − β′3,iwiβ3,i) +
1

n

∑
i

β′3,iwiβ3,i −Qβ3 , by

using parts (i)-(iii) and the LLN.

A.2.4 Proof of Proposition 4

a) Asymptotic normality of ν̂. From Equation (27) and by using
√
T
(
β̂i − βi

)
= τi,T Q̂

−1
x,iYi,T , we get

√
nT (ν̂ − ν) = Q̂−1

β3

1√
n

∑
i

τi,T β̂
′
3,iŵiC

′
νQ̂
−1
x,iYi,T = Q̂−1

β3

1√
n

∑
i

τi,Tβ
′
3,iŵiC

′
νQ̂
−1
x,iYi,T

+Q̂−1
β3

1√
n

∑
i

τi,T

(
β̂3,i − β3,i

)′
ŵiC

′
νQ̂
−1
x,iYi,T =: Q̂−1

β3
I11 + I12.

To rewrite I12, we use the following lemma.

Lemma 4 Let A be a m× n matrix and b be a n× 1 vector. Then, Ab =
(
vec [In]′ ⊗ Im

)
vec [vec [A] b′] .

By Lemma 4, Equation (12), and
√
Tvec

[(
β̂3,i − β3,i

)′]
= τi,TJaE

′
2Q̂
−1
x,iYi,T , we have

I12 = Q̂−1
β3

1√
nT

∑
i

τ2
i,T

(
vec [Id1 ]′ ⊗ IKp

)
vec

[
JaE

′
2Q̂
−1
x,iYi,TY

′
i,T Q̂

−1
x,iCνŵi

]
= Q̂−1

β3

1√
nT

∑
i

τ2
i,TJbvec

[
E′2Q̂

−1
x,iYi,TY

′
i,T Q̂

−1
x,iCνŵi

]
=

√
n

T
B̂ν +

1√
T
Q̂−1
β3
I13,

where I13 :=
1√
n

∑
i

τ2
i,TJbvec

[
E′2

(
Q̂−1
x,iYi,TY

′
i,T Q̂

−1
x,iCν − τ

−1
i,T Q̂

−1
x,i ŜiiQ̂

−1
x,iCν̂

)
ŵi

]
. We get:

√
nT

(
ν̂ − 1

T
B̂ν − ν

)
= Q̂−1

β3
I11 +

1√
T
Q̂−1
β3
I13. (28)

Let us first show that Q̂−1
β3
I11 in (28) is asymptotically normal. By MN Theorem 2 p. 35, we have

I11 =
1√
n

∑
i

τi,T

[
(Y ′i,T Q̂

−1
x,i )⊗ (β′3,iŵi)

]
vec

[
C ′ν
]
. We use the next Lemma, which is proved below in

Subsection A.2.4 c).

Lemma 5 Under Assumptions A.1, A.3, SC.1-SC.2 and B.1, B.3-B.5, we have

I11 =
1√
n

∑
i

τi

[
(Y ′i,TQ

−1
x,i )⊗ (β′3,iwi)

]
vec

[
C ′ν
]

+ op(1), when n, T → ∞ such that n = O (T γ̄) for

γ̄ > 0.
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Then, by the properties of the vec operator, we get

Q̂−1
β3
I11 =

(
vec

[
C ′ν
]′ ⊗ Q̂−1

β3

) 1√
n

∑
i

τivec
[
(Y ′i,TQ

−1
x,i )⊗ (β′3,iwi)

]
+ op(1).

Moreover, by using the equality vec
[
(Y ′i,TQ

−1
x,i )⊗ (β′3,iwi)

]
= (Q−1

x,iYi,T )⊗ vec
[
β′3,iwi

]
(see MN

Theorem 10 p. 55), we get Q̂−1
β3
I11 =

(
vec

[
C ′ν
]′ ⊗ Q̂−1

β3

) 1√
n

∑
i

τi

[
(Q−1

x,iYi,T )⊗ v3,i

]
+ op(1). Then

Q̂−1
β3
I11 ⇒ N (0,Σν) follows from Assumptions A.2 a) and Lemma 3 (iv). Let us now consider the second

term in the RHS of (28), and show
1√
T
I13 = op (1). We have using MN Theorem 2 p. 35:

I13 =
1√
n

∑
i

τ2
i,TJb

(
ŵi ⊗

[
E′2Q̂

−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q̂−1
x,i

])
vec[Cν ]

− 1√
n

∑
i

τ2
i,TJb

(
ŵi ⊗

[
E′2Q̂

−1
x,i

(
τ−1
i,T Ŝ

0
ii − Sii,T

)
Q̂−1
x,i

])
vec[Cν ]

− 1√
n

∑
i

τi,TJb

(
ŵi ⊗

[
E′2Q̂

−1
x,i

(
Ŝii − Ŝ0

ii

)
Q̂−1
x,i

])
vec[Cν ]

− 1√
n

∑
i

τi,TJb

(
ŵi ⊗

[
E′2Q̂

−1
x,i ŜiiQ̂

−1
x,i

])
vec[Cν̂ − Cν ],

=: Jb(I131 − I132 − I133)vec[Cν ]− JbI134vec[Cν̂ − Cν ], (29)

where Ŝ0
ii =

1

Ti

∑
t

Ii,tε
2
i,txi,tx

′
i,t and Sii,T =

1

T

∑
t

Ii,tσii,txi,tx
′
i,t. The various terms are bounded in the

next Lemma.

Lemma 6 Under Assumptions A.1, A.3, SC.1-SC.2, B.1-B.5, (i) I131 = Op(1) +Op,log

(√
n

T

)
,

(ii) I132 = Op,log

(
1√
T

+

√
n

T

)
, (iii) I133 = Op,log

(√
n

T

)
(iv) I134 = Op,log

(√
n
)

and

(v) Cν̂ − Cν = Op,log

(
1√
nT

+
1

T

)
, when n, T →∞ such that n = O (T γ̄) for γ̄ > 0.

From Equation (29) and Lemma 6 we get
1√
T
I13 = op(1) +Op,log

( √
n

T
√
T

)
. From n = O(T γ̄) with

γ̄ < 3, we get
1√
T
I13 = op(1) and the conclusion follows.

b) Asymptotic normality of vec
(

Λ̂′
)

. We have
√
Tvec

[
Λ̂′ − Λ′

]
=
√
Tvec

[
F̂ ′ − F ′

]
+
√
T (ν̂ − ν) . By

using
√
Tvec

[
F̂ ′ − F ′

]
=

IK ⊗( 1

T

∑
t

Zt−1Z
′
t−1

)−1
 1√

T

∑
t

ut ⊗ Zt−1 and
√
T (ν̂ − ν) =
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Op

(
1√
n

+
1√
T

)
= op (1), the conclusion follows from Assumption A.2b).

c) Proof of Lemma 5: Write:

I11 =
1√
n

∑
i

τi,T

[
(Y ′i,TQ

−1
x,i )⊗ (β′3,iŵi)

]
vec

[
C ′ν
]

+
1√
n

∑
i

τi,T

[
(Y ′i,T (Q̂−1

x,i −Q
−1
x,i )⊗ (β′3,iŵi)

]
vec

[
C ′ν
]

=: I111vec
[
C ′ν
]

+ I112vec
[
C ′ν
]
.

Let us decompose I111 as:

I111 =
1√
n

∑
i

τi

[
(Y ′i,TQ

−1
x,i )⊗ (β′3,iwi)

]
+

1√
n

∑
i

(1χi − 1) τi

[
(Y ′i,TQ

−1
x,i )⊗ (β′3,iwi)

]
+

1√
n

∑
i

1χi (τi,T − τi)
[
(Y ′i,TQ

−1
x,i )⊗ (β′3,iwi)

]
+

1√
n

∑
i

1χi τi,T

[
(Y ′i,TQ

−1
x,i )⊗ (β′3,i((diag[v̂i])

−1 − (diag[vi])
−1))

]
=: I1111 + I1112 + I1113 + I1114.

Similarly, for I112, we have:

I112 =
1√
n

∑
i

1χi τi,T

[
(Y ′i,T (Q̂−1

x,i −Q
−1
x,i )⊗ (β′3,i(diag[vi])

−1)
]

+
1√
n

∑
i

1χi τi,T

[
(Y ′i,T (Q̂−1

x,i −Q
−1
x,i )⊗ (β′3,i((diag[v̂i])

−1 − (diag[vi])
−1))

]
=: I1121 + I1122.

The conclusion follows by proving that terms I1112, I1113, I1114, I1121 and I1122 are op(1).

Proof that I1112 = op(1). We use the next Lemma.

Lemma 7 Under Assumptions SC.1-SC.2, B.1 b), d) and B.4 a), c): P [1χi = 0] = O(T−b̄), for any b̄ > 0.

In Lemma 7, the unconditional probability P [1χi = 0] is independent of i since the indices (γi) are i.i.d.

By using the bound ‖I1112‖ ≤
C√
n

∑
i

(1− 1χi )‖Yi,T ‖ from Assumptions B.4 b), c) and d) and Lemma 3

(ii), the bound sup
i
E[‖Yi,T ‖|xT (γi), IT (γi), {γi}] ≤ C from Assumptions A.1 a) and b), and Lemma 7, it

follows I1112 = Op(
√
nT−b̄), for any b̄ > 0. Since n = O (T γ̄), with γ̄ > 0, we get I1112 = op(1).
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Proof that I1113 = op(1). From Assumptions A.1 a) and B.4 a)-d), we deduce that

E
[
‖I1113‖2|{xT (γi), IT (γi), γi}

]
≤ C

nT

∑
i,j

∑
t

1χi 1
χ
j |τi,T − τi||τj,T − τj ||σij,t|. By Cauchy-Schwarz in-

equality and Assumption A.1 c), we get E
[
‖I1113‖2|{γi}

]
≤ CM sup

γ∈[0,1]
E
[
1χi |τi,T − τi|

4|γi = γ
]1/2. By

using τi,T − τi = −τi,T τi
1

T

∑
t

(Ii,t − E[Ii,t|γi]) and 1χi τi,T ≤ χ2,T , we deduce that

sup
γ∈[0,1]

E
[
1χi |τi,T − τi|

4|γi = γ
]
≤ Cχ4

2,T sup
γ∈[0,1]

E

∣∣∣∣∣ 1

T

∑
t

(It(γ)− E[It(γ)])

∣∣∣∣∣
4
 = o(1) from Assump-

tion B.5 and the next Lemma.

Lemma 8 Under Assumption B.1 d): sup
γ∈[0,1]

E

∣∣∣∣∣ 1

T

∑
t

(It(γ)− E[It(γ)])

∣∣∣∣∣
4
 = O(T−c), for some c > 0.

Then, I1113 = op(1).

Proof that I1114 = op(1). From the properties of diagonal matrices

diag[v̂i]
−1 − diag[vi]

−1 = −diag[vi]
−2diag[v̂i − vi] + diag[v̂i]

−1diag[vi]
−2 (diag[v̂i − vi])2,

we get:

I1114 = − 1√
n

∑
i

1χi τi,T

[
(Y ′i,TQ

−1
x,i )⊗ (β′3,idiag[vi]

−2diag[v̂i − vi])
]

+
1√
n

∑
i

1χi τi,T

[
(Y ′i,TQ

−1
x,i )⊗ (β′3,idiag[v̂i]

−1diag[vi]
−2 (diag[v̂i − vi])2)

]
=: I11141 + I11142.

Let us first consider I11141. We have:

v̂i − vi = τi,TC
′
ν̂1Q̂

−1
x,i

(
Ŝii − Sii

)
Q̂−1
x,iCν̂1 + 2τi,T (Cν̂1 − Cν)′Q̂−1

x,iSiiQ̂
−1
x,iCν̂1

+τi,T (Cν̂1 − Cν)′Q̂−1
x,iSiiQ̂

−1
x,i (Cν̂1 − Cν) + 2τi,TC

′
ν

(
Q̂−1
x,i −Q

−1
x,i

)
SiiQ̂

−1
x,iCν

+τi,TC
′
ν

(
Q̂−1
x,i −Q

−1
x,i

)
Sii

(
Q̂−1
x,i −Q

−1
x,i

)
Cν + (τi,T − τi)C ′νQ−1

x,iSiiQ
−1
x,iCν . (30)

The contributions of the first two terms to I11141 are:

I111411 = − 1√
n

∑
i

1χi τ
2
i,T

[
(Y ′i,TQ

−1
x,i )⊗ (β′3,idiag[vi]

−2diag[C ′ν̂1Q̂
−1
x,i

(
Ŝii − Sii

)
Q̂−1
x,iCν̂1 ])

]
,

I111412 = − 2√
n

∑
i

1χi τ
2
i,T

[
(Y ′i,TQ

−1
x,i )⊗ (β′3,idiag[vi]

−2diag[(Cν̂1 − Cν)′Q̂−1
x,iSiiQ̂

−1
x,iCν̂1 ])

]
.
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We first show I111412 = op(1). For this purpose, it is enough to show that Cν̂1 − Cν = Op(T
−c), for

some c > 0, and
1√
n

∑
i

1χi τ
2
i,T

(
Q̂−1
x,iSiiQ̂

−1
x,i

)
k,l

(β′3,idiag[vi]
−2)m,p(Q

−1
x,iYi,T )q = Op

(
χ4

1,Tχ
2
2,T

)
, for

any k, l,m, p, q. The first statement follows from the proof of Proposition 3 but with known weights equal

to 1. To prove the second statement, we use bounds 1χi τi,T ≤ χ2,T , 1χi ‖Q̂
−1
x,i‖ ≤ Cχ

2
1,T and ‖Q−1

x,i‖ ≤ C

and Assumption A.1 c). Let us now prove that I111411 = op(1). For this purpose, it is enough to show that

J1 :=
1√
n

∑
i

1χi τ
2
i,T

(
Q̂−1
x,i

(
Ŝii − Sii

)
Q̂−1
x,i

)
k,l

(β′3,idiag[vi]
−2)m,p(Q

−1
x,iYi,T )q = op(1), (31)

for any k, l,m, p, q. By using ε̂i,t = εi,t − x′i,t
(
β̂i − βi

)
= εi,t −

τi,T√
T
x′i,tQ̂

−1
x,iYi,T , we get:

Ŝii − Sii =
1

Ti

∑
t

Ii,t
(
ε2
itxi,tx

′
i,t − Sii

)
+

1

Ti

∑
t

Ii,t
(
ε̂2
i,t − ε2

it

)
xi,tx

′
i,t

=
τi,T√
T
W1,i,T +

τi,T√
T
W2,i,T −

2τ2
i,T

T
W3,i,T Q̂

−1
x,iYi,T +

τ3
i,T

T
Q̂

(4)
x,i Q̂

−1
x,iYi,TY

′
i,T Q̂

−1
x,i , (32)

where W1,i,T :=
1√
T

∑
t

Ii,tx
2
i,tηi,t, ηi,t = ε2

i,t − σii,t, W2,i,T :=
1√
T

∑
t

Ii,tζi,t, ζi,t := σii,tx
2
i,t − Sii,

W3,i,T :=
1√
T

∑
t

Ii,tεi,tx
3
i,t, Q̂

(4)
x,i :=

1

T

∑
t

Ii,tx
4
i,t and xi,t, vi and Yi,T are now treated as scalars to ease

notation. Then:

J1 =
1√
nT

∑
i

1χi v
−2
i τ3

i,T Q̂
−2
x,iW1,i,Tβ3,iQ

−1
x,iYi,T +

1√
nT

∑
i

1χi v
−2
i τ3

i,T Q̂
−2
x,iW2,i,Tβ3,iQ

−1
x,iYi,T

− 2√
nT

∑
i

1χi v
−2
i τ4

i,T Q̂
−3
x,iW3,i,Tβ3,iQ

−1
x,iY

2
i,T

+
1√
nT

∑
i

1χi v
−2
i τ5

i,T Q̂
−4
x,i Q̂

(4)
x,iβ3,iQ

−1
x,iY

3
i,T =: J11 + J12 + J13 + J14.

Let us consider J11. We have:

E
[
J11|{xT (γi), IT (γi), γi}

]
=

1√
nT 3

∑
i

∑
t,s

1χi v
−2
i τ3

i,T Q̂
−2
x,iQ

−1
x,iβ3,iIi,tIi,sx

2
i,txi,sE

[
ε2
i,tεi,s|FT , γi

]
= 0,

from Assumption A.3. Moreover, from Assumption B.4:

V
[
J11|{xT (γi), IT (γi), γi}

]
≤ C

nT 3

∑
i,j

∑
t1,t2,t3,t4

1χi 1
χ
j τ

3
i,T τ

3
j,T ‖Q̂−1

x,i‖
2‖Q̂−1

x,j‖
2

|Cov (ηi,t1εi,t2 , ηj,t3εj,t4 |FT , γi, γj) |.
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By using 1χi ‖Q̂
−1
x,i‖ ≤ Cχ2

1,T , 1χi τi,T ≤ χ2,T , the Law of Iterated Expectations and Assumptions B.3 c)

and B.5, we get E [J11] = 0 and V [J11] = o(1). Thus J11 = op(1). By similar arguments and using

Assumptions A.1 c), B.3 e) and B.4, we get J12 = op(1), J13 = op(1) and J14 = op(1). Hence the bound

in Equation (31) follows, and I111411 = op(1). Paralleling the detailed arguments provided above, we can

show that all other remaining terms making I1114 are also op(1).

Proof that I1121 = op(1). From:

Q̂−1
x,i −Q

−1
x,i = −Q̂−1

x,i

(
1

Ti

∑
t

Ii,txi,tx
′
i,t −Qx,i

)
Q−1
x,i = −τi,T Q̂−1

x,iWi,TQ
−1
x,i , (33)

where Wi,T :=
1

T

∑
t

Ii,t(xi,tx
′
i,t −Qx,i), we can write:

I1121 = − 1√
n

∑
i

1χi τ
2
i,T

[
(Y ′i,T Q̂

−1
x,iWi,TQ

−1
x,i )⊗ (β′3,idiag[vi]

−1)
]
.

From Assumption B.4, 1χi ‖Q̂
−1
x,i‖ ≤ Cχ

2
1,T and 1χi τi,T ≤ χ2,T , we have:

E
[
‖I1121‖2|{xT (γi), IT (γi), γi}

]
≤

Cχ4
1,Tχ

4
2,T

nT

∑
i,j

∑
t

|σij,t|‖Wi,T ‖‖Wj,T ‖.

Then, from Cauchy-Schwarz inequality, we get E
[
‖I1121‖2|{γi}

]
≤ Cχ4

1,Tχ
4
2,T

1

n

∑
i,j

E[σ2
ij,t|γi, γj ]1/2

sup
i
E
[
‖Wi,T ‖4|γi

]1/2, where

sup
i
E
[
‖Wi,T ‖4|γi

]
≤ sup

γ∈[0,1]
E

∥∥∥∥∥ 1

T

∑
t

It(γ)
(
xt(γ)xt(γ)′ − E[xt(γ)xt(γ)′]

)∥∥∥∥∥
4
 = O(T−c)

from Assumption B.1 b). Then, from Assumptions A.1 c) and B.5 it follows E[‖I1121‖2] = o(1) and thus

I1121 = op(1).

Proof that I1122 = op(1). The statement follows by combining arguments similar as for I1114 and I1121.

A.2.5 Proof of Proposition 5

From Proposition 4, we have to show that Σ̃ν − Σν = op (1). By Σν =
(
vec [C ′ν ]′ ⊗Q−1

β3

)
Sv3

(
vec [C ′ν ]⊗Q−1

β3

)
and Σ̃ν =

(
vec [C ′ν̂ ]′ ⊗ Q̂−1

β3

)
S̃v3

(
vec [C ′ν̂ ]⊗ Q̂−1

β3

)
, where S̃v3 =

1

n

∑
i,j

τi,T τj,T
τij,T

[S̃Q,ij ⊗ v̂3,iv̂
′
3,j ], and
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the consistency of ν̂ and Q̂β3 , the statement follows if S̃v3−Sv3 = op(1). The leading terms in S̃v3−Sv3 are

given by I3 :=
1

n

∑
i,j

τiτj
τij

(
S̃Q,ij − SQ,ij

)
⊗ v3,iv

′
3,j and I4 :=

1

n

∑
i,j

τiτj(τ
−1
ij,T − τ

−1
ij )SQ,ij ⊗ v3,iv

′
3,j ,

while the other ones can be shown to be op(1) by arguments similar to the proofs of Propositions 3 and 4.

Proof of I3 = op(1). From τi ≤ M , τij ≥ 1, ‖v3,i‖ ≤ M and ‖Q−1
x,i‖ ≤ M , I3 = op(1) follows

if we show:
1

n

∑
i,j

∥∥∥S̃ij − Sij∥∥∥ = op (1) . For this purpose, we introduce the following Lemmas 9 and 10

that extend results in Bickel and Levina (2008) from the i.i.d. case to the time series case including random

individual effects.

Lemma 9 Let ψnT := max
i,j

∥∥∥Ŝij − Sij∥∥∥ , and ΨnT (ξ) := max
i,j

P
[∥∥∥Ŝij − Sij∥∥∥ ≥ ξ], for ξ > 0. Under

Assumptions SC.1, SC.2, A.4,
1

n

∑
i,j

∥∥∥S̃ij − Sij∥∥∥ = Op

(
ψnTn

δ̄κ−q̄ + nδ̄κ1−q̄ + ψnTn
2ΨnT ((1− v)κ)

)
,

for any v ∈ (0, 1) .

Lemma 10 Under Assumptions SC.1, SC.2, B.1, B.4 and B.5, if κ = M

√
log n

T η
with M large, then

n2ΨnT ((1− v)κ) = O (1) , for any v ∈ (0, 1) , and ψnT = Op

(√
log n

T η

)
, when n, T → ∞ such that

n = O (T γ̄) for γ̄ > 0.

In Lemma 9, the probability P
[∥∥∥Ŝij − Sij∥∥∥ ≥ ξ] is the same for all pairs (i, j) with i = j, and for all pairs

with i 6= j, since this probability is marginal w.r.t. the individual random effects. From Lemmas 9 and 10,

it follows
1

n

∑
i,j

∥∥∥S̃ij − Sij∥∥∥ = Op

((
log n

T η

)(1−q̄)/2
nδ̄

)
= op (1), since n = O(T γ̄) with γ̄ < η

1− q̄
2δ̄

.

Proof of I4 = op(1). From τi ≤ M , ‖Q−1
x,i‖ ≤ M , and ‖v3,i‖ ≤ M , we have E[‖I4‖|{γi}] ≤

C sup
i,j

E[|τ−1
ij,T − τ

−1
ij |γi, γj ]

1

n

∑
i,j

‖Sij‖. By using the inequalities sup
i,j

E[|τ−1
ij,T − τ

−1
ij |γi, γj ]

≤ sup
γ,γ̃∈[0,1]

E

[∥∥∥∥∥ 1

T

∑
t

(It(γ)It(γ̃)− E[It(γ)It(γ̃)]

∥∥∥∥∥
]

and ‖Sij‖ ≤ CE[|σij,t||γi, γj ], from Assumptions A.1

c) and B.1 d) we get E[‖I4‖] = o(1), which implies I4 = op(1).

A.2.6 Proof of Proposition 6

By definition of Q̂e, we get the following result:
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Lemma 11 UnderH0 and Assumptions APR.1-APR.4, SC.1-SC.2, FS.1-FS.2, A.1-A.3 and B.1-B.5, we have

Q̂e =
1

n

∑
i

(
β̂i − βi

)′
Cν̂ŵiC

′
ν̂

(
β̂i − βi

)
+Op,log

(
1

nT
+

1

T 2

)
, when n, T →∞ such that n = O (T γ̄)

for γ̄ > 0.

From
√
T
(
β̂i − βi

)
= τi,T Q̂

−1
x,iYi,T and the properties of the trace, we have

(
β̂i − βi

)′
Cν̂ŵiC

′
ν̂

(
β̂i − βi

)
=

T−1τ2
i,T tr

[
C ′ν̂Q̂

−1
x,iYi,TY

′
i,T Q̂

−1
x,iCν̂ŵi

]
. Then, by using that τi,T tr

[
C ′ν̂Q̂

−1
x,i ŜiiQ̂

−1
x,iCν̂ŵi

]
= 1χi d1, Lemma

7, and n = O(T γ̄) with γ̄ < 2, we get ξ̂nT =
1√
n

∑
i

τ2
i,T tr

[
C ′ν̂Q̂

−1
x,i

(
Yi,TY

′
i,T − τ−1

i,T Ŝii

)
Q̂−1
x,iCν̂ŵi

]
+ op(1).

Similarly, as in Equation (29), let us decompose ξ̂nT as:

ξ̂nT =
1√
n

∑
i

τ2
i,T tr

[
C ′ν̂Q̂

−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q̂−1
x,iCν̂ŵi

]
− 1√

n

∑
i

τ2
i,T tr

[
C ′ν̂Q̂

−1
x,i

(
τ−1
i,T Ŝ

0
ii − Sii,T

)
Q̂−1
x,iCν̂ŵi

]
− 1√

n

∑
i

τi,T tr
[
C ′ν̂Q̂

−1
x,i

(
Ŝii − Ŝ0

ii

)
Q̂−1
x,iCν̂ŵi

]
+ op(1).

By similar results as in Lemma 6 (i)-(iii), and the condition n = O(T γ̄) with γ̄ < 2, we get

ξ̂nT =
1√
n

∑
i

τ2
i tr
[
C ′ν̂Q

−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1
x,iCν̂wi

]
+ op(1). Now, from the properties tr(ABCD)

= vec [D′]′ (C ′ ⊗ A)vec [B] (MN Theorem 3, p. 35) and vec [ABC] = (C ′ ⊗ A)vec [B] for conformable

matrices, we have:

tr
[
C ′ν̂Q

−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1
x,iCν̂wi

]
= vec[wi]

′ (C ′ν̂ ⊗ C ′ν̂) vec [Q−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1
x,i

]
= vec[wi]

′ (C ′ν̂ ⊗ C ′ν̂) (Q−1
x,i ⊗Q

−1
x,i

)
(Yi,T ⊗ Yi,T − vec[Sii,T ])

= vec
[
C ′ν̂ ⊗ C ′ν̂

]′ {[(
Q−1
x,i ⊗Q

−1
x,i

)
(Yi,T ⊗ Yi,T − vec[Sii,T ])

]
⊗ vec[wi]

}
.

Thus, we get ξ̂nT = vec
[
C ′ν̂ ⊗ C ′ν̂

]′ 1√
n

∑
i

τ2
i

[(
Q−1
x,i ⊗Q

−1
x,i

)
(Yi,T ⊗ Yi,T − vec [Sii,T ])

]
⊗ vec[wi]. From

Assumption A.5, we get ξ̂nT ⇒ N(0,Σξ), where Σξ = vec
[
C ′ν ⊗ C ′ν

]′
Ωvec

[
C ′ν ⊗ C ′ν

]
. Now, by using

that tr(ABCD) = vec [D]′ (A⊗ C ′)vec [B′], we have:

vec
[
C ′ν ⊗ C ′ν

]′ [
(SQ,ij ⊗ SQ,ij)⊗ vec[wi]vec[wj ]′

]
vec

[
C ′ν ⊗ C ′ν

]
= tr

[
(SQ,ij ⊗ SQ,ij) (Cν ⊗ Cν) vec[wj ]vec[wi]

′ (C ′ν ⊗ C ′ν)]
= tr

[(
C ′νSQ,ijCν

)
wj
(
C ′νSQ,jiCν

)
wi
]

= tr
[(
C ′νQ

−1
x,iSijQ

−1
x,jCν

)
wj

(
C ′νQ

−1
x,jSjiQ

−1
x,iCν

)
wi

]
,
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and similarly for vec
[
C ′ν ⊗ C ′ν

]′ [
((SQ,ij ⊗ SQ,ij)Wd)⊗

(
vec[wi]vec[wj ]

′)] vec [C ′ν ⊗ C ′ν]. Thus, we get

the asymptotic variance matrix Σξ = 2 lim
n→∞

E

 1

n

∑
i,j

τ2
i τ

2
j

τ2
ij

tr
[(
C ′νQ

−1
x,iSijQ

−1
x,jCν

)
wj

(
C ′νQ

−1
x,jSjiQ

−1
x,iCν

)
wi

].

Finally, Σ̃ξ = Σξ + op(1) follows from
1

n

∑
i,j

‖S̃ij − Sij‖ = op(1) and
1

n

∑
i,j

‖S̃ij − Sij‖2 = op(1).

A.2.7 Proof of Proposition 7

a) Asymptotic normality of ν̂. By definition of ν̂ and underH1, we have

ν̂ − ν∞ = Q̂−1
β3

1

n

∑
i

β̂′3,iŵiC
′
ν∞ β̂i = Q̂−1

β3

1

n

∑
i

β̂′3,iŵiC
′
ν∞

(
β̂i − βi

)
+ Q̂−1

β3

1

n

∑
i

β̂′3,iŵiei (34)

= Q̂−1
β3

1

n

∑
i

β′3,iŵiC
′
ν∞

(
β̂i − βi

)
+ Q̂−1

β3

1

n

∑
i

(
β̂3,i − β3,i

)′
ŵiC

′
ν∞

(
β̂i − βi

)
+Q̂−1

β3

1

n

∑
i

β′3,iwiei + Q̂−1
β3

1

n

∑
i

β′3,i (ŵi − wi) ei + Q̂−1
β3

1

n

∑
i

(
β̂3,i − β3,i

)′
ŵiei.

Equation (34) is the analogue of Equation (27). Consistency of ν̂ for ν∞ follows as in the proof of Proposi-

tion 3 and by using E
[
β′3,iwiei

]
= 0. Thus, by using

√
T
(
β̂i − βi

)
= τi,T Q̂

−1
x,iYi,T , Lemma 4 and similar

algebric manipulations as in the proof of Proposition 4, we get:

√
n

(
ν̂ − 1

T
B̂ν − ν∞

)
= Q̂−1

β3

1√
nT

∑
i

τi,Tβ
′
3,iŵiC

′
ν∞Q̂

−1
x,iYi,T

+
1

T
Q̂−1
β3

1√
n

∑
i

τ2
i,TJbvec

[
E′2

(
Q̂−1
x,iYi,TY

′
i,T Q̂

−1
x,iCν∞ − τ

−1
i,T Q̂

−1
x,i ŜiiQ̂

−1
x,iCν̂

)
ŵi

]
+ Q̂−1

β3

1√
n

∑
i

β′3,iwiei

+Q̂−1
β3

1√
n

∑
i

β′3,i (ŵi − wi) ei + Q̂−1
β3

1√
nT

∑
i

τi,T
(
vec [Id1 ]′ ⊗ IKp

)
vec

[
JaE

′
2Q̂
−1
x,iYi,T e

′
iŵi

]
=: I51 + I52 + I53 + I54 + I55.

The first two terms I51 and I52 are the analogue of the terms in the RHS of Equation (28) multiplied by

1/
√
T . Therefore, from similar arguments as for terms I11 and I13 in the proof of Proposition 4, we get

I51 = op(1) and I52 = op(1). From Assumption SC.2 and E
[
β′3,iwiei

]
= 0, we get

1√
n

∑
i

β′3,iwiei ⇒

N
(
0, E

[
β′3,iwieie

′
iwiβ3,i

])
by the CLT. Thus, I53 ⇒ N

(
0, Q−1

β3
E
[
β′3,iwieie

′
iwiβ3,i

]
Q−1
β3

)
. Then, the

asymptotic distribution of ν̂ follows if terms I54 and I55 are op (1). We have I54 = op(1) from similar

arguments as for terms I1112 and I1114 in the proof of Lemma 5, and I55 = op(1) from similar arguments as

for term I11 in the proof of Proposition 4.
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b) Asymptotic normality of λ̂. We have
√
Tvec

[
Λ̂′ − Λ′∞

]
=
√
T (ν̂ − ν∞) +

√
Tvec

[
F̂ ′ − F ′

]
. By

using T/n = o(1) and
√
T (ν̂ − ν∞) = Op

(√
T

n
+

1√
T

)
= op (1) , the conclusion follows.

c) Consistency of the test. By definition of Q̂e, we get the following result:

Lemma 12 UnderH1 and Assumptions APR.1-APR.4, SC.1-SC.2, FS.1-FS.2, A.1-A.3 and B.1-B.5, we have

Q̂e =
1

n

∑
i

(
β̂i − βi

)′
Cν̂ŵiC

′
ν̂

(
β̂i − βi

)
+

1

n

∑
i

e′iwiei +Op,log

(
1

n
+

1√
nT

+
1√
T 3

)
, when n, T →

∞ such that n = O (T γ̄) for γ̄ > 0.

By similar arguments as in the proof of Proposition 6 and using γ̄ < 2, we get:

ξ̂nT =
1√
n

∑
i

τ2
i tr
[
C ′ν̂Q

−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1
x,iCν̂wi

]
+ T

1√
n

∑
i

e′iwiei +Op,log

(
T√
n

+
√
T

)
= T

√
nE
[
e′iwiei

]
+Op (T ) .

UnderH1, we have E
[
e′iwiei

]
> 0, since wi is positive definite P -a.s., and ei 6= 0 with non-zero probabil-

ity. Moreover, Σ̃ξ = Σξ + op (1). Thus, Σ̃
−1/2
ξ ξ̂nT = T

√
n
(

Σ
−1/2
ξ E [e′iwiei] + op (1)

)
.
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