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Abstract. We develop a test of equality between two dependence structures esti-
mated through empirical copulas. We provide inference for independent or paired
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1. Introduction

Copulas are omnipresent in statistics and other fields like actuarial science, finance,

reliability and hydrology to name a few. This presence is explained by the copula

being a summary of the full dependence structure between random variables. From

a methodological point of view, most papers concentrate on parameter estimation,

using ranks as in Genest et al. (1995), and Shih and Louis (1995), or using estimated

parametric margins, as in Joe (2005).

However functional nonparametric estimation of the copula is also examined. It was

first studied by Deheuvels in a series of papers (Deheuvels 1979, 1980, 1981a,c,b), for

the independent copula, and studied in full generality in Gänßler and Stute (1987).

Recent work on copula processes include Fermanian et al. (2004) and Ghoudi and

Rémillard (2004). Copula processes help to develop tests for goodness-of-fit in semi-

parametric models, e.g. Fermanian (2005), Genest et al. (2006), Genest and Rémillard

(2008), and Scaillet (2007).

Another statistical issue related to copula modelling is the problem of testing for

equality between two copulas. This yet unsolved issue aims at checking the validity of

the hypothesis of two dependence structures being identical. For example, we could

argue in credit risk that the copula of the joint default times of firms is the same as

the copula of their respective asset values. See Dupuis et al. (2006) for an illustration.

Our method to gauge the similarity between dependence structures has several

advantages. First it is applicable to any dimension. It is not restricted to the two

dimensional case only. Second it is not affected by strict monotonic transformations

of the variables like log or exp transforms. Copulas enjoy an invariance property with

respect to such mappings. This is a clear benefit over using a standard correlation

to measure dependence. Third it is model free. We rely on empirical estimation
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of copulas following a nonparametric approach. Fourth finite sample properties are

expected to be well behaved since we rely on a simulation strategy induced by a

multiplier method. Our Monte Carlo results confirm this conjecture. The testing

procedure performs well in samples as small as n1 = n2 = 50 and d = 2. Fifth the

test statistic takes a closed form. This improves the numerical speed of the simulation

based testing procedure.

In this paper we illustrate the testing procedure on several empirical examples. We

investigate questions arising in finance, psychology, insurance and medicine. The first

application concerns the dependence structure between expense ratio and turnover

level within two categories of US mutual funds. The second application examines

the links between emotional experience and life satisfaction in the Chinese culture

vis-à-vis the American culture. The third one is dedicated to the analysis of losses

and allocated loss adjustment expenses (ALAEs, in short). In the last application, we

investigate the dependence structure over time between two methods of assessment

of depression. Other potential applications include investigating dependence between

product sales in different retail stores (marketing), between income and consumption

in different countries (economics), between reported items on corporate balance sheets

in different countries (accounting), etc.

To describe the problem at hand, suppose we face two independent samples of Rd-

valued vectors. The first sample, X1, . . . , Xn1 is taken from a distribution function

F with continuous margins F1, . . ., Fd, and the second sample Y1, . . . , Yn2 is taken

from a distribution function G with continuous margins G1, . . ., Gd. The vectors

Xi, i = 1, .., n1, and Yi, i = 1, .., n2, have size d, and entries denoted by Xil and Yil,

l =, 1..., d. Then the unique copulas C and D associated with the first and second
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sample are determined, for any x = (x1, . . . , xd), by

F (x) = C {F1(x1), . . . , Fd(xd)} , G (x) = D {G1(x1), . . . , Gd(xd)} .

The aim of the paper is to show how we can test the hypotheses

H0 : C = D vs H1 : C 6= D.

Obviously this is not equivalent to testing for F = G. We focus here on the equality

between the dependence structure as posited by C = D, leaving the behavior of the

margins out of interest. By construction our method is invariant with respect to strict

monotonic transformations of the data.

To obtain consistent tests, we rely on a statistic based on the integrated square dif-

ference between the empirical copulas Cn1 and Dn2 defined for any u = (u1, . . . , ud) ∈
[0, 1]d by

Cn1(u) =
1

n1

n1∑
i=1

I(Ui,n1 ≤ u) =
1

n1

n1∑
i=1

d∏

l=1

I(Uil,n1 ≤ ul),

and

Dn2(u) =
1

n2

n2∑
i=1

I(Vi,n2 ≤ u) =
1

n2

n2∑
i=1

d∏

l=1

I(Vil,n2 ≤ ul),

where Ui,n1 = (Ui1,n1 , ..., Uid,n1), Vi,n2 = (Vi1,n2 , ..., Uid,n2), and for any l ∈ {1, . . . , d},
Uil,n1 = n1

n1+1
Fl,n1(Xil) = rank(Xil)/(n1 + 1), 1 ≤ i ≤ n1,

Vil,n2 = n2

n2+1
Gl,n2(Yil) = rank(Yil)/(n2 + 1), 1 ≤ i ≤ n2,

with

Fl,n1(xl) =
1

n1

n1∑
i=1

I(Xil ≤ xl) and Gl,n2(xl) =
1

n2

n2∑
i=1

I(Yil ≤ xl),

being the empirical distribution functions of (Xil)
n1
i=1 and (Yil)

n2
i=1, respectively, defined

for any xl ∈ R.

Test statistics for the equality between two copulas rely on functionals of the em-

pirical process

En1,n2 = (Cn1 −Dn2)
/√

1

n1

+
1

n2

.
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The asymptotic behavior of En1,n2 is given in Section 2, together with a simulation

based method for computing p-values. Some numerical results are given in Section

3 to illustrate the finite sample properties of the testing procedure. Section 4 is

dedicated to empirical applications. The proof of the theoretical results are relegated

to Appendix A while explicit expressions for calculating the simulated Cramér-von

Mises test statistics are available in Appendix B of Rémillard and Scaillet (2006).

2. Test statistic and main results

If the mappings u 7→ ∂ul
C(u) are continuous on [0, 1]d, then it is known, see, e.g.,

Gänßler and Stute (1987), Tsukahara (2005), that Cn1 =
√

n1(Cn1 − C) converges

weakly in D([0, 1]d) to a continuous centered Gaussian process C, denoted by Cn1 Ã

C, where C has the representation

(1) C(u) = α(u)−
d∑

l=1

βl(ul)∂ul
C(u),

with

αn1(u) =
1√
n1

n1∑
i=1

{I(Ui ≤ u)− C(u)} Ã α(u),

βl(ul) = α(1, . . . , 1, ul, 1, . . . , 1), 1 ≤ l ≤ d, and Ui = (F1(Xi1), ..., Fd(Xid)). Note that

the extra term
d∑

l=1

βl(ul)∂ul
C(u) comes from the marginal distributions F1, . . . , Fd

being unknown.

Similarly, Dn2 =
√

n2(Dn2 −D) Ã D in D([0, 1]d) where D is a continuous centered

Gaussian process represented by

(2) D(u) = γ(u)−
d∑

l=1

δl(ul)∂ul
D(u),

with

γn2(u) =
1√
n2

n2∑
i=1

{I(Vi ≤ u)−D(u)} Ã γ(u),
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δl(ul) = γ(1, . . . , 1, ul, 1, . . . , 1), 1 ≤ l ≤ d, and Vi = (G1(Yi1), ..., Gd(Yid)).

If min(n1, n2) → ∞, in such a way that n1/(n1 + n2) → λ ∈ [0, 1], then (see the

proofs of the theorems below)

En1,n2 =

√
n2

n1 + n2

Cn1 −
√

n1

n1 + n2

Dn2 Ã E =
√

1− λ C−
√

λ D.

Under the null hypothesis H0 : C = D, we have En1,n2 = En1,n2 , and thus En1,n2 Ã E .

To test the null hypothesis H0 : C = D, we propose to use the Cramér-von Mises

principle, and build

Sn1,n2 =

∫

[0,1]d
E2

n1,n2
(u)du

=

(
1

n1

+
1

n2

)−1

×
{

1

n2
1

n1∑
i=1

n1∑
j=1

d∏
s=1

(1− Uis,n1 ∨ Ujs,n1)

− 2

n1n2

n1∑
i=1

n2∑
j=1

d∏
s=1

(1− Uis,n1 ∨ Vjs,n2)

+
1

n2
2

n2∑
i=1

n2∑
j=1

d∏
s=1

(1− Vis,n2 ∨ Vjs,n2)

}
,

where a ∨ b stands for max(a, b). When C = D, then

Sn1,n2 Ã S =

∫

[0,1]d
E2(u)du,

while if C 6= D, then Sn1,n2

Pr→∞. This yields consistency of the testing procedure.

Because C and D are unknown, computing p-values appears difficult at first sight.

However, due to a powerful multiplier technique, we can estimate the p-value via

simulations. In a single copula context the idea is already suggested in Scaillet (2005),

and further developed in Rémillard (2006). The trick is to use a multiplier central

limit theorem (van der Vaart and Wellner 1996) to approximate each random term

appearing in (1) and (2). Note that a bootstrap approach would be inappropriate here
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since it fails to deliver consistency when applied to Cramér-von Mises test statistics

(see Example 7 of Bickel et al. (1997), Bickel and Freedman (1981), and Bretagnolle

(1983)).

To see how it works, suppose that for any k ∈ {1, . . . , N}, ξ
(k)
1 , . . . , ξ

(k)
n1 , ζ

(k)
1 , . . . , ζ

(k)
n2

are independent and identically distributed variables with mean zero and variance one.

Set

α̂(k)
n1

(u) =
1√
n1

n1∑
i=1

ξ
(k)
i {I(Ui,n1 ≤ u)− Cn1(u)}

=
1√
n1

n1∑
i=1

(
ξ

(k)
i − ξ̄(k)

)
I(Ui,n1 ≤ u),

γ̂(k)
n2

(u) =
1√
n2

n2∑
i=1

(
ζ

(k)
i − ζ̄(k)

)
I(Vi,n2 ≤ u),

where ξ̄(k) =
1

n1

n1∑
i=1

ξ
(k)
i , ζ̄(k) =

1

n2

n2∑
i=1

ζ
(k)
i , and for any l ∈ {1, . . . , d},

β̂
(k)
l,n1

(ul) = α̂(k)
n1

(1, . . . , 1, ul, 1, . . . , 1)

=
1√
n1

n1∑
i=1

(
ξ

(k)
i − ξ̄(k)

)
I(Uil,n1 ≤ uk),

δ̂
(k)
l,n2

(ul) = γ̂(k)
n2

(1, . . . , 1, ul, 1, . . . , 1)

=
1√
n2

n2∑
i=1

(
ζ

(k)
i − ζ̄(k)

)
I(Vil,n2 ≤ uk).

To approximate the partial derivatives ∇C and ∇D, we proceed as in Ghoudi and

Rémillard (2004). For any l ∈ {1, . . . , d}, set

̂∂ul
Cn1,h1(u) =

Cn1(u + h1el)− Cn1(u− h1el)

2h1

and

̂∂ul
Dn2,h2(u) =

Dn2(u + h2el)−Dn2(u− h2el)

2h2

,

where el is the l-th column of the d × d identity matrix. We could also rely on a

kernel based estimate of the derivative (Fermanian and Scaillet 2003), but this would
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impede the writing of explicit expressions for the simulated test statistic, and slow

down the procedure. These expressions are available on request from the authors,

and also written down in Appendix B of Rémillard and Scaillet (2006).

Finally, for all u ∈ [0, 1]d, and for all k ∈ {1 . . . , N}, let

Ĉ(k)
n1,h1

(u) = α̂(k)
n1

(u)−
d∑

l=1

β̂
(k)
l,n1

(ul) ̂∂ul
Cn1,h1(u),

D̂(k)
n2,h2

(u) = γ̂(k)
n2

(u)−
d∑

l=1

δ̂
(k)
l,n2

(ul) ̂∂ul
Dn2,h2(u),

and

Ê (k)
n1,n2

=

√
n2

n1 + n2

Ĉ(k)
n1,h1

−
√

n1

n1 + n2

D̂(k)
n2,h2

.

Further set

S(0)
n1,n2

=

∫

[0,1]d
E2

n1,n2
(u)du

and

Ŝ(k)
n1,n2

=

∫

[0,1]d

{
Ê (k)

n1,n2

}2

(u)du, k ∈ {1, . . . , N}.

Theorem 2.1 (Independent samples). Suppose that ∇C and ∇D are continuous

on [0, 1]d. If hi = n
−1/2
i , i = 1, 2 and if min(n1, n2) → ∞ in such a way that

n1

/
(n1 + n2) → λ ∈ (0, 1), then

(
En1,n2 , Ê (1)

n1,n2
, . . . Ê (N)

n1,n2

)
Ã

(
E , Ẽ (1), . . . Ẽ (N)

)
in D (

[0, 1]d
)⊗(N+1)

,

where Ẽ (1), . . . Ẽ (N) are independent copies of E. In particular,

(
S(0)

n1,n2
, Ŝ(1)

n1,n2
, . . . Ŝ(N)

n1,n2

)
Ã

(
S, S̃(1), . . . S̃(N)

)
in [0,∞)⊗(N+1),

where S̃(1), . . . S̃(N) are independent copies of S =

∫

[0,1]d
E2(u)du. An approximate

p-value for Sn1,n2 is then given by

1

N

N∑

k=1

I
(
Ŝ(k)

n1,n2
> Sn1,n2

)
.
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The proof is given in Appendix A.1.

The previous theorem holds true for two independent populations. What about

paired observations, i.e., Xi is not independent of Yi, but n2 = n1 = n? It is easy to

check that the previous methodology applies, provided we draw ξ
(k)
i and set ζ

(k)
i = ξ

(k)
i ,

for all i = 1, . . . , n, and all k = 1, . . . , N . In the next theorem we shorten the subscript

n,n as n.

Theorem 2.2 (Paired samples). Suppose that ∇C and ∇D are continuous on [0, 1]d.

If hi = h = n−1/2, i = 1, 2 and if n →∞, then

(
En, Ê (1)

n , . . . Ê (N)
n

)
Ã

(
E , Ẽ (1), . . . Ẽ (N)

)
in D (

[0, 1]d
)⊗(N+1)

,

where Ẽ (1), . . . Ẽ (N) are independent copies of E. In particular,

(
S(0)

n , Ŝ(1)
n , . . . Ŝ(N)

n

)
Ã

(
S, S̃(1), . . . S̃(N)

)
in [0,∞)⊗(N+1),

where S̃(1), . . . S̃(N) are independent copies of S =

∫

[0,1]d
E2(u)du. An approximate

p-value for Sn is then given by

1

N

N∑

k=1

I
(
Ŝ(k)

n > Sn

)
.

The proof is given in Appendix A.3.

3. Numerical experiments

From Theorem 2.1 we know that the level of the test should be correct when

n1, n2 → ∞. Here we check the finite sample properties of the testing procedure in

terms of size and power. For the numerical experiments, the level of the test is fixed

at 5%, so the power is estimated by the proportion of samples with P-value less than

5%. To this end, we have chosen three bivariate copula families (Clayton, Frank and

Gumbel), all indexed by the Kendall tau τ(θ) depending on the copula parameter θ.
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Recall that the Clayton copula is defined by all u, v ∈ (0, 1) and parameter θ > 0 by

Cθ(u, v) =
(
u−θ + v−θ − 1

)−1/θ
.

Here τ(θ) = θ/(θ + 2).

The Frank copula is defined for all u, v ∈ (0, 1) and θ > 0 by

Cθ(u, v) = log

(
θ + θu+v − θu − θv

θ − 1

) /
log(θ).

Then τ(θ) =
log(θ)2 + 4 log(θ) + 4dilog(θ)

log(θ)2
, where dilog(x) =

∫ x

1

log t

1− t
dt.

Finally, the Gumbel copula is defined for all u, v ∈ (0, 1) and 0 < θ < 1 by

Cθ(u, v) = exp

[
−

{
(− log u)1/θ + (− log v)1/θ

}θ
]

,

which gives τ(θ) = 1− θ.

As we can see from Table 1 for Clayton copulas, even for sample sizes as small as

n1 = n2 = 50, the empirical level of the test (4.9%) is close to the theoretical one

(5%). Moreover, the power of the test increases as expected, when D goes away from

C, i.e., when τD increases, τC being fixed. It is close to 100% when τD is above .7 and

τC is kept equal to .2. These results are confirmed by Table 2 for the Frank copula

and by Table 3 for the Gumbel copula. Similar results also hold true for the other

pairs of sample sizes (n1, n2) = (50, 100), (100, 50), (100, 100).

Table 1. Size and power of the Cramér-von Mises test based on a
multiplier technique with N = 1, 000, when n1 = 50, 100, n2 = 50, 100,
d = 2, and Clayton copulas parameterized such that the Kendall tau
is τC = 0.2 for C, and τD = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 for D. The
significance level is 5%, and empirical levels are computed with 1000
replicates.

(n1, n2) Kendall tau τD 0.2 0.3 0.4 0.5 0.6 0.7 0.8
(50, 50) Power (%) 4.9 9.4 28.9 58 87.4 97.6 99.9
(50, 100) Power (%) 4.6 12.7 37.2 73.6 95.4 99.6 100
(100, 50) Power (%) 5.4 14.3 40.3 74.4 95.7 99.9 100
(100, 100) Power (%) 4.5 13.5 53.1 88.5 99.2 100 100
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Table 2. Size and power of the Cramér-von Mises test based on a
multiplier technique with N = 1, 000, when n1 = 50, 100, n2 = 50, 100,
d = 2, and Frank copulas parameterized such that the Kendall tau
is τC = 0.2 for C, and τD = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 for D. The
significance level is 5%, and empirical levels are computed with 1000
replicates.

(n1, n2) Kendall tau τD 0.2 0.3 0.4 0.5 0.6 0.7 0.8
(50,50) Power (%) 4.7 10 32.9 55.9 89.9 99.1 99.9

(50, 100) Power (%) 5.7 12.9 36.9 72.1 96.6 99.8 100
(100, 50) Power (%) 4.8 15 45.1 74.9 98 100 100
(100, 100) Power (%) 4.4 16.3 59.2 89.4 99.8 100 100

Table 3. Size and power of the Cramér-von Mises test based on a
multiplier technique with N = 1, 000, when n1 = 50, 100, n2 = 50, 100,
d = 2, and Gumbel copulas parameterized such that the Kendall tau
is τC = 0.2 for C, and τD = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 for D. The
significance level is 5%, and empirical levels are computed with 1000
replicates.

(n1, n2) Kendall tau τD 0.2 0.3 0.4 0.5 0.6 0.7 0.8
(50,50) Power (%) 4.2 8.4 26.5 57.1 85.6 98.5 99.9

(50, 100) Power (%) 4.9 10.3 36.6 70.4 94.1 99.9 100
(100, 50) Power (%) 4.6 14.7 39.4 73.1 96.4 99.9 100
(100, 100) Power (%) 4.7 16.4 53.1 87.8 99.8 100 100

4. Empirical applications

In this section we illustrate the testing procedures on empirical examples in finance,

psychology, insurance and medicine. A generic Matlab code and its C add-in are

available upon request from the authors for applied work. We have used N = 1, 000.

4.1. Expense ratio and turnover level. The data set is made of expense ratio

and turnover level reported by 222 “Growth and Income” funds and 333 “Aggressive

Growth” funds at the end of year 1994 (see, e.g., Wermers (2000) for a detailed

description of the data). A higher turnover induces higher transaction costs, and funds

charge expenses partly to cover these costs. In 1994 growth-oriented funds maintain

roughly 90% of their portfolios in equities, while income-oriented funds maintain a
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lower proportion around 80%. We want to study whether funds having different

investment objectives share the same link between turnover level and expense ratio.

The p-value is 0.425, and we conclude that the null hypothesis of equal dependence

structure is not rejected at a 5% level. This means that the two categories of funds act

in a similar way when adjusting the expenses they charge to recover their transaction

costs.

4.2. Emotional experience and life satisfaction. The data set consists of pos-

itive affect scores (positive emotional mood) and life satisfaction scores (subjective

well-being) recorded in China (559 university students) and the United States (443

university students) in the early 90’s. We refer to the paper of Suh et al. (1998)

for data description and background on the psychological concepts. The question is

whether the dependence structure for a collectivist culture, i.e., where a significant

part of one’s identity is made of collective elements, versus an individualistic culture,

i.e., where one’s internal attributes are emphasized over the evaluations and expecta-

tions of others, can be considered as equal or not. The p-value is 0, and we conclude

that the null hypothesis of equal dependence structure is rejected at a 5% level. Hence

the underlying culture has a significant impact.

4.3. Losses and ALAEs. Often actuaries have to price insurance contracts involv-

ing pairs of dependent variables. A classical example consists of computing the pre-

mium of a reinsurance treaty on a policy with unlimited liability, some retention level

of the losses and a prorata sharing of ALAEs. Here ALAEs are type of insurance

company expenses that are specifically attributable to the settlement of individual

claims such as lawyers fees and claims investigation expenses. The data are extracted

from a database about medical insurance claims available from the Society of Actu-

aries. A thorough description of the data can be found in the monograph Grazier
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and G’Sell (1997). We analyze the dependence structure between losses (hospital

charges) and ALAEs (other charges) for dependent females (967 observations) versus

employee females (1116 observations) aged 30 to 39 in 1991 and insured by a Preferred

Provider Organization (PPO) plan. The p-value is 0.065, and the null hypothesis of

equal dependence structure is not rejected at a 5% level. We conclude that the status

of the policy holder is here irrelevant (at a 5% level), and that premiums charged to

both types of individuals should be the same if margins are roughly identical.

4.4. St John’s wort vs sertaline. In van Gurp et al. (2002) the authors want to

compare the change in severity of depressive symptoms and occurrence of side effects

in primary care patients treated with St John’s wort and sertaline using a double-

blind randomized 12-week trial. For each of the two treatment groups, depression

was measured every two weeks with two different instruments: Hamilton raring scale

for Depression (Ham-D) and Beck Depression Inventory (BDI). The authors conclude

that there is no significant difference between the two treatments. By looking at the

two groups, we now ask whether there is no change on the dependence structure of the

two measures of depression over time. To this end, we use the methodology developed

for paired samples. All ten pairs of measures corresponding to weeks 2,4,6,8,10 are

compared, and we find that the largest estimated p-value is 0.001. Thus we have

that the null hypothesis of equal dependence structure is rejected at a 5% level. This

rejection might impact the conclusion on the no difference between the two treatments

since the relationship between the two measurement instruments is not the same in

the two groups.

Appendix A. Proofs of the results

Let ξ1, . . . , ξn be independent and identically distributed random variables with

mean zero and variance one. Suppose also that X1, . . . , Xn are independent random
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vectors with continuous marginals F1, . . . , Fd and copula C. Set Uij = Fj(Xij), i ∈
{1, . . . , n}, j ∈ {1, . . . , d}.

Then, for any u = (u1, . . . , ud) ∈ (0, 1)d, αn and Cn can be expressed as

αn(u) =
√

n
{

C̃n(u)− C(u)
}

,

with

C̃n(u) =
1

n

n∑
i=1

I (Ui1 ≤ u1, . . . , Uid ≤ ud) ,

and

Cn(u) =
1

n

n∑
i=1

I (Fn1(Xi1) ≤ u1, . . . , Fnd(Xid) ≤ ud)

=
1

n

n∑
i=1

I
(
Ui1 ≤ E−1

n1 (u1), . . . , Uid ≤ E−1
nd (ud)

)

= C̃n

(
E−1

n1 (u1), . . . , E
−1
nd (ud)

)
,

where for any j ∈ {1, . . . , d},

Enj(uj) =
1

n

n∑
i=1

I(Uij ≤ uj), uj ∈ [0, 1].

Furthermore, for any u = (u1, . . . , ud) ∈ [0, 1]d, set

α̃n(u) =
1√
n

n∑
i=1

ξi

{
I (Ui1 ≤ u1, . . . , Uid ≤ ud)− C̃n(u)

}
.

Then, for any u = (u1, . . . , ud) ∈ [0, 1]d,

α̂n(u) =
1√
n

n∑
i=1

ξi [I (Fn1(Xi1) ≤ u1, . . . , Fnd(Xid) ≤ ud)− Cn(u)]

= α̃n

(
E−1

n1 (u1), . . . , E
−1
nd (ud)

)
.

It follows from the classical multiplier central limit theorem (van der Vaart and

Wellner 1996) that (αn, α̃n) Ã (α, α̃) in D([0, 1]d)×D([0, 1]d), where α̃ is an indepen-

dent copy of α, and α is a C-Brownian bridge.

Next, since for any j ∈ {1, . . . , d}, sup
uj∈[0,1]

∣∣E−1
nj (uj)− uj

∣∣ = sup
uj∈[0,1]

|Enj(uj)− uj| →
0 as n →∞, e.g., Shorack and Wellner (1986), the following result holds.
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Lemma A.1. (αn, α̂n) Ã (α, α̃) in D([0, 1]d)×D([0, 1]d), where α̃ is an independent

copy of α, and α is a C-Brownian bridge.

A.1. Proof of Theorem 2.1.

Proof. The proof is closely related to the one in Scaillet (2005). Here we can simply

use Lemma A.1 to conclude that, as n1 →∞,

(
αn1 , α̂

(1)
n1

, . . . , α̂(N)
n1

)
Ã

(
α, α̃(1), . . . , α̃(N)

)

in D([0, 1]d)⊗(N+1), where α̃(1), . . . , α̃(N) are independent copies of α, and α is a C-

Brownian bridge.

Also, as n2 →∞,

(
γn2 , γ̂

(1)
n2

, . . . , γ̂(N)
n2

)
Ã

(
γ, γ̃(1), . . . , γ̃(N)

)

in D([0, 1]d)⊗(N+1), where γ̃(1), . . . , γ̃(N) are independent copies of γ, and γ is a D-

Brownian bridge.

As a consequence of independence between

(
αn1 , α̂

(1)
n1

, . . . , α̂(N)
n1

)
and

(
γn2 , γ̂

(1)
n2

, . . . , γ̂(N)
n2

)
,

we may conclude that as min(n1, n2) →∞,

(
αn1 , γn2 , α̂

(1)
n1

, γ̂(1)
n2

, . . . , α̂(N)
n1

, γ̂(N)
n2

)
Ã

(
α, γ, α̃(1), γ̃(1), . . . , α̃(N), γ̃(N)

)

inD([0, 1]d)⊗2(N+1), where
(
α̃(1), γ̃(1)

)
, . . . ,

(
α̃(N), γ̃(N)

)
are independent copies of (α, γ),

α is independent of γ.

Next, since the conditions of Proposition A.2 of the next section are met, we obtain

that for any l ∈ {1, . . . , d}, ̂∂ul
Cn1,h1 and ̂∂ul

Dn2,h2 converge uniformly in probability

to ∂ul
C and ∂ul

D.

Hence
(
En1,n2 , Ê (1)

n1,n2 , . . . , Ê (N)
n1,n2

)
Ã (E , Ẽ (1), . . . , Ẽ (N)) in D (

[0, 1]d
)⊗(N+1)

, where

Ẽ (1), . . . , Ẽ (N) are independent copies of E . Since the mapping g 7→
∫

[0,1]d
g2(u)du
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is continuous, whenever g is continuous on [0, 1]d, it follows that

(
S(0)

n1,n2
, Ŝ(1)

n1,n2
, . . . Ŝ(N)

n1,n2

)
Ã

(
S, S̃(1), . . . S̃(N)

)
in [0,∞)⊗(N+1),

where S̃(1), . . . S̃(N) are independent copies of S =

∫

[0,1]d
E2(u)du. An approximate

p-value for Sn1,n2 is then given by
1

N

N∑

k=1

I
(
Ŝ(k)

n1,n2
> Sn1,n2

)
. ¤

A.2. Uniform convergence of partial derivatives estimates.

Proposition A.2. Suppose that ∇C and ∇D are continuous on [0, 1]d. Take hi =

n
−1/2
i , i = 1, 2. Then, as min(n1, n2) →∞,

max
1≤l≤d

sup
u∈[0,1]d

∣∣∣ ̂∂ul
Cn1,h1(u)− ∂ul

C(u)
∣∣∣ Pr→ 0

and

max
1≤l≤d

sup
u∈[0,1]d

∣∣∣ ̂∂ul
Dn2,h2(u)− ∂ul

D(u)
∣∣∣ Pr→ 0.

Proof. Let l ∈ {1, . . . , d} be fixed. Then,

̂∂ul
Cn1,h1(u) =

Cn1(u + h1el)− Cn1(u− h1el)

2h1

=
C(u + h1el)− C(u− h1el)

2h1

+
Cn1(u + h1el)− Cn1(u− h1el)

2h1
√

n1

.

Therefore we get by choosing h1 = n
−1/2
1 :

sup
u∈[0,1]d

∣∣∣ ̂∂ul
Cn1,h1(u)− ∂ul

C(u)
∣∣∣

= sup
u∈[0,1]d

∣∣∣∣
Cn1(u + h1el)− Cn1(u− h1el)

2h1

− ∂ul
C(u)

∣∣∣∣

≤ sup
u∈[0,1]d

∣∣∣∣
C(u + h1el)− C(u− h1el)

2h1

− ∂ul
C(u)

∣∣∣∣

+
1

2
sup

u∈[0,1]d
|Cn1(u + h1el)− Cn1(u− h1el)| ,
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which tends to 0 as n1 → ∞, since ∂ul
C(u) is assumed to be continuous on [0, 1]d,

and Cn1 converges in law to a continuous centered gaussian process C. The proof for

̂∂ul
Dn2,h2 is similar. ¤

A.3. Proof of Theorem 2.2.

Proof. The proof is similar to the proof of Theorem 2.1. First, consider the indepen-

dent vectors Z1 = (X1, Y1), . . . , Zn = (Xn, Yn), having copula C on [0, 1]2d, with the

property that for any u, v ∈ [0, 1]d, C(u, 1, . . . , 1) = C(u) and C(1, . . . , 1, v) = D(v).

Next, for all u, v ∈ [0, 1]d, define

Cn(u, v) =
1

n

n∑
i=1

I(Ui,n ≤ u, Vi,n ≤ v),

υn(u, v) =
1

n

n∑
i=1

I(Ui ≤ u, Vi ≤ v),

and

υ̂(k)
n (u, v) =

1√
n

n∑
i=1

ξ
(k)
i {I(Ui,n ≤ u, Vi,n ≤ v)− Cn(u, v)} .

It follows from Lemma A.1 that, as n →∞,

(
υn, υ̂(1)

n , . . . , υ̂(N)
n

)
Ã

(
υ, υ̃(1), . . . , υ̃(N)

)

in D([0, 1]d)⊗(N+1), where υ̃(1), . . . , υ̃(N) are independent copies of υ, and υ is a C-

Brownian bridge.

Since for any u, v ∈ [0, 1], we have

Cn(u) = C(u, 1, . . . , 1), α̃n(u) = υn(u, 1, . . . , 1), α̂(k)
n (u) = υ̂(k)

n (u, 1, . . . , 1)

and

Dn(u) = C(1, . . . , 1, v), γ̃n(v) = υn(1, . . . , 1, v), γ̂(k)
n (u) = υ̂(k)

n (1, . . . , 1, v),

we may conclude that as n →∞,

(
αn, γn, α̂(1)

n , γ̂(1)
n , . . . , α̂(N)

n , γ̂(N)
n

)
Ã

(
α, γ, α̃(1), γ̃(1), . . . , α̃(N), γ̃(N)

)
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inD([0, 1]d)⊗2(N+1), where
(
α̃(1), γ̃(1)

)
, . . . ,

(
α̃(N), γ̃(N)

)
are independent copies of (α, γ),

where for any u, v ∈ [0, 1]d, α(u) = υ(u, 1, . . . , 1) is a C-Brownian bridge and

γ(v) = υ(1, . . . , 1, v) is a D-Brownian bridge.

Next, since the conditions of Proposition A.2 of the previous section are met,

we obtain that for any l ∈ {1, . . . , d}, ∂̂ul
Cn,h and ∂̂ul

Dn,h converge uniformly in

probability to ∂ul
C and ∂ul

D.

Hence, defining En = Cn − Dn and Ê (k)
n = Ĉ(k)

n,h − D̂(k)
n,h, it follows that

(
En, Ê (1)

n , . . . , Ê (N)
n

)
Ã (E , Ẽ (1), . . . , Ẽ (N)) in D (

[0, 1]d
)⊗(N+1)

,

where Ẽ (1), . . . , Ẽ (N) are independent copies of E . Since the mapping g 7→
∫

[0,1]d
g2(u)du

is continuous, whenever g is continuous on [0, 1]d, it follows that

(
S(0)

n , Ŝ(1)
n , . . . Ŝ(N)

n

)
Ã

(
S, S̃(1), . . . S̃(N)

)
in [0,∞)⊗(N+1),

where S̃(1), . . . S̃(N) are independent copies of S =

∫

[0,1]d
E2(u)du. An approximate

p-value for Sn is then given by
1

N

N∑

k=1

I
(
Ŝ(k)

n > Sn

)
. ¤
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