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Introduction

The moments of a random variable are a summary of its
distributional behavior.

Full information is provided by its distribution.

The cumulative distribution function for a single asset i
corresponds to

Fi (ζi ) = P(Yi ,t ≤ ζi ),

while for two assets i and j, we have

Fij(ζi , ζj) = P(Yi ,t ≤ ζi ,Yj ,t ≤ ζj).



4/16

Introduction Issues Kernel Estimator Bandwidth Bivariate Cond. Kernel Compact Kernel

Introduction

A cdf may be expressed as an expectation

Fi (ζi ) =

ζiˆ

−∞

f (yi )dyi =

+∞ˆ

−∞

1yi≤ζi f (yi )dyi = E [1yi≤ζi ] ,

where 1Yi,t≤ζi = indicator function of the set {Yi ,t : Yi ,t ≤ ζi}

1Yi,t≤ζi =

{
1 if Yi ,t ≤ ζi
0 otherwise
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Problems with Empirical Averages

As previously in order to estimate expectations, we need to replace
E by an empirical average:

F̂i (ζi ) =
1
T

T∑
t=1

1yi,t≤ζi ,

F̂ij(ζi , ζj) =
1
T

T∑
t=1

1yi,t≤ζi ,yj,t≤ζj ,

=⇒ We obtain step functions which are not differentiable.
=⇒ We cannot build empirical counterparts of densities, i.e.,
fi (ζi ) = dFi (yi )

dyi
|yi=ζi
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Kernel Estimator

To build empirical counterparts of densities, we rely on kernel
estimation.

Idea behind:
We start from the histogram,

f̂i (ζi ) =
1
T

T∑
t=1

1yi,t=ζi

and replace bars by smooth bumps

f̂i (ζi ) =
1
Th

T∑
t=1

K

(
yi ,t − ζi

h

)
The bump K is called a Kernel. It should be positive and integrate
to one.
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Gaussian Kernel Example

Gaussian Kernel = Gaussian density

K

(
yi ,t − ζi

h

)
=

1√
2π

exp−1
2

(
yi ,t − ζi

h

)2

The smoothing parameter h is called the bandwidth.

The bandwidth h plays the same role as the class length for
histograms.



8/16

Introduction Issues Kernel Estimator Bandwidth Bivariate Cond. Kernel Compact Kernel

Optimal Kernel Bandwidth

If h is too large (large class), we get oversmoothing.

If h is too small (small class), we get undersmoothing.

Rule of thumb to select the bandwidth:

h = σ̂T−1/5

where σ̂ is empirical standard deviation of the data.
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Kernel Estimation of a Bivariate Density

It is possible to extend to higher dimensions and to the conditional
case.

f̂ij(ζi , ζj) =
1

Th2

T∑
t=1

K

(
yi ,t − ζi

h

)
K

(
yj ,t − ζj

h

)
Note that the curse of dimensionality appears when we are above
five dimensions.

We need a lot of information (data) to get an accurate estimation
of the high dimensional object to be estimated.
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Kernel Estimation of a Conditional Density

Recall the definition (Bayes Theorem)

f (ζi |yj ,t = ζj) =
fij(ζi , ζj)

fj(ζj)

=⇒ we only need to replace the unknown quantities by their
estimates

f̂ (ζi |yj ,t = ζj) =
f̂ij(ζi , ζj)

f̂j(ζj)
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Extension I: Zero Boundary Kernel

Previous estimators have good properties when the data take values
in <.

When data are bounded from below at zero (losses with a positive
sign), they exhibit boundary bias (edge effect).

This boundary bias is due to weight allocation by the fixed
symmetric kernel outside the density support when smoothing is
carried out near the boundary.
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Extension I: Zero Boundary Kernel

One of the remedy consists in replacing symmetric kernels by
asymmetric kernels, which never assigns weight outside the support.

The form of the estimators is the same

f̂i (ζi ) =
1
Th

T∑
t=1

K (yi ,t ; ζi , h)

but K is replaced by an asymmetric kernel.
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Zero Boundary Kernel Examples

Gamma Kernel:

K (y ; ζ, h) =
y ς/he−y/h

hς/h+1Γ(ς/h + 1)

where Γ(x) =
´∞
0 e−uux−1du

Reciprocal Inverse Gaussian Kernel:

K (y ; ζ, h) =
1√
2πhy

exp

(
− ς − h

2h

(
y

ς − h
− 2 +

ς − h

y

))
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Extension II: Compact Support

When the data are defined on [0, 1], we face two boundaries.

It is then useful to use a kernel whose support is also [0, 1], for
example the Beta kernel:

K (y ; ζ, h) =
1

B(ς/h + 1, (1− ς)/h + 1)
y ς/h(1− y)(1−ς)/h

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) .
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Application: Default Recovery Rates

This estimator is useful to analyze the distribution of recovery rates
at default.

There is a renewed interest in LGD (loss given default), which is
mainly prompted by Basle II and the explosion of the credit
derivatives market.

Data are scarce, in particular outside the US. The market standard
to model LGD is a parametric assumption of beta distributed
recoveries.

There are several measures of LGD
→ ultimate recoveries
→ trading price recoveries
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Default Recovery Rates

These measures often give very different results. Which one should
be used depends who you are and what you do with your defaulted
positions.

The data concern 623 US defaulted bond issues spanning form
1981 to end 1999. These are trading price recoveries which are
classified by industry and seniority.

The data comes from the S&P/PMD database.

The market assumption of a beta distribution is often severely
wrong.This could lead to underestimation of risk measures.
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