B.II. Innovation of a Process

Olivier Scaillet

University of Geneva and Swiss Finance Institute

swiss:finance:institute

GENEVA FINANCE RESEARCH INSTITUTE 1/5

swiss:finance:institute

GENEVA FINANCE RESEARCH INSTITUTE 2/5

Strong Innovation

Let Y be a second order process.

 $Y_{t-1} = (Y_{t-1}, Y_{t-2},)$ denotes all the past of Y_t .

Definition:

We call strong innovation of Y the process defined by

$$\eta_t = Y_t - E\left[Y_t \,\middle|\, Y_{\underline{t-1}}\right].$$

It corresponds to the difference between the realization of the process at date t, and its expectation knowing all its past.

swiss:finance:institute

Linear Past and Linear Expectation

Definition:

The *linear past* of Y_t is the vector space made of all variables corresponding to linear combinations (finite or infinite) of 1, Y_{t-1} , Y_{t-2} ,...

This space is denoted by H_{t-1} .

Definition:

The *linear expectation* of Y_t conditionally to its past is the projection of Y_t on H_{t-1} . This expectation is denoted by

$$Y_t^* = EL[Y_t | H_{t-1}]$$

Interpretation:

 Y_t^* is the best approximation of Y_t as linear combination of its past. GENEVA FIN

Linear Innovation and White Noise

Definition:

The *linear innovation* of Y is the process defined by $\varepsilon_t = Y_t - Y_t^*$.

The decomposition $Y_t = Y_t^* + \varepsilon_t$ is called an *affine regression* of Y_t on its past.

This decomposition is unique.

<u>Property</u>: The process (ε_t) is a *white noise*, i.e., it will correspond to a sequence of homoscedastic (same variance), uncorrelated (autocovariances are zero), and centered (mean zero) random variables.