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Life Cycle Models

Life cycle models:
We start from the intertemporal optimization of consumption by an
economic agent.

At date t, the objective of the agent assumed to enjoy an infinite
life (for mathematical tractability) is to maximize the expected
utility associated with its future consumption plan

Et

[ ∞∑
τ=1

δτu(ct+τ )

]
where Et denotes the expectation conditionally to what is known by
the agent up to time t.
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Life Cycle Models

The parameter δ is a discount factor which defines the preference
towards the present.

The utility function u is strictly concave which translates into risk
aversion.

This problem makes sense if the agent has access to some financial
assets which allows him to defer his consumption, i.e. invest in a
financial asset in order to consume tomorrow.
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Life Cycle Models

Let us consider n financial assets with random returns Yi ,t .
1 If the agent invests an additional small quantity ε in asset i at

date t, he will need to reduce his consumption by that quantity.
Thus, by Taylor expansion, he looses at date t a utility

u(ct)− u(ct − ε) ∼= u′(ct)ε

2 On the contrary at date t + 1, by selling the asset he will be
able to increase his consumption by

(1 + Yi ,t+1)ε

Thus, by Taylor expansion he will gain at date t + 1 a utility

u(ct+1 + (1 + Yi ,t+1)ε)− u(ct+1) ∼= u′(ct+1)(1 + Yi ,t+1)ε
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Euler Equation

Discounting and taking the expectation of the utility gain at date t
yields

δEt

[
u′(ct+1)(1 + Yi ,t+1)ε

]
.

If the agent behaves optimally at date t , the difference between
utility gains δEt [u′(ct+1)(1 + Yi ,t+1)ε] and looses −u′(ct)ε should
be zero. Hence,

u′(ct) = δEt

[
u′(ct+1)(1 + Yi ,t+1)

]
.

This equation is called a Euler equation, and corresponds to the
first order condition (FOC) of the intertemporal maximization
problem of the agent.
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Euler Equation

Usually the Euler equation is rewritten as
1 = Et [Mt+1(1 + Yi ,t+1)] ,

where Mt+1 = δ u
′(ct+1)
u′(ct)

is called the stochastic discount factor
(ct+1 is random) or pricing kernel.

It corresponds here to the discounted ratio of marginal utilities
called the intertemporal marginal rate of substitution.

It is always positive since marginal utilities are.
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CCAPM

CCAPM:
Assume that there exists a riskless asset whose certain return is
Y0,t+1. Then the Euler equation for this asset is

1 = (1 + Y0,t+1)Et [Mt+1] (∗)

Since by definition of a covariance

Et [Mt+1(1 + Yi ,t+1)] = Et [Mt+1]Et [(1 + Yi ,t+1)] + Covt [Mt+1,Yi ,t+1] ,

the Euler equation for a risky asset can be rewritten as

1 = Et [Mt+1]Et [(1 + Yi ,t+1)] + Covt [Mt+1,Yi ,t+1] (∗∗)
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CCAPM

Use of (*) and (**) gives

Et [Yi ,t+1]− Y0,t+1 = −(1 + Y0,t+1)Covt [Mt+1,Yi ,t+1]

or

Et [Yi ,t+1]− Y0,t+1 = −
Covt [u′(ct+1),Yi ,t+1]

Et [u′(ct+1)]
.

If an asset is negatively correlated with the marginal utility of
consumption its expected excess return will be high.

This asset doesn’t insure well against utility variations and thus
investors require a high return on it as compensation.
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CCAPM

The last equation can also be written

Et [Yi ,t+1]− Y0,t+1 =

(
Covt [u′(ct+1),Yi ,t+1]

Vt [u′(ct+1)]

)(
−Vt [u

′(ct+1)]

Et [u′(ct+1)]

)
or

Et [Yi ,t+1]− Y0,t+1 = βi ,tλt

where βi ,t =
Covt[u′(ct+1),Yi,t+1]

Vt [u′(ct+1)]
is the consumption beta and

λt = −Vt [u′(ct+1)]
Et [u′(ct+1)]

is the risk premium.

At optimum excess returns are proportional to their betas.
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Econometrics of the CCAPM

Econometrics of CCAPM:

Two objectives:
1 Estimate parameter of the utility function, for example degree

of risk aversion,
2 Test of validity of CCAPM,i.e. test whether it is is a good

model to describe how stock prices behave.
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Nonlinear Least Squares

Nonlinear least squares:
Usually the stochastic discount factor is parametrised Mt+1(θ), due
to the specification of a parametric utility function.

For example we may use a time-separable power utility function

u(ct) =
c1−θ
t − 1
1− θ

where θ is the coefficient of risk aversion.

Then we could think of replacing the theoretical Euler equation
1 = Et [Mt+1(θ)(1 + Yi ,t+1)]

by the nonlinear regression
1 = Mt+1(θ)(1 + Yi ,t+1) + εt+1

where εt+1 is an error term satisfying Etεt+1 = 0.
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Nonlinear Least Squares

The parameter θ can be estimated by minimizing the nonlinear
least squares criterion:

θ̂ = arg min
T∑
t=1

(1−Mt+1(θ)(1 + Yi ,t+1))2 .

However this strategy is usually not adopted since the regressors
involved in Mt+1(θ)(1 + Yi ,t+1) and the error term εt+1 have no a
priori reason to be uncorrelated.

This condition is necessary to get consistency of θ̂.
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GMM

Hansen (1982) Generalised Method of Moment (GMM):

From the properties of the conditional expectation:
If E [Y |X ] = 0 then E [Yf (X )] = 0 for any f .

Using the Euler equation, this leads for any Xt , which belongs to
the information set available to the agent at date t, to

E [(Mt+1(θ)(1 + Yi ,t+1)− 1)Xt ] = 0.



15/17

Life Cycle Models Implications: CCAPM Econometrics of the CCAPM

GMM

The idea behind GMM is to use the empirical counterpart of the
expectation, i.e. the function

m(θ) =
1
T

T∑
t=1

(Mt+1(θ)(1 + Yi ,t+1)− 1)Xt

and find the value of the parameter so that this quantity is close to
zero using a quadratic norm indexed by a matrix Ω.

θ̂ = arg minm(θ)′Ωm(θ)

This estimator is consistent and asymptotically normal.
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GMM

There exists also an optimal choice for the matrix Ω in the sense of
having the best attainable precision (smallest asymptotic variance).

Since the GMM criterion is usually highly nonlinear, the estimator θ̂
does not admit a closed form solution obtained through solving the
first order condition.

Numerical optimization algorithms are called for.
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Equity Premium Puzzle

Empirical studies based on aggregate consumption data and stock
index returns have shown that the CCAPM does not fully explain
the difference between stock returns and the risk free rate.

This difference is in practice large and can only be justified by the
CCAPM if very high values for the risk aversion are used.

This phenomenon is known as the
equity risk premium puzzle (Mehra and Prescott (1985))

Several extensions have been proposed in order to achieve better life
cycle models, mainly through use of more general utility functions.
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