0 00 00 00	Intro	Mean	CDF	Kernel
	0	00	0	00

A.III. Asymptotic properties

Olivier Scaillet

University of Geneva and Swiss Finance Institute

swiss:finance:institute

GENEVA FINANCE RESEARCH INSTITUTE 1/8

Intro	Mean	CDF	Kernel
O	00	o	00
Outline			

2 Example: Empirical Mean

3 Example: Empirical Cumulative Distribution Function (CDF)

swiss: finance: institute

Intro	Mean	CDF	Kernel
●	00	o	
Introduction			

The asymptotic properties concern the properties of the estimators when the sample size is large, i.e. $T \rightarrow \infty$.

The estimators are usually convergent and asymptotically normal.

It comes from the application of the *law of large numbers* and of the *central limit theorem*.

Intro	Mean	CDF	Kernel
O	●○	o	00
Empirica	al Mean		

1. Empirical mean:

$$\sqrt{T}(\hat{m}-m) \Rightarrow N(0,\Sigma)$$

The empirical mean when T becomes large follows a normal distribution, centered on the true unknown mean and with covariance matrix equal to the true unknown covariance matrix of the random variable.

Using an estimate $\hat{\Sigma}$ of Σ , for example the empirical covariance matrix, we may construct asymptotic confidence intervals.

An asymptotic confidence interval
$$\Im_{1-\alpha}$$
 of level $1-\alpha$ is
 $\Im_{1-\alpha} = \left[\hat{m} - \frac{z_{\alpha/2}}{\sqrt{T}}\hat{\Sigma}^{1/2}, \hat{m} + \frac{z_{\alpha/2}}{\sqrt{T}}\hat{\Sigma}^{1/2}\right],$

swiss:finance:institute

GENEVA FINANCE RESEARCH INSTITUTE 4/8

where $z_{\alpha/2}$ is the quantile of level $1-\alpha/2$ of a standard normal distribution

$$P\left[N(0,1) < z_{\alpha/2}\right] = 1 - \alpha/2.$$

Asymptotically, the probability that the true unknown mean belongs to the interval $\Im_{1-\alpha}$ defined by the lower bound

$$\hat{m} - rac{z_{lpha/2}}{\sqrt{T}}\hat{\Sigma}^{1/2}$$

and the upper bound

$$\hat{m} + rac{z_{lpha/2}}{\sqrt{T}} \hat{\Sigma}^{1/2}$$

is equal to $1 - \alpha$.

swiss:finance:institute

GENEVA FINANCE RESEARCH INSTITUTE 5/8

2. Empirical cumulative distribution function:

$$\sqrt{\mathcal{T}(\hat{F}_i(\zeta_i) - F_i(\zeta_i))} \Rightarrow N(0, F_i(\zeta_i)(1 - F_i(\zeta_i)))$$

The asymptotic variance $F_i(\zeta_i)(1 - F_i(\zeta_i))$ can be estimated by $\hat{F}_i(\zeta_i)(1 - \hat{F}_i(\zeta_i))$.

swiss:finance:institute

GENEVA FINANCE RESEARCH INSTITUTE 6/8

Intro	Mean	CDF	Kernel
O	00	o	●○
Kernel Densit	/ Estimator		

3. Kernel density estimator:

For
$$h \to 0$$
 and $Th \to \infty$ when $T \to \infty$
 $\sqrt{Th}\left(\hat{f}_i(\zeta_i) - f_i(\zeta_i)\right) \Rightarrow N(0, f_i(\zeta_i) \int_{-\infty}^{+\infty} K^2(u) du)$

For a Gaussian kernel we have: $\int_{-\infty}^{+\infty} K^2(u) du = rac{1}{2\sqrt{\pi}}$

Hence the asymptotic precision measured by the asymptotic variance $f_i(\zeta_i) \int_{-\infty}^{+\infty} K^2(u) du$ depends on the choice of the kernel and can be estimated by $\hat{f}_i(\zeta_i) \int_{-\infty}^{+\infty} K^2(u) du$.

swiss:finance:institute

Intro	Mean	CDF	Kernel
O	00	o	○●
Kernel Density	Estimator		

Note that kernel estimators converge at a slower rate due to the presence of smoothing.

Indeed since $h \rightarrow 0$, $\sqrt{T} > \sqrt{Th}$.

We need more data to compensate for the presence of $h \rightarrow 0$ to get the same level of asymptotic precision.

RESEARCH II