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Bootstrap and Asymptotic Confidence
Intervals

This TP shows how the bootstrap can be used to generate confidence intervals.

The Delta Method

The delta method is a popular way to perform inference on nonlinear functions
of model parameters. It is based on an asymptotic approximation and states the
following result:

if
√
T (θ̂ − θ) ∼ N (0,Σ), then

√
T
(
g(θ̂)− g(θ)

)
∼ N

(
0,
∂g

∂θ
Σ
∂g′

∂θ

)
,

where g is a continuous function of the parameter vector θ. In practice, Σ is esti-
mated by the estimated covariance matrix of θ̂ and ∂g

∂θ is evaluated at θ̂.
You will also need the following property:

if ϕ ∼ N (µ, σ2), then:
√
T (µ̂− µ) ∼ N (0, σ2),

√
T (σ̂2 − σ2) ∼ N (0, σ4), and µ̂ and σ̂ are orthogonal.

1. Simulate T = 100 observations of the law N (1, 16). (We will consider these
observations as a series of monthly percentage returns on a stock.)

2. Estimate the model parameter θ =

(
µ
σ2

)
and compute the statistic ŜR =

µ̂
σ̂

. Think of ŜR as a Sharpe ratio, if we assume the risk-free rate is zero.

3. Using the delta method and the above property, form a 95% asymptotic con-

fidence interval for SR. Hint: ŜR =
µ̂√
σ̂2

.

Bootstrap Confidence Interval

If the number of observations is small, it is often better to use bootstrap confidence
intervals.

1. First, generate B = 2000 random samples of size T from the original data
simulated in the previous section (see slide A.XIII-119). Use each of these

samples to obtain new estimates of our statistic, ŜR
(b)
, b = 1, . . . , B.
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In general, we do not necessarily know anything about the distribution of the

new parameter estimates ŜR
(b)

. But, although we may not have a perfect idea of
the shape of this distribution, we can calculate quantiles q?(α), such that a fraction
α of the bootstrap statistics are less than or equal to q?(α). For example, if we had
1000 bootstrap samples, the quantile q?(0.05) would be the 50th largest observation.
This means we can write:

P
(
q?(α/2) ≤ ŜR

(b)
≤ q?(1− α/2)

)
= 1− α.

Now suppose we want to look at the distribution of ŜR
(b)
−ŜR. From the expression

above, we can see that:

P
(
q?(α/2)− ŜR ≤ ŜR

(b)
− ŜR ≤ q?(1− α/2)− ŜR

)
= 1− α.

In addition, we can argue that we can estimate the distribution of
√
T (ŜR−SR) by

the distribution of
√
T (ŜR

(b)
− ŜR). This makes sense if you think of the analogy

that ŜR arose from sampling from a distribution with parameter θ, while ŜR
(b)

arose from sampling from a distribution with parameter θ̂. Hence:

P
(
q?(α/2)− ŜR ≤ ŜR

(b)
− ŜR ≤ q?(1− α/2)− ŜR

)
=

P
(
q?(α/2)− ŜR ≤ ŜR− SR ≤ q?(1− α/2)− ŜR

)
= 1− α.

Rearranging:

P
(

2ŜR− q?(1− α/2) ≤ SR ≤ 2ŜR− q?(α/2)
)

= 1− α.

This means the bootstrap confidence interval for SR is:[
2ŜR− q?(1− α/2), 2ŜR− q?(α/2)

]
.

2. Form a 95% bootstrap confidence interval for SR.

3. Compare the asymptotic and bootstrap confidence intervals for different values
of T .

Dependent Data: The Block Bootstrap

The bootstrap procedure just presented, however, only works with independent
data. If a dependency between neighboring observations is suspected, as may be
the case with high-frequency stock data, our original bootstrap procedure will not
work. To deal with this issue, a procedure known as the block bootstrap has been
proposed in the literature. In the block bootstrap, groups (i.e., blocks) of consec-
utive observations are sampled instead of individual observations. In its simplest
form, the data is divided into k non-overlapping blocks of length l, where T = kl.
If k is large enough, then the generated samples should preserve most of the de-
pendency between neighboring observations. Under a number of relatively mild
conditions, it can be shown that this estimator is consistent, though its rate of
convergence may not be as high as that for the iid bootstrap seen above. In this
exercise, we will get a sense of the relative accuracy of the two types of bootstrap.
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1. Generate again B = 2000 random samples of size T from the original data
simulated in the first section. This time, however, do the sampling based on
blocks of size 10, i.e., k = 10. Use each of the generated samples to obtain

new estimates of our statistic SR, denoted by ŜR
(BB)

, b = 1, . . . , B.

2. Using a similar approach to the previous section, form a 95% bootstrap con-
fidence interval for SR.

3. How does the new confidence interval obtained from block sampling compare
with the confidence interval computed in the previous section? Is it wider?
Repeat steps (1)-(2) several times to get a good idea of how both confidence
intervals compare. Comment
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