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Maximum Likelihood Estimators

Let x1, ..., xT be the sample we are given with, i.e., our observations. If we
assume that: (1) the observations are independently sampled and (2) the process
that generated this sample is a normal distribution with mean µ and variance
σ2, then the joint density (i.e., the likelihood, the probability) of obtaining the
sample x1, ..., xT is given by the likelihood function:

L(µ, σ2) =f(x1)× ...× f(xT )
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If you look closely, you may notice that as T grows large, the value of L(µ, σ2)

will tend to zero, and this will make the function too flat, and therefore any
numerical optimizer such as fminsearch will have trouble finding even a local
maximum or minimum. Fortunately, from calculus we know that if we take a
monotonic transform l(µ, σ2) of L(µ, σ2), the values of µ and σ2that maximize
l(µ, σ2) will be the same as those that maximize L(µ, σ2). To make things
simple, therefore, we choose as our monotone transformation the (natural) log
function. So, we get:

l(µ, σ2) = log
[
L(µ, σ2)

]
= log

[(
2πσ2

)−T
2 exp

(
− 1

2σ2

T∑
i=1

(xi − µ)
2

)]

=− T

2
log
(
2πσ2

)
− 1

2σ2

T∑
i=1

(xi − µ)
2

The maximum likelihood principle tells us that we should choose the values
of µ and σ2that maximize l(µ, σ2) and L(µ, σ2) in order to obtain the parame-
ters of the normal distribution that most likely generated the observed sample
x1, ..., xT . To maximize l(µ, σ2) we may do two things:
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1. Brute force method: In Matlab, use fminsearch on the function −l(µ, σ2)
to identify the parameters that minimize the negative of l(µ, σ2), that is,
the parameters that maximize l(µ, σ2) itself. This was done in class, or
you may check the solutions.

2. Analytical method: In this case, we may find the values of µ and σ2 by
setting the partial derivatives of l(µ, σ2)with respect to the variables µ
and σ2 equal to zero and solving for the corresponding variables.

The analytical method gives:
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Setting the partial derivatives equal to zero and solving gives µ̂ = 1
T

∑T
i=1 xi

and σ̂2 = 1
T

∑T
i=1 (xi − µ̂)

2. Clearly, for more complicated likelihood functions
it will be more difficult or even impossible to obtain explicit solutions for the
parameters as in this case. Finally, note that the estimator for σ2 is biased since
the denominator is T instead of T −1. So, Maximum Likelihood Estimators are
not necessarily unbiased in general.
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