A.IV. Linear regression

Olivier Scaillet

University of Geneva and Swiss Finance Institute

swiss:finance:institute

	÷	0
	۰.	0

Outline

swiss:finance:institute

Introduction

A linear regression is defined by

$$Y_t = X_t\beta + \varepsilon_t$$
$$= \sum_{k=1}^{K} X_{k,t}\beta_k + \varepsilon_t$$

where

 ε_t = noise with mean zero, i.e., innovation or error term,

$$\begin{aligned} X_t \beta &= E\left[Y_{i,t} \mid X_t\right] \\ &= \text{conditional mean of } Y_t \\ &= \text{linear function of } X_t \end{aligned}$$

$$\beta = parameter (estimation by OLS)$$

swiss:finance:institute

Intro	OLS Estimator	Fit Measures	Inference & Tests
OLS Esti	mator		

The OLS estimator is the value of β which minimizes the sum of squared residuals

$$\hat{\beta} = \arg\min\sum_{t=1}^{T} (Y_t - X_t\beta)^2$$
$$= \left[\sum_{t=1}^{T} X'_t X_t\right]^{-1} \sum_{t=1}^{T} X'_t Y_t$$

The OLS residuals are given by $\hat{\varepsilon}_t = Y_t - X_t \hat{\beta}$

Fit Measures

Inference & Tests

OLS Estimator

Matrix notation:

$$\begin{array}{l} \mathbf{Y} \\ \mathbf{Y} \\ (T \times 1) \end{array} = \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_T \end{pmatrix}, \begin{array}{l} \mathbf{X} \\ (T \times K) \end{array} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_T \end{pmatrix}, \begin{array}{l} \boldsymbol{\varepsilon} \\ (T \times 1) \end{array} = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_T \end{pmatrix} \\ \hat{\boldsymbol{\beta}} = (X'X)^{-1}X'Y \\ \hat{\boldsymbol{\varepsilon}} = \mathbf{Y} - X\hat{\boldsymbol{\beta}} \end{array}$$

Intro	OLS Estimator	Fit Measures	Inference & Tests
Inter	pretation		

Interpretation:

OLS consists in decomposing Y into two *orthogonal projections*, one on the space spanned by the columns of X, and the other on the space of innovations.

Let $P_X = X(X'X)^{-1}X'$ be the orthogonal projection matrix associated with the regressors, and

$$M_X = Id - P_X,$$

then

$$Y = P_X Y + M_X Y$$

= $X(X'X)^{-1}X'Y + (Id - X(X'X)^{-1}X')Y$
= $X\hat{\beta} + (Y - X\hat{\beta})$
= $X\hat{\beta} + \hat{\varepsilon}$

Goodness-of-fit Measures

When there is a constant in the model (X_1 is a vector of ones), a measure of goodness-of-fit is

$$R^{2} = \frac{\sum_{t=1}^{T} \left(\hat{Y}_{t} - \bar{Y}\right)^{2}}{\sum_{t=1}^{T} \left(Y_{t} - \bar{Y}\right)^{2}} = \frac{\text{EXPLAINED VARIANCE}}{\text{TOTAL VARIANCE}}.$$

It satisfies $0 < R^2 < 1$.

Statistical Inference

Statistical inference:

H1: a) X_t is deterministic b) ε_t is i.i.d. with mean 0 and variance σ^2 c) ε_t is Gaussian

$\hat{\beta}$ is normally distributed with mean β and covariance matrix $\sigma^2 (X'X)^{-1}$

Intro

Fit Measures

Inference & Tests

Gauss-Markov Theorem

Gauss Markov theorem: OLS estimator

= Best Linear Unbiased Estimator (BLUE)

OLS estimator has the smallest variance (largest precision) among all unbiased estimators linear in \boldsymbol{Y}

t-Tests

t-Tests:

$$\begin{cases} H_0: \beta_k = b\\ H_1: \beta_k \neq b \end{cases}$$

For example, take b = 0 to obtain the test of the significance of the presence of the *k*-th regressor in explaining *Y*.

t-Statistic

t-Statistic:
$$t=rac{\hat{eta}_k-b}{\hat{\sigma}_{\hat{eta}_k}}$$
, where $\hat{\sigma}_{\hat{eta}_k}=\sqrt{s^2 \varsigma_{ii}},$

with

$$s^{2} = \frac{\hat{\varepsilon}'\hat{\varepsilon}}{T-K}$$

 $\varsigma_{ii} = \text{i-th diagonal element of } (X'X)^{-1}$

Reject the null hypothesis H_0 at level α if

$$|t| > t_{1-\alpha/2}$$

where $t_{1-\alpha/2}$ is the $1-\alpha/2$ quantile of a student distribution with T-K degrees of freedom

	т	r		
			~	

F tests

F tests:

$$\begin{cases} H_0: R\beta = r \\ H_1: R\beta \neq r \end{cases}$$

Test of *m* linear restrictions on β

$${\it R}=(m imes {\it K})$$
 matrix, ${\it r}=(m imes 1)$ vector

F statistic:

$$F=\frac{(R\hat{\beta}-r)'(R(X'X)^{-1}R')(R\hat{\beta}-r)}{s^2m},$$

Reject the null hypothesis H_0 at level α if

 $F > F_{1-\alpha}$ where $F_{1-\alpha}$ is the quantile of level $1 - \alpha$ of a Fisher variable with m and T - K degrees of freedom.

Other Sets of Assumptions

Other sets of assumptions: H2: a) X_t is stochastic and independent of ε_s , $\forall s$ b) ε_t is i.i.d. with mean 0 and variance σ^2 c) ε_t is Gaussian $\hat{\beta}$ is normally distributed with mean β and covariance matrix $\sigma^2(X'X)^{-1}$, but conditionally to X (when X is treated as fixed). Unconditionally, $\hat{\beta}$ is no longer normally distributed. However the distributions for t and F remain valid.

Remark

<u>Remark</u>: For large T (asymptotic theory), in H2, we may drop the assumption of Gaussian innovations, but the distributions for t and F become

- a) standard normal for t
- b) chi-square with m degrees of freedom for F

