0 0 0 0 0	Introduction	NP Regression	Univariate	Multivariate	Further Ext	Example
	0	0	0	0	0	0

A.IX. Estimation of Conditional Mean

Olivier Scaillet

University of Geneva and Swiss Finance Institute

swiss:finance:institute

Introduction	NP Regression	Univariate	Multivariate	Further Ext	Example
0		0	0	0	0
Outline	Э				

- 2 Nonparametric Regression
- 3 Univariate Nonparametric Regression
- 4 Multivariate Nonparametric Regression
- 5 Further Extensions

Introduction	NP Regression	Univariate	Multivariate	Further Ext	Example
•		0	0	0	0
Introdu	iction				

Recall the linear regression

$$\begin{array}{rcl} Y_t &=& X_t\beta + \varepsilon_t \\ &=& \sum_{k=1}^K X_{k,t}\beta_k + \varepsilon_t \end{array}$$

where

 $\varepsilon_t = \text{noise with mean zero}$ = innovation or error term, $X_t\beta = E\left[Y_t | X_t\right]$ = conditional mean of Y_t = linear function of X_t ,

 β = parameter (estimation by OLS).

 Y_t now depends *nonlinearly* on the explanatory variables X_t $Y_t = m(X_t) + \varepsilon_t$,

 $\varepsilon_t = \text{noise with mean zero}$ = innovation or error term, $m(X_t) = E[Y_t | X_t]$ = conditional mean of Y_t = unspecified nonlinear function of X_t .

We may conduct estimation of the function m by a kernel method.

Introduction	NP Regression	Univariate	Multivariate	Further Ext	Example
0	0	●	0	0	0
Univar	iate Case				

We consider a single variable: $X_t = X_{1,t}$

$$Y_t = m(X_{1,t}) + \varepsilon_t.$$

The estimation of the function m at point x_1 :

$$m(x_1) = E[Y_t | X_{1,t} = x_1]$$

by a kernel method is given by

$$\hat{m}(x_1) = \frac{\frac{1}{Th} \sum_{t=1}^{T} y_t K\left(\frac{x_{1,t}-x_1}{h}\right)}{\frac{1}{Th} \sum_{t=1}^{T} K\left(\frac{x_{1,t}-x_1}{h}\right)}.$$

It is very easy to implement since it only involves empirical averages computed from a grid of distinct points.

Introduction	NP Regression	Univariate	Multivariate	Further Ext	Example
0	0	0	●	0	0
Multiva	ariate Case				

We consider K variables: $X_t = (X_{1,t}, ..., X_{K,t})'$

$$Y_t = m(X_t) + \varepsilon_t = m(X_{1,t}, ..., X_{K,t}) + \varepsilon_t$$

The estimation of function *m* at point $x = (x_1, ..., x_K)'$: $m(x) = E[Y_t | X_t = x]$ $= E[Y_t | X_{1,t} = x_1, ..., X_{K,t} = x_K]$

by a kernel method is given by

$$\hat{m}(x) = \frac{\frac{1}{Th^{K}} \sum_{t=1}^{T} y_{t} \prod_{k=1}^{K} K\left(\frac{x_{k,t}-x_{k}}{h}\right)}{\frac{1}{Th^{K}} \sum_{t=1}^{T} \prod_{k=1}^{K} K\left(\frac{x_{k,t}-x_{k}}{h}\right)}$$

For dimension K > 5, we get poor properties of the estimation procedure (curse of dimensionality).

swiss:finance:institute

Introduction	NP Regression	Univariate	Multivariate	Further Ext	Example
0	0	0	0	●	0
Further	Extensions				

The method remains valid for estimation of conditional expectations of *functions* $g(Y_t)$ of Y_t , namely $E[g(Y_t)|X_t]$.

The kernel estimator is simply

$$\frac{\frac{1}{Th^{K}}\sum_{t=1}^{T}g(y_{t})\prod_{k=1}^{K}K\left(\frac{x_{k,t}-x_{k}}{h}\right)}{\frac{1}{Th^{K}}\sum_{t=1}^{T}\prod_{k=1}^{K}K\left(\frac{x_{k,t}-x_{k}}{h}\right)}$$

Introduction	NP Regression	Univariate	Multivariate	Further Ext	Example
0	0	0	0	0	•
Exampl	e				

Estimation of a conditional variance

$$V(x) = V[Y_t | X_t = x] = E[(Y_t)^2 | X_t = x] - (E[Y_t | X_t = x])^2$$

here
$$g(y) = y^2$$
:
 $\hat{V}(x) = \frac{\frac{1}{Th^K} \sum_{t=1}^T (y_t)^2 \prod_{k=1}^K K\left(\frac{x_{k,t} - x_k}{h}\right)}{\frac{1}{Th^K} \sum_{t=1}^T \prod_{k=1}^K K\left(\frac{x_{k,t} - x_k}{h}\right)} - (\hat{m}(x))^2.$

