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Introduction

Exponential smoothing methods belong to the category of fast
computational forecasting methods.

Advantages:
1 Simple to implement: forecasting equations are easy to

understand and compute.
2 No underlying models.
3 Methods often as performant as more sophisticated ones.
4 Robust methods: may work on short series with possible

structural changes.
Disadvantages:

1 Not adapted to certain type of data.
2 Arbitrary choice of smoothing constant
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Setup

Data: Y1, ...,Yt , ...,YT

We are at date T and wish to forecast the value YT+h at date
T + h.

The forecast value is denoted ŶT (h), and h is called the forecast
horizon.
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Simple Exponential Smoothing

Parameter: α = smoothing constant satisfying 0 < α < 1.
Definition:

ŶT (h) = (1− α)
T−1∑
j=0

αjYT−j

Remarks:
1 Most recent observations have the greatest influence

(exponential decay of influence of past data)
2 α close to 1: large influence of past data (rigidity of forecast).
3 α close to 0: small influence of past data (adaptivity to most

recent data)
4 Definition does not depend on h, thus we use notation ŶT .



Intro Simple Exp. Smoothing Double Exp. Smoothing

Simple Exponential Smoothing

Updating formulas:

ŶT = αŶT−1 + (1− α)YT

This is a weighted average of forecast at date T − 1 and of the
latest observation

If α is small we get more weight to the latest observation

ŶT = ŶT−1 + (1− α)(YT − ŶT−1)

We have an error correction mechanism.

We need to initialize the algorithm. To do so, we may choose
Ŷ1 = Y1, for example
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Simple Exponential Smoothing

Interpretation:
Assume that the series is approximately constant on the
observation period

Yt = a + ut , t = 1, ...,T

We may estimate the constant a by weighted least squares

min
a

T−1∑
j=0

αj(YT−j − a)2

The weights decline exponentially when move back in time.
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Simple Exponential Smoothing

Solution of minimization problem:

â =
1− α

1− αT

T−1∑
j=0

αjYT−j

For T large enough, we get â ≈ ŶT .

Hence ŶT takes the interpretation of the constant which
approximates best the series around T since the weight declines
when moves away from T .

The method is only relevant when the series is approximately
constant next to T (locally constant) and should be avoided
otherwise, for example, in the presence of a trend.
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Simple Exponential Smoothing

Choice of the smoothing constant:
1 Subjective: depending of willingness to have fast adaptivity or

more rigidity.
2 Choice advocated by Brown (inventor of the method): α = 0.7
3 Objective: constant chosen to minimize the sum of squared

forecast errors

T−1∑
t=1

(
Yt+1 − Ŷt

)2
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Double Exponential Smoothing

Simple exponential smoothing adapted to locally constant series
(constant = horizontal line)

Generalization:
Take a line with a slope (trend)

Yt = a1 + (t − T )a2 + ut

We may use to forecast

ŶT (h) = â1(T ) + hâ2(T )

The coefficients â1(T ), â2(T ) are obtained by solving :

min
a1,a2

T−1∑
j=0

αj(YT−j − a1 + a2j)2.
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Double Exponential Smoothing

For large T, we get

â1(T ) = 2S1(T )− S2(T ),
â2(T ) = 1−α

α (S1(T )− S2(T ))

where S1(T ) is the smoothed series

S1(T ) = (1− α)
T−1∑
j=0

αjYT−j

and S2(T ) is the doubly smoothed series

S2(T ) = (1− α)
T−1∑
j=0

αjS1(T − j)
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Double Exponential Smoothing

Updating formulas used in practice:

â1(T ) = â1(T − 1) + â2(T − 1) + (1− α2)
(
YT − ŶT−1(1)

)
,

â2(T ) = â2(T − 1) + (1− α)2
(
YT − ŶT−1(1)

)
Last terms are proportional to error forecast YT − ŶT−1(1)
If perfect forecast YT = ŶT−1(1), i.e., forecast error is zero,
then there is no need to update, and we get:

â1(T ) = â1(T − 1) + â2(T − 1),
â2(T ) = â2(T − 1)

Initialization values:

â1(2) = Y2, â2(2) = Y2 − Y1
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Double Exponential Smoothing

Remark:
There exist other exponential smoothing methods which use two
smoothing parameters:

More adaptive such as the Holt-Winters method
May take into account the presence of seasonality, etc . . .
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