Intro	ARCH	GARCH	Effect Detection	GARCH Example	GARCH Extensions
-------	------	-------	------------------	---------------	------------------

B.VI. ARCH Models

Olivier Scaillet

University of Geneva and Swiss Finance Institute

swiss:finance:institute

Intro	ARCH	GARCH	Effect Detection	GARCH Example	GARCH Extensions
Οι	utline				

- 2 ARCH Models
- GARCH Models
- 4 Detection of ARCH/GARCH Effects
- 5 GARCH Example

swiss:finance:institute

Intro	ARCH	GARCH	Effect Detection	GARCH Example	GARCH Extensions
	ntroductio	on			

In linear autoregressive models

$$Y_t = \mu + \omega_1 Y_{t-1} + \dots + \omega_p Y_{t-p} + \varepsilon_t,$$

the conditional variance is constant equal to the variance σ^2 of the noise (homoscedasticity)

$$V[Y_t | Y_{t-1}, ..., Y_{t-p}] = \sigma^2$$

Empirical evidence: volatility clustering Large, resp. small, movements tend to be followed by large, resp. small, movements.

Intro	ARCH	GARCH	Effect Detection	GARCH Example	GARCH Extensions
AR	CH Mod	lels			

Idea :

Introduce a linear dependence structure so volatility depends on the past

 \Rightarrow autoregressive conditional heteroscedasticity (ARCH).

Unconditional variance does not recognize that there may be predictible patterns in stock market volatility

Financial asset prices seem to go through long periods of high volatility and long periods of low volatility (persistence)

In periods of volatile prices, investors should either exit the market or require a large premium as compensation for bearing unusually high risk

Here we analyze models of conditional (on information available at date t-1) volatility.

Intro	ARCH	GARCH	Effect Detection	GARCH Example	GARCH Extensions
	ARCH(p)	Model			

ARCH model: ARCH(p)

$$Y_t = \sqrt{h_t}\varepsilon_t$$

where
$$h_t = V[Y_t | Y_{t-1}, ..., Y_{t-p}] = c + \sum_{j=1}^p a_j Y_{t-j}^2$$
 and $\varepsilon_t \sim N(0, 1)$

The conditional variance is a linear function of the past squared variables

If past values are large, resp. small, in absolute values, so will be the conditional variance (clustering)

We need to impose positivity of coefficients to guarantee positivity of conditional variance

Intro	ARCH	GARCH	Effect Detection	GARCH Example	GARCH Extensions
А	RCH(p)	Model			

Remark:

The unconditional (marginal) variance is constant even if conditional variance is not. Indeed, from formula of analysis of variance

$$V[Y_t] = E\left[V\left[Y_t \mid Y_{\underline{t-1}}\right]\right] + V\left[E\left[Y_t \mid Y_{\underline{t-1}}\right]\right]$$

We observe first that

$$E\left[V\left[Y_{t} \mid Y_{\underline{t-1}}\right]\right] = E\left[c + \sum_{j=1}^{p} a_{j}Y_{t-j}^{2}\right] = c + \sum_{j=1}^{p} a_{j}E\left[Y_{t-j}^{2}\right],$$

and, moreover,

$$V\left[E\left[Y_t \mid Y_{\underline{t-1}}\right]\right] = V\left[0\right] = 0.$$

Intro	ARCH	GARCH	Effect Detection	GARCH Example	GARCH Extensions
AR	CH(p)	Model			

On the other hand, $\forall j$

$$E\left[Y_{t-j}^2\right] = V\left[Y_{t-j}\right]$$

and by covariance stationarity

$$V\left[Y_{t-j}\right] = V\left[Y_t\right].$$

Hence, from the result on the previous slide we get

$$V[Y_t] = c + \sum_{j=1}^p a_j V[Y_t]$$

So, the unconditional variance is

$$V\left[Y_{t}\right] = \frac{c}{1 - \sum_{j=1}^{p} a_{j}}$$

swiss:finance:institute

<u>Problem with ARCH</u>: When estimated on financial data, ARCH models usually involve large number p of significative lags.

GARCH model: GARCH(p,q), i.e., Generalized ARCH

$$Y_t = \sqrt{h_t}\varepsilon_t$$

where

$$h_t = V [Y_t | Y_{t-1}, ..., Y_{t-p}] = c + \sum_{j=1}^q a_j Y_{t-j}^2 + \sum_{l=1}^p b_l h_{t-l}.$$

When estimated on financial data, usually a GARCH(1,1) gives a good fit (parsimonious model)

The GARCH(p,q) model can be rewritten as an ARMA model on squared observations

$$Y_t^2 = c + \sum_{j=1}^{\max(p,q)} (a_j + b_j) Y_{t-j}^2 + u_t - \sum_{l=1}^p b_l u_{t-l}$$

with $u_t = Y_t^2 - h_t$.

This relationship helps the identification of the orders p and q since we can use the tools used in ARMA modeling.

Remark:

We may use the GARCH specification directly on the innovation term of a given model to introduce conditional heteroscedasticity.

Intro	ARCH	GARCH	Effect Detection	GARCH Example	GARCH Extensions
Ex	amples				

• ARMA-GARCH:

$$\Omega(L)Y_t = \mu + \Theta(L)\varepsilon_t$$

where ε_t follows a GARCH process $\varepsilon_t = \sqrt{h_t} v_t$ and $h_t = V [\varepsilon_t | \varepsilon_{t-1}, ..., | \varepsilon_{t-p}] = c + \sum_{j=1}^q a_j \varepsilon_{t-j}^2 + \sum_{l=1}^p b_l h_{i,t-l}.$

• Linear regression with GARCH errors

$$Y_t = X_t \beta + \varepsilon_t$$

where ε_t follows a GARCH process.

Intro ARCH

GARCH

Effect Detection

GARCH Example

GARCH Extensions

Detection of ARCH/GARCH Effects

- a) Practical 2-step procedure
 - Specify form of conditional mean (ex. arma or linear regression) and estimate parameter.
 - 2 Compute the residuals.
 - Analyse the ARMA properties of squared residuals i.e. computation of correlograms and partial correlograms of squared residuals and identifation of order *p*,*q* as for standard ARMA models.

Intro ARCH

GARCH

Effect Detection

GARCH Example

GARCH Extensions

Detection of ARCH/GARCH Effects

- b) Formal test for ARCH(p)
 - **1** Run a regression of squared residuals e_t^2 on $e_{t-1}^2, ..., e_{t-p}^2$.
 - Compute TR² where R² is the squared multiple correlation coefficient of the regression.
 - Reject the null hypothesis of no ARCH effects with lag p at level α if TR² is larger than quantile of level 1 – α of chi-square distribution with p degrees of freedom

Intro	ARCH	GARCH	Effect Detection	GARCH Example	GARCH Extensions
	Empirical	Example			

Example:

Dollar/sterling exchange rate from January 1974 and December 1994 (5192 observations)

Loss criteria for comparison:

$$L_{1} = \sum_{t=1}^{T} \left(e_{t}^{2} - \sigma_{t}^{2} \right)^{2}, L_{2} = \sum_{t=1}^{T} \left(\ln \left(e_{t}^{2} / \sigma_{t}^{2} \right) \right)^{2}$$

Modifications of GARCH(1,1) processes:

Impact of news, i.e. ε_{t-1} , is symmetric on volatility due to square, thus large positive shocks will have the same impact on volatility as large negative shocks.

The model does not account for *leverage effects*.

<u>Black (1976)</u>: tendency for stock prices to be negatively correlated with changes in stock volatility.

A firm with outstanding debt and equity typically becomes more highly leveraged when the value of the firm falls.

This raises the equity (stock price) volatility since the firm becomes more risky.

Intro	ARCH	GARCH	Effect Detection	GARCH Example	GARCH Extensions
G	ARCH E	xtensions			

Extensions of GARCH include

- Exponential: (EGARCH) modelling of the logarithm of conditional variance which includes absolute values of the noise.
- Threshold: (TARCH) parameter value depends on whether shock is positive (above zero) or not.
- Switching regimes: (SWARCH) another process determines whether the volatility follows one type (regime) of GARCH process or another one.

