Dependence	ACF & Wold	ARMA	PACF	ARMA Order	Tests	Issues
0	00	00	0	0	0	0

B.III. ACF, PACF and ARMA models

Olivier Scaillet

University of Geneva and Swiss Finance Institute

swiss:finance:institute

Dependence	ACF & Wold	ARMA	PACF	ARMA Order	Tests	lssues
0		00	o	0	O	O
Outlin	е					

- 2 Autocorrelation & Wold Theorem
- 3 The ARMA Process
- 4 Partial Autocorrelation Function
- 5 Determine ARMA order
- 6 Residuals Analysis

Dependence	ACF & Wold	ARMA	PACF	ARMA Order	Tests	lssues
●		oo	o	0	O	O
Notio	n of Depend	dence				

Covariance (or correlation)

= measure of *linear dependence* between two random variables

Will be used to measure dependence between current observations and past observations

 $\frac{\text{Current return: } Y_t}{\text{Return with lag } \tau}: Y_{t-\tau}$

The covariance between current and lagged return

$$\gamma(\tau) = Cov(Y_t, Y_{t-\tau})$$

is called the autocovariance of order $\boldsymbol{\tau}.$

Dependence	ACF & Wold	ARMA	PACF	ARMA Order	Tests	Issues
0	●○	oo	o	0	O	O
Auto	correlation					

If the random process is stationary, the autocovariance only depends on lag $\tau.$

Autocovariance of order 0 = Variance Autocorrelation of order τ $\rho(\tau) = \frac{Cov(Y_t, Y_{t-\tau})}{V(Y_t)} = \frac{\gamma(\tau)}{\gamma(0)}$

The autocorrelation function (ACF) = $\rho(\tau)$, $\tau = 1, 2, ...$ of successive orders will allow to detect linear temporal dependence.

Remark:

$$ho(0) \hspace{.1in} = \hspace{.1in} rac{\gamma(0)}{\gamma(0)} = 1$$

swiss:finance:institute

Dependence	ACF & Wold	ARMA	PACF	ARMA Order	Tests	lssues
0	○●	00	o	0	O	O
Wold	Theorem					

Wold theorem:

A stationary process Y_t may always be represented as a linear combination of a random noise ε_t and its past realizations $\varepsilon_{t-1}, \varepsilon_{t-2}, ...$ $Y_t = \mu + \varepsilon_t + a_1 \varepsilon_{t-1} + ... + a_j \varepsilon_{t-j} + ...$

Using the backward (or lag) operator $L\varepsilon_t = \varepsilon_{t-1}, \quad L^2\varepsilon_t = LL\varepsilon_t = \varepsilon_{t-2},....$

this can be rewritten more compactly

$$Y_t = \mu + \sum_{j=0}^{\infty} a_j L^j \varepsilon_t = \mu + A(L) \varepsilon_t$$

Dependence	ACF & Wold	ARMA	PACF	ARMA Order	Tests	lssues
0		●○	o	o	O	0
ARMA	Process					

<u>Idea</u>: approximate the sequence $A(L) = \sum_{j=0}^{\infty} a_j L^j$ by a finite polynomial (truncation of the infinite sum)

 $Y_t = \mu + \omega_1 Y_{t-1} + \ldots + \omega_p Y_{t-p} + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \ldots - \theta_q \varepsilon_{t-q},$

or more compactly

$$\Omega(L)Y_t = \mu + \Theta(L)\varepsilon_t,$$

with

$$\Omega(L) = 1 - \omega_1 L - \dots - \omega_p L^p, \Theta(L) = 1 - \theta_1 L - \dots - \theta_q L^q.$$

This is called an ARMA (autoregressive moving average) process of order p, q.

Dependence	ACF & Wold	ARMA	PACF	ARMA Order	Tests	lssues
0		○●	o	0	O	O
Prope	erties					

Pure autoregressive process: AR(p)

$$Y_t = \mu + \omega_1 Y_{t-1} + \dots + \omega_p Y_{t-p} + \varepsilon_t$$

Pure moving average process: MA(q)

$$Y_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \dots - \theta_q \varepsilon_{t-q}$$

Identification of order through analysis of autocorrelations: if pure MA(q), autocorrelations $\rho(\tau)$ are zero after order q:

$$ho(au) = 0, \quad au > q$$

if pure AR(p), partial autocorrelations $r(\tau)$ are zero after order p: swiss:finance::institute $r(\tau) = 0, \quad \tau > p$

Dependence	ACF & Wold	ARMA	PACF	ARMA Order	Tests	Issues
o		00	●	o	O	0
PACF						

The partial autocorrelation $r(\tau)$ is defined as the last coefficient in the autoregression of order τ

$$Y_t = \mu + \omega_1 Y_{t-1} + \dots + \omega_\tau Y_{t-\tau} + \varepsilon_t,$$

i.e., $r(\tau) = \omega_{\tau}$.

 $\frac{\text{Partial autocorrelation function (PACF)}}{= r(\tau), \quad \tau = 1, 2, \dots \text{ of successive orders}}$

Empirical counterpart of ACF and PACF = correlogram and partial correlogram $\hat{\rho}_i(\tau), \quad \tau = 1, 2, ...; \hat{r}_i(\tau), \quad \tau = 1, 2, ...$

Dependence	ACF & Wold	ARMA	PACF	ARMA Order	Tests	Issues
0		oo	o	●	O	O
Identi	fying Order	S				

Identification of order *p* and *q*:

By examining on correlograms and partial autocorrelograms whether autocorrelations and partial autocorrelations are significantly different from zero i.e. outside the confidence intervals.

Example: dollar/sterling exchange rate from January 1974 and December 1994 (5192 observations)

Estimation of ARMA models: usually by maximum likelihood. pure autoregressive process also by OLS

Dependence	ACF & Wold	ARMA	PACF	ARMA Order	Tests	lssues
0		00	o	0	●	O
Resid	uals Analysi	is				

After estimation, residuals should be white noise

Test based on Portmanteau statistics (*Box-Pierce or Ljung-Box statistics*)

= sum of autocorrelations of residuals

Up to lag h

$$Q(H) = T \sum_{h=1}^{H} \hat{\rho}(h)^2$$

If residuals are white noise (no temporal dependence), Q(H) should be close to zero.

swiss:finance:institute

Dependence	ACF & Wold	ARMA	PACF	ARMA Order	Tests	lssues
○		oo	o	0	O	●
Unit F	Root Proble	ms				

AR(1) process:

 $Y_t = \mu + \omega_1 Y_{t-1} + \varepsilon_t$

We may be tempted to test whether coefficient $\omega_1 = 1$ (random walk hypothesis) using standard t-test

This is false since the process is non stationary.

The *t*-statistics does not follow a student distribution under the null hypothesis of a unit root.

The distribution is non standard and critical values have been tabulated (*Dickey-Fuller* table).

